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1 Introduction

The composite Higgs model with partial compositeness (PC) is amongst the few mechanisms
available for a symmetry-based explanation of the Electroweak (EW) hierarchy problem
in the Standard Model (SM). It realizes the Higgs boson as a pseudo-Nambu-Goldstone
boson (pNGB) arising from the breaking of a global symmetry [1] and uses linear couplings
between some SM fermions and composite fermions to generate their masses [2] and to give
the Higgs boson a vacuum expectation value (vev) [3–5].

If one concentrates on the class of models arising from four-dimensional gauge the-
ories with fermionic matter [6, 7] (hyperfermions), one is led to three minimal types of
symmetry breaking: G/H = SU(5)/SO(5) [8–11], SU(4)/Sp(4) [6, 7, 9, 12–14], SU(4)l ×
SU(4)r/SU(4)d [10, 15]. We shall refer to these three cosets as the real, pseudoreal and
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complex case since they arise for hyperfermions in a real, pseudoreal and complex repre-
sentation of the hypercolor gauge group GHC [16, 17]. The minimal dimension for the
cosets is given by the requirement that it should be possible to obtain the Higgs field as a
bidoublet H ∈ (2,2) of SU(2)L× SU(2)R ⊂ H [18]. Note that the minimal composite Higgs
model SO(5)/SO(4) [4, 5, 19–36] does not belong to this class, but the next-to-minimal one
SO(6)/SO(5) ≡ SU(4)/Sp(4) [37–54] does. The low energy theory at the multi-TeV scale
comprises the GHC invariant bound states of these hyperfermions with different spins and
SM quantum numbers. Bilinears of the hyperfermions lead to pNGB scalars and spin-1
vector resonances in the infrared (IR), while trilinears give rise to vector-like fermionic
bound states (commonly called vector-like quarks or fermionic partners).

We first present the structure of the IR lagrangian describing the interactions of the
third family of quarks and the SM gauge bosons with the fermionic partners and pNGBs of
the strongly coupled sector. This is needed since the spectra and the couplings of these
theories are highly non-generic, and thus simplified models may miss interesting signatures
for searches or falsely point to some that cannot be realized in the full theory. Also, tools
are being developed to automatize the simulation of general models of PC, with future
hadron colliders in mind. Extending the field content without guidance from symmetry
principles leads to many undetermined parameters. However, once the symmetries of the
underlying theory are employed, the number of these parameters is greatly reduced.

We use the PC paradigm to construct the low energy Lagrangian of the composite
sector and present it for the relevant cosets. We further chalk out the steps to extract
the interactions of the elementary fields with the composite ones, and provide details in
the appendix. The mass spectrum of the fermionic partners in the PC framework has
some specific patterns, independent of the choice of coset. In particular, a group of nearly
degenerate fermionic bound states is expected in this class of models.

We then consider a specific realization of the real (SU(5)/SO(5)) case and survey its
experimental signatures. The choice of focusing on this coset is partly motivated by the
recent interest in searching for exotic signatures of top-partner decays t′ → t (S → γ γ)
in the notation of [55], (see also [56]), which are more easily realized in this coset. It
follows that the branching ratios to the SM final states such as th, tZ and bW are reduced
compared to those into pNGBs and third generation quarks. In particular, we analyze a
specific scenario where the pair production of top-partners, with one of them decaying into
a tγγ final state, has a cross section of the order of a few femtobarn.

Our focus is on the production and decay of composite fermions and EW pNGBs, but
it should be noticed that the bound states arising from underlying theories of this kind
include additional types of composite particles. Some of these additional particles have been
studied elsewhere: colored pNGBs [57, 58], fermions in non-triplet irreps of color [59], vector
resonances [60–64], and axion-like particles [65, 66]. One can also envisage a variety of
additional decay channels of the fermionic partners as discussed in [67–69], see also [70–73].

The paper is structured as follows. Sections 2 and 3 together with appendix A present
the general construction of the models while section 4 together with appendices B and C
deals with the specific SU(5)/SO(5) coset and its diphoton signal. We offer our conclusions
in section 5.
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2 IR Lagrangian

The purpose of this section is to present the various components of the IR Lagrangian
describing the interactions of the composite sector with the SM vector bosons and the
quarks of the third generation. At this stage we keep the presentation general, including all
the minimal cosets arising in these underlying models, while the main interest of the later
phenomenological section (section 4 and appendix B) is in the SU(5)/SO(5) coset.

We split the Lagrangian into several parts for ease of discussion

L = Lelem + Lcomp , with Lcomp = LpNGB + Lanom + LΨ2 + LPC − Vpot . (2.1)

The elementary Lagrangian Lelem for the third generation quarks and vector bosons is
identical to the SM Lagrangian

Lelem = q̄Li /DqL + t̄Ri /DtR + b̄Ri /DbR −
1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν . (2.2)

In what follows we discuss each part of the composite Lagrangian Lcomp. More details are
given in appendix A. In this work, for simplicity we assume CP invariance and all couplings
to be real.

2.1 The pNGB kinetic term

The canonically normalized electroweak pNGBs Π = πiT̂
i can be written in terms of the

broken generators T̂ i as a matrix Σ ≡ Ω(θ) exp (iβΠ/f) transforming non linearly [74, 75]
under a global transformation g ∈ G as Σ→ gΣh−1(Π, g) where h(Π, g) ∈ H. Here f ∼TeV
represents the pNGB decay constant, and following the conventions in [10] β = 1,

√
2,
√

2
for the real, pseudoreal and complex case respectively.

The explicit pNGB content are given in appendix A.1 for the three cosets under
consideration. Throughout this paper we assume that the vacuum misalignment, leading to
EW symmetry breaking (EWSB), is caused by a nonzero vev of the Higgs doublet alone,
while other pNGB scalars do not receive any vevs. The true vacuum after EWSB can be
obtained by exponentiating the Higgs vev and is denoted by a matrix Ω(θ) as in [10] where
the angle θ parameterizes the misalignment of the vacuum.

For the real and pseudoreal cases one can also construct a matrix U ≡ ΣεΣT which
transforms as U → gUgT . Here ε represents a symmetric (antisymmetric) H invariant tensor
hεhT = ε for the real (pseudoreal) case respectively. For the complex case it is more conve-
nient to split the elements of SU(4)l×SU(4)r as g = (gl, gr), let Σl → glΣlh

−1, Σr → grΣrh
−1,

and define U = ΣlΣ†r → glUg
†
r, with h ∈ SU(4)d. Our explicit formulas will be mostly based

on the real/pseudoreal case with the modification for the complex case left understood.1

While Σ is required to define the interactions of the vector-like quarks with the SM
fermions through PC, the self interactions and gauge interactions of the pNGBs can be
expressed more conveniently using U . At O(p2), the kinetic term of the pNGBs can be

1To avoid confusion we use the lowercase letters l, r to denote the two simple SU(4) factors of G in the
complex case and reserve the uppercase L,R to the SU(2) factors in H and their related chiral structure.
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written using the matrix U as

LpNGB = f2β2

16 tr
[
(DµU)†(DµU)

]
. (2.3)

We introduce β in order to simultaneously canonically normalize the kinetic terms of the
pNGBs and ensure that the masses of W and Z bosons can be written uniformly as

M2
W = M2

Zc
2
W = g2

4 f
2s2
θ . (2.4)

Here cW ≡ cos θW denotes the cosine of the weak mixing angle, sθ ≡ sin θ and the definition
of electroweak scale is fixed as v = fsθ = 246GeV. Note that the tree level relation ρ = 1
is preserved since we assume that the vevs of all other non-standard pNGB scalars are
zero. The interactions of the weak gauge bosons with the 125GeV Higgs boson can thus be
written as

L = M2
W

(
2cθ

h

v
+ c2θ

h2

v2 + . . .

)[
W+
µ W

−µ + 1
2c2
W

ZµZ
µ

]
. (2.5)

The hV V and hhV V couplings (V = W,Z) are modified with respect to the SM by a
universal factor cθ and c2θ respectively for any compact coset [76]. The Lagrangian eq. (2.3)
also describes the interactions of one or two EW gauge bosons with pairs of additional
(non-Higgs) pNGBs, generically denoted as π, via the covariant derivative [10]. Note that
πV V terms are absent because of the absence of a vev for π.

2.2 The anomalous terms

In the absence of a vev for π, the interactions of a single pNGB with the gauge bosons
are given by the hyperquark anomaly, described by a Wess-Zumino-Witten term (WZW).
The WZW terms involving one pNGB and two gauge bosons can be written in a coset
independent way in terms of differential forms as [77, 78]

SWZW ⊃
i dim(ψ)

48π2

∫
tr
(
dAAdUU † +AdAdUU † + dA′A′U †dU

+A′dA′U †dU − dAdUA′U † + dA′dU †AU

)
, (2.6)

where dim(ψ) is the dimension of the hypercolor irrep of the hyperfermion ψ giving rise to
the EW coset, and A denotes the Lie algebra valued one form A ≡ (gW a

µT
a
L + g′BµT

3
R)dxµ.

For the SU(4)/Sp(4) and SU(5)/SO(5) [10] cosets A′ = −AT while for the SU(4)l ×
SU(4)r/SU(4)d [15] case A′ = A. After integrating by parts and expanding to leading order
in the pNGBs the anomaly Lagrangian Lanom can be written in terms of the physical gauge
fields as

Lanom = e2 dim(ψ)
48π2f

[∑
i

π0
i

(
Ki
γγFµνF̃

µν+Ki
γZFµνZ̃

µν+Ki
ZZZµνZ̃

µν+Ki
WWW

+
µνW̃

−µν
)

+
∑
j

π+
j

(
Kj
γWFµνW̃

−µν+Kj
ZWZµνW̃

−µν
)

+h.c.

+
∑
k

π++
k Kk

W−W−W
−
µνW̃

−µν+h.c.
]
. (2.7)
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Coset πi Ki
γγ Ki

γZ Ki
ZZ Ki

WW Ki
γW Ki

ZW Ki
W−W−

SU(4)
Sp(4) η 0 3cθ

sW cW
3c2W cθ
2s2
W c2

W

3cθ
s2
W

— — —

SU(5)
SO(5)

χ0
5 −2

√
3 −4

√
3c2W
s2W

(1−3c4W+2c2θ)√
3s2

2W

s2
θ√

3s2
W

— — —

χ0
1

√
6 2

√
6c2W
s2W

(1+6c4W−7c2θ)
2
√

6s2
2W

7
2
√

6
s2
θ

s2
W

— — —

η 3
√

2
5

√
2
5

6c2W
s2W

3(3c2
θ+c4W )

4
√

10c2
W s2

W

3(3c2θ+5)
4
√

10s2
W

— — —

χ+
3 — — — — − 3cθ

sW
3cθ
cW

—

χ+
5 — — — — 3i

sW

i(3c2W−c2θ−2)
2cW s2

W
—

χ++
5 — — — — — — − s2

θ√
2s2
W

SU(4)l×SU(4)r
SU(4)d

η 0 3cθ
sW cW

3c2W cθ
2s2
W c2

W

3cθ
s2
W

— — —

Table 1. Coefficients of the anomaly terms in eq. (2.7) uniformly normalized by a factor e2 dim(ψ)
48π2f .

Here η always denotes a SM singlet while the remaining coefficients are expressed in the custodial
basis but otherwise agree with those in [10]. The pNGBs not appearing in the table do not couple
to the anomaly terms.

Here π0
i , π±j and π±±k represent any pNGBs for a generic coset with electric charge Q = 0,±1

and ±2, respectively. In table 1 we list the coefficients of the Lanom for different pNGBS
in the custodial basis for the three minimal cosets (see appendix A.1 for notations). Note
that for the SU(4)l× SU(4)r/SU(4)d coset only η couples to the anomaly term and for both
SU(4)/Sp(4) as well as SU(4)l × SU(4)r/SU(4)d cosets Ki

γγ = 0, as already pointed out
in [15]. Also, for the real case χ0

3 does not appear in Lanom.

2.3 The Lagrangian for vector-like quarks

Vector-like fermionic partners (Ψ) are built out of GHC-invariant trilinears involving two
types of hyperfermions ψ and χ. The SU(3)c quantum number of the partner is carried
by the χ-type hyperfermions, which are however not charged under G. On the other hand,
ψ transforms as a fundamental (F ) of G.2 The trilinear composite operators can thus
be divided into two major categories of the type χψχ (one-index irrep of G) and ψχψ

(two-index irrep of G) respectively.
Below the G → H symmetry breaking scale the irreps of G should be decomposed under

the unbroken global H. This implies that χψχ-type partners transform as the irreps in the
decomposition of F of G on restriction to H, while the ψχψ-type partners belong to the
irreps in the decomposition of F × F . Thus, in matrix notation, the top-partners transform

2We use N,F,A, S,D to represent the siNglet, Fundamental, Antisymmetric, Symmetric, and aDjoint
irreps of both G and H, which one is being used should be evident from the context. For complex coset the
ψ transforms as (F, 1) + (1, F̄ ). In order to simplify the discussion we will often refer to both F and F̄ as
“fundamental” in the text.
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as ΨF → hΨF (for fundamental of H), ΨS,A → hΨS,Ah
T (for symmetric or anti-symmetric

of H) and ΨD → hΨDh
† (for adjoint of H in the complex case).

Taking into account these informations from the UV, we consider a single irrep (up
to two-index) of H for the fermionic partner as the relevant dynamic degree of freedom.
For any coset, it is convenient to decompose Ψ in terms of SU(2)L × SU(2)R ⊂ H. Explicit
matrices for Ψ in different irreps are given in the appendix A.2 for the three minimal cosets.
The Lagrangian for the fermionic partners is then given by3

LΨ2 = tr
[
Ψ̄i /DΨ

]
−Mtr

[
Ψ̄Ψ

]
+ κtr

[
Ψ̄/dΨ

]
, (2.8)

where the covariant derivative is

DµΨ = ∂µΨ− ivµΨ− iXe
(
Aµ −

sW
cW

Zµ

)
Ψ− igsGaµ

λa

2 Ψ . (2.9)

In the second term of the above equation vµ acts on Ψ in the appropriate representation.
The third term in eq. (2.9) corresponds to the interactions along the additional factor of
U(1)X that is the minimal additional gauge degree of freedom necessary to reproduce the
correct hypercharge (given by Y = T 3

R +X) of the SM quarks.4 The matrix-valued dµ and
vµ symbols can be calculated using the CCWZ formalism [74, 75] and are given by following
expressions,

dµ =
dim(G/H)∑

i=1
T̂ itr

[
T̂ iΣ−1 (i∂µΣ + eVµΣ)

]
, vµ =

dim(H)∑
a=1

T atr
[
T aΣ−1 (i∂µΣ + eVµΣ)

]
,

(2.10)

where T̂ i (T a) denotes the broken (unbroken) generators of G and Vµ is given by

Vµ =
W+
µ

sW

T 1
L + iT 2

L√
2

+
W−µ
sW

T 1
L − iT 2

L√
2

+
(
Aµ + cW

sW
Zµ

)
T 3
L +

(
Aµ −

sW
cW

Zµ

)
T 3
R . (2.11)

The term proportional to κ in eq. (2.8) leads to the derivative interactions of the partners
with the pNGB fields and belongs exclusively to the strong sector.

2.4 The partial compositeness Lagrangian

The PC mechanism relies on the linear mixing between the top quark and the top-partner
which explicitly breaks the global symmetry of the strong sector. In order to parameterize
this explicit breaking by coupling the SM third generation quarks to the top-partners and
the pNGBs, we use spurionic embeddings of the SM fermions into the irreps of G.

For the real and pseudoreal cases we consider spurions which transform as N,F,A, S,
and D of G (for the explanation of the notation, see section 2.3). For the complex case the
spurions are classified according to the representations (ρl, ρr) where ρl,r = N,F . . .D, with
the additional possibility of a Bifundamental B, but the idea behind the construction is the
same. (See [10, 45] for more details.)

3For the one-index irreps the trace should be interpreted as the usual invariant product.
4Note that the pNGBs are uncharged under the U(1)X.

– 6 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
0

Spurions ΨN ΨF ΨA ΨS

N ΨN × 0 0
F × F †ΣΨF × ×

A tr
[
A†ΣεΣT

]
ΨN × tr

[
A†ΣΨAΣT

]
0

S tr
[
S†ΣεΣT

]
ΨN × 0 tr

[
S†ΣΨSΣT

]
D 0 × tr

[
D†ΣΨAεΣ†

]
tr
[
D†ΣΨSεΣ†

]
Table 2. Formally G invariant operators at leading order giving rise to PC of the SM quarks.
The × symbol implies no possible invariant can be constructed while the zeros denote that the
operators vanish identically due to symmetry properties of the spurions and the irreps of the fermionic
partners. For the real (pseudoreal) case the expression tr

[
A†ΣεΣT

]
, (tr

[
S†ΣεΣT

]
) vanishes, since ε

is symmetric (antisymmetric).

The transformation properties of the spurions under a global g ∈ G are given, in matrix
notation, by

N → N , F → gF , A→ gAgT , S → gSgT , D → gDg† . (2.12)

The left-handed quark doublet (qL) should be embedded into a (2,2)2/3 of SU(2)L×SU(2)R×
U(1)X, while for the right-handed top (tR) either a (1,1)2/3, or the T 3

R = 0 component of
a (1,3)2/3 can be used. The embedding of qL in (2,2) ensures that the corrections to the
Z → bLb̄L decay width is under control due to the custodial protection [79]. The explicit
embedding matrices for the pseudoreal, real and complex cases are given in appendix A.3.

The structure of the formally G invariant PC Lagrangian is given as

LPC = yLf ¯̂qLOR + yRf
¯̂tROL + h.c. (2.13)

Here q̂L and t̂R denote the embedding of the elementary quarks into the incomplete G
multiplets above. For example, if both qL and tR are embedded in the adjoint irrep of G, we
can write q̂L = tLDtL + bLDbL and t̂R = tRDtR . To construct the invariant operators OL,R,
the partner Ψ is dressed with appropriate insertions of the pNGB matrix Σ. In table 2
we present the leading order invariant terms of eq. (2.13) for the real and pseudoreal case.
The construction is the same in the real and pseudoreal case if one uses the appropriate
invariant tensor ε (symmetric or anti-symmetric).

For the complex case one simply needs to keep track of the difference between the left
and right factors of G. For instance, one can have the following two invariants with antisym-
metric tensors: tr

[
A†rΣrΨAΣT

r

]
and tr

[
A†lΣlΨAΣT

l

]
where Al → glAlg

T
l or Ar → grArg

T
r

and similarly for the adjoint and symmetric. In the complex case one can also use the
bifundamental B → glBg

T
r and similar for various combinations of fundamentals and

anti-fundamentals e.g. B′ → glB
′g†r. Here the invariants are simply tr

[
B†ΣlΨAΣT

r

]
or

tr
[
B†ΣlΨSΣT

r

]
in the first case and tr

[
B′†ΣlΨNΣ†r

]
or tr

[
B′†ΣlΨDΣ†r

]
in the second case.
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2.5 The scalar potential

We have now come to the last term in eq. (2.1), namely the scalar potential. This term is
the most model dependent and prone to computational difficulties since it is fully generated
by the terms explicitly breaking the global symmetry H. The contributions of the symmetry
breaking interactions to the potential can be split as

Vpot = Vm + Vg + Vt , (2.14)

where Vm denotes the contribution from the bare hyperfermion mass term which can be
written as5

Vm = Bmf
4tr [ε∗U + εU∗] +B′mf

4tr
[
(ε∗U)2 + (εU∗)2

]
. (2.15)

The coefficients Bm, B′m are dimensionless low energy parameter encoding the strong
dynamics. We have included a B′m contribution, in the same spirit as [80–82]. Although f
should be thought of as an inverse coupling and inserted according to the rules of naive
dimensional analysis, we chose to use it as the only dimensionful quantity for convenience,
hence the unusual f dependence.

Similarly one-loop contributions from the gauge bosons Vg are given by

Vg = Bgf
4tr
[
g2T aLUT

a∗
L U † + g′2T 3

RUT
3∗
R U †

]
, (2.16)

for the real and pseudoreal cases, while for the complex case both T a∗L and T 3∗
R should be

replaced by −T aL and −T 3
R, respectively.

The top quark contribution to the potential Vt depends on the specific spurionic
representations in which qL and tR are embedded. Generically, the lowest order invariants
are formed using the spurions in the various representations and are given by terms like

(F †UF ∗)(F TU∗F ) , tr(AU∗)tr(A∗U) , tr(SU∗)tr(S∗U) , and tr(DUD∗U∗) , (2.17)

for the real and pseudoreal case, and similarly for the complex case. Note that the
antisymmetric spurion does not contribute to the potential in the real case and the symmetric
one does not contribute in the pseudoreal case. Also, none of the irreps (1, ρ) or (ρ,1)
contribute in the complex case.

Writing the full potential as in eq. (2.14) one proceeds first by selecting those spurions
that guarantee the absence of tadpoles for the non-Higgs pNGBs. For these selected
representations one then fixes two linear combinations of the low energy coefficients B by
imposing the correct Higgs mass and vev. The remaining coefficients are then varied in the
stability region of the potential to read off the spectrum of pNGBs. Detailed discussions
about the scalar potential for the various cosets can be found in [10, 11, 15, 37].

3 Spectrum of the fermionic partners

Having constructed the full Lagrangian in section 2, we can now study the generic properties
of the fermionic spectrum arising in these models. Here we discuss the classical mass matrices

5This is not the most general expression. Any matrix preserving custodial symmetry can be used in
place of ε.

– 8 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
0

arising from combining the Dirac mass in eq. (2.8) and the contribution of eq. (2.13) after
EWSB. The only partners involved in the quadratic part of eq. (2.13) are those with the
same quantum number as the top or bottom quarks; the other exotic partners are unaffected
by PC and remain degenerate with tree level mass set by M in eq. (2.8). We thus focus
our attention on these two sectors. The generic structure of their mass matrix is that of a
n× n matrix

M2/3 =
(

0 ωtL(θ)T

ωtR(θ) M1n−1

)
, M−1/3 =

(
0 ωbL(θ)T

ωbR(θ) M1n−1

)
, (3.1)

where ωt,bL,R(θ) denote (n − 1) dimensional vectors capturing the mixing between the ele-
mentary and composite fermions in eq. (2.13). In the case where a bR partner is absent,
we have ωbR(θ) = 0 and the bottom quark cannot acquire a mass this way. In this case
one needs to resort to the usual bilinear couplings to give a mass to the bottom quark,
expressed by replacing the upper left zero-entry ofM−1/3 by a non-zero parameter. The
elements of ωt,bL,R(θ) are proportional to yL,Rf and trigonometric functions of θ.

Singular value decomposition of M2/3. Singular value decomposition ofM2/3 can
be done numerically or perturbatively by expanding in powers of θ. The physically relevant
cases yield masses for the top quark of either of the following types

mt ∝



f2MyLyRθ√
M2 + y2

Lf
2
√
M2 + y2

Rf
2
, Type I,

f2yLyRθ√
M2 + y2

L,Rf
2
, Type II.

(3.2)

In some cases, such as when both |ωtL(θ)| and |ωtR(θ)| ∼ O(θ), the top quark mass is O(θ2)
and must be discarded as it is too small. In the left panel of figure 1 we show the contours
satisfying mt = 173GeV in the yR−yL plane for different values of M/f . The solid (dashed)
contours in the left panel of figure 1 represent models of Type I (II). Note that fairly large
values for yL and yR are required to reproduce the correct top mass.

We now discuss the spectrum of the composite fermions with electric charge Q = 2/3.
The generic spectrum at tree level is shown in the right panel of figure 1. The presence
of the (n − 1) × (n − 1) diagonal block ensures that M2/3 has n − 3 exactly degenerate
states with mass M in its singular value decomposition. This can be seen by noticing
that the ωtL,R can be brought by a field redefinition to have only at most the first two
components non-zero. The masses of the remaining two top-partners (recall that n × n
mass matrix is composed of top quark and n− 1 top-partners) are given by

√
M2 + y2

Lf
2

and
√
M2 + y2

Rf
2, for models of Type I. In case of Type II models one of the top-partners

has a mass slightly heavier than M :
√
M2 + y2

L,Rv
2 (note that this leads to a very small

mass splitting ≈ y2
L,Rv

2/2M), while the other is heavier with a mass of
√
M2 + y2

R,Lf
2.
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Figure 1. Left: the mt = 173GeV contours in the yR − yL plane for M/f = π (blue), 2π (yellow)
and 3π (green). The solid (dashed) contours refer to the models of Type I (II), as given in eq. (3.2).
Right: a representative figure depicting the generic spectrum of the vector-like quarks in models
with PC. For Q = 2/3 and −1/3 the pair of dashed lines imply that either one of the lines is present
in a particular model.

Singular value decomposition ofM−1/3. In the presence of a partner for the bottom
quark leading to a non-zero ωbR(θ) the singular value decomposition of M−1/3 proceeds
exactly as in the previous case. In the cases where there is no bR partner we assume that
the mass of the bottom quark can be generated by some bilinear operator. Incorporating
this assumption, we get a modifiedM−1/3 as

M−1/3 =
(

µbθ ωbL(θ)T

0n−1×1 M1n−1

)
, (3.3)

where µb denotes the contribution from the bilinear operator of the type q̄LObR. The
generic expression for the bottom quark mass to O(θ) can also be of two types as follows

mb ∝


µbMθ√

M2 + y2
Lf

2
, Type I,

µbθ , Type II.
(3.4)

Eq. (3.3) now implies that there are n− 2 degenerate states with mass equal to M . The re-
maining state can have a mass

√
M2 + y2

Lf
2 for Type I, and

√
M2 + y2

Lv
2 for Type II models.

3.1 One loop self energy

In this subsection we discuss the one loop self energy of the top-partners and its effect
on their masses and widths. Due to the presence of explicit breaking of G through gauge
interactions and PC, we expect that the one loop corrections to the fermionic self energy
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Ti Tj Ti TjΨk Ψk

V α
µπα

iγµ(v̂αik + âαikγ5) iγµ(v̂α∗jk + âα∗jk γ5)i(vαik + iaαikγ5) i(vα∗jk + iaα∗jk γ5)

Figure 2. The one loop diagrams contributing to the self energy of the top-partners in terms of
generic dimensionless couplings v, a, v̂, â that can be expressed in terms of yL, yR, κ,M , and f for a spe-
cific model. The expressions under the diagrams are the Feynman rules for the corresponding vertices.

lift the degeneracy in the top-partner spectrum. The relevant self energy diagrams are
shown in figure 2 where Ti,j represent the degenerate top-partners while Ψk denotes either
a partner or a SM quark running in the loop. The contributions from the two diagrams to
the self-energy are

−iΣπ
ij(/p) =

∑
k,α

∫ 1

0
dx

∫
d4l

(2π)4

[
(/px+Mk)vαikvα∗jk +(/px−Mk)aαikaα∗jk +(γ5−terms)

]
(l2−∆π+iε)2 , (3.5)

−iΣV
ij(/p) =

∑
k,α

∫ 1

0
dx

∫
d4l

(2π)4

2
[
(/px−2Mk)v̂αikv̂α∗jk +(/px+2Mk)âαikâα∗jk +(γ5−terms)

]
(l2−∆V +iε)2 , (3.6)

where ∆π,V ≡ m2
π,V x + (M2

k − p2x)(1 − x). The γ5 terms can be rotated away by a
field redefinition and are ignored. The real part Re[Σ(/p)] is logarithmically divergent and
contributes to the mass correction. We regularize this divergence using a UV cut-off around
the compositeness scale Λ ∼ 4πf , where the non-perturbative dynamics from the strongly
interacting hypercolor sector kicks in. We denote the corrected central value of the mass of
the semi-degenerate multiplet by MT and the mass splitting by δMij as

MT = M + 1
NT

tr(Re[Σ(M)]) , δMij = Re[Σij(M)]− 1
NT

tr(Re[Σ(M)])δij , (3.7)

where NT denotes the number of degenerate states (typically NT = 2 or 3 in these models).
Just as the mass splitting, the total decay width (ΓT ) of these states can be expressed

as a hermitian matrix with non-zero off-diagonal elements using the optical theorem as
ΓT = −2Im[Σ]. The ΓT is the sum of the matrix valued partial decay widths for the
appropriate channels as given below

Γij(T →Ψkπ
α) = vαikv

α∗
jk Γ+

π +aαikaα∗jkΓ−π , Γij(T →ΨkV
α
µ ) = v̂αikv̂

α∗
jk Γ−V +âαikâα∗jkΓ+

V , (3.8)

where Γ±π and Γ±V are given as

Γ±π = λ(MT ,Mk,mπ)
16πMT

(
1+M2

k

M2
T
− m

2
π

M2
T
±2Mk

MT

)
, (3.9)

Γ±V = λ(MT ,Mk,MV )MT
16πM2

V

[
1+M4

k

M4
T
−2M

4
V

M4
T

+M2
V

M2
T

+M2
k

M2
T

M2
V

M2
T
−2M

2
k

M2
T
±6Mk

MT

M2
V

M2
T

]
, (3.10)

and, λ(x, y, z) ≡
√
x4 + y4 + z4 − 2x2y2 − 2y2z2 − 2x2z2 is the Källén function.
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Thus, the outcome of the analysis above is that in case of nearly degenerate states with
|ΓT | ∼ |δM | �MT we obtain a matrix propagator

i

[
(/p−MT )1+ i

2(ΓT +2iδM)
]−1

ij
≈
[

i(/p+MT )
(p2−M2

T )1+iMT (ΓT +2iδM)

]
ij

≡ i(/p+MT )∆ij(p2).

(3.11)
When considering top-partners pair production and their subsequent decays one must take
into account the interference between the channels involving the nearly degenerate states
using the above matrix propagator, leading to an interesting computational challenge. We
will show a way to handle this puzzle for the specific example discussed in the next section.

4 Phenomenology of top-partners: an explicit example

Having presented the general construction of these models in the previous sections we
now move to describe a specific example of such models displaying various unusual phe-
nomenological features. We choose to employ the SU(5)/SO(5) coset since it has a rich
pNGB sector with anomalous couplings to dibosons leading to a wide variety of decay
channels for the top-partners. This coset leads to 14 pNGBs whose decomposition under
SU(2)L × SU(2)R ⊃ SU(2)cust is given by6 (also see appendix A.1)

14→ (3,3) + (2,2) + (1,1) (4.1)
→ 1(χ0

1) + 3(χ±3 , χ0
3) + 5(χ±±5 , χ±5 , χ

0
5) + 1(h) + 3(G±, G0) + 1(η).

After chosing the coset, the remaining discrete choices to be made are the irreps for the
fermionic partner and the spurions of the third quark family. We choose the following irreps
for the construction of our model (see appendix A.3 for details)

q̂L = tLD
1
tL

+ bLD
1
bL
∈ 24, t̂R = tRD

2
tR
∈ 24, ΨA ∈ 10. (4.2)

The spurions are involved in the construction of both the scalar potential and the Yukawa
couplings, while the choice of the partner only affects the latter. The relevant parts of the
Lagrangian are given in appendix B.

We choose ΨA ∈ 10 for simplicity, since it leads to a more restricted number of partners
while retaining the main interesting features. Chosing the symmetric irrep for Ψ would give
rise to additional fermions with exotic charges 8/3 and −4/3. There are only a few possible
choices for the spurions [11] satisfying the necessary requirements (such as no vevs for the
triplets) and eq. (4.2) complies with them.

To set the notation we present the decomposition of the partners’ irrep 102/3 under
SU(2)L × SU(2)R ×U(1)X ⊃ SU(2)L ×U(1)Y

10 2
3
→ (2,2) 2

3
+(3,1) 2

3
+(1,3) 2

3
(4.3)

→2 1
6

(
T 2

3
,B− 1

3

)
+2 7

6

(
X 5

3
,X 2

3

)
+3 2

3

(
Y 5

3
,Y 2

3
,Y− 1

3

)
+1− 1

3

(
B̃− 1

3

)
+1 2

3

(
T̃ 2

3

)
+1 5

3

(
X̃ 5

3

)
.

6The superscripts denote the electric charges and G denotes the Goldstones eaten by the SM gauge bosons.
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Top-partner Decays to SM final states Decays to BSM final states
T 2

3
, X 2

3
, Y 2

3
, T̃ 2

3
th, tZ, bW+ tχ0

1,3,5, tη, bχ+
3,5

B− 1
3
, Y− 1

3
, B̃− 1

3
tW−, bh, bZ tχ−3,5, bχ0

1,3,5, bη

X 5
3
, Y 5

3
, X̃ 5

3
tW+ tχ+

3,5, bχ
++
5

Table 3. Possible decay channels of the vector-like fermionic partners for the model discussed in
this section, with the choice given in eq. (4.2).

Figure 3. The pair production cross-section σ(pp → ΨΨ̄) for any color triplet calculated using
Top++ [83] at the NNLO+NNLL accuracy with centre of mass energies

√
s = 13TeV and 14TeV,

respectively.

The interesting novel feature of this model is having top partners with much reduced branch-
ing ratios to the usual SM channels t h, t Z, and bW and instead a large branching ratio to
beyond the SM (BSM) mediated channels such as t(η → γ γ) as we now proceed to discuss.

We consider only pair production of top-partners and their subsequent decays. All
the possible two body decay channels for this model are listed in table 3. Recall that pair
production of the vector-like quarks is model independent and is a function of their mass
only. The pair production cross-section σ(pp→ ΨΨ̄) for any color triplet is calculated at
the NNLO+NNLL accuracy with Top++ [83] using the sets NNPDF4.0 parton densities and
is shown in figure 3 (see [84] for corrections arising from the finite size of the partners).

We now need to consider the various decay modes. In this paper we are only concerned
with the total cross section for each channel without any detailed study of the reach
attainable at colliders. This is a first step needed to justify further studies and it already
involves an interesting challenge, since we must deal with a nearly degenerate spectrum
and want to take into account the interference between channels. This problem has been
encountered and studied before in similar contexts [85–87], but here we present a different
angle on it, showing how to treat off-diagonal contributions to masses and widths in the
particular limit of interest for this paper.
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Masses (in GeV) Couplings
f M m3 m5 m1 mη yL yR κ

1000 1500 330 315 335 290 1.80 1.87 0.50

Table 4. Choice of benchmark parameters used in this section.

We quickly review the tree level spectrum of the partners (see appendix B for explicit
expressions of the mass matrix). The three fermionic partners with Q = 5/3 are all
degenerate at tree level with mass M . In the Q = −1/3 sector we assume that the bottom
quark receives a mass through a bilinear operator. The tree level masses of the remaining
vector-like quarks with Q = −1/3 are M , M , and

√
M2 + y2

Lv
2, respectively. The charge

2/3 states in the gauge eigenbasis are denoted by t, T 2
3
, X 2

3
, Y 2

3
, T̃ 2

3
, where t comes from the

elementary sector and the remaining fields from eq. (4.3). The leading order mixing in the
mass matrix appears from the coupling of T̃ 2

3L
and tR, while Y 2

3
mixes at O(θ) and T 2

3
,

X 2
3
do not mix at all with either tL or tR. The tree level masses in the top sector after

singular value decomposition are given as mt, M, M,
√
M2 + y2

Lv
2/4, and

√
M2 + y2

Rf
2,

respectively.
In what follows, we will be interested in the phenomenology of the lightest two top-

partners T 2
3
and X 2

3
with tree level mass M . The benchmark parameters used for this study

are displayed in the table 4. The pNGB masses are obtained by minimizing the potential
given in eq. (2.14). The benchmark shown in the table 4 has mass eigenstates of the pNGBs
approximately aligned to the custodial direction. Here m3, m5 and m1 denote the masses
of the custodial triplet χ3, quintet χ5 and the singlet χ0

1, while mη denotes the mass of the
pure singlet η.

4.1 Decay of nearly degenerate top-partners

We consider the processes shown in the figure 4 pp → T T → AB̄, where T ≡ T 2
3
, X 2

3

collectively denotes the two nearly degenerate top-partners and A,B ≡ (bW+), (tZ) . . . (bχ+
5 )

(B̄ just being the charge conjugate of B). Thus A and B run over the possible SM and BSM
decay modes shown in the first row of table 3. Since the pair production mode is universal
we can factor out the production cross section σ(pp → T 2

3
, T̄− 2

3
) = σ(pp → X 2

3
, X̄− 2

3
)

displayed in figure 3. However, note that even at one-loop their mass splittings, computed
using the eqs. (3.5) and (3.6), are smaller than their individual decay widths. Therefore we
need to consider the interference between their identical decay channels and the fact that
the propagator in eq. (3.11) is not diagonal.

We have been able to show that in the narrow width approximation (NWA), even in
the presence of an off-diagonal matrix propagator one can factorize the cross-section as

σ(pp→ T T → AB̄) NWA= NT σ(pp→ T T )BR2(T T → AB̄) , (4.4)

where in our case NT ≡ 2 denotes the number of degenerate fermionic states in the amplitude.
The quantity BR2(T T → AB̄) denotes the ‘joint branching ratio’ of T → A and T → B̄.
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Figure 4. Feynman diagram for the process pp → T T → AB̄ where T denotes the lightest
top-partners T2/3 and X2/3, while A and B represent any of the decay channels shown in table 3.
The propagators are labeled with e.g. Ti, Tj to emphasize that the nearly degenerate top-partners
can mix as shown in eq. (3.11).

This is the only factorization allowed in eq. (4.4) if one wants to keep the interference
between the channels. The details of the calculation will be reported in an upcoming paper,
however, the main steps for calculating BR2(T T → AB̄) are given in appendix C. Notice
that it is not possible to write BR2 as a product of two branching ratios, as one would do
if there was no degeneracy. It is however possible to define an effective branching ratio of
T → A as

BR(T → A) ≡
∑
B̄

BR2(T T → AB̄) , such that,
∑
A

BR(T → A) = 1 , (4.5)

but again BR2(T T → AB̄) 6= BR(T → A)BR(T → B̄) implying non-trivial correlations
between the two final states.

For our benchmark point the central value of the mass for T ≡ T 2
3
, X 2

3
including one

loop corrections is found to be at MT = 1.36TeV. The numerical value of the one loop
mass splitting and the total decay width matrix are

δM =
(

33.3 −3.9
−3.9 −33.3

)
GeV, ΓT =

(
121.8 3.7
3.7 165.2

)
GeV. (4.6)

In figure 5 we present the BR2(T T → AB̄) for our choice of benchmark parameters.
On top of the plot we also show the values of BR(T → A) as given in eq. (4.5) for each
two-body decay channels. The joint branching ratios are not too sensitive to the change in
yL, κ and M as long as M � mpNGB. For the model under consideration the couplings
T bW+ are zero at O(θ) in the absence of PC mixing of bR, and also T tZ appears at O(θ).
From figure 5 we observe that the joint branching ratios to the BSM channels dominate
compared to the SM channels. Clearly, the most promising channel is pp → T T → tt̄ηη

with BR2 = 0.20.
For the next-to-lightest top-partner Y 2

3
the dominating channels constitute of SM

two-body final states. Similar calculations can be performed for the fermionic partners with
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Figure 5. Joint branching ratios BR2(T T → AB̄) as in eq. (4.4) for our benchmark parameter
choice where A (B̄) is given in the vertical (horizontal) axis of the plot. Since BR2(T T → AB̄) is a
symmetric matrix we only present the lower triangle. The numbers on the top of the figure show
the values of BR(T → A) as given in eq. (4.5).

Q = −1/3 and Q = 5/3 as well. If the top-partners belong to 142/3 and the top quark is
embedded in the adjoint of SU(5), a similar scenario can be constructed where the lightest
top-partners also dominantly decay into the BSM states.

4.2 Decay of pNGBs

To extract the observable signal we need to combine σ(pp→ T T → AB̄) with the branching
ratio of the pNGBs into the appropriate SM channels. While still promptly decaying, the
pNGBs have a very small width so that in this case we can employ the usual NWA and
ignore any further interference. The specific combination of cross-sections and branching
ratios that needs to be employed depend on the final states one wants to target and how
inclusive one wants to be.

As mentioned in the Introduction, we now focus on the diphoton channel and calculate
the branching ratios of the neutral pseudoscalar pNGBs using the expressions given in [58].
In the specific scenario we are considering, among the BSM pNGBs only η couples to the tt̄
pair with a strength (at O(θ)) proportional to

Lηtt̄ = f2 v κ yL y
3
R

2
√

10(M2 + y2
Rf

2)3/2 iηt̄γ5t , (4.7)

while the other pseudoscalars χ0
5 and χ0

1 do not couple to tt̄ at O(θ). As a result, η couples
to a pair of gluons through a top quark loop which has a strength comparable to the
WZW terms.

In figure 6 we present the branching ratios of η, χ0
5 and χ0

1, respectively using the
benchmark values of M , f , yL,R and κ given in table 4. Note that η decays dominantly to
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Figure 6. Branching ratios of pseudoscalar pNGBs into SM final states using the values of M , f ,
yL,R and κ given in table 4 and dim(ψ) = 6 in the anomalous couplings of eq. (2.7). We assume
that mass splitting among the pNGBs remain same as given in table 4 throughout the entire mass
range on the horizontal axes of each plots.

tt̄ pair if mη > 2mt, while for χ0
5 and χ0

1 the branching ratio to diphoton dominates over a
large range of masses. For our benchmark masses, the three body decays χ0

1 → χ0
3ff̄ and

χ0
1 → χ±3 ff̄

′ (where f, f ′ denote leptons or light quarks) via off-shell W or Z are orders of
magnitude smaller compared to the two body decays (BR(χ0

1 → χ0
3ff̄) = 3.3× 10−4 and

BR(χ0
1 → χ±3 ff̄

′) = 1.2× 10−4).
Having the branching ratios of the neutral pNGBs we can compute the cross sections

for various signals of interest. Focusing on the diphoton, we could consider the inclusive
process with a top quark and a diphoton resonance in the final state:

σ (pp→ (tγγ) . . . ) =
∑

πα=η,χ0
1,3,5

∑
B̄=all

σ
(
pp→ (tπα)B̄

)
BR(πα → γγ),

= NT σ(pp→ T T )
∑

πα=η,χ0
1,3,5

BR (T → tπα)BR(πα → γγ), (4.8)

where, for ease of notation we now omit all the intermediate states in the expression of the
cross section. For the specific scenario discussed above and for our choice of benchmark
parameters we find σ (pp→ (tγγ) . . . ) ∼ 1.31 fb.

The cross section given in eq. (4.8) is relevant for the leptonically decaying top quark
where the distinction between a top and an anti-top is possible. However, for a hadronically
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decaying top, a more inclusive cross section as given below is of relevance:

σ
(
pp→ (t/t̄γγ) . . .

)
=

∑
πα=η,χ0

1,3,5

 ∑
B̄=all

σ
(
pp→ (tπα)B̄

)
+
∑
A=all

σ
(
pp→A(t̄πα)

)BR(πα→ γγ),

−
∑

πα,β=η,χ0
1,3,5

σ
(
pp→ (tπα)(t̄πβ)

)
BR(πα→ γγ)BR(πβ→ γγ),

=NT σ(pp→T T )

2
∑

πα=η,χ0
1,3,5

BR(T → tπα)BR(πα→ γγ) ,

−
∑

πα,β=η,χ0
1,3,5

BR2
(
T T → (tπα)(t̄πβ)

)
BR(πα→ γγ)BR(πβ→ γγ)

 . (4.9)

We subtracted the processes with four photons in the final state to avoid double counting.
For our specific model, the choice given in table 4 yields σ

(
pp→ (t/t̄ γγ) . . .

)
∼ 2.43 fb.

Note that more exclusive processes can be obtained by restricting the sum over B̄ in
eq. (4.8). On the other hand, more inclusive quantities, such as the fully inclusive diphoton
signal σ(pp→ γγ . . . ) would require the cross section of the processes involving additional
intermediate fermionic partners with nearly equal masses, as well as the branching ratios of
the charged pNGBs, which is beyond the scope of this paper.

5 Conclusions

In this paper we constructed the low energy Lagrangian of a class of models with vector-like
quarks and pNGB scalars, addressing the electroweak hierarchy problem within the partial
compositeness framework. We presented the Lagrangian for three minimal cosets arising
from strongly coupled gauge theories with fermionic matter in the UV. Our approach,
based on symmetries motivated from specific UV realizations, greatly reduces the number
of free parameters compared to the simplified models with the same field content.

In these models, the structure of the fermion mass matrix and spectrum follows a
specific pattern, and in particular, we highlighted the presence of nearly degenerate fermionic
partners. We further estimated the one loop mass splitting in the degenerate sector.

We then focused on a concrete example based on the SU(5)/SO(5) coset to investigate
the possible signatures of top-partners at colliders. We considered a minimalistic choice
of both the irreps of the fermionic partners as well as the spurionic embedding of the SM
third family quarks. We calculated the cross sections for production of a pair of lightest
and nearly degenerate top-partners followed by their decays into SM and pNGB final states.
The pNGBs were allowed to decay either into dibosons or a pair of third family quarks.
For the nearly degenerate states we incorporated the effects of the off-diagonal self energy
and the full quantum interference in the resonant production cross section and branching
ratios. We showed that for the specific model in question the lightest top-partners decay
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dominantly into a top quark and a pseudoscalar pNGB, which in turn can decay to diphoton,
primarily through anomalous interactions. This leads to a promising channel to search for
top-partners at the LHC with an inclusive cross section of the order of a few femtobarns.
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A Building blocks for the IR theory

In this section we provide more technical details on the basic building blocks needed to
write the IR Lagrangian for a generic G/H coset. The explicit expression for the generators
of SU(2)L × SU(2)R (T iL, T iR), the pNGB matrix Π, and the vacuum matrices Ω(θ) are the
same as in [10] and will not be repeated.

A.1 pNGBs

We present the decompositions of the pNGBs under the various subgroups of H, paying
attention to the transformation to the custodial basis, to set the notation.

I. SU(4)/Sp(4) coset. The minimal SU(4)/Sp(4) coset delivers 5 pNGBs viz. a com-
plex Higgs doublet H = (H+, H0) and a real pseudoscalar singlet η, respectively. The
decompositions of 5 of Sp(4) ' SO(5) under SU(2)L×SU(2)R ⊃ SU(2)L×U(1)Y is given as

5→ (2,2) + (1,1)→ 2±1/2(H) + 10(η) . (A.1)

This is the same field content of the model [37]. In our convention the Sp(4) invariant tensor
ε is the symplectic matrix ε0 ≡ iσ3 ⊗ σ2 so that U = Σε0ΣT . Because the additional pNGB
η is a singlet of SU(2)L×SU(2)R nothing needs to be done to go to the custodial basis, other
than, of course the usual decomposition already present in the SM (2,2)→ 1(h)+3(G±, G0),
where G±,0 are the would be Goldstone bosons eaten by the W± and Z.

II. SU(5)/SO(5) coset. The 14 pNGBs in this coset transforming as 14 of SO(5) can
be decomposed on restriction to SU(2)L × SU(2)R ⊃ SU(2)L ×U(1)Y as

14→ (3,3) + (2,2) + (1,1)→ 30(Φ0) + 3±1(Φ±) + 2±1/2(H) + 10(η) . (A.2)

Therefore the pNGBs comprise of the usual Higgs doublet H = (H+, H0) along with a
SU(2)L real triplet Φ0 = (φ−0 , φ0

0, φ
+
0 ), a complex triplet Φ± = (φ−±, φ0

±, φ
+
±) and a real

singlet η. For this coset the symmetric invariant matrix ε is taken to be the identity matrix
so that U = ΣΣT .
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It is also relevant to show the pNGB content in the custodial basis, since this is a good
approximate symmetry of the potental. Under SU(2)L × SU(2)R → SU(2)cust the pNGBs
decompose as

(3,3)→ 1 + 3 + 5 , (2,2)→ 1 + 3 , (1,1)→ 1 . (A.3)

Since we assume that only the Higgs doublet receives a vev, the custodial triplet originating
from the (2,2) serves as the would be Goldsotne boson to be eaten up by the W± and
Z bosons, as before. The physical pNGB spectrum contains one custodial quintet χ5 ≡
(χ0

5, χ
±
5 , χ

±±
5 ), one triplet χ3 ≡ (χ0

3, χ
±
3 ), and three singlets (h, χ0

1, η), out of which the
singlet h associated with the (2,2) is identified with the 125GeV Higgs boson. The relation
between the triplets Φ0 and Φ± with the custodial basis (χ0

1, χ3, χ5) is given by

φ0
0 = −

√
2
3χ

0
5 + 1√

3
χ0

1 , φ−+ = 1√
6
χ0

5 + 1√
3
χ0

1 + i√
2
χ0

3 ,

φ+
0 = 1√

2

(
χ+

5 + iχ+
3

)
, φ0

+ = 1√
2

(
−χ+

5 + iχ+
3

)
, φ+

+ = χ++
5 . (A.4)

Note that the phase convention for the Clebsch-Gordan coefficients in (A.4) is sligthly
different from the conventional one for consistency with the choice of generators. The
convention used here is the same as the one in [11] apart from the sign of φ+

0 .

III. SU(4)l × SU(4)r/SU(4)d coset. Finally, in case of the SU(4)l × SU(4)r/SU(4)d
coset, discussed in [15], the 15 pNGBs transform under the adjoint of the unbroken SU(4)d
can be decomposed on restriction to SU(2)L × SU(2)R ⊃ SU(2)L ×U(1)Y as

15→ (3,1)+(1,3)+2·(2,2)+(1,1)→30(∆)+2·2±1/2(H,H ′)+1±1(N±)+2·10(N0,η) .
(A.5)

The H is the same Higgs doublet as before, while H ′ is an additional doublet. ∆ = (∆±,∆0)
is a triplet of SU(2)L and N = (N±, N0) a triplet of SU(2)R decomposed according to its
hypercharge, which in this case coincides with the electric charge. ∆ and N are already
custodial triplets.

A.2 Fermionic partners

The fermionic partners transform under an irrep of H. In table 5, we present the decom-
position of the relevant irreps of SO(5)×U(1)X (same as those of Sp(4)×U(1)X) and of
SU(4) × U(1)X under SU(2)L × SU(2)R × U(1)X ⊃ SU(2)L × U(1)Y. Below we show the
explicit notations for the pseudo real, real and the complex cosets, respectively.

I. SU(4)/Sp(4) coset. We consider partners in the 1 (ΨN ), 5 (ΨA), 10 (ΨS/ΨD) of Sp(4).
The explicit expressions for them are given in terms of SU(2)L × SU(2)R submultiplets as
(in 2 + 2 block notation for the matrices)

ΨN = T̃ 2
3
, ΨA =

 i
2 T̃ 2

3
σ2 1√

2Ψ(2,2)

− 1√
2ΨT

(2,2)
i
2 T̃ 2

3
σ2

 , ΨS =

 Ψ(3,1)
1√
2Ψ(2,2)

1√
2ΨT

(2,2) Ψ(1,3)

 , (A.6)
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SO(5)×U(1)X SU(2)L×SU(2)R×U(1)X SU(2)L×U(1)Y

1 2
3

→ (1,1) 2
3

→ 1 2
3

5 2
3

→ (1,1) 2
3
+(2,2) 2

3
→ 1 2

3
+2 1

6
+2 7

6

10 2
3

→ (2,2) 2
3
+(3,1) 2

3
+(1,3) 2

3
→ 1 2

3
+1 5

3
+1− 1

3
+2 1

6
+2 7

6
+3 2

3

14 2
3

→ (1,1) 2
3
+(2,2) 2

3
+(3,3) 2

3
→ 1 2

3
+2 1

6
+2 7

6
+3 2

3
+3 5

3
+3− 1

3

SU(4)×U(1)X SU(2)L×SU(2)R×U(1)X SU(2)L×U(1)Y

1 2
3

→ (1,1) 2
3

→ 1 2
3

6 2
3

→ 2·(1,1) 2
3
+(2,2) 2

3
→ 2·1 2

3
+2 1

6
+2 7

6

10 2
3

→ (2,2) 2
3
+(3,1) 2

3
+(1,3) 2

3
→ 1 2

3
+1 5

3
+1− 1

3
+2 1

6
+2 7

6
+3 2

3

15 2
3

→ (1,1) 2
3
+2·(2,2) 2

3
+(3,1) 2

3
+(1,3) 2

3
→ 2·1 2

3
+1 5

3
+1− 1

3
+2·2 1

6
+2·2 7

6
+3 2

3

Table 5. The decomposition of Sp(4)×U(1)X' SO(5)×U(1)X irreps and SU(4)×U(1)X irreps under
SU(2)L×SU(2)R×U(1)X. All partners have X = 2/3. In the last column Y =T 3

R+X. We do not
include the 41/6 irreps since they present phenomenological problems [79] and cannot be realized in
the UV completions [10, 58] under consideration.

where the submultiplets are given by

Ψ(2,2) =

X 5
3
T 2

3

X 2
3
B− 1

3

 , Ψ(3,1) =

 Y 5
3

1√
2Y 2

3
1√
2Y 2

3
Y− 1

3

 , Ψ(1,3) =

 X̃ 5
3

1√
2 T̃ 2

3
1√
2 T̃ 2

3
B̃− 1

3

 . (A.7)

The adjoint irrep is equivalent to the symmetric, but the explicit form in terms of the
fields is ΨD = ΨSε0 since the transformations under a generic generator T a of Sp(4) are
respectively T aΨS + ΨST

aT and [T a,ΨD], where T aε0 = −ε0T aT .

II. SU(5)/SO(5) coset. Similarly, for the real coset we consider partners in the 1 (ΨN ),
5 (ΨF ), 10 (ΨA/D) and 14 (ΨS) of SO(5). The notations used for the partners belonging to
irreps of SO(5) are (in 4 + 1 block notation)

ΨN = T̃ 2
3
, ΨF =

(
Ψ(2,2)
iT̃ 2

3

)
, ΨA/D =

Ψ(3,1) + Ψ(1,3)
1√
2Ψ(2,2)

− 1√
2ΨT

(2,2) 0

 ,
ΨS =

Ψ(3,3) + i
2
√

5 T̃ 2
3
14

1√
2Ψ(2,2)

1√
2ΨT

(2,2) − 2i√
5 T̃ 2

3

 . (A.8)

The SU(2)L × SU(2)R submultiplets are

Ψ(2,2) = 1√
2


iB− 1

3
−iX 5

3

B− 1
3
+X 5

3

iT 2
3
+iX 2

3

−T 2
3
+X 2

3

 , (A.9)
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Ψ(3,1) = 1
2


0 Y 2

3

Y− 1
3
−Y 5

3√
2

−iY− 1
3
−iY 5

3√
2

0
−iY− 1

3
−iY 5

3√
2

−Y− 1
3

+Y 5
3√

2
0 Y 2

3

0

 , Ψ(1,3) = 1
2


0 T̃ 2

3

B̃− 1
3
−X̃ 5

3√
2

iB̃− 1
3

+iX̃ 5
3√

2

0
−iB̃− 1

3
−iX̃ 5

3√
2

B̃− 1
3
−X̃ 5

3√
2

0 −T̃ 2
3

0


,

(A.10)

Ψ(3,3) = 1
2


iY 2

3
+iV− 4

3
−U 8

3
V− 4

3
−iU 8

3

V− 1
3
−U 5

3
−Y− 1

3
+Y 5

3√
2

iV− 1
3

+iU 5
3

+iY− 1
3

+iY 5
3√

2

iY 2
3
−iV− 4

3
+U 8

3

−iV− 1
3
−iU 5

3
+iY− 1

3
+iY 5

3√
2

V− 1
3
−U 5

3
+Y− 1

3
−Y 5

3√
2

−iY 2
3
+iU 2

3
+iV 2

3
U 2

3
−V 2

3

−iY 2
3
−iU 2

3
−iV 2

3


.

(A.11)
We present only the upper triangular matrices in eqs. (A.10) and (A.11). One should
remember that Ψ(3,1) and Ψ(1,3) are antisymmetric while Ψ(3,3) is symmetric. For this coset
the notation for the adjoint and antisymmetric fields are exactly the same since we choose
T a = −T aT for all SO(5) generators.

III. SU(4)l × SU(4)r/SU(4)d coset. The field content of the complex coset can be
inferred directly from that of the pseudoreal one, since the generators of SU(2)L × SU(2)R
are the same. Specifically, the antisymmetric of SU(4)d is the same as that of Sp(4) in (A.6)
augmented by an additional Sp(4) singlet 1

2T
′
2
3
ε0, the symmetric is exactly the same, and

the adjoint can be taken as ΨAε0 + ΨSε0 for two generic symmetric and antisymmetric
matrices as in (A.6).

A.3 Spurions

Finally we list the explicit expressions for the spurion matrices realizing the embedding of
the elementary fields tL, bL and tR. The ones relevant for section 4 are the adjoint spurions
D1
tL
, D1

bL
, and D2

tR
of SU(5)/SO(5) coset as discussed below. Notice that all spurions must

carry X = 2/3 since we need to form a Yukawa coupling with the fermionic partners by
PC. This restricts the possible embeddings quite significantly. In particular, looking at the
decomposition of the various irreps under SU(2)L × SU(2)R, the only allowed embedding
for the LH doublet qL is in the (2,2) 2

3
, while tR can be embedded into the singlet (1,1) 2

3
or the T 3

R = 0 component of (1,3) 2
3
.

I. SU(4)/Sp(4) coset. The relevant spurions are those included in the irreps of SU(4):
1,6,10, 1̄0,15, where the symmetric cases 10, 1̄0 can be treated together. The embedding
matrices for tR are given by (with the superscripts denoting possible degeneracy in the
embedding)

NtR = (1), A1
tR

= i

2

(
σ2 0
0 −σ2

)
, A2

tR
= i

2

(
σ2 0
0 σ2

)
, StR = 1√

2

(
0 0
0 σ1

)
,

D1
tR

= 1
2

(
12 0
0 −12

)
, D2

tR
= 1√

2

(
0 0
0 σ3

)
. (A.12)
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The antisymmetric matrices A1,2
tR

and the adjoint D1
tR

are in the (1,1). (A1
tR

is a full Sp(4)
singlet proportional to the invariant tensor ε0.) The symmetric matrix StR and the adjoint
D2
tR

are T 3
R = 0 components of (1,3). The matrices for embedding tL and bL are

AtL= 1√
2


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 , AbL= 1√
2


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , StL= 1√
2


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 , SbL= 1√
2


0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

 ,
(A.13)

and for the adjoint D1
tL

= StLε0, D2
tL

= AtLε0, D1
bL

= SbLε0, D2
bL

= AbLε0.

II. SU(5)/SO(5) coset. Similarly, for the real case, we need to consider spurions in the
1,5,10,15,24 of SU(5) where, again, the conjugate irreps give rise to the same spurions.
With the same notation as in the previous case, we have, for tR

NtR = (1), FtR =


0
0
0
0
1

 , AtR = i

2

 σ2 02×2
02×2 −σ2 04×1

01×4 0

 ,

S1
tR

= 1
2
√

5

 12 02×2
02×2 12

04×1

01×4 −4

 , S2
tR

= 1√
5
15. (A.14)

The matrices in the adjoint are given by D1
tR

= S1
tR

and D2
tR

= AtR . As far as the spurions
for the LH fields are concerned we use

FbL = 1√
2


i

1
0
0
0

 , FtL = 1√
2


0
0
i

−1
0

 ,

AbL = 1
2


04×4

i

1
0
0

−i −1 0 0 0

 , AtL = 1
2


04×4

0
0
i

−1
0 0 −i 1 0

 ,

SbL = 1
2


04×4

i

1
0
0

i 1 0 0 0

 , StL = 1
2


04×4

0
0
i

−1
0 0 i −1 0

 . (A.15)

with the matrices in the adjoint given by D1
tL

= StL , D2
tL

= AtL , D1
bL

= SbL , D2
bL

= AbL .

– 23 –



J
H
E
P
0
3
(
2
0
2
2
)
2
0
0

III. SU(4)l × SU(4)r/SU(4)d coset. Lastly we consider the complex case. Here, in
principle, we need to specify the irrep of both SU(4)l,r but, again, the explicit matrices
are independent on these details and we can lump, e.g. (1,10), (1, 1̄0), (10,1), (1̄0,1) into
a S of SU(4). Having reduced the problem to a single SU(4) the spurions N,A, S, and
D in the complex case are given by the same numerical expressions as in the pseudoreal
case, (A.12) and (A.13), and need not be repeated. In addition, we must also consider the
Bifundamental matrices B. (4,4), (4̄, 4̄) are given by the same expression as the symmetric
and the antisymmetric given in the pseudoreal case. Similarly, (4, 4̄), (4̄,4) are the same as
the adjoint and an additional singlet only viable for the RH top (BtR = 1

214).

B The Lagrangian of the model in section 4

The interaction Lagrangian for the model presented in section 4 involving pNGB scalars in
the custodial basis and the fermions in the gauge basis can be written as

LT −π = T L

[
−M2/3 +

∑
i

π0
i Iπ0

i

]
TR + h.c.+

∑
j

π+
j

[
T LI1

π+
j
BR + T RI2

π+
j
BL
]

+ h.c.

+
∑
j

π+
j

[
YRÎ1

π+
j
TL + YLÎ2

π+
j
TR
]

+ h.c.+
∑
i

∂µπ
0
i T γµI∂π0

i
T

+
∑
j

∂µπ
+
j

[
T γµI∂π+

j
B + YγµÎ∂π+

j
T
]

+ h.c. (B.1)

where π0
i ≡ h, χ0

3, χ
0
5, χ

0
1, η and π+

j ≡ χ
+
3 , χ

+
5 and

T ≡
(
t, T 2

3
, X 2

3
, T̃ 2

3
, Y 2

3

)T
, B ≡

(
b, B− 1

3
, Y− 1

3
, B̃− 1

3

)T
, Y ≡

(
X 5

3
, Y 5

3
, X̃ 5

3

)T
. (B.2)

In contrast to the section 4, in this appendix we denote the column vector containing all
fermions with Q = 2/3 as T . The interactions between the weak gauge bosons and the
fermionic partners are similarly given by the follwoing Lagrangian.

LT −W/Z = e

sW cW

[
T LγµILZTL+T RγµIRZ TR

]
Zµ+ e

sW

[
T LγµILWBL+T RγµIRWBR

]
W+
µ +h.c.

+ e

sW

[
YLγµÎLWTL+YRγµÎRWTR

]
W+
µ +h.c. (B.3)

Note that both the Lagrangians above are obtained from eqs. (2.2), (2.8) and (2.13)
together with the choice given in eq. (4.2). We only keep terms with one pNGB (or gauge
boson) and at least one fermion with Q = 2/3 in eqs. (B.1) and (B.3). The mass matrix
M2/3 is given by

M2/3 =


0 0 0 −yLf

2 sθ
yLf

2 sθ
0 M 0 0 0
0 0 M 0 0

−yRf
2 (cθ + 1) 0 0 M 0
−yRfs2

θ/2 0 0 0 M

 , (B.4)
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π0
i Iπ0

i
I∂π0

i

h


0 0 0 yLcθ

2 − yLcθ2
0 0 0 0 0
0 0 0 0 0

− yRsθ2 0 0 0 0
yRsθ

2 0 0 0 0




0 0 0 0 0
0 0 0 − iκ

4f
iκ
4f

0 0 0 − iκ
4f

iκ
4f

0 iκ
4f

iκ
4f 0 0

0 − iκ
4f −

iκ
4f 0 0



χ0
3


0 yLs

2
θ/2 yLc

2
θ/2 0 0

yRsθ
2 0 0 0 0

− yRsθ2 0 0 0 0
0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 0 iκ

2f 0 0
0 − iκ

2f 0 0 0
0 0 0 0 0
0 0 0 0 0



χ0
5


0 iyLcθ√

3
iyLcθ√

3 0 0
iyRsθ√

3 0 0 0 0
iyRsθ√

3 0 0 0 0
0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 − κ

2
√

3f −
κ

2
√

3f 0 0
0 − κ

2
√

3f −
κ

2
√

3f 0 0
0 0 0 0 κ√

3f
0 0 0 κ√

3f 0



χ0
1


0 iyL(cθ−3)

2
√

6
iyL(cθ+3)

2
√

6 0 0
iyRsθ
2
√

6 0 0 0 0
iyRsθ
2
√

6 0 0 0 0
0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 κ

2
√

6f −
κ√
6f 0 0

0 − κ√
6f

κ

2
√

6f 0 0
0 0 0 0 − κ√

6f
0 0 0 − κ√

6f 0



η


0 i

√
5
2yLc

2
θ/2 −i

√
5
2yLs

2
θ/2 0 0

iyR
2

√
5
2sθ 0 0 0 0

iyR
2

√
5
2sθ 0 0 0 0

0 0 0 0 0
0 0 0 0 0




0 0 0 0 0
0 3κ

2
√

10f 0 0 0
0 0 3κ

2
√

10f 0 0
0 0 0 − κ√

10f 0
0 0 0 0 − κ√

10f


Table 6. The expressions for the couplings to the neutral pNGBs, Iπ0

i
and I∂π0

i
where

π0
i ≡ h, χ0

3, χ
0
5, χ

0
1, η.

while the interaction matrices Iπ0
i
, I∂π0

i
, I1,2

π+
j

, Î1,2
π+
j

, I∂π+
j
and Î∂π+

j
are given in the tables 6

and 7, respectively. The interaction matrices involving the weak gauge bosons IL,RZ , IL,RW

and ÎL,RW are given in table 8. The fermion mass basis are obtained through singular value
decomposition ofM2/3 using biunitary rotations TL,R → UL,RTL,R. The expressions for the
matrices UL,R at the leading order in θ are given by

UL =



0 0 1 0 0
0 1 0 0 0
−1 0 0 − fMyLθ

2(M2+f2y2
R)

fyLθ
2M

fyLθ
2M 0 0 0 1

fMyLθ
2M2+2f2y2

R
0 0 −1 0


, UR =



0 0 1 0 0
0 1 0 0 0
M√

M2+f2y2
R

0 0 fyR√
M2+f2y2

R

0

0 0 0 0 1
fyR√

M2+f2y2
R

0 0 − M√
M2+f2y2

R

0


.

(B.5)
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π+
j I1

π+
j

I2
π+
j

I∂π+
j

χ+
3


0 iyL√

2 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
− iyLcθ√

2 0 0 0
iyLcθ√

2 0 0 0
0 0 0 0
0 0 0 0




0 0 0 0
0 − κ

2
√

2f 0 0
0 κ

2
√

2f 0 0
0 0 − iκ

2f 0
0 0 0 iκ

2f



χ+
5


0 yLcθ√

2 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




0 − yRsθ√2 0 0
− yLcθ√2 0 0 0
− yLcθ√2 0 0 0

0 0 0 0
0 0 0 0




0 0 0 0
0 iκ

2
√

2f 0 0
0 iκ

2
√

2f 0 0
0 0 − κ

2f 0
0 0 0 − κ

2f


π+
j Î1

π+
j

Î2
π+
j

Î∂π+
j

χ+
3

− iyL√2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

  0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

  0 − κ

2
√

2f
κ

2
√

2f 0 0
0 0 0 iκ

2f 0
0 0 0 0 − iκ

2f


χ+

5

 yLcθ√
2 0 0 0 0

0 0 0 0 0
0 0 0 0 0

 − yRsθ√2 0 0 0 0
0 0 0 0 0
0 0 0 0 0

  0 − iκ

2
√

2f −
iκ

2
√

2f 0 0
0 0 0 κ

2f 0
0 0 0 0 κ

2f


Table 7. The expressions for the couplings to the charged pNGBs, I1,2

π+
j

, Î1,2
π+
j

, I∂π+
j
and Î∂π+

j
where

π+
j ≡ χ

+
3 , χ

+
5 .

ILZ IRZ

Z



3c2
W−s

2
W

6 0 0 0 0
0 3cθ−4s2

W
6 0 −κsθ8

κsθ
8

0 0 − 4s2
W+3cθ

6
κsθ

8 −κsθ8

0 −κsθ8
κsθ

8 − 2s2
W
3 0

0 κsθ
8 −κsθ8 0 − 2s2

W
3




− 2s2

W
3 0 0 0 0

0 3cθ−4s2
W

6 0 −κsθ8
κsθ

8

0 0 − 4s2
W+3cθ

6
κsθ

8 −κsθ8

0 −κsθ8
κsθ

8 − 2s2
W
3 0

0 κsθ
8 −κsθ8 0 − 2s2

W
3


ILW IRW

W+


1√
2 0 0 0

0 cθ+1
2
√

2 0 iκsθ
4

0
s2
θ/2√

2
iκsθ

4 0
0 − κsθ

4
√

2 0 i(cθ−1)
2

0 − κsθ
4
√

2 −
i(cθ+1)

2 0




0 0 0 0
0 cθ+1

2
√

2 0 iκsθ
4

0
s2
θ/2√

2
iκsθ

4 0
0 − κsθ

4
√

2 0 i(cθ−1)
2

0 − κsθ
4
√

2 −
i(cθ+1)

2 0


ÎLW ÎRW

W+

0
s2
θ/2√

2
cθ+1
2
√

2 − κsθ
4
√

2 − κsθ
4
√

2
0 iκsθ

4 0 0 − i(cθ+1)
2

0 0 iκsθ
4

i(cθ−1)
2 0


0

s2
θ/2√

2
cθ+1
2
√

2 − κsθ
4
√

2 − κsθ
4
√

2
0 iκsθ

4 0 0 − i(cθ+1)
2

0 0 iκsθ
4

i(cθ−1)
2 0


Table 8. The expressions for the couplings to the Z and W bosons, IL,RZ , IL,RW , and ÎL,RW .
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Similarly for B the mass matrixM−1/3 is given by

M−1/3 =


µbθ 0 − ifyLsθ√

2
ifyLsθ√

2
0 M 0 0
0 0 M 0
0 0 0 M

 , (B.6)

while the biunitary rotation matrices, defined by BL,R → ŨL,RBL,R , are given at the O(θ) as

ŨL =


1 0 ifyLθ√

2M −
ifyLθ√

2M
0 0 1√

2
1√
2

0 1 0 0
− ifyLθ

M 0 − 1√
2

1√
2

 , ŨR =


1 0 0 0
0 0 1√

2
1√
2

0 1 0 0
0 0 − 1√

2
1√
2

 . (B.7)

C Branching ratios involving degenerate states

As mentioned in the section 4, in the presence of NT nearly degenerate top-partners the
cross section for the process pp→ T T → AB̄ shown in figure 4 can be factorized as

σ(pp→ T T → AB̄) NWA= NT σ(pp→ T T )BR2(T T → AB̄) , (C.1)

where σ(pp→ T T ) is the pair production cross section, which is the same for each partner,
and BR2(T T → AB̄) denotes the joint branching ratio of T → A and T → B̄. The full
cross section (C.1) arises from squaring the amplitude in figure 4 and contains a term

tr
[
∆(p2

1)†ΓA(p2
1)∆(p2

1)∆(p2
2)ΓB̄(p2

2)∆(p2
2)†
]
, (C.2)

where the trace is over the NT states and p1,2 are the momenta of the two fermionic
partners to be integrated over. The ∆s are defined in eq. (3.11) with a total matrix-valued
width ΓT =

∑
A ΓA(M2

T ) ≡
∑
B̄ ΓB̄(M2

T ), where ΓA(M2
T ) and ΓB̄(M2

T ) are the on-shell
matrix-valued partial decay widths.

If it wasn’t for the matrix-valued nature of the propagators and widths, one could
further simplify eq. (C.2) by commuting the ∆s and use the NWA to write the expression as
the product of two ordinary branching ratios after integrating over p2

1 and p2
2. Here instead

we need to treat each of the two pieces under the trace, namely ∆(p2
1)†ΓA(p2

1)∆(p2
1) and

∆(p2
2)ΓB̄(p2

2)∆(p2
2)† as matrix-valued distributions in p2

1 and p2
2 respectively.

Let us consider the p2
1 term for definiteness and define Z = ΓT + 2iδM . One can show

that in the limit Z ∼ 0 where all components of Z become small compared to MT∫
dp2

1 ∆(p2
1)†ΓA(p2

1)∆(p2
1) Z∼0→ π

MT

2∑
n=1

(
c+
nOA+

n − ic−nOA−n
)
, (C.3)

where the matrix operators OA±n are given by

OA±n ≡ 1
2
(
Z†−nΓA(M2

T )Zn−1 ±Z†n−1ΓA(M2
T )Z−n

)
, (C.4)
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and the coefficients c±n only depend on Z and can be extracted by tracing the expression (C.3)
over four linearly independent matrices, e.g. 12, σ

a.7

Applying the above result to our problem we can now write the joint branching ratio as

BR2(T T → AB̄) = 1
NT

tr
([ 2∑

n=1

(
c+
nOA+

n − ic−nOA−n
)]
.

[ 2∑
m=1

(
c+
mŌB̄+

m + ic−mŌB̄−m
)])

,

(C.5)
where the matrix operator ŌB̄±m is defined similarly as

ŌB̄±m ≡ 1
2
(
Z−mΓB̄(M2

T )Z†m−1 ±Zm−1ΓB̄(M2
T )Z†−m

)
. (C.6)

Note that in (C.5) we extract a factor 1/NT to normalize BR2 to one. Solving for c±n for
our benchmark parameters in section 4, we find c+

1 = 1.30, c+
2 = −0.296, c−1 = 0.192, and

c−2 = −0.072.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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