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1 Introduction

It is clear that the Standard Model (SM) is not the ultimate theory for describing nature.
The SM does not have a candidate for dark matter. It cannot explain the origin of cosmic
inflation. The neutrino mass also requires the extension of the SM. The origin of the baryon
in the Universe also needs the extension of the SM. These observations require extensions
of the SM.
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The minimal extension of the Standard Model is to introduce a neutral scalar. In fact,
the neutral scalar appears in many extensions of the SM to solve the problems described
above. For example, the neutral scalar appears in the extended Higgs sector. The neutral
scalar also appears as the dilaton field in string theory. The neutral scalar may also play the
role of a mediator between the SM sector and the dark sector containing dark matter [1–3]
(for recent works, see ref. [4] and references therein). The mediator prevents the excessive
energy density in the dark sector which could result in the dark radiation or in overclosure of
the Universe by opening decay/annihilation channels into the SM sector. The neutral scalar
in the MeV range is also motivated to provide self-interaction between the dark matter
which can resolve the small scale problems of the collisionless cold dark matter (see e.g.,
ref. [5]). The neutral scalar can also be a candidate for an inflaton (see e.g., ref. [6]). Neutral
scalars are expected to provide important clues to the more profound theories behind them,
and many experimental searches are underway or proposed to find dark scalars: NA62 [7],
FASER [8], SHiP [9], MATHUSLA [10], and CODEX-b [11].

In this paper, we discuss the cosmological constraints on the dark scalar, focusing on
the lower limit on the dark scalar mass. The cosmological constraints of the dark scalar
have been discussed in the literature (see e.g., refs. [12, 13]). In the previous studies, they
mainly considered the feebly coupled dark scalar to the Higgs bosons. In this study, we
discuss more general case for a broad range of the interaction strength, with which the dark
scalar can play the role of the mediator between the dark sector and the SM sector in the
early Universe. For a rather strong coupling of the dark scalar, we need detailed analyses of
the Boltzmann equation including the neutrino decoupling. We also care the self-interaction
of the dark scalar, which affects the time evolution of the dark scalar energy density.

With these improvements, we derive conservative constraints on the dark scalar mass
and the coupling to the Higgs sector. The results show that the lower the reheating
temperature of the Universe is, the weaker the constraint becomes. On the other hand, for
the Big-Bang Nucleosynthesis (BBN) to be successful, the reheating temperature must be
higher than the MeV scale [14–21]. As a result, a conservative lower bound on the mass of
the dark scalar which has a sizable coupling to the electron, is found to be 3.8MeV. We
also show detailed parameter dependence of the cosmological constraints.

This paper is organized as follows. In section 2, we summarize the model of dark scalars.
In section 3, we discuss the mechanism of dark scalar production from the heat bath. In
section 4, we present the cosmological constraints on the dark scalar. The final section is
devoted to conclusions and discussions.

2 Model of dark scalar

2.1 Dark scalar interaction with the Standard Model

We introduce the dark scalar s as a SM gauge singlet field. In this case, the renormalizable
scalar potential of the dark scalar and the SM Higgs doublet is given by

Vint = VH(H) + Vmix(H, s) + Vs(s) , (2.1)
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where H denotes the Higgs doublet in the SM, and VH(H) is the Higgs potential. The
mixing terms and the self-interaction terms of s are given by,

Vmix(H, s) = λHs
2 s2|H|2 + µHss|H|2 , (2.2)

Vs(s) = m2
s

2 s2 + µs
6 s

3 + λs
24s

4 . (2.3)

In this paper, we are interested in the cosmological lower limit on the dark scalar mass in
around the MeV region, and hence, we assume the dark scalar mass of O(1)MeV in the
following analysis.

After the electroweak symmetry breaking, the physical SM Higgs h is described by
the field excitation of the modulus around the minimum of VH . The dark scalar s mixes
with the SM Higgs h with the mixing angle, θ. In the following, the dark scalar in the
mass eigenstate is denoted by φ. The relevant interactions for a low temperature below the
electroweak scale are those to the fermions induced by the mixing between the dark scalar
and the Higgs boson. The corresponding Lagrangian is given by

Lφ-matter = −
∑

f=SM fermions

mfsθ
v

φf̄f . (2.4)

Here, mf are the SM fermion masses, sθ = sin θ is the sine of the mixing angle, and
v = (

√
2GF)−1/2 ' 246GeV is the SM Higgs vacuum expectation value. We can take

sθ > 0 without loss of generality, thus we assume sθ > 0 hereafter. Due to the experimental
constraints, we assume sθ � 1 in the following discussion. The mixing between the Higgs
and the dark scalar also induces the coupling to the weak gauge bosons for sθ � 1,

Lφ−WZ '
(

1 + h+ sθφ

v

)2 (
m2
WW

µ+W−µ + 1
2m

2
ZZ

µZµ

)
, (2.5)

where mW,Z are the masses of the weak gauge bosons.

Effective coupling to gluon and photon. The dark scalar does not couple to the gluon
and the photon at the tree-level. However, the interactions (2.4) and (2.5) induce effective
interactions between the dark scalar and the QCD and QED gauge fields by integrating out
heavy particles [22–24],

Lφ-gauge = −sθφ
v

(
bh
αs
8πG

a
µνG

aµν + b̃h
αQED

8π FµνF
µν
)
. (2.6)

Here Gµν (Fµν) is the QCD (QED) gauge field strength and αs (αQED) is the QCD (QED)
coupling. The coefficients bh and b̃h are the contributions of the heavy degrees of freedom
to the beta functions of αs and αQED, respectively. In theory with n(q)

h heavy quarks and
n

(l)
h heavy leptons, they are given by

bh = −2
3n

(q)
h , (2.7)

b̃h = 7− 4
∑

heavy
Q2
q −

4
3n

(l)
h , (2.8)
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where Qq represents the electromagnetic charge of the quark and the symbol
∑

heavy indicates
the summation over heavy quarks. In the following, we treat c, b, t as the heavy quarks,
thus we take n(q)

h = 3.

Effective coupling to mesons. Combining light quark couplings of eq. (2.4) and the
gluon part of eq. (2.6), in a low energy effective theory, we obtain interactions between φ
and the light mesons via the trace anomaly [24]

Lφ−meson = sθφ

v

f2
π

2
[
tr(∂µU−1∂µU) + (3κ+ 1)B tr(MU +MU−1)

]
+ · · · . (2.9)

Here, fπ = 92.4MeV is the pion decay constant, M is the quark mass matrix and B has
mass dimension one set by the quark condensate. The coefficient κ is given by κ = 2n(q)

h /3b,
while b = 11−(2/3)n(q)

l is the QCD beta function coefficient with n(q)
l light flavors. The field

U is the SU(n(q)
l )× SU(n(q)

l ) nonlinear meson field corresponding to the pseudo Goldstone
bosons associated with the chiral symmetry breaking of the QCD. The ellipses include
O(αs) corrections to the effective coupling of φ and the mesons which comes from the
anomalous dimension of the light quark masses. Those corrections are small evaluated at
the renormalization scale, µRG ∼ (mcmbmt)1/3 [25] (see also refs. [26, 27]). In our case with
the 3 light flavor model, n(q)

l = 3, effective interactions between φ and the charged mesons,
i.e., the charged pion and the charged kaon, are given by

Lππφ = sθφ

v

(
κ(2∂µπ+∂µπ− − 3m2

π±π+π−)−m2
π±π+π−

)
, (2.10)

LKKφ = sθφ

v

(
κ(2∂µK+∂µK− − 3m2

K±K+K−)−m2
K±K+K−

)
. (2.11)

Here, mπ±,K± are the masses of the charged pion and the charged kaon. We also have the
interaction to the neutral pion and the neutral kaon by replacing π± (K±) with π0 (K0)
and multiplying by 1/2 in (2.10) and (2.11). To take into account of the QED interaction,
the derivatives on the charged mesons ∂µ are replaced by the covariant derivatives, Dµ.

Direct coupling to SM Higgs. The interactions between the dark scalar and the SM
particles are determined only by the mixing angle, θ, except for the interaction with the
Higgs boson. In fact, the contact interactions with the Higgs boson, i.e., φφh, φhh and φφhh
depend on parameters other than the mixing angle θ.1 These interactions are of particular
importance, when we consider the case that the dark scalar possesses (approximate) Z2
symmetry and is a dark matter candidate with freeze-in productions [28–32].

2.2 Decay of dark scalar

The decay modes and rates are the most important parameters for the cosmological constraint
of the dark scalar. In this paper, we consider the case that mφ < O(10)MeV, and hence,
the decay modes of the dark scalar are e−e+ and γγ. For mφ > 2me, the dark scalar φ

1In the model with only superrenormalizable couplings of the dark scalar, the couplings φφh, φhh and
φφhh are also determined by the mixing angle, θ [13].
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Figure 1. The decay rate of the dark scalar φ. We assume the neutrinos are Majorana fermions
where the heaviest mass is 0.1 eV.

decays dominantly into the electron-positron pair through the Yukawa interaction (2.4),
with the rate

Γφ→e−e+ = s2
θm

2
emφ

8πv2

1−
(

2me

mφ

)2
3/2

. (2.12)

The dark scalar can also decay into massive neutrinos. The coupling between the neutrino
and dark scalar depends on a model of the neutrino mass generation. For the seesaw
mechanism [33–35], the rate of the decay into neutrinos is given by

Γφ→νν = s2
θm

2
νmφ

4πv2 , (2.13)

where mν is a Majorana neutrino mass. In addition, the interactions (2.4) and (2.6) induce
the decay into two photons whose rate is given by

Γφ→γγ = mφ

π

(
sθαQEDmφ

16πv

)2
|C(mφ)|2 , (2.14)

where C(mφ) is a complex-valued function which includes the effect of lepton loops, light
meson loops and the higher dimensional operators in eq. (2.6) [23].

In figure 1, we show the decay rate of φ for the mass range we are interested in. The
figure shows that we can safely neglect the interaction between φ and the neutrinos for
mφ > O(10) keV.
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2.3 Self-interaction of dark scalar

The cubic and quartic terms in the dark scalar potential in eq. (2.3) induce the self-interaction
of φ. In the limit of sθ � 1, they are given by,

Vself−interaction = 1
6µφφ

3 + 1
24λsφ

4 + · · · , (2.15)

where µφ = µs + λs〈s〉+ 3sθλHsv. These interactions induce φφ→ φφ scattering processes
displayed in figure 2. In general, λs and µφ/mφ can be of O(1), even if the mixing parameter
θ is tiny. In the following analysis, we consider the cases with/without self-interactions. As
we will see, the self-interaction affects the time evolution of the dark scalar.

2.4 Astrophysical and collider constraints

Let us summarize the constraints other than the cosmological constraints we consider in
this work.

Supernovae. Light particles with mass of O(10) MeV can be efficiently produced in a
core-collapse supernova (for the emissivity of the dark scalar from the supernova, see refs. [36–
38]). Such particles produced in a supernova explosion can alter the neutrino cooling rate.
The interaction with nucleons is a dominant source of the dark scalar production. The dark
scalar with mφ . 100 MeV can be constrained from the observation of neutrino burst of
SN1987A [39–43]. Note that, however, it is pointed out that there are uncertainties in a
model of the neutrino burst and there is a possibility that the constraints from SN1987A
are invalidated [44].

Meson decay. In the mass region we are interested in, the most stringent constraint
of the accelerator experiments comes form the rare decay of K+. The NA62 and E949
experiments put the upper limit on Br(K+ → π+ + φ) = (3–6) × 10−11 at the 90%C.L.,
which corresponds to sθ . 2× 10−4 [7, 45].

We show these constraints in the summary plot in figure 19 in the final section.

3 Cosmological evolution of the dark scalar

In this section, we discuss the evolution and the production of the dark scalar in the early
Universe. As the dark scalar couples to all the SM particles, there are many types of
production processes at the early Universe, for instance, fSMf̄SM → φV , where fSM is an
SM fermion and V is a gauge boson. Depending on the relation of the masses of φ and the
SM particles participating in the production processes, there are two types of contributions
to the production processes. If mφ � mSM, the production process becomes most efficient
when TSM ∼ mSM and the contribution is suppressed by the Boltzmann factor when the
temperature gets much lower than the mass of the SM particle. In this sense, the production
process behaves like a “freeze-out” mechanism, and we refer to this type of contribution as
“UV contribution.”

On the other hand, if mSM � mφ, the production process is most efficient when
TSM ∼ mφ and we call this type of contribution “freeze-in contribution.” As we mainly
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Figure 2. Diagrams relevant for the self-scattering. The diagrams (a)-(c) represent φφ → φφ

processes, which are relevant for the kinetic equilibrium. The diagram (d) shows an example diagram
for the collinear contributions, which is relevant for the number-changing processes.

focus on the dark scalar of a mass O(10)MeV, the photon and electron contribute to the
production via this type of processes. In particular, the inverse decay e−e+ → φ provides
the largest production among the “freeze-in” contributions.

In section 3.1, we discuss how the dark scalar self-interactions affect the time evolution
of the dilution after the freeze-out. In section 3.2, we discuss the production of the dark
scalar in detail. In section 3.3, we solve the Boltzmann equation to determine the abundance
of the dark scalar.

3.1 Effect of dark scalar self-thermalization

In previous studies, the impact of the dark scalar self-interactions on the dark scalar
constraints is overlooked. However, the self-interactions of the dark scalar can affect the
evolution of the dark scalar abundance. See e.g., ref. [46] in the context of the dark
matter abundance.

In the analysis of the dark scalar abundance, it is often assumed that the dark scalar
does not have self-interaction. In that case, the dark scalar distribution is red-shifted
after the production. However, the evolution of the dark scalar is significantly affected
by the dark scalar self-interaction. The self-scattering φφ ↔ φφ makes φ in kinetic
equilibrium, with which the dark scalar can develop its own thermal bath with the dark
sector kinetic temperature T (kin)

φ . Besides, the number-changing processes such as φφφ↔ φφ

or φφφφ↔ φφ also make φ in chemical equilibrium, which can be characterized by only one
parameter, the temperature Tφ. We emphasize that the temperature Tφ does not necessarily
coincide with the temperature of the SM sector TSM.

In the ultra-relativistic limit, the dominant momentum reshuffling comes from the
diagram 2a. The cross section φφ→ φφ is approximately given by

σ2→2v|relativistic '
λ2
s

32πs , (3.1)

where
√
s is the center of mass energy of the collision. The diagrams 2b and 2c provide

minor contributions for the momentum reshuffling at high energy.
In the high-energy scattering, there are also number-changing processes such as φφ→

φφφ or φφ→ φφφφ. An important contribution comes from collinear splitting of φ’s. For
instance, the diagram 2d provides the so-called ultra-collinear contribution [47], which
provides a large enhancement by 1/mφ to the scattering amplitude. In this limit, by using
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the splitting function given by ref. [47], we estimate the φφ→ φφφ cross section as:

σ2→3v|relativistic '
µ2
φλ

2
s(−3 +

√
3π)

768π3m2
φs

' 0.01
(
µφ
mφ

)2

(σ2→2v)|relativistic . (3.2)

Similarly, the scattering φφ → φφφφ can be relevant for the number-changing processes.
Moreover, inelastic scatterings of the dark scalar φ and SM particles f , such as fφ→ fφφ,
can also contribute to the number-changing processes.

As we will see later, when the dark scalars are produced from the SM plasma of a
temperature TSM, the typical momentum of the dark scalar is TSM. Just after production,
the produced dark scalar interacts with other dark scalars. Through the self-interaction,
the dark scalars exchange their momenta when σ2→2 is large enough. Besides, the comoving
number density of the dark scalar increases when σ2→3 is large enough. For the efficient
momentum exchange, we need

σ2→2v|relativistic × nφH−1 � 1 , (3.3)

which indicates

Yφ|relativistic = nφ
sSM

� 10−18λ−2
s g
−1/2
∗ ×

(
TSM

1 GeV

)
. (3.4)

Here, H denotes the Hubble expansion rate, sSM is the entropy density of the SM sector.
The effective degrees of freedom of the SM particles at the temperature TSM is given by
g∗ ∼ g∗s [48, 49], with which the energy and entropy densities are

ρSM(T ) = g∗(T )π2T 4

30 , sSM(T ) = 2π2g∗s(T )T 3

45 . (3.5)

If this condition is satisfied, kinetic equilibrium of a kinetic temperature T (kin)
φ can be

realized. Similarity, the condition for the efficient number changing process is

Yφ|relativistic � 10−16 ×
(
µφ
mφ

)−2

λ−2
s g
−1/2
∗

(
TSM

1 GeV

)T (kin)
φ

TSM

2

, (3.6)

for T (kin)
φ � mφ. As we will see later, Yφ produced from the SM thermal bath is greater

than O(10−15) in the parameter region of our interest. Therefore, for λs = O(1) and
µφ = O(mφ), the dark scalar can reach chemical equilibrium. Hereafter, we refer to this
case as “self-thermalization.”

We also need to consider the freeze-out condition of the self-thermalization when the
dark scalar temperature gets lower. As the Universe expands, the number density of the
dark scalar is diluted. In this case, the number changing process φφφ↔ φφ is decoupled.
The freeze-out condition is

〈σ3→2v
2〉
∣∣∣
non−relativistic

n2
φH
−1 � 1 . (3.7)

– 8 –
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Figure 3. Relation between the energy density and the pressure for the self-thermalized φ.

The perturbative estimation of the cross section φφφ→ φφ in the non-relativistic limit is
given by

〈σ3→2v
2〉|non−relativistic =

25
√

5µ2
φ(3λsm2

φ − µ2
φ)2

24576πm11
φ

. (3.8)

More generally, if the dark scalars are strongly interacting with each other, the pertubative
estimation of the cross section may be invalid. In this case, we use the s-wave unitarty
bound for the scattering cross section [50, 51]:

〈σ3→2v
2〉|non−relativistic < 〈σ3→2v

2〉|uni ≡
48
√

3π2

m3
φT

2
φ

, (3.9)

to estimate the freeze-out condition.
Now, let us discuss the cosmological evolution of the dark scalar with/without self-

thermalization. To focus on the effects of the self-thermalization, let us switch off the
interaction with the SM. The evolution of the energy density of the self-thermalized dark
scalar ρφ is given by

dρφ
dt

= −3H(1 + w)ρφ, or a
dρφ
da

= −3(1 + w)ρφ, (3.10)

where the pressure Pφ is given by the parameter for the equation of state (EOS), Pφ = wρφ,
and a is the scale factor of the Universe. In figure 3, we show the EOS parameter w.
The w parameter is approximately given by w → 1/3 for ρφ/m4

φ � 1 and w → Tφ/mφ '
−1/ log

(
ρφ/m

4
φ

)
for ρφ/m4

φ � 1.
When the Universe expands and the scale factor goes from aini to a, the energy density

ρφ,ini approximately changes to

ρφ(t) ' ρφ,ini

(
a

aini

)−3(1+w)
. (3.11)

– 9 –
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Due to w > 0, the decrease in energy density of self-thermalized φ is faster than that of
non-interacting φ in the non-relativistic limit. In this case, the cosmological constraint can
be relaxed with the self-thermalization compared with the non-interacting case.

On the other hand, there is also an effect of self-scattering that can make the constraint
severer. When the dark scalars are produced from the SM plasma with a temperature of
TSM, the typical momentum of the dark scalars are pφ ∼ TSM. For TSM � mφ, the dark
scalar is highly relativistic and the energy density goes ρφ ∝ a−4 without self-interaction.
However, if the energy density is small ρφ/m4

φ � 1 and the self-thermalization is efficient,
the dark scalars get immediately non-relativistic through the φφ→ φφφ process. Once the
dark scalar becomes non-relativistic, the energy density behaves ρφ ∝ a−3. Therefore the
energy density gets larger compared to the case of the non-self-thermalization.

In order to see the impact of the self-interaction on the cosmological evolution of the
dark scalar energy density, we consider two extreme cases. One is the case that there is
no self-interaction and the phase space density is simply redshifted. The other is the case
that it is always thermalized and in chemical equilibrium. In the former case, the kinetic
equilibrium is no longer maintained.

In figure 4, we show some example cases, in which the initial conditions of the phase
space density fφ,i is given by the Bose-Einstein distribution with a chemical potential µ,

fφ,ini(p) = 1
exp((E − µ)/Tini)− 1 (3.12)

at a temperature of the SM plasma Tγ = TSM = Tini = 1GeV and a scale factor aini. In
the case of the self-thermalization, the evolution of φ is determined by eq. (3.10). In the
figure, we assume that the self-thermalization is maintained even after the freeze-out of the
number-changing processes for the dashed lines.

In the non-interacting case, the phase space density at a scale factor a is given by

fφ(p) = fφ,ini(p× (a/aini)), (3.13)

with which 〈pφ〉 ∼ Tγ for Tγ � mφ. On the other hand, the dark scalar becomes non-
relativistic in the case of the self-thermalization. As we can see from figure 4, if the dark
scalar energy density is small ρ/m4

φ � 1 but typical momentum is large 〈pφ〉 � mφ, the
self-thermalization can relatively enhances the dark scalar abundance. For Tγ < mφ, the
self-thermalization induces w > 0, which reduces the dark scalar density more rapidly
compared with the non-interacting case.

At the very late time, i.e., Tγ � mφ, however, we also need to consider the freeze-out
of the number-changing self-scattering as discussed at eq. (3.7). The freeze-out temperature
of the number-changing self-scattering are indicated by the filled and the open arrows in
figure 4 for perturbative cross section (µφ = mφ, λs = 0) and unitarity-bound-saturated
cross section, respectively. For temperature lower than those temperature, the number-
changing-self-scattering is no more effective, and hence, the energy density of the dark
scalar scales as ρφ ∝ a−3.

– 10 –
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Figure 4. The solid (dashed) lines show the cosmological evolution of the energy density of the
stable φ without (with) self-thermalization. In both cases, we take mφ = 2MeV. The arrows with
fill and with empty fill indicate the freeze-out temperature of the φφφ ↔ φφ process with the
perturbative cross section in eq. (3.8) (µφ = mφ, λs = 0) and the unitarity-bound-saturated cross
section in eq. (3.9), respectively.

3.2 Dark scalar production

The dark scalar couplings to the SM in eq. (2.4) are renormalizable, and hence, those
become more relevant at the lower temperature for each production channel [52]. In fact, if
the reheating temperature, TR, is well above the electroweak scale, the abundance of the
dark scalar at T ∼ O(1)MeV is insensitive to TR. However, as we will see later, it strongly
depends on TR lower than the electroweak scale, because the dark scalar couples to the
heavier particles more strongly.

Due to this property, the cosmological evolution of the dark scalar abundance becomes
more complicated compared with cases that a dark particle couples to the SM particles
with more or less universal couplings such as the dark gauge boson [53, 54].

For example, the cross sections σf of the typical production processes such as ff̄ → φV

with V being either the photon or the gluon are proportional to (mf/v)2/s. Hence, they
contribute to the yield of the dark scalar as

nφ
sSM

∼
σf (neq

f )2H−1

sSM

∣∣∣∣∣
T∼mf

∝ mfMPl
v2 , (3.14)

where neq
f denotes the thermal number density of the fermion f and MPl is the reduced

Planck mass. As the heavy particle contributions for mf � mφ are more significant,
the abundance of the dark scalar strongly depends on whether the temperature of the
Universe has been higher or lower than the masses of the heavy SM particles. This is
contrary to the conventional freeze-in scenario, in which the most dominant production of
the particles comes from the temperature Tγ ' mφ and irrelevant to the high temperature
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era of the Universe. In the present dark scalar model, the cosmological constraint has a
strong dependence on the reheating temperature for TR . O(100)GeV. In order to get the
most conservative constraint, we consider a low reheating temperature scenario.

Depending on the temperature of the Universe, there are various production processes.
In the following, we discuss the main production processes at each temperature.

Production for T . 10MeV. Let us first discuss the production processes relevant for
T . 10MeV. In this temperature region, the dark scalar is generated mainly from the
electrons. The relevant process depends on the dark scalar mass. If mφ > 2me, the inverse
decay shown in figure 5a is the most important. If mφ < 2me, the dark scalar is produced
through the annihilation and the Compton-like scattering shown in figures 5b and 5c.

Production for 10MeV. T . 100MeV. When the temperature is O(10)MeV, the
dark scalar is generated mainly from the muon through the scattering processes shown in
figure 5. Since we are interested in the light dark scalar, mφ < 2mµ, it is not produced by
the inverse decay from the muons.

In addition, light quarks (u, d and s) may also contribute to the dark scalar production.
In this temperature region, we must consider the effective theory of the dark scalar couplings
to light mesons, in eqs. (2.10) and (2.11). The effective couplings provide the production
channel of the dark scalar φ shown in figure 6. We will find, however, that both the pion and
kaon in these channels give only subdominant contributions to the dark scalar abundance
compared to the muon. Due to the CP symmetry, the 2→ 2 processes involving three pions
are forbidden. Therefore, in the temperature much below the pion mass, the production
cross section from light mesons are suppressed by the QED couplings, as in the case of
the leptons.

In our analysis, we only include the pion and kaon channels for the hadronic contribu-
tions. We neglect the contributions from heavy hadrons, which results in more conservative
constraints on the dark scalar. Note also that the chiral perturbation analysis is useless
for the temperature T � 100MeV. In this case, multiple mesons processes and heavy
hadron contributions are more important. Thus, the treatment to include only the 2→ 2
processes is invalid at the higher temperature. Although our treatments are invalid at the
high temperature, we naively extrapolate them even for TR � 100MeV, since we will find
that heavy quark contributions become dominant in the high temperature region.

Production above the QCD scale. In this regime, the heavy t, b, and c quarks give
the significant contribution through the annihilation qq̄ → φg and the Compton-like
scattering qg → qφ displayed in figure 7. Besides, the W and Z bosons also significantly
contribute to the dark scalar abundance through the coupling eq. (2.5) for the temperature
T & 10GeV [13]. In addition, the Higgs boson contributions to the dark scalar production are
also relevant for T & 10GeV. In general, the Higgs contributions cannot be parameterized
by only the mixing angle sθ. As we will see, however, in the parameter region of our interest,
sθ & 10−7, the cosmological constraints are insensitive to the details of the production
process above T & 10GeV. Therefore, we do not take into account these weak gauge boson
and Higgs contributions.
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Figure 5. Examples of the production from leptons for mφ < 2mµ. The inverse decay from the
electron positron pair is effective only for mφ > 2me.
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Figure 6. Examples of the production from mesons.
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Figure 7. Examples of production from quarks.

Multiple dark scalar production. We neglect the multiple φ production processes
which are suppressed by more powers of sθ since sθ � 1. In the presence of the self-
interaction, multiple φ production processes such as ff̄ → φφ and ff̄ → φφφ are also
possible without further sθ suppression, where φ appears in the s-channel and splits into a φ
pair and into three φ’s through the µφ and λs terms in eq. (2.15). The cross sections for the
multiple productions can be sizable for µφ = O(mφ) and λs = O(1) when the dark scalar
mass is rather large, mφ > O(10)MeV. Those contributions enhance the production of the
dark scalar which may make the constraints severer in some parameter region. However,
since our goal is to derive conservative constraints that are as model-independent as possible,
we will not incorporate these effects in the following analyses.

Besides, the processes such as fφ→ fφ and fφ→ fφφ which involve the dark scalar
self-interaction also affect the evolution of the number density and temperature of the
dark scalar. These processes cause the energy exchange between the SM and the dark
scalar. In principle, they can reduce the self-thermalized dark scalar temperature for
Tφ > TSM. However, due to the small Yukawa coupling, the rate of the energy exchange is
less than the Hubble expansion rate in the parameter region where the self-thermalization

– 13 –



J
H
E
P
0
3
(
2
0
2
2
)
1
9
8

relaxes the cosmological constraints. Therefore, we also ignore the process fφ→ fφ in the
following analysis.

3.3 Boltzmann equation

Here, we discuss the cosmological evolution of the dark scalar. It is governed by the
Boltzmann equation,

∂fφ
∂t
−Hpφ

∂fφ
∂pφ

= −C[fφ] , (3.15)

H2 = ρSM + ρφ
3M2

Pl
, (3.16)

where C[fφ] denotes the collision term of the dark scalar, and pφ = |pφ| and fφ are the
momentum and the distribution function of the dark scalar. The energy density ρSM denotes
that of the SM sector, and ρφ is that of the dark scalar. Since the neutrino decoupling
process plays an important role for us to discuss the cosmological constraints on the dark
scalar, we decompose the SM energy density into that of neutrinos ρν and the rest, ρvis.
Here, ρvis includes γ, leptons, the QCD sector, and the Higgs and the weak gauge bosons,
which we call the “visible” sector. These particles are thermalized, and hence, ρvis is
characterized by the temperature Tγ .

The collision term of the dark scalar consists of the self-interaction part discussed in
section 3.1 and the interaction with the SM particles in section 3.2,

C[fφ] = Cself [fφ] + Cφ↔vis[fφ] . (3.17)

We reduce Cφ↔vis[fφ] assuming that all the visible sector particles are in thermal equilibrium,
which is approximated by,

Cφ↔vis[fφ] ' I(pφ, Tγ)× (fφ(pφ)− fBE
φ (pφ, Tγ)) , (3.18)

where,

I(pφ, Tγ) =
∑

ψ=e,µ,τ,π,K

[
Iψ±φ↔ψ±γ(pφ, Tγ) + Iγφ↔ψ−ψ+(pφ, Tγ)

]
+

∑
q=c,b,t

[
I(−)
q φ↔

(−)
q g

(pφ, Tγ) + Igφ↔qq̄(pφ, Tγ)
]

+ Iφ↔2γ(pφ, Tγ) + Iφ↔e−e+(pφ, Tγ) . (3.19)

Here, Iprocess(pφ, Tγ)’s are given in the appendices A and B, and the superscript “BE”
indicates the Bose-Einstein distribution. In figure 8, we show the temperature dependence
of Iprocess for mφ = 2 MeV at pφ = Tγ .

For the decay and the inverse decay, we can perform the phase space integrals analytically.
For the scattering processes, we can reduce them into the one-dimensional integral by using
the Maxwell-Boltzmann approximation in part. We provide the computational details of
the reduction of the phase space integrals in the appendix A, and the explicit form of these
collision integrals in the appendix B.
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Figure 8. Production rates of the dark scalar for mφ = 2MeV. Each line represents the interaction
rate in the right hand side of eq. (3.19).

3.3.1 Treatment of collision term of self-interaction

In general, the dark scalar has self-interactions. In principle, we need to solve the Boltzmann
equation including the collision term of the self-interactions Cself [fφ]. In the following,
however, we consider two extreme cases to demonstrate the effects of the self-interaction. In
the first case, we completely neglect the self-interaction, and solve the Boltzmann equation
in eq. (3.15) with Cself [fφ] = 0. In the other extreme case, we assume that the self-interaction
is very strong enough so that the self-thermalization of the dark scalar is always kept. In
the self-thermalized case, we assume that the dark scalar reaches the chemical equilibrium
and its evolution can be traced by the single parameter ρφ (or Tφ). Thus, we solve the
Boltzmann equation for the energy density of φ,

dρφ
dt

+ 3H(ρφ + Pφ) = −
∫
d3pφ
(2π)3

√
p2
φ +m2

φ · Cφ↔vis[fφ = fBE
φ (Tφ)] . (3.20)

As we discussed in section 3.1, however, the self-scattering may become inefficient at the
lower temperature. We will address the impact of the freeze-out of the self-scattering on
the cosmological constraints later.

3.3.2 Evolution of SM sector

The time evolution of the SM sector is given by,

dρvis
dt

= −3H(ρvis + Pvis) + Cφ↔vis(Tγ) + C(1)
e↔ν(Tγ , Tν , µν) , (3.21)

dnν
dt

= −3Hnν − C(0)
e↔ν(Tγ , Tν , µν) , (3.22)

dρν
dt

= −4Hρν − C(1)
e↔ν(Tγ , Tν , µν) , (3.23)
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Figure 9. Time evolution of the number and the energy densities of the dark scalar with mφ = 2MeV
for the initial temperature TR = 10 MeV, 100 MeV, 1 GeV, 100 GeV. The dashed (solid) lines show
the case of the self-thermalization (no self-interaction).

where

Cφ↔vis(Tγ) =
∫

d3pφ
(2π)3

√
p2
φ +m2

φ · Cφ↔vis[fφ] . (3.24)

Here, Pvis denotes the pressure of the visible sector. To treat the neutrino decoupling, we
follow ref. [55], which provides the collision integrals, C(0,1)

e↔ν . The neutrino temperature,
Tν , is equal to the photon temperature Tγ at Tγ � O(1)MeV. The neutrino chemical
potential µν vanishes at Tγ � O(1)MeV. As for the QED corrections in ρvis and Pvis, we
use the formula provided in refs. [56–59]. We have used the thermodynamics parameters of
refs. [48, 49] for the electroweak and QCD sectors.

Putting all the Boltzmann equations together, we can compute the cosmological
evolution of the dark scalar. In figure 9, we show the evolution of the number and energy
densities of the dark scalar for different initial temperatures, in the case of mφ = 2MeV.
The dashed (solid) lines show the case of the self-thermalization (no self-interaction). Here
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Figure 10. The dark scalar number density at Tγ = me normalized by sSM. We take mφ = 2MeV.

we adopt the instantaneous reheating approximation, where the initial condition is that
fφ = 0 and that the SM sector has a temperature TR.

The figure shows that the dark scalar abundance depends on the reheating temperature
unlike the case of the simple freeze-in scenario. In particular, for a small mixing angle,
the abundance becomes larger for the higher reheating temperature. the abundance is
insensitive to TR for TR > O(100)MeV. For a large mixing angle, on the other hand,
the dark scalar abundance becomes insensitive to the reheating temperature above some
particular temperature. For instance, for sθ ' 10−5, This is due to the thermalization with
the SM sector at the high temperature.

In figure 10, we show the dark scalar number density at Tγ = me for mφ = 2MeV
and various reheating temperature. The density is normalized by the SM entropy density
sSM. The solid lines correspond to the non-interacting cases while the dashed ones to the
self-thermalized cases. The figure shows that the dark scalar abundance depends on the
reheating temperature for a small mixing parameter, sθ.

3.3.3 Thermalization and decoupling of dark scalar

Here, we discuss the thermalization of the dark scalar with the SM sector. For this purpose,
we introduce the following quantity,

R(T ) ≡
∫ d3pφ

(2π)3 I(pφ, T )fBE
φ (pφ, T )

H|ρφ=0, Tγ=T × neq
φ (T ) . (3.25)

Here, neq
φ denotes the thermal number density of the dark scalar and I(pφ, T ) is the

summation of the collision integrals over all the processes provided in eq. (3.19). If R(T )� 1,
the dark scalar φ is thermalized with the SM sector, and if R(T ) � 1, it is decoupled
from the SM. At the temperature where R(T ) ∼ 1, the dark scalar φ starts to be either
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Figure 11. (a): The UV decoupling temperature of φ from the SM sector as a function of the mixing
angle. The decoupling temperature hardly depends on the dark scalar mass as far as Tdec & mφ.
(b): The contour plot of the freeze-in temperature on the (mφ, sin(θ)) plane. For the definition of
the freeze-in temperature, see the text.

decoupled or thermalized with the SM sector. We define the UV decoupling temperature,
Tdec, where R(Tdec) = 1 and dR(T )/dT |T=Tdec > 0 are satisfied. If the temperature is much
above the UV decoupling temperature, the dark scalar is, as a rule, thermalized with the
SM sector. This temperature indicates the decoupling of production processes involving
heavy particles, such as muons and pions. Similarly, the freeze-in temperature, TFI, is
defined as the temperature where R(TFI) = 1 and dR(T )/dT |T=TFI < 0 are satisfied. This
indicates the freeze-in of the processes involving light particles, i.e., electrons and photons.2

In figure 11a, we show the UV decoupling temperature as a function of the mixing angle.
The decoupling temperature is almost independent of the dark scalar mass if the decoupling
temperature is greater than around 100MeV in the parameter space of our interest, because
the thermalization occurs through the ultra-relativistic scattering at high temperature. In
figure 11b, we show the freeze-in temperature on the (mφ, sθ) plane. For mφ & 2me, the
dominant process is the inverse decay of the dark scalar from the electron-positron pair.
The cosmological constraint is insensitive to the reheating temperature above the freeze-in
temperature for given (mφ, sθ). At the late time, i.e., Tγ < TFI, the dark scalar abundance
is insensitive to the reheating temperature as long as TR > TFI. Thus, in the parameter
region of TFI & 2MeV, that is TFI is higher than the neutrino-decoupling temperature, the
cosmological constraints are insensitive to the reheating temperature as long as it is above
the freeze-in temperature.

If the reheating temperature is above the decoupling temperature, the dark scalar
abundance scarcely depends on the reheating temperature. In this case, the dark scalar
abundance can be approximately given by

Yφ = nφ
sSM

= 45ζ(3)
2g∗s(Tdec)π4 . (3.26)

2When this relation has multiple solutions, we take the lowest values for Tdec and TFI within Tdec > 10 MeV
and TFI < 10 MeV, respectively.
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When the decoupling temperature is below O(10)GeV, the dark scalar abundance at the
lower temperature does not depend on the details of the direct interaction to the Higgs
boson, which cannot be parameterized by the mixing angle.

On the other hand, for the small mixing angle, sθ . 10−7, the dark scalar is never
thermalized via the processes included in our analysis. However, the abundance may be
affected by the interactions to the Higgs and the weak gauge bosons which we have not
included. In this sense, our analysis always provides conservative constraints. Our analysis
is also robust for the cases that sθ & 10−7 or TR � O(10)GeV.

4 Cosmological constraints

The produced dark scalar φ has significant impacts on the cosmological history. The effect
on the cosmology strongly depends on the lifetime of the dark scalar.

1. τφ . 1 sec
The dark scalar can be thermalized by Tγ = O(1)MeV. If the dark scalar mass
is less than O(1)MeV, the dark scalar modifies the standard neutrino decoupling
processes, which alters the effective number of neutrino generations Neff . On the other
hand, if the mass is much greater than O(1)MeV, there are no effect on the standard
cosmology with a temperature below O(1)MeV, as the cosmic abundance of the dark
scalar is strongly suppressed by the Boltzmann factor of e−mφ/T .

2. τφ � 1 sec
If the mixing angle and the mass of the dark scalar φ are small, the lifetime can be larger
than O(1) sec. For the larger reheating temperature, the dark scalar can be produced
at a high temperature. After the decoupling from the SM sector, the comoving number
density is approximately conserved and the energy density is relatively enhanced
compared to the SM sector in the late time Universe. The non-thermal contribution
of the dark scalar decay affects the cosmic microwave background (CMB) and the
BBN observations.

Here, we discuss the CMB and BBN constraints on the dark scalar.

4.1 CMB constraints

Effective number of relativistic species: Neff . We parameterize the effect of φ on
the neutrino decoupling through the effective number of relativistic species, Neff , defined by

Neff = 8
7

(11
4

)4/3 ρν
ργ

∣∣∣∣∣
T=TCMB

. (4.1)

In the standard cosmology N (SM)
eff ' 3.044 [60–63], this value is slightly larger than the

case of the instantaneous decoupling, Neff = 3, because of the entropy transfer into the
high-momentum neutrinos. We adopt the simplified method discussed in ref. [55].
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purple solid line denotes the CMB constraint of Neff > 2.66 [64] by the Planck experiment and the
purple dashed line indicates the 2σ sensitivity, |∆Neff | = 0.06, of the CMB stage-IV experiments [65].

Since the dark scalar only dominantly couples to the visible sector, the dark scalar
heats up only the visible sector, Therefore the Neff becomes smaller than the SM case, in
the presence of the dark scalar.

In figure 12, we show Neff for various values of sθ as a function of mφ for TR = 30MeV.
The black line shows Neff for the case that the dark scalar is always thermalized with the
visible sector. As expected, the dark scalar reduces Neff from the SM case. The Planck
constraint Neff > 2.66 at 95% C.L. [64] (the horizontal purple solid line) indicates the lower
mass of the dark scalar is 3.8MeV for the thermalized case. The effect on Neff can be larger
than the thermalized case, when the lifetime of the dark scalar is longer than O(1) sec.

Distortion. For the late-time energy injection from the new physics, the photon back-
ground cannot keep thermal equilibrium and deviate from the black body radiation. The
CMB distortion parameters, yCMB and µCMB, can be expressed in the following form [66–69]

yCMB = 1
4

∫ ∞
0

dt
Q(t)
ργ
Jy(z) , (4.2)

µCMB = 1.401
∫ ∞

0
dt
Q(t)
ργ
Jµ(z) . (4.3)

Here 1 + z = (ργ/ργ,0)1/4 with ργ being the photon energy density and the subscript 0
indicating the value of the present Universe. The term Q(t) denotes the energy injection
from the dark scalar, which is given by the integration of eq. (3.24), i.e., Q(t) = Cφ↔vis(Tγ).
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We adopt the model C of ref. [69] as the window functions:

Jy(z) = 1

1 +
(

1+z
6×104

)2.58 θ(z − zrec) , (4.4)

Jµ(z) = e−(z/zth)5/2
(

1− exp
(
−
( 1 + z

5.8× 104

)1.88
))

. (4.5)

Here, we take zth = 1.98× 106 and zrec = 1000, respectively.
The current constraints on the CMB distortion are given by COBE/FIRAS [70]:

|µCMB|FIRAS < 9× 10−5 , (4.6)
|yCMB|FIRAS < 1.5× 10−5 . (4.7)

The future prospects of PIXIE [71] are

|µCMB|PIXIE < 10−9 , (4.8)
|yCMB|PIXIE < 2× 10−9 . (4.9)

Ionization. The late time decay of the dark scalar after the recombination era, also
affects the ionization history of the Universe, which leads to the modification of the CMB
power spectrum [72]. We study the ionization constraint with the method used in ref. [73].
The constraint on the lifetime of the decaying dark scalar is approximately given by

τ & fXgeff(τ)× 2.6× 1025 sec , (4.10)

where fX is the energy fraction of the decaying matter X. The energy absorption efficiency
function geff is provided in ref. [73], which depends on the energy injection into the visible
sector, the lifetime of the dark scalar, τ , and the decay mode. The upper bound on fX is
evaluated from the above inequality as

1
τ0

= geff(τ)
τ

fX , (4.11)

where τ0 = 2.6× 1025 sec.
We note two points. First, we evaluate fX just before the decay of the dark scalar.

Thus, when we evaluate the ionization limit by using the abundance obtained by solving the
Boltzmann equation, we multiply a rescale factor, exp(Γφt)|H=Γφ = e1/2, which accounts
the reduction of energy density from the onset of the decay. Second, the range of the table
which we use to evaluate geff is τmin = 1013 sec < τ < 1026 sec = τmax. When we evaluate
the bound on fX in τ < 1013 sec we extrapolate geff assuming the lower bound on fX is
determined by

1
τ0

= C(τmin)
τ

exp(−t∗/τ)fX (4.12)
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Figure 13. The upper limit on the dark scalar abundance from the CMB constraints for mφ = 2MeV.
The limits roughly scale as m−1

φ .

where t∗ is a parameter added by hand and C(τmin) is a numerical constant calculated at
τ = τmin. Here, we determine the parameter t∗ and C(τmin) by the smooth and continuous
condition

geff(τ)
τ

∣∣∣∣
τ=τmin

= C(τmin)
τ

exp(−t∗/τ)
∣∣∣∣
τ=τmin

,

d

dτ

geff(τ)
τ

∣∣∣∣
τ=τmin

= d

dτ

C(τmin)
τ

exp(−t∗/τ)
∣∣∣∣
τ=τmin

. (4.13)

In figure 13, we show the CMB constraints on the abundance of the long-lived dark
scalar as a function of the lifetime τ for mφ = 2MeV. The solid lines are the constraints for
the non-interacting case and the dashed lines are for the self-thermalized case. Here, we
neglect the scattering of the dark scalar against the SM sector below T = me.

4.2 BBN constraints

The dark scalar also modifies the Standard BBN (SBBN) scenario. As the current observation
is consistent with the prediction of the SBBN, the contribution from the dark scalar can
be constrained.

4.2.1 Standard BBN

Let us discuss the SBBN case. To get the prediction of the SBBN, we make use of
the program AlterBBN 2.2 [74, 75] with slight modifications. We modified the reaction
rates of Deutron processes d(p,γ)3He [76, 77], d(d,n)3He and d(d,p)3H [78] to include the
latest experimental results and correct typos in the original code. We adopt the fitting
functions given in ref. [79], with modifying the lower temperature region to remove numerical
instability. We adopt the following SBBN inputs: the neutron lifetime 879.4± 0.6 sec [80],
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the baryon-to-photon ratio ηCMB = (6.105± 0.055)× 10−10 [64] and Neff = 3.045, and the
SBBN prediction for the primordial mass fraction of 4He, Yp, and the ratios of primordial
number density of D and 3He to hydrogen are

Yp|SBBN = 0.2471± 0.0029,
D
H

∣∣∣∣
SBBN

= (2.537± 0.045)× 10−5,

3He
H

∣∣∣∣∣
SBBN

= (1.039± 0.014)× 10−5.

(4.14)

Here the errors represent the sum of uncertainties from the neutron lifetime, nuclear
reaction rates and the baryon-to-photon ratio ηCMB, and we assume that the primordial
ηBBN = ηCMB. The predicted values are consistent with current observations:

Yp|obs = 0.245± 0.003,
D
H

∣∣∣∣
obs

= (2.547± 0.025)× 10−5,

3He
H

∣∣∣∣∣
obs

< (1.1± 0.2)× 10−5.

(4.15)

In the following analysis, we adopt χ2 analysis based on these three observations. We define
the χ2 variable as:

χ2 =
∑
i,j

δxjR
−1
ij δxi, (4.16)

where Rij is a covariant matrix including theory and observation errors, δx1 = Y theory
p −Y obs

p ,
δx2 = (D/H)theory − (D/H)obs, and δx3 = max(0, (3He/H)theory − (3He/H)obs).

By using this likelihood analysis, we can estimate the baryon-to-photon ratio in the
BBN era for the standard BBN case as

ηSBBN
BBN = (6.089± 0.056)× 10−10, (4.17)

which is mainly determined with D/H. This estimate is consistent with the more detailed
analysis done in ref. [81].

4.2.2 Effect from dark scalar

In this work, we add the new scalar φ of which mass is less than O(10)MeV. The dark scalar
has a significant impact on the prediction of the BBN for various aspects. An important
contribution is the modification of Neff . The Neff modification at the BBN era and/or the
energy density of the φ change the Hubble expansion rate at the BBN era and alter the
SBBN prediction. In addition, if φ decays after the BBN era, it provides additional entropy
and reduces the baryon asymmetry at the CMB era, i.e., ηBBN > ηCMB. Moreover, the
late time decay of φ provides high energy particles. Such particles directly interact with
the nucleons and alter the SBBN predictions. For the particle of a mass O(10)MeV and
lifetime greater than O(103) sec, the photodissociation processes mainly affect the BBN.
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Figure 14. The upper limit on the abundance of the dark scalar at T = me from BBN constraints.
We plot the bounds as functions of the lifetime of the dark scalar.

We apply the photodissociation processes to the elements H, D, T, 3He and 4He
for Tγ < 10 keV, well after the SBBN freeze-out. We adopt the fitting formula for the
photodissociation rates of ref. [82]. We obey the procedure of ref. [83] for the electromagnetic
cascade after the φ decay. We consider the φ→ e+e−, γγ decays and the final state radiation
processes e+e−γ. As for the final state radiation, we directly estimate the matrix element
of the three-body decay processes, instead of the Altarelli-Parisi approximation formula
used in refs. [83, 84].

In our analysis, we apply the BBN constraint for the dark scalar of which lifetime is
longer than 500 sec. In this case, only the late-time entropy production, which modifies η,
and the photodissociation affects the BBN. In figure 14, we show the BBN constraint for
dark scalar abundance and lifetime.

4.3 Effect of freeze-out of self-thermalization

In the above discussion, it is assumed that the self-thermalization of the dark scalar is
always maintained. However, due to the finite cross section of the self-scattering, when
the number density drops as the Universe expands, the chemical equilibrium cannot be
maintained. As we have discussed, the limit is affected by the self-thermalization effect.
In fact, due to this freeze-out of self-thermalization (see eq. (3.7)), the constraint becomes
severer, once we consider a realistic cross section of the self-scattering. This phenomenon
strongly affects the limit for long lifetimes and small number densities. In figure 15, we
show the Neff constraint for several scattering cross sections, which provides the closeup
of the Neff constraint in figure 13. The black and solid line shows the case that there is no
self-scattering of the dark scalar, which gives the strongest constraint. The black and dashed
line represents the case that the self-thermalization is always maintained. The blue and red
lines show the cases of the perturbative cross section in eq. (3.8) with µφ = mφ and λs = 0
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Figure 15. The upper limits on the dark scalar abundance from the Neff constraint for different
choices of the self-scattering cross sections, 〈σ3→2v

2〉. Here, we take mφ = 2 MeV. This figure
provides the closeup of the Neff constraint in figure 13.

and s-wave unitarity in eq. (3.9), respectively. In order to include the freeze-out effect, we
simply set the EOS parameter w = 0 when the freeze-out condition eq. (3.7) is satisfied.

In figure 16, we show the parameter region where the self-thermalization is kept until
the decay of the dark scalar. Here, we again consider the perturbative cross section in
eq. (3.8) with µφ = mφ and λs = 0 (solid lines) and s-wave unitarity in eq. (3.9) (dashed
lines), respectively. The self-thermalization does not freeze-out before the dark scalar decay
or the CMB era in the regions above the lines. For the smaller abundance or smaller mixing
angle, the self-thermalization is unlikely maintained. Therefore, if we consider the realistic
cross section for the self-scattering, the cosmological constraint gets severer than the case
that the self-thermalization is always realized. In the following analysis, to get conservative
constraints, we consider the case that the self-thermalization is always maintained.

4.4 Result

Finally, we show the cosmological constraints on the parameter region of the dark scalar.
Figure 17 shows the constraints for different reheating temperatures. The left columns
represent the non-interacting case and right columns the self-thermalized case. For the
self-thermalized case, we assume that the self-thermalization is always maintained. For
each case, we take the reheating temperature TR = 5MeV to TR = 100GeV from top to
bottom row. The contour lines show the Neff . The red region is excluded by the CMB
measurement of the Neff , Neff = 2.99+0.34

−0.33 [64]. The CMB measurement also casts the
y-distortion (yellow) and µ-distortion (blue) constraints (eq. (4.7)). The light purple region
is excluded by ionization after the recombination era, eq. (4.10). The orange region is
excluded by the X-ray constraints on the decaying dark matter [85]. We also show the BBN
constraints as the green shaded region.
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Figure 16. The parameter region in which the self-thermalization effect is valid. Above the lines
the self-thermalization is maintained until the dark scalar decay time or the CMB era.

In figure 18, we show the constraint on the reheating temperature on the (mφ, sin(θ))
plane. In the gray regions the upper bound on the reheating temperature is less than 5MeV,
which is in tension with the BBN. On the other hand, the white regions are consistent
with the cosmological constraints for any reheating temperature. Note that for the self-
thermalization case, there is a “blind spot” for the dark scalar with mass mφ around 2MeV
and the mixing angle sin(θ) around 10−5. In this region, Neff ' 2.7 and the lifetime of the
dark scalar is around O(1)min, which is marginally consistent with all the cosmological
constraints in our analysis. In this region, the decoupling temperature is around 100MeV
and therefore the constraint is valid even if the reheating temperature is much greater
than the electroweak scale. Moreover, as seen in figure 16, the self-thermalization is always
maintained before the dark scalar decay even for the perturbative cross section. Therefore,
our approximation for the self-scattering effect is also valid.

5 Conclusion and discussion

In this paper, we have discussed the cosmological constraints on the dark scalar which
mixes with the Higgs boson. We have paid particular attention to the cases with a low
reheating temperature to derive the conservative constraints. We also take account of
the self-interaction of the dark scalar, which affects the time evolution of the dark scalar
energy density.

In figure 19, we show the summary of the cosmological constraints and future prospects
of the dark scalar parameter with the accelerator [7, 45] and astrophysical constraints [37].
Here, we take TR = 100GeV, although the result does not change as long as the reheating
temperature is higher than ∼ 10GeV. Such a high reheating temperature is the most
common assumption in the applications of the dark scalar as a mediator between the
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Figure 17. Cosmological constraints on the dark scalar for different reheating temperatures. (cont.)

– 27 –



J
H
E
P
0
3
(
2
0
2
2
)
1
9
8

Figure 17. Cosmological constraints on the dark scalar for different reheating temperatures. The
red, yellow and blue regions correspond to the constraints by the CMB measurement of the Neff ,
y-distortion and µ-distortion, respectively. The light purple region is excluded by ionization after
the recombination era. The orange region is excluded by the X-ray constraints on the decaying dark
matter. We also show the BBN constraints as the green shaded region.

dark sector and the SM sector. In both panels, we show the weaker constraint among the
non-interacting and the self-thermalized cases.

The blue region shows the excluded region for the reheating temperature greater than
∼ 10GeV. The gray region shows the most conservative constraint, where the reheating
temperature is extremely small, i.e., 5MeV, which is the almost lowest temperature for
the BBN to work well. The white region is cosmologically safe region regardless of the
reheating temperature. For a rather large mixing angle, sθ & 10−(3-4), the dark scalar is
thermalized when T = O(1)MeV. In that region the cosmological constraints are insensitive
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Figure 18. The upper-bound on the reheating temperature from the cosmological constraints. The
gray regions are excluded for an arbitrary reheating temperature. The white regions, on the other
hand, are compatible with the cosmological constraints for an arbitrarily high reheating temperature.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1 100 101 102

si
n
(θ
)

mφ [MeV]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1 100 101 102

K± decay

Supernova

TR = 5 MeV TR > 100 GeV

τ = 1 sec

τ = 104 sec

(a) Current cosmological constraints.

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1 100 101 102

si
n
(θ
)

mφ [MeV]

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1 100 101 102

K± decay

Supernova

TR = 5 MeV

TR > 100 GeV

τ = 1 sec

τ = 104 sec

(b) Future cosmological prospects.

Figure 19. The cosmological constraints on the dark scalar model. The gray region shows the
most conservative constraint, which is excluded even for an extremely low reheating temperature.
The blue region shows the excluded region for the reheating temperature greater than 100GeV. The
white region is cosmologically consistent region.

to sθ which put the lower limit on the dark scalar mass, mφ ' 3.8MeV for the current limit
and mφ ' 12MeV can be tested by the future CMB stage-IV [65].

For the current constraint, we find the blind spot of the cosmological constraint around
mφ ' 2MeV and sθ ' 10−5. However, this parameter region just barely avoids the
cosmological constraint, and is not completely safe. This blind spot region may change
drastically if we incorporate the BBN limit, which is not considered here, or if we change
the statistical treatment of the CMB limit. The analysis of these details is beyond the scope
of this paper.

Let us discuss possible uncertainties and effects which are not included in this analysis.
First of all, in this analysis we only consider the interactions of the dark scalar described by
the mixing angle, θ, but in fact there are direct couplings with the Higgs boson. Also, for
the interaction with the QCD sector, there is indefiniteness in the treatment of hadrons and
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partons. We also neglected the multiple φ production processes through the dark scalar
self-interaction. However, in most of the region we are considering, i.e., sθ & 10−7, the dark
scalars will be thermalized, and these uncertainties will not loosen the constraints.

In this work, we focused on the dark scalar constraint from cosmology. As a consequence,
we obtain the conservative and robust constraints on the parameter region that have not
been probed by either accelerator experiments or astrophysical observations.
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A Reduction of collision integrals

In this work we approximate collision integrals for the dark scalar φ in the similar way as
ref. [53]. Here let us summarize how to reduce the collision terms. In the following, we use
the symbol

∑
to indicate the summation over the degrees of freedom of the initial and final

states (other than φ).

A.1 Decay and inverse decay

The collision integral corresponding to the decay and the inverse decay φ↔ 1+2 is given by

C[fφ] = 1
2Eφ

∫
d3p2

(2π)32E2

d3p1
(2π)32E1

(2π)4δ4(pφ − p1 − p2)

×
∑
|Mφ↔1+2|2(fφ(1± f1)(1± f2)− f1f2(1 + fφ)) . (A.1)

Here, the plus (minus) sign corresponds to the case that particle 1 and 2 are bosons
(fermions). For our purpose, it is sufficient to consider the case in which the particle 1 and
2 have the same statistics. In such a case, eq. (A.1) is reduced to

C[fφ] = 1
2Eφ

∑
|M|2[fφF1(Eφ)− F2(Eφ)], (A.2)

where we defined F1, F2 as

F1(Eφ) =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ4(pφ − p1 − p2)(1± (f1 + f2)) , (A.3)

F2(Eφ) =
∫

d3p1
(2π)32E1

d3p2
(2π)32E2

(2π)4δ4(pφ − p1 − p2)f1f2 . (A.4)
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Assuming that f1,2 is the Bose-Einstein or Fermi-Dirac distribution of the temperature T ,
we obtain the analytical expressions of these integrals,3

F1(Eφ) = p0
1

4πmφ
(1 + ϕ∓(pφ, T )) , F2(Eφ) = F1(Eφ)fBE

φ (T ) . (A.5)

Here, p0
1 is the final state momentum in the rest frame of φ,

p0
1 = mφ

2

√√√√√
1−

(
m1 +m2
mφ

)2
1−

(
m1 −m2
mφ

)2
 , (A.6)

and ϕ∓(pφ, T ) is given by

ϕ∓(pφ, T ) = mφT

pφp
0
1

log
(
eEφE

0
1/(Tmφ) ∓ e−pφp0

1/(Tmφ)

eEφE
0
1/(Tmφ) ∓ epφp0

1/(Tmφ)

)
. (A.7)

Note that ϕ− (ϕ+) represents the Bose-enhancement (Pauli-blocking) effect when the
particle 1 and 2 are bosons (fermions).

Gathering the above results, we get the following formula

C[fφ] = 1
2Eφ

∑
|M|2 p0

1
4πmφ

(1 + ϕ∓(pφ, T ))[fφ − fBE
φ (T )] . (A.8)

A.2 Scatterings

The collision integral of the scattering process 1 + 2↔ 3 + φ is given by

C[fφ] = 1
2Eφ

∫
d3p3

(2π)32E3

d3p2
(2π)32E2

d3p1
(2π)32E1

(2π)4δ4(p3 + pφ − p1 − p2)

×
∑
|M1+2↔3+φ|2(f3fφ(1± f1)(1± f2)− f1f2(1± f3)(1 + fφ)) . (A.9)

We assume that the particle 1, 2, and 3 are in thermal equilibrium with each other and 1
and 2 obey the Maxwell-Boltzmann distribution. In this approximation, we observe that
the distribution functions in eq. (A.9) can be simplified as

(f3fφ(1± f1)(1± f2)− f1f2(1± f3)(1 + fφ))
→ (f eq

3 fφ − fMB
1 fMB

2 (1± f eq
3 )(1 + fφ))

= fMB
1 fMB

2 (1± f eq
3 )

fBE
φ

(fφ − fBE
φ ) . (A.10)

To get the third line, we used the energy conservation imposed by the delta function in
eq. (A.9). Therefore, we can write the collision integral in the reduced form,

C[fφ] = I1+2↔3+φ ×
(
fφ(Eφ)− 1

eEφ/T − 1

)
, (A.11)

3Although these integrals are no longer Lorentz invariant because of f1,2 and contain the integration over
an angular coordinate, we can perform it immediately by virtue of the delta function.
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where

I1+2↔3+φ = 1
2EφfBE

φ (Eφ)

∫
d3p3

(2π)32E3

d3p2
(2π)32E2

d3p1
(2π)32E1

(2π)4δ4(p3 + pφ − p1 − p2)

×
∑
|M1+2↔3+φ|2fMB

1 fMB
2 (1± f eq

3 ) .

(A.12)

This integral can be further reduced to the two-dimensional one,

I1+2↔3+φ = 1
512π3

Te−Eφ/T

|pφ|Eφfφ(Eφ)

∫
ds

1√
s|pcms

3φ |
log

[
1∓ e−E

+
3 /T

1∓ e−E−
3 /T

] ∫
dt
∑
|M1+2↔3+φ|2 .

(A.13)

Here, s and t are the Mandelstam variables defined as

s = (p1 + p2)2, t = (p1 − pφ)2, (A.14)

and pcms
3φ is the momentum at the center of the mass frame,

|pcms
3φ | =

√
(s− (m3 +mφ)2)(s− (m3 −mφ)2)

2
√
s

. (A.15)

The kinematical range of the energy of the particle 3 is given by

E±3 =
Eφ
(
s−m2

3 −m2
φ

)
± |pφ|

√
(s− (m3 +mφ)2) (s− (m3 −mφ)2)

2m2
φ

. (A.16)

B Explicit form of collision terms

Here, we present the reduced form of collision integrals for each process relevant for the
production or decay of the dark scalar φ using the results of the appendix A.

B.1 Decay into electrons and photon

The dark scalar decays into the electron-positron pair via the Yukawa couplings in eq. (2.4).
The corresponding matrix element is given by∑∣∣∣Mφ→e−e+

∣∣∣2 = 2s2
θy

2
e(m2

φ − 4m2
e) =

16πmφΓφ→e−e+√
1− (2me/mφ)2

. (B.1)

Substituting this into eq. (A.8), we obtain the collision term for this process

C[fφ] = −
mφΓφ→e−e+(1 + ϕ+(pφ, T ))

Eφ
(fφ − f eq

φ (T )) , (B.2)

where ϕ+(pφ, T ) is the Fermi-Dirac version of eq. (A.7).
Similarly, we can obtain the collision term for the decay into two photons φ→ γγ,

C[fφ] = −mφΓφ→γγ(1 + ϕ−(pφ, T ))
Eφ

(fφ − f eq
φ (T )) , (B.3)

where Γφ→γγ is given by eq. (2.14), and ϕ−(pφ, T ) is the Bose-Einstein version of eq. (A.7).
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B.2 Production from fermions

The dark scalars are produced through the annihilation ff̄ → φV and the Compton-like
scattering fV → fφ, where V represents the photon or the gluon. The matrix elements
squared for these processes are given by

∑∣∣∣Mff̄→φV

∣∣∣2/(16πξs2
θy

2
f ) =

m2
φt− st− t2 +m2

fm
2
φ − 3sm2

f − 2tm2
f + 11m4

f

(m2
f +m2

φ − s− t)2

+
2(m2

φs+m2
φt− st− t2 − 5m2

φm
2
f − sm2

f + 2tm2
f + 7m4

f )
(t−m2

f )(m2
f +m2

φ − s− t)

+
m2
φt− st− t2 − 3m2

φm
2
f + sm2

f + 6tm2
f + 3m4

f

(t−m2
f )2 , (B.4)

∑
|MfV→fφ|2/(16πξs2

θy
2
f ) =

−st+m2
f (2m2

φ − 3s+ t)− 5m4
f

(s−m2
f )2

+ 2
−(s−m2

f )(t−m2
f )−m2

f (−4m2
φ + s+ t)− 5m4

f

(s−m2
f )(t−m2

f )

+
−st+m2

f (2m2
φ + s− 3t)− 5m4

f

(t−m2
f )2 . (B.5)

Here we define ξ as

ξ =


Q2 × e2

4π for V = γ,

tr(T aT a)× g3(µRG = mf )2

4π for V = g,

(B.6)

where e and g3 are QED and QCD gauge couplings, respectively, and Q and T a are the
corresponding charges. Applying the formula in eq. (A.13), we obtain the collision terms
for these processes:

Iff̄↔φV (pφ, Tγ) =
16πξs2

θy
2
f

512π3
Tγe
−Eφ/Tγ

pφEφf
BE
φ (Eφ, Tγ)

×
∫ ∞

max{m2
φ
,4m2

f
}
ds 2 log

(
1− e−E

+
V /Tγ

1− e−E
−
V /Tγ

)

×
[
4

√
1−

4m2
f

s
(4m2

f −m2
φ)
{

1
s−m2

φ

+
m2
φ

(s−m2
φ)2

}

+ log

s− 2m2
f +

√
s(s− 4m2

f )
2m2

f


× 2

{
1 +

2(m2
φ − 4m2

f )
s−m2

φ

+
2(m2

φ − 4m2
f )(m2

φ − 2m2
f )

(s−m2
φ)2

}]
, (B.7)
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IfV↔φf (pφ, Tγ) =
16πξs2

θy
2
f

512π3
Tγe
−Eφ/Tγ

pφEφf
BE
φ (Eφ, Tγ)

×
∫ ∞

(mf+mφ)2
ds 2 log

1 + e−E
−
f
/Tγ

1 + e−E
+
f
/Tγ


×
[
−3

2 +
4m2

f −m2
φ

2s +
m2
f (m2

φ −m2
f )

2s2 −
4(4m2

f −m2
φ)

s−m2
f

+
(
(s− (mf +mφ)2)(s− (mf −mφ)2)

)−1/2

× log

m2
f −m2

φ + s+
√

(s− (mf +mφ)2)(s− (mf −mφ)2)
2mf
√
s


×2
(
s− 2m2

φ + 7m2
f +

2(m2
φ − 4m2

f )(m2
φ − 2m2

f )
s−m2

f

)]
. (B.8)

B.3 Production from mesons

For the energy scale below 4πfπ, the production from the hadronic sector can be described
by the effective Lagrangian (2.9). As in the production from fermions, the relevant processes
are the meson annihilation π+π− → φγ and the Compton-like scattering πγ → πφ, whose
matrix elements are given by

∑∣∣∣Mπ+π−→γφ

∣∣∣2/(4παQEDs
2
θµ

2
π

)
=
−st(s+ t−m2

φ) +m2
π(2st− (m2

π −m2
φ)s−m4

φ)
(t−m2

π)2(s+ t−m2
π −m2

φ)2 ,

(B.9)∑
|Mπγ→πφ|2/(4παQEDs

2
θµ

2
π)

=
−st(s+ t−m2

φ) +m2
π(2st−m2

φ(s+ t) +m2
π(s+ t+m2

φ)− 2m4
π)

(st−m2
π(s+ t) +m4

π)2 , (B.10)

where µπ = 2
[
(1 + κ)m2

π + κm2
φ

]
/v. With the formula (A.13), the corresponding collision

terms can be written as

Iπ+π−↔γφ(pφ, Tγ) = 4παQEDs
2
θµ

2
π

512π3
Tγe
−Eφ/Tγ

pφEφf
eq
φ (Eφ, Tγ)

×
∫ ∞

4m2
π

ds 2 log
(

1− e−E
+
γ /Tγ

1− e−E−
γ /Tγ

)

×
[
s− 2m2

π

(s−m2
φ)2 log

(
s− 2m2

π +
√
s(s− 4m2

π)
2m2

π

)
−
√
s(s− 4m2

π)
(s−m2

φ)2

]
,

(B.11)
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Iπγ→πφ(pφ, Tγ) = 4παQEDs
2
θµ

2
π

512π3
Tγe
−Eφ/Tγ

pφEφf
eq
φ (Eφ, Tγ)

×
∫ ∞

(mπ+mφ)2
ds 2 log

(
1− e−E

+
π /Tγ

1− e−E−
π /Tγ

)

×
[(

1 +
2m2

π −m2
φ

s−m2
π

)
((s− (mπ −mφ)2)(s− (mπ +mφ)2))−1/2

× log

s+m2
π −m2

φ +
√

(s− (mπ −mφ)2)(s− (mπ +mφ)2)
2mπ
√
s


− 1
s−m2

π

]
. (B.12)

Note that these formulae apply to the kaon thanks to the SU(3) isospin symmetry.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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