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1 Introduction

It is said that in our quantum world, the totalitarian principle applies: everything not
forbidden is compulsory. In quantum electrodynamics, non-zero electric fields can decay
via the quantum nucleation of charged particles. This process has been very well-studied
since the seminal work of Schwinger [1]. When the electric field is below the critical field
Ec ∼ m2/g (where m, g are the mass and charge of the particles) this process is non-
perturbative and exponentially slow, with a rate that scales as e−πm2/gE . The particle-
anti-particle pairs responsible for this effect nucleate a distance d = 2m/gE apart and
are separated along the direction the field is pointing. The instanton responsible for this
process is simply an oriented circle with radius d (figure 1a).

Many generalizations of [1] have been considered over the years, incorporating inhomo-
geneities or finite extent in the electric field. Without introducing inhomogeneities, another
generalization is to consider the decay of an initial field when the direction along which
it points is periodically identified.1 If the circumference L of this compact dimension is
larger than d one expects the standard instanton in figure 1a to govern the decay and the
pair-production rate to be approximately unchanged. However, when L < d the instanton
no longer “fits” in the compact space.

In the regime L < d there is a stark disagreement in the recent literature over the
decay rate and how to calculate it. In [2], Brown argues that the instanton responsible for
the decay is similar to the standard circular instanton, but squeezed into a “lemon” so as to
fit in the compact dimension (figure 1b). By contrast in [3], Medina and Ogilvie argue for a
configuration that includes a different set of arcs of the circular instanton (figure 1d). The
action for these configurations scales very differently from Brown’s and is discontinuous as
a function of L. The fact that these two estimates differ parametrically in the exponent is
remarkable for such a simple and classic problem.

In this work we study this question in a simple case, namely the massive Schwinger
model, quantum electrodynamics with massive charged fermions in one space and one time
dimension. Neither of the “instantons” proposed in [2, 3] actually solve the equations of
motion of the theory (due to the discontinuous first derivative at certain points in the
trajectory) and so neither should necessarily be expected correctly describe the decay.
Here, we identify a novel set of instantons that do solve the equations of motion. The
resulting prediction for the rate differs (in the exponent) from both [2, 3] (although it
is closer to [2]). We check our prediction using multiple numerical techniques, including
directly time evolving the initial state in a lattice version of the theory and identifying the
physical properties of the eigenstates of the lattice Hamiltonian.

The massive Schwinger model has several features that distinguish it from QED in
higher dimensions. Most importantly, there is no magnetic field and the gauge field is
non-propagating, so the dynamics of the theory is entirely due to the charged particles
(that interact through the electric fields they produce). Classically, this means that the

1Equilibrium at finite temperature corresponds to compactifying Euclidean time, and since electric
fields always “point” in the time direction this description also applies finite temperature quantum
electrodynamics.
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electric field is almost entirely determined by the charge configuration (almost, because a
constant background field is allowed). In the quantum theory there is a constraint that, in
a charge eigenstate, determines the field (see (2.3)).

In particular, the possible field values are quantized in integer multiples of the charge
g plus the constant background. One implication is that unlike for larger values, an initial
field in the range −g/2 < E < g/2 cannot decay, because the energy density E2/2 would
be larger were the field to increase or decrease by g. Indeed, one can think of a field
in this range as a parameter defining the specific theory under study. This parameter is
the famous θ angle, so-called because as the field varies the spectrum of the Hamiltonian
undergoes a spectral flow that is periodic under E → E + g.

A novel and surprising feature of our results is that when the theory is compactified
on a small circle there is a very sharp distinction between generic values of the initial field
and those equal to integer or half-integer multiples of the charge, E = (k/2)g with k ∈ Z.
In the regime of would-be slow decay and when E is not equal to one of these quantized
values, the field never decays, in contrast to the non-compact or large-field case. This can be
understood in our analysis from the fact that we do not find any instanton solution for such
cases. We perform multiple distinct numerical analyses that confirm that both the quantum
expectation value of the field and its (small) variance remain very close to their initial values
for arbitrarily long times. By contrast, when E = (k/2)g the field oscillates coherently
and sinusoidally in time between its initial value (k/2)g and −(k/2)g, with exponentially
suppressed probability of taking any other value no matter how long one waits.

A feature of the massive Schwinger model is the existence of a bosonized version of the
theory, the massive Sine-Gordon model. This constitutes a type of strong-weak duality,
because the fermionic field theory is weakly coupled when g/m � 1, while the bosonized
description approaches a free field theory in the opposite limit g/m→∞. The bosonized
description gives an alternative view of electric field decay that can help account for the
surprising features mentioned above. Meta-stable values of the field correspond to states
in which the boson is localized in one of the local minima of the cosine potential. In
the non-compact theory the field can decay via 1+1 dimensional bubble nucleation, where
the walls of the bubble are a kink and an anti-kink (corresponding to a fermion and an
anti-fermion). However, if the theory is compactified on a sufficiently small circle there
is not enough room for a critical bubble to form. When the Kaluza-Klein modes can be
ignored, the theory reduces to the quantum mechanics of the bosonic zero mode. The
distinction between half integer and non-half integer E can then be understood as follows.
For half-integer E the quantum mechanical potential has a Z2 reflection symmetry, so that
for each local minimum at E = (k/2)g there is a symmetric minimum at E = −(k/2)g. In
the semi-classical regime the energy eigenstates are symmetric and anti-symmetric states
localized in these two wells. Hence (much like the classic symmetric double-well problem
in quantum mechanics) the field oscillates sinusoidally with an exponentially long period
between the values E = ±(k/2)g. By contrast, for non-half integer values of the field the
potential is not symmetric and the energy eigenstates are localized in a single well, so the
field remains constant and localized for all time.
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In summary, we arrive at our conclusions with the following set of distinct and com-
plementary techniques:

• We directly measure the time evolution of the electric field using a real-time lattice
code for the fermionic massive Schwinger model

• We compute the Hamiltonian eigenvalues from the lattice code, identify the states
relevant to the electric field evolution, and estimate the rate of oscillation (when it
exists) via energy differences

• We identify the bosonized counterpart of the massive Schwinger model and compute
the time-dependence of the electric field numerically and semi-analytically in the
bosonic theory (using the approximation where the circle is small enough to ignore
Kaluza-Klein modes).

• We estimate the rate using a novel set of field-theory instantons.2

Relation to previous work. As already mentioned above, Brown [2] considered QED
with a compact spatial or Euclidean time dimension and argued that the instanton illus-
trated in figure 1b computes the rate of decay of the electric field. In contrast, Medina
and Ogilvie [3] proposed a different set of instantons with a different action and hence an
exponentially different rate (figure 1d). Korwar and Thalapillil [4] considered the case of
non-zero E and B fields; their results reduce to those of [3] when B = 0. Draper [5] also
computed the rate, relying on the instanton illustrated in figure 1c. None of these analyses
coincide with our main results, although their focus is on higher-dimensional versions of
QED. Qiu and Sorbo in [6] considered scalar QED in 1+1 dimensions in the linearized
approximation around a background field. Their results also do not coincide with ours,
although this may be due to the fact that they considered scalar QED and focused on the
short-time behavior, whereas we consider the fermionic model and are mostly concerned
with the evolution at long times. Electric field decay in the Schwinger model was studied
numerically in e.g. [7, 8]. Finally, [9] investigated the phenomenon of “flux unwinding” in
the compact Schwinger model where a pair of charges can discharge many units of flux by
repeatedly traversing the circle. Our present analysis differs from that of [9] because we
focus on the regime where the circle is too small to accommodate pair production.

The structure of this work is as follows. In section 2, we describe the massive Schwinger
model in the continuum and on the lattice. In section 3, we outline the numerical techniques
used on the lattice and present our results. In section 4, we study the bosonized description
of the theory in the small circle regime and numerically compute the transition rates. In
section 5 we use the worldline formalism of path integrals to identify a novel set of worldline
instantons and compute the associated rates. We conclude in section 6. In appendix A, we
review the lattice formulation of the massive Schwinger model. In appendix B, we report

2In the case k = 1 the estimate based on our novel “straight line” instanton agrees very well with our
numerical results. For k > 1 we found an infinite set of chains of instantons that contribute to a sum that
does not converge. The exponential dependence is consistent with our numerical results, and we believe
this failure to converge is due to a missing pre-factor we have so far been unable to identify.
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(a) Schwinger’s worldline instanton for pair produc-
tion in [1, 10], on a non-compact or compact spatial
dimension of length L larger than the nucleation dis-
tance d = 2m/gE, L > d.
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(b) WKB instanton on a compact spatial dimension
in [2], which can be adapted to the finite temperature
case.
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(c) Worldline instanton on a compact spatial dimen-
sion in [5].

x

tE

nβ

(d) Worldline instantons at finite temperature β−1

in [3], n ∈ Z.

x

tE
E = +g

(1)

E = 0

E = −g

(2)

L

(e) One of our proposed worldline instantons.

Figure 1. Some of the instantons in higher dimensional space proposed in the literature [1–3, 5, 10].

technical details about the Hilbert space cutoff on lattice and the continuum extrapolation
protocol for the energy spectrum in our numerics. In appendix C, we discuss the continuum
extrapolation of the prefactor c appearing in the bosonized action in section 4. Appendix D
contains calculations that complement section 5.
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2 Massive Schwinger model on a compact spatial dimension

The massive Schwinger model [1, 11] is quantum electrodynamics with a massive Dirac
fermion in one space and one time dimension. The Lagrangian is

L = −1
4FµνF

µν + ψ̄ (iγµDµ −m)ψ , (2.1)

where ψ is a two-component Dirac fermion, m is the fermion mass, Dµ ≡ ∂µ + igAµ is the
covariant derivative with g being the electric charge and Aµ being a U(1) gauge field, and
Fµν = ∂µAν − ∂νAµ is the field strength. Throughout this work, we work in natural units
~ = c = 1 with Minkowski metric ηµν = diag(+1,−1) where the indices µ, ν runs from 0
to 1. In the temporal gauge A0 = 0 such that the electric field E = F 10 = −Ȧ1(t), the
Hamiltonian reads

H =
∫

dx
[
−ψ̄iγ1 (∂1 + igA1)ψ +mψ̄ψ + E2

2

]
. (2.2)

We are interested in this model on a compact spatial dimension of size L, i.e. with
identification x ∼ x+L. We impose periodic boundary condition on both the electric field
and the fermion, E(x+ L) = E(x) and ψ(x+ L) = +ψ(x).

Gauss’ law ∂1E = gj0 implies that the electric field is given by

E(x) = F +
∫ x

dx′ gj0(x′) , (2.3)

where j0 = ψ̄γ0ψ and F is a constant background field which is physically significant in
1 + 1 dimensions [11]. Physical states satisfying Gauss’ law have zero net charge on the
circle. When the space is non-compact, the constant F is naturally fixed by the electric field
value at infinity. On a circle of circumference L, we pick an arbitrary point to be the origin,
and take it as the lower limit of the integral in (2.3); then F = E(x = 0) = E(x = L).

2.1 Massive Schwinger model on a lattice

Unlike its massless counterpart, the massive Schwinger model is not exactly solvable (al-
though as we will see, its bosonized form is weakly coupled when the dimensionless coupling
g/m is large). For this reason it is useful to simulate the model on a lattice and compare
numerical results against analytical predictions. In this work, we perform numerical studies
on a lattice using the Kogut-Susskind formulation of lattice gauge theory [12–14], which
we review in appendix A. Here we summarize the key elements of the construction. We
put the model defined by the Hamiltonian (2.2) on a spatial staggered lattice, on which
electrons and positrons respectively occupy odd and even sites, while the gauge field is
implemented by Wilson lines (also called link fields) between adjacent sites. Further per-
forming a Jordan-Wigner transformation which maps the fermions to spins [15], the lattice
Hamiltonian takes the form

Hlat = 1
2a
∑
n

[
σ+(n)eiθ(n)σ−(n+ 1) + σ+(n+ 1)e−iθ(n)σ−(n)

]
+ m

2
∑
n

(−1)n [1 + σ3(n)] + 1
2ag

2∑
n

[L(n) + α]2 , (2.4)

– 6 –
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where a is the spatial lattice spacing, n is the lattice site index, σ1,2,3 are the Pauli matrices
with σ±(n) ≡ 1

2 (σ1(n)± iσ2(n)), and α = F/g is the dimensionless background field.
L(n) ≡ (E(n) − F )/g is the dimensionless lattice electric field (with the background field
subtracted) operator defined on the n-th link between n-th and (n + 1)-th sites, and the
link phase on the n-th link θ(n) is related to the gauge field by θ(n) ≡ agA1(n).3 The total
number of lattice sites N has to be even in this formulation.

We introduce dimensionless lattice observables by defining the dimensionless parame-
ters

x ≡ 1
a2g2 , µ ≡

2m
ag2 , (2.5)

in terms of which the dimensionless Hamiltonian is aHlat ≡W/2x, where W given by

W ≡ 2
ag2Hlat = x

∑
n

[
σ+(n)eiθ(n)σ−(n+ 1) + σ+(n+ 1)e−iθ(n)σ−(n)

]
+ µ

2
∑
n

(−1)n [1 + σ3(n)] +
∑
n

[L(n) + α]2 . (2.6)

The dimensionless lattice electric field L(n) obeys the lattice Gauss law

L(n)− L(n− 1) = 1
2 (σ3(n) + (−1)n) . (2.7)

As in the continuum case, we impose periodic boundary conditions (PBC) on the lattice,
so the integer n in (2.4) and (2.6) runs from 0 to N − 1.

Hilbert space truncation and a basis. Given the lattice Hamiltonian (2.6), it is
convenient to work with the spin and electric field eigenstates. These take the form

|{l}, {σ3}〉 ≡ |{l(0), · · · , l(N − 1)}, {σ3(0), · · · , σ3(N − 1)}〉 , (2.8)

where l(n) is the eigenvalue of L(n) on the n-th link, and σ3(n) is the spin eigenvalue on
the n-th site. The lattice Gauss law (2.7) enforces zero net charge on the lattice, which
for PBC translates to ∑n σ3(n) = 0, and moreover leaves only one quantum electric field
degree of freedom l ≡ l(N−1) ≡ l(−1) unfixed. Then, a physical eigenstate (2.8) satisfying
the lattice Gauss law (2.7) is uniquely labeled by

|{l}, {σ3}〉 ≡
∣∣∣l, {σ3(0), · · · , σ3(n), · · · , σ3(N − 1)}∑

n
σ3(n)=0

〉
. (2.9)

Note that l can be any integer, after we canonically quantize the gauge field sector — this
is explained in appendix A after (A.9). As such, the lattice Hilbert space is actually infinite
dimensional, even with a finite N . We perform a truncation on the electric field, such that
|l(n)| ≤ lmax on all links n. This results in a finite dimensional lattice Hilbert space Hlat.
For the low energy physics of interest in this work, the error of lattice simulation is negligible
as long as the cutoff lmax is sufficiently large. In practice, how large the cutoff lmax needs

3The link phase θ(n) is not to be confused with the background angle θ = 2πF/g, or the operator L(n)
and the circle size L. These distinctions should be clear from the context.
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to be depends on the coupling m/g and the spatial size mL. We summarize in appendix B
the explicit values of lmax used for various parameter choices in our lattice simulation.

The finite dimensional lattice Hilbert space Hlat is spanned by the states in (2.9),
|{l}, {σ3}〉j , j = 1, · · · , dimHlat, with the truncation on l so that |l(n)| ≤ lmax for all links n.
For the j-th basis state |{l}, {σ3}〉j , we denote the eigenvalues of the electric field on the n-th
link and the spin on the n-th site respectively by l(n)j and σ3(n)j . Then, we have matrix ele-
ments 〈{l}, {σ3}|L(n)|{l}, {σ3}〉i j = l(n)jδji and 〈{l}, {σ3}|σ3(n)|{l}, {σ3}〉i j = σ3(n)jδji.

Observables and probability. Given a state |ψ〉 expanded in the lattice basis,

|ψ〉 =
dimHlat∑
j=1

vj |{l}, {σ3}〉j , (2.10)

we compute the main lattice observables in this work.

• The expectation value of the spatially averaged electric field Ē is〈
Ē
〉

g
= 1
N

N−1∑
n=0
〈ψ|L(n)|ψ〉+ F

g
= 1
N

N−1∑
n=0

dimHlat∑
j=1

|vj |2 l(n)j + α . (2.11)

• The standard deviation of the electric field is

σE/g ≡

√√√√√〈Ē −
〈
Ē
〉

g

2〉
=

√√√√√dimHlat∑
j=1

|vj |2
 1
N

N−1∑
n=0

l(n)j + α−

〈
Ē
〉

g

2

. (2.12)

• The probability of measuring the electric field value Em/g on the n-th link can be
computed by first constructing the projection operator on the lattice

P̂ (n,Em) =
∑′

j

|{l}, {σ3}〉j 〈{l}, {σ3}|j (2.13)

where the sum
∑′

j
is over all the basis states with l(n)j = Em

g −α. The probability
is then given by the expectation value of the projection,

P (E(n) = Em) = 〈ψ|P̂ (n,Em)|ψ〉 =
∑′

j

dimHlat∑
i=1

|vi|2δji =
∑′

j

|vj |2 . (2.14)

The quantum state on all odd (even) links is identical due to the periodic boundary
conditions. There is a slight difference between odd and even links due to the stag-
gered nature of the lattice, but this brings no important modifications to our analysis.
Hence, without loss of generality we will focus on the probability of measuring the
electric field on the central link (i.e. (N2 − 1)-th link) throughout this work.

• To calculate the number of pairs in a state, we recall that in the staggered fermion
formalism, (−1)nσ3(n) = +1 when an electron (positron) appears at the n-th site

– 8 –
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where n is odd (even), and (−1)nσ3(n) = −1 when the n-th site is empty. The basis
states |{l}, {σ3}〉j are eigenstates of electron (positron) number operator N̂e (N̂p):

N̂e |{l}, {σ3}〉j =
∑
n odd

δ(−1)nσ3(n)j ,1 |{l}, {σ3}〉j ≡ Ne,j |{l}, {σ3}〉j , (2.15)

N̂p |{l}, {σ3}〉j =
∑
n even

δ(−1)nσ3(n)j ,1 |{l}, {σ3}〉j ≡ Np,j |{l}, {σ3}〉j . (2.16)

The number of pairs operator is defined as N̂pairs = 1
2(N̂e + N̂p) with eigenvalues

Npairs,j = (Ne,j + Np,j)/2. In the state |ψ〉 as given by the expansion (2.10), the
number of pairs is given by

〈ψ|N̂pairs|ψ〉 =
dimHlat∑
j=1

|vj |2Npairs,j . (2.17)

Exact diagonalization and time evolution. We study both static properties and dy-
namics of the compact massive Schwinger model on the lattice, using the simple technique
of exact diagonalization: after constructing the Hamiltonian matrix, we numerically di-
agonalize it to determine the energy levels and eigenstates. Time evolution is done by
decomposing the initial state into Hamiltonian eigenstates and multiplying them by the
phase factors exp{−iEit} with Ei being the i-th Hamiltonian eigenvalue.

Bounds on lattice parameters. In order to simulate the continuum theory on a lattice
with spacing a, we need to characterize the range of lattice parameters that ensure the
lattice results are physical in the continuum limit. The two bounds we impose on the
lattice simulation are as follows.

• Lattice artifacts are suppressed if:

a <
1
m

= a
√
x

m/g
=⇒

√
x >

m

g
, (2.18)

a <
1
g

= a
√
x =⇒

√
x > 1 . (2.19)

• Semiclassical instanton calculations that we will introduce in the later sections are
valid if:

mL = m

g

N√
x
& 1 =⇒

√
x . N · m

g
. (2.20)

Combining these constraints, valid lattice simulation results are obtained within the range
for x:

max
{
m

g
, 1
}
<
√
x . N · m

g
. (2.21)

In addition, an extrapolation procedure is required for the lattice results to approach
the continuum limit. Unlike most previous work [16, 17] which explored the properties of
the noncompact Schwinger model, we are interested in the finite size effects brought by
the compact spatial dimension. The size of the spatial circle L = Na is now a relevant
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quantity. Instead of using the two-step extrapolation, N → ∞ followed by x → ∞ as
proposed in [16, 17], we keep N√

x
fixed and take N → ∞ to approach the continuum

limit. This extrapolation approach keeps fixed the size of the space with respect to the
coupling gL, while taking the spacing ga → 0. The continuum limit is thus approached
with the finite size effects intact. For more details about the continuum extrapolation, see
appendix B and appendix C.

3 Lattice dynamics and decay of an initial state electric field

In this section, we proceed to investigate the dynamics of the massive Schwinger model on
a circle making use of the lattice simulation code. We focus on the time evolution of the
electric field and measure the timescales for certain types of quantum quench. In addition,
the energy splittings relevant to those typical quenches are identified. This provides a com-
putationally cheaper way to study the dynamics of the electric field in the weak field regime.

3.1 Initial state and time evolution

To study the decay or time evolution of an initial state electric field we need to specify
an initial quantum state that we will then evolve in time using the lattice Hamiltonian.
Throughout this paper we will use the ground state of the α = 0 Hamiltonian as the initial
state. Being the ground state, this should be a “minimum uncertainty state” in the sense
that it minimizes some product of the variance in the field and its time derivative.

Due to symmetry this α = 0 ground state has 〈Ē〉g = 0. We then evolve this initial
state using the (numerically diagonalized) Hamiltonian with α = k/2 for some k ∈ R (this
is a quantum quench). The spectrum of the Hamiltonian is periodic under α→ α+ 1 via
spectral flow, but the initial state defined this way has 〈Ē〉g = 0 + α with respect to this
Hamiltonian. Hence the time evolution from this state reflects the behavior of an initial
state electric field satisfying

〈
Ē
〉

= αg.4

The observables calculated on the lattice include the expectation value and the stan-
dard deviation of the spatially averaged electric field, the probability to measure a dimen-
sionless electric field value on the central link (C-L) (i.e. (N2 − 1)-th link) and the number
of electron-positron pairs.

k ∈ Z quenches. The dynamics is particularly interesting when the background fields
are equal to half-integer multiples of the coupling, α = k/2 with k ∈ Z. We consider the
following three types of quenches: (1) |k| = 1 quench, (2) |k| = 2 quench, and (3) |k| = 3
quench. Without loss of generality, we will discuss quenches with k > 0 only; a quench
with −k can be obtained immediately from the one with k by reversing the electric field
direction. Figures 2–4 respectively illustrate k = 1, 2, 3 quenches, the evolution behaviors
of which vary with the spatial circle size mL.

4As we will see when we examine the bosonized version of the theory, this procedure is similar to
translating an approximately Gaussian initial state so that it becomes a coherent state with non-zero initial
position expectation value.
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Figure 2. The expectation values of the spatially averaged electric field
〈
Ē
〉
/g, the standard

deviation of the spatially averaged electric field σE/g, the probability to measure field Em on the
central link P (EC-L = Em), and the number of electron-positron pairs Npairs as functions of time in
the k = 1 quench for m

g = 50, with three different spatial circle sizes mL = 8 (top panel), mL = 4
(middle panel) and mL = 1 (bottom panel) on an N = 10 lattice. On the lattice, we set lmax = 10
for mL = 8, 4 simulations and lmax = 30 for mL = 1 simulation to achieve error . O(10−10) for
the lowest four energy levels E/g.

By fitting the evolution data to the Ansatz〈
Ē
〉

g
= L0 cos

(
t/a

τ/a

)
+ Lb , (3.1)

P

(
EC-L
g

= −k2

)
= P0 + cP sin2

(1
2
t/a

τ/a

)
, (3.2)

we extract the timescales τ/a, which are related to the periods T of the oscillations by
T/a = 2πτ/a. As shown in table 1, the timescales extracted respectively from the expec-
tation values and measuring probabilities agree excellently.

It is striking that
〈
Ē
〉
/g oscillates roughly sinusoidally for all values ofmL (left column,

blue line of figures 2, 3 and 4). However, there are significant qualitative and quantitative
differences as mL varies which reveal the different origins of these oscillations. For mL = 8,
the initial field is well-localized in the sense that its standard deviation satisfies σE/g � 1
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Figure 3. The expectation values of the spatially averaged electric field
〈
Ē
〉
/g, the standard

deviation of the spatially averaged electric field σE/g, the probability to measure field Em on the
central link P (EC-L = Em), and the number of electron-positron pairs Npairs as functions of time
in the k = 2 quench for m

g = 50, with three different spatial circle sizes mL = 8 (top panel),
mL = 4 (middle panel) and mL = 1 (bottom panel) on an N = 10 lattice. For the same reason as
in figure 2, we set lmax = 10 for mL = 8, 4 simulations and lmax = 30 for mL = 1 simulation.

and the period of oscillation is very long. From the probabilities for specific E-field values
(middle column) and the time dependence of σE/g (left column, orange line) one can see that

the field is oscillating from 〈Ē〉g = k/2 to 〈Ē〉g = −k/2, with only a very small probability
of taking any other value. However for mL = 1 the oscillation is much faster and σE/g � 1
with very little time-dependence. The probabilities for specific values of E/g are all small
(in keeping with the large standard deviation) and oscillate with time. The case mL = 4
is intermediate between these two extremes.

This behavior can be understood in terms of the novel instantons we discover, which
have an action proportional to L (section 5). When mL � 1 the instanton action is
large and the initial field is well-localized to a specific value, with exponentially suppressed
probability to take any other value. As we will see, these instantons lack a negative mode.
Rather than mediating a traditional decay, they predict an oscillation from E to −E,
precisely as is seen in the top row of these figures. When mL is smaller the instanton
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Figure 4. The expectation values of the spatially averaged electric field
〈
Ē
〉
/g, the standard

deviation of the spatially averaged electric field σE/g, the probability to measure field Em on the
central link P (EC-L = Em), and the number of electron-positron pairs Npairs as functions of time
in the k = 3 quench for m

g = 50, with three different spatial circle sizes mL = 8 (top panel),
mL = 4 (middle panel) and mL = 1 (bottom panel) on an N = 10 lattice. For the same reason as
in figure 2, we set lmax = 10 for mL = 8, 4 simulations and lmax = 30 for mL = 1 simulation.

action is not large and the field is not localized to a specific initial value (in units of g).
In this case the timescale is perturbative (the oscillation frequency for mL = 1 is within
10% of g/

√
π). One might wonder whether a different initial state with σE/g � 1 might be

more pertinent to the question of electric field decay in this regime. This is not the case —
any such state would include higher energy eigenstates and would very quickly evolve into
a state with σE/g � 1. Indeed, this regime is in some ways similar to the massless or light
regime of the Schwinger model in non-compact space, where the instanton action is small
and the field decays by perturbative nucleation of light pairs of particles (except that in
this small-circle regime the decay does not occur by pair production, as can be seen in the
right column from the fact that the number of pairs is constant in time).

These behaviors can also be precisely understood in the bosonized theory (section 4).
The bosonized potential is symmetric when k is integer and has multiple local minima
with a quadratic envelope. The behavior in the top row is similar to that of a symmetric
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Figure 5. The expectation values of the spatially averaged electric field
〈
Ē
〉
/g, the standard

deviation of the spatially averaged electric field σE/g, the probability to measure field Em on the
central link P (EC-L = Em), and the number of electron-positron pairs Npairs as functions of time
in the k = 0.4 quench for m

g = 50, with three different spatial circle sizes mL = 8 (top panel),
mL = 4 (middle panel) and mL = 1 (bottom panel) on an N = 10 lattice. For the same reason as
in figure 2, we set lmax = 10 for mL = 8, 4 simulations and lmax = 30 for mL = 1 simulation.

double well potential when the barriers are high. The behavior in the lower row is that
of a quadratic potential with small “wiggles” superimposed. The frequency and amplitude
of these oscillations found on the lattice agree quantitatively with those predicted by the
bosonized version of the theory.

k /∈ Z quenches. Let us turn to consider k /∈ Z quench. As before the initial state is
evolved using the final Hamiltonian with α = k/2, but now for k /∈ Z. In figures 5 and 6 we
show the lattice simulation results of k /∈ Z quenches in both large and small mL regimes.

In the large mL regime (cf. the top row of figures 5 and 6), the electric field
〈
Ē
〉
/g

undergoes small amplitude and relatively rapid oscillations with probability & 90% to
coincide with its initial value. This behavior is in sharp contrast to the case k ∈ Z. It is
also instructive to compare to the behavior of the massive (m/g � 1) Schwinger model
in the non-compact case. There, initial fields with −1 < k < 1 (−0.5 < Ē/g < 0.5) are
stable because the energy density in the field between a pair of nucleated particles would
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Figure 6. The expectation values of the spatially averaged electric field
〈
Ē
〉
/g, the standard

deviation of the spatially averaged electric field σE/g, the probability to measure field Em on the
central link P (EC-L = Em), and the number of electron-positron pairs Npairs as functions of time
in the k = 3.4 quench for m

g = 50, with three different spatial circle sizes mL = 8 (top panel),
mL = 4 (middle panel) and mL = 1 (bottom panel) on an N = 10 lattice. For the same reason as
in figure 2, we set lmax = 10 for mL = 8, 4 simulations and lmax = 30 for mL = 1 simulation.

exceed that in the background field. By contrast, k = 3.4 would decay by Schwinger pair
production. Instead, our numerical results show that in the small-circle regime this field is
stable (as we will see, there is indeed no instanton that can mediate its decay).

For smallmL (cf. the middle and bottom rows of figures 5 and 6) the behaviors are qual-
itatively similar to k integer. Again, these behaviors are simple to explain both in terms of
our novel instantons and the bosonized description. When mL� 1 the would-be instanton
action is large and the field is well-localized. However, for non-integer k the instanton ceases
to exist and there is no decay channel for the field. In the bosonized description this corre-
sponds to an asymmetric potential with local minima; an initial state localized in one min-
imum with high barriers has no symmetric state to oscillate to, or any other decay channel.
The non-compact massless Schwinger model would behave in a qualitatively similar fashion.

In figure 7 we plot the minimum probability over a long time period of measuring the
central link electric field to be k/2 as a function of the background field at t = 0, i.e.
F/(g/2) =

〈
Ēt=0

〉
/(g/2) = k, which is again equal to the initial spatially averaged electric
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Figure 7. The minimum probability of measuring the dimensionless electric field on the central
link to be k/2 as a function of the background field at t = 0 for m/g = 50 with mL = 8 (orange),
mL = 4 (green), mL = 1 (purple) on an N = 10 lattice. Here we take the total evolution time
(t/a)max = 108 and 200 sampling points each simulation for searching the minimum probability.
The dashed lines indicate the invariant probabilities for the trivial (k = 0) quenches: 0.93537 for
mL = 8, 0.36266 for mL = 4, and 0.11055 for mL = 1. The dips around integer k in orange demand
much longer (t/a)max than other points to extract. And all other points (i.e. orange points away from
the dips, and all green and purple points) are insensitive to the choice of a long enough (t/a)max.
For our examples, these points remain essentially the same for (t/a)max = 3× 104, 105, 106, 108.

field. If this probability remains close to 1 it means the initial field is stable, while if it is
close to zero it means the field decays or oscillates from its initial value to some other values.

In the large mL regime, e.g. mL = 8 for m/g = 50 as shown by the orange points in
figure 7, when k is not (close to) an integer value the field is very likely to remain at its
initial value for an extremely long time (e.g. (t/a)max = 108 in our lattice simulation). The
sharp dips in Pmin (EC-L/g = k/2) appear at integer k, corresponding to the long-timescale
quenched tunnelings shown in the top panels of figures 2, 3 and 4. For k /∈ Z, the timescale
associated with the dominating oscillation mode is much shorter than the one for k ∈ Z.
One can also see (insets) that the width of this resonance decreases exponentially with
increasing k. This is expected because the instanton action scales linearly with k, and (as
we will see) in the bosonized description the number of barriers separating E and −E also
scales linearly with k.

In the small mL regime, e.g. mL = 4 for m/g = 50 as denoted in figure 7 by the green
points, the minimum probability for the field on the central link to be equal to the initial
average electric field is noticeably away from unity even for the trivial quench with k = 0.
As k increases, the central link field gradually loses the memory of the initial value of

〈
Ē
〉
/g

in the sense that the probability P
(
EC-L =

〈
Ēt=0

〉)
almost vanishes at some later times.

In contrast to the large mL case, there are no dips in Pmin (EC-L/g = k/2) at integer k.
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N m
g mL

(
τ
a

)
Ē/g

(
τ
a

)
P

which ∆E? a∆E (a∆E)−1
k

10 50 8 5460.96 5460.97 ∆E1,0 1.83118×10−4 5460.97 1
10 50 8 76592.8 76597.5 ∆E2,1 1.30556×10−5 76595.5 2
10 50 8 4.20673×106 4.20673×106 ∆E3,2 2.37714×10−7 4.20674×106 3

Table 1. The timescale τ/a and the relevant energy splittings ∆E for different types of quenched
tunneling in the large mL regime as shown in figures 2, 3, 4. The timescales

(
τ
a

)
Ē/g

and
(
τ
a

)
P

are extracted from lattice data of the electric field
〈
Ē
〉
/g and the quantum mechanical probability

using fits (3.1) and (3.2) respectively. ∆E1,0, ∆E2,1 and ∆E3,2 are respectively the energy differences
between the first excited and the ground states, between the second and the first excited states, and
between the third and the second excited states of the Hamiltonian with α = k/2. The column of
a∆E lists the lattice data of the relevant energy differences. The type of a quench is indicated by k.

3.2 Relation to energy splittings

For large mL, the long-period sinusoidal oscillations in time suggest that only two Hamilto-
nian eigenstates with small energy splitting are involved, as is the case for tunneling between
two symmetric wells in quantum mechanics (this is indeed the case in the bosonized de-
scription, as we will see in section 4). Consider two states

∣∣∣Ē/g = ±k/2
〉
≡
∣∣∣Ē±〉 in which

the electric field is localized around Ē/g = ±k/2. Define |S〉 and |A〉 respectively to be
the symmetric and antisymmetric superpositions of

∣∣∣Ē±〉. If |S〉 and |A〉 are Hamiltonian
eigenstates, the transition amplitudes between the wells are given by

G(Ē+, Ē±, t) =
〈
Ē±
∣∣∣e−iHt∣∣∣Ē+

〉
≈
〈
Ē±
∣∣∣(|S〉 e−iESt 〈S|+ |A〉 e−iEAt 〈A|)∣∣∣Ē+

〉
= C

2
(
e−i(Ē−

∆E
2 )t ± e−i(Ē+ ∆E

2 )t
)

= C ′e−iĒt ×

cos(∆Et/2)
sin(∆Et/2)

(3.3)

where ES and EA are Hamiltonian eigenvalues for |S〉 and |A〉 respectively, with Ē ≡
(ES + EA)/2 and ∆E ≡ EA − ES . It follows that the transition probability from one well to
the other at time t is

P (Ē+ → Ē−, t) =
∣∣∣G(Ē+, Ē−, t)

∣∣∣2 = |C ′|2 sin2
(∆Et

2

)
. (3.4)

In table 1 we compare the oscillation timescale τ from a cosine fit to the lattice real-time
data to the inverse of the energy difference ∆E between the k-th eigenstate and the (k−1)-
th eigenstate. We find very precise agreement. (This numerical agreement is robust for
lattices with varying numbers of sites N , in the large mL regime with 1 . m/g < 50)

The massive Schwinger model spectrum is periodic in α with period one, so one only
needs to look at α = 0 or α = 1/2 spectrum for k ∈ Z quenches. The energy splittings ∆E/g
converge as we perform the fixed N/

√
x continuum (N →∞) extrapolation. This implies
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that the energy differences and the quenched tunneling effects are physical rather than lat-
tice artifacts. We also verified numerically that the symmetric and anti-symmetric combi-
nations of these Hamiltonian eigenstates

∣∣∣Ē±〉 indeed correspond to states with expectation
value for the spatially averaged field

〈
Ē
〉
/g = ±k/2 and standard deviation σE/g � 1.

For small mL, the oscillations in time deviate from pure sinusoidal functions. It is
instructive to perform a discrete Fourier analysis of the evolution data to extract the
timescale of the quench and determine which energy differences dominantly govern the dy-
namics. Consider a sequence of time evolution data {qnt} where nt = 1, · · ·Nt withNt being
the total number of time steps. In our case, qnt represents either

〈
Ē
〉
/g or the relevant

transition probability at time tnt/a. The discrete Fourier transform from {qnt} to {Qkt}
is given by Qkt = 1

Nt

∑Nt
nt=1 qnt exp

[
−2πi(nt−1)(kt−1)

Nt

]
, where kt = 1, · · ·Nt. The power

spectrum for the quantity q is then defined by Sq(k) = |Qk|2. After a standard rescaling,
we obtain the power spectrum for observable q as a function of dimensionless frequency,
Sq(f/a−1). The significant peaks in the power spectra of the electric field expectation
value S〈Ē〉/g(f/a

−1) and the relevant transition probability SP (f/a−1) correspond to the
characteristic frequencies of the quench. Each peak (f/a−1)peak is related to a character-
istic energy difference ∆Ec/g by ∆Ec/g =

√
x (τ/a)−1

peak = 2π
√
x(f/a−1)peak. Comparing

energy differences ∆Ec/g with those in the Hamiltonian spectrum, we find that the ∆Ec/g
derived from the most predominant peak in the power spectra is ∆E1,0/g for all three types
of quenches, in the small mL regime (e.g. the middle panels of figures 2, 3 and 4). The
energy differences of the higher excited states such as ∆E2,1 and ∆E3,2 play a minor role
in these quenches, serving to modulate the amplitude of oscillations.

4 The bosonized description

The massive Schwinger model defined by the Lagrangian (2.1) admits an equivalent
bosonized description [11, 18–21] — a theory of a massive real scalar field with a cosine
interaction potential. The Euclidean action of the bosonized theory takes the form

SE =
∫

d2xE

[
1
2
(
∂Eµ φ

)2
+ g2

2πφ
2 − cmg cos

(
2
√
πφ− θ

)]
, (4.1)

where φ is a scalar,
(
∂Eµ φ

)2
≡ (∂tEφ)2 + (∂xφ)2 and tE = it is Euclidean time. Here

g and m are the gauge field coupling and the mass of the Dirac fermion in the original
theory (2.1), and c is a dimensionless prefactor of the cosine potential. The background
angle θ = 2πF/g [11].

On a compact spatial dimension with identification x ∼ x + L, the scalar field is
periodic, φ(x+ L) = φ(x), and admits a mode expansion

φ(tE , x) =
∞∑

p=−∞
φ(p)(tE) exp

(2πipx
L

)
= φ(0)(tE) +

∑
p 6=0

φ(p)(tE) exp
(2πipx

L

)
. (4.2)

If the size of the spatial circle is small enough and we are interested in the low energy
physics, we can truncate the massive Kaluza-Klein (KK) modes with p 6= 0. The (1 + 1)-
dimensional field theory then reduces to a (0 + 1)-dimensional quantum mechanics of the
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zero mode. As we will see, this quantum mechanics generates accurate predictions for
the energy differences relevant to the quenches discussed in section 3. The dimensional
reduction yields

SE =
∫

dtE
[

1
2

˙̃φ2 + 1
2
g2

π
φ̃2 − cmgL cos

(
2
√
π

L
φ̃− 2πα

)]
+ · · · , (4.3)

where φ̃ ≡
√
Lφ(0) and ‘· · · ’ stands for terms involving massive KK modes. The effective

potential in the quantum mechanical theory (4.3) is read off from (4.3) as V (φ̃) ≡ 1
2
g2

π φ̃
2−

cmgL cos
(
2
√

π
L φ̃− 2πα

)
. For future convenience, we introduce the dimensionless variable

ϕ ≡ φ̃/
√
πL and the dimensionless potential U ≡

[
V (φ̃)− Vmin

]
/(g2L) with Vmin being

the global minima of V (φ̃). The dimensionless potential in terms of ϕ is explicitly given by

U(ϕ) = 1
2ϕ

2 − cm
g

cos(2πϕ− 2πα) + U0 , (4.4)

where U0 is chosen such that the global minima of U(ϕ) vanishes, i.e. Umin = 0.

4.1 Numerical bosonized quantum mechanics

We first study the bosonized quantum mechanics by numerically solving the time-
independent Schrödinger equation

1
2u
′′(φ̃) +

[
E − V (φ̃)

]
u(φ̃) = 0 . (4.5)

In the above u(φ̃) ≡
〈
φ̃
∣∣∣ψ〉 is the wavefunction of the state |ψ〉 in the φ̃ representation,

and E is a Hamiltonian eigenvalue. We further write the wavefunction as u(φ̃) = Cφ̃,ϕu(ϕ)
with u(ϕ) ≡ 〈ϕ|ψ〉 and Cφ̃,ϕ a dimensionful constant determined by the normalization
condition.5 To make connections to the lattice simulation data, we rewrite (4.5) in terms
of lattice parameters and the dimensionless wavefunction u(ϕ) as

1
2πN u′′(ϕ) +

(
aE − N

x
U(ϕ)

)
u(ϕ) = 0 . (4.6)

By solving (4.6), one obtains the dimensionless Hamiltonian eigenvalues and dimensionless
eigenstates. From these we immediately know the energy difference ∆Ei,j/g = (a∆Ei,j)

√
x

between the i-th and the j-th eigenstates.6 Additionally, under bosonization the spatially-
averaged electric field operator is proportional to the ϕ operator,

ˆ̄E
g

= φ̂√
π

=
ˆ̃φ√
πL

= ϕ̂ . (4.7)

5The constant Cφ̃,ϕ is determined such that
∫

dφ̃
∣∣u(φ̃)

∣∣2 =
∫

dϕ |u(ϕ)|2 = 1.
6The ground state is referred to as 0-th state.
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It follows that the expectation value and the standard deviation of the electric field for the
i-th Hamiltonian eigenstates |ψi〉 are〈 ˆ̄E

〉
/g = 〈ψi| ˆ̄E|ψi〉 /g =

∫
dϕ ϕu∗i (ϕ)ui(ϕ) (4.8)

σE/g,i =
√

1
g2

[
〈ψi| ˆ̄E2|ψi〉 − 〈ψi| ˆ̄E|ψi〉2

]

=
[∫

dϕ ϕ2u∗i (ϕ)ui(ϕ)−
(∫

dϕ ϕu∗i (ϕ)ui(ϕ)
)2
] 1

2

. (4.9)

With the Schrödinger equation and the observables to compute at hand, we can use the
standard shooting method to solve the quantum mechanics numerically. To do so we
need one more input, the value of the prefactor c. This factor hasn’t been computed
analytically for arbitrary coupling g. Instead, we determine the prefactor c for given m/g
and mL numerically by comparing the predictions of a single benchmark quantity from the
numerical quantum mechanics and the lattice simulation data. We choose this benchmark
quantity to be the energy difference between the first excited and ground states ∆E1,0/g

for α = 0.5. By numerically solving the quantum mechanics for a set of trial values of c, we
find the optimal value of c up to O(0.01) that generates the closest value of the benchmark
quantity to the one obtained from lattice data for specified m/g, mL and N . Let us denote
the prefactor obtained in this way by c(m/g,mL;N). Tables 2 and 3 summarize the optimal
c(m/g,mL;N) obtained from numerical quantum mechanics (nQM), the lowest few energy
differences and σE/g,0 and σE/g,1 computed using the same optimal c, together with the
same quantities calculated using lattice simulation (LAT) for the examples of m/g = 50,
mL = 8, 4, 1 on N = 10 lattice.

Once the best-fit value c(m/g,mL;N) is determined, we compute other observables
with this c and find that the bosonized theory indeed corresponds to the original fermionic
theory. For the examples presented in the tables, the energy differences between higher
excited states and σE/g,0, σE/g,1 are close to their lattice counterparts even for α 6= 0.5.
We confirm that the consistency holds true throughout the ranges of m/g and mL we
explored. In this sense, the prefactors c(m/g,mL;N) are quite reliable. The physical pref-
actor, which is independent of lattice parameters, is attained by a continuum extrapolation
of c(m/g,mL;N). More details about the extrapolation procedure and the prefactor’s de-
pendence on m/g and mL are summarized in appendix C.
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mL α
σE/g,0 σE/g,1

(nQM) (LAT) (nQM) (LAT)
8 0.5 0.512736 0.508357 0.51319 0.508808
4 0.5 1.07152 1.07018 1.81127 1.81058
1 0.5 3.58543 3.58543 6.20741 6.20722
8 0 0.143362 0.126801 1.00609 1.00388
4 0 1.07151 1.07018 1.81131 1.81062
1 0 3.58543 3.58543 6.20741 6.20722
8 0.2 0.162915 0.148566 0.158326 0.143513
4 0.2 1.06404 1.07018 1.77152 1.81060
1 0.2 3.58547 3.58543 6.20741 6.20722

Table 3. The standard deviations σE/g for m
g = 50 with various mL and diffrent background field

α on N = 10 lattice. The values in the ‘(nQM)’ columns are calculated using numerical bosonized
quantum mechanics while those in the ‘(LAT)’ columns are obtained from lattice field simulation.

Figure 8 shows the effective quantum mechanical potential and the wavefunctions u(ϕ)
of relevant states for the quenches with k = 1, 2, 3 in large mL regime (cf. the top panels of
figures 2, 3 and 4). For the k ∈ Z quench, the relevant states are |ψk〉 and |ψk−1〉. Due to
sufficiently high barriers between the wells, the relevant wavefunctions are locally supported
in the two wells of the potential, i.e. around ϕ = ±k/2. These states exactly fit in the
role of the symmetric and the antisymmetric states proposed in section 3.2, confirming the
double-well tunneling scenario mentioned there. The corresponding parameter regime of
m/g and mL is referred to as the double-well regime.

Figure 9 illustrates the potential, and the lowest four wavefunctions u(ϕ) for the k =
1, 2, 3 quenches in small mL regime (cf. the middle panels of figures 2, 3 and 4). In this
intermediate regime the potential barriers are still significant but are no longer high enough
to confine the probability to a single well or symmetric pair of wells, and the wavefunctions
spread across multiple wells. We refer to this parameter regime as the multiwell regime.

When mL is even smaller, the cosine term in the potential V (φ̃) becomes negligible in
comparison to the quadratic term and potential approximately reduces to that of a simple
harmonic oscillator. This scenario is illustrated in figure 10, and we refer to it as the nearly
SHO regime.

4.2 Semi-analytical bosonized quantum mechanics

In this subsection, we present semi-analytical calculations of the ground splitting ∆E1,0/g

in the double-well regime, and of the standard deviations σE/g,0 and σE/g,1 in all three
regimes for a k = 1 quench.

For a k = 1 quench in the double-well regime, the tunneling is occurring between the
lowest two neighboring wells of V (φ̃). The states relevant to the tunneling are the ground
and the first excited states. When it comes to these two states, V (φ̃) approximately reduces
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Figure 8. The (dimensionless) effective quantum mechanical potential in (4.6) and the (dimension-
less) wavefunctions of the lowest four Hamiltonian eigenstates for m/g = 50, mL = 8, a double-well
regime example, on N = 10 lattice. Upper panel: α = 0.5, middle panel: α = 0, lower panel:
α = 0.2. The wavefunctions u0, u1, u2, u3 are respectively the ones in ϕ-representation for the
ground, the first-, the second-, and the third-excited states.

to a symmetric double-well potential. For the symmetric double well potential problem,
one can solve it using either WKB [22] or instanton method [23]. Here we take the instanton
approach due to [24].

Let us denote the locations of the two global minima of V (φ̃) by φ̃±. The action of
the single instanton involving the quantum tunneling between φ̃− and φ̃+ is

Sinst =
∫ φ̃+

φ̃−
dφ̃
√

2
[
V (φ̃)− V (φ̃±)

]
=
√

2πgL
∫ ϕ+

ϕ−
dϕ

√
U(ϕ) , (4.10)

where ϕ± = φ̃±/
√
πL. Expanding U(ϕ) [i.e. eq. (4.4)] with α = 1/2 around ϕ+ gives the
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Figure 9. The (dimensionless) effective quantum mechanical potential in (4.6) and the (dimension-
less) wavefunctions of the lowest two Hamiltonian eigenstates for m/g = 50, mL = 4, a multiwell
regime example, on N = 10 lattice. Upper panel: α = 0.5, middle panel: α = 0, lower panel:
α = 0.2. The wavefunctions u0, u1, u2, u3 are respectively the ones in ϕ-representation for the
ground, the first-, the second-, and the third-excited states.

frequency of the small oscillation around this well:

ω2
ϕ ≡

∂2U

∂ϕ2

∣∣∣∣∣
ϕ=ϕ+

= 1− 4cπ2m

g
cos(2πϕ+) . (4.11)

The ground splitting is then given by [24]

∆E1,0 = 2ωφ̃

(
ωφ̃φ̃

2
+

π

) 1
2

eAe−Sinst , (4.12)
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Figure 10. The (dimensionless) effective quantum mechanical potential in (4.6) and the (dimen-
sionless) wavefunctions of the lowest two Hamiltonian eigenstates for m/g = 50, mL = 1, a nearly
SHO regime example, on N = 10 lattice. Upper panel: α = 0.5, middle panel: α = 0, lower panel:
α = 0.2. The wavefunctions u0, u1, u2 and u3 are respectively the ones in ϕ-representation for the
ground, the first-, the second- and the third-excited states.

where ωφ̃ = g√
π
ωϕ and

A =
∫ φ̃+

0
dφ̃

 ωφ̃√
2
[
V (φ̃)− V (φ̃±)

] − 1
φ̃+ − φ̃


=
∫ ϕ+

0
dϕ
[

ωϕ√
2U(ϕ)

− 1
ϕ+ − ϕ

]
. (4.13)
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The ground energy splitting in the unit of coupling is then

∆E1,0
g

= 2π−
3
4 (gL)

1
2 ω

3
2
ϕϕ+e

Ae−Sinst = 2π−
3
4N

1
2x−

1
4ω

3
2
ϕϕ+e

Ae−Sinst . (4.14)

In the weak coupling regime m/g � 1, ϕ+ ≈ 1/2 and then

ωϕ ≈
√

1 + 4cπ2m

g
≈ 2π

√
c
m

g
, (4.15)

Sinst ≈
√

2πgL
∫ 1

2

− 1
2

dϕ
√

1
2

(
ϕ2 − 1

4

)
+ c

m

g
(1 + cos(2πϕ))

≈ 4π−
1
2

√
cmgL2 . (4.16)

where in the second line of eq. (4.16) the 1
2

(
ϕ2 − 1

4

)
term in the integrand is neglected.

The integral A is then simplified to

A ≈
∫ 1

2

0
dϕ

√
2π√

1 + cos(2πϕ)
−
∫ 1

2

0
dϕ 1

1/2− ϕ = ln
( 4
π

)
. (4.17)

The ground splitting in the weak coupling limit (WCL) reduces to

∆E1,0
g

= 8
√

2π−
1
4 c

3
4 (gL)

1
2

(
m

g

) 3
4

exp
[
−4π−

1
2 c

1
2 (mL)

1
2 (gL)

1
2
]

(4.18)

= 8
√

2π−
1
4 c

3
4

(
m

g

) 3
4
(
N√
x

) 1
2

exp
[
−4π−

1
2 c

1
2

(
m

g

) 1
2 N√

x

]
. (4.19)

We determine the prefactor c by comparing (4.14) and (4.19) with lattice data. The
values of c are summarized in table 2 for the examples of m/g = 50, mL = 8, 4 on
N = 10 lattice. They are consistent with those derived from numerical bosonized quantum
mechanics in the double-well regime. For m/g = 50 and mL = 4 in the multiwell regime,
the prefactor c derived from (4.14) and (4.19), as distinct from the numerical quantum
mechanical calculation, is not valid anymore.

Another set of useful observables are the standard deviations in electric field for the low-
est eigenstates. As we will see in subsection 4.3, they play the role of order parameters char-
acterizing double-well-to-multiwell and multiwell-to-SHO phase transitions. Here we com-
pute the standard deviation for the ground state σE/g,0 and for the first excited state σE/g,1.

In the double well regime for k = 1, the wavefunctions of the ground state u0(ϕ) =
〈ϕ|ψ0〉 and the first excited states u1(ϕ) = 〈ϕ|ψ1〉 are locally supported around ϕ = ±1

2 ,
symmetric and antisymmetric about ϕ = 0 respectively. Therefore for both states we
have

〈 ˆ̄E
〉
/g ≈ 0 and

〈 ˆ̄E2
〉
/g2 ≈ 1/4. It then follows from (4.9) that σE/g,0 ≈ 1/2

and σE/g,1 ≈ 1/2. Because each of the wells is not perfectly symmetric about the local
minimum, and the wavefunctions u(ϕ) have small but non-vanishing supports in the wells
beyond the central double wells, these values are not exact.

In the multiwell regime, as the wavefunctions of the ground and first excited states are
nonvanishing in higher wells |ϕ| > 1

2 , σE/g,0 and σE/g,1 exceeds 1/2 significantly.
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In the nearly SHO regime, the quadratic term dominates the effective potential V (φ̃).
In the crudest approximation, one may neglect the cosine term and treat the potential as
a pure quadratic one. The dimensionless Schrödinger equation (4.6) reduces to

− 1
2u
′′(ϕ) + 1

2
πN2

x
ϕ2u(ϕ) = πNaEu(ϕ) . (4.20)

This is nothing but the Schrödinger equation for a simple harmonic oscillator of unit
mass with angular frequency Ωϕ =

√
π N√

x
=
√
πgL and energy eigenvalue Eϕ = πNaE =

π N√
x

(
E
g

)
= πgL

(
E
g

)
. With facts about a quantum SHO and the operator relation (4.7),

the standard deviations σE/g,0 and σE/g,1 are readily obtained as

σE/g,0 = σϕ,0 =
√
〈0|ϕ̂2|0〉 − 〈0|ϕ̂|0〉2 =

√
1

2Ωϕ
=
√ √

x

2N
√
π

=
√

m/g

2
√
πmL

, (4.21)

σE/g,1 = σϕ,1 =
√
〈1|ϕ̂2|1〉 − 〈1|ϕ̂|1〉2 =

√
3

2Ωϕ
=
√

3
√
x

2N
√
π

=
√

3m/g
2
√
πmL

. (4.22)

In the above |0〉 and |1〉 are the ground and the first excited eigenstates associated with
the lowest two Eϕ eigenvalues, respectively. They correspond to the physical Hamiltonian
eigenstates |ψ0〉 and |ψ1〉 for a fixed gL. In addition, from the SHO’s equally spaced
energy levels ∆Eϕ = Ωϕ, one deduces that ∆Ei+1,i/g = 1/

√
π ≈ 0.56419. This is exactly

the energy gap ∆E1,0/g in the massless (m → 0) Schwinger model where the bosonized
potential V (φ̃) is exactly quadratic. As we argued, in the massive Schwinger model on
a circle of sufficiently small size mL (i.e. in the nearly SHO regime), the lowest energy
difference ∆E1,0/g is approximately 1/

√
π.

4.3 Three qualitative regimes

In the preceding subsections, we recognized three regimes that we termed the double-well
(DW), multiwell (MW) and nearly SHO regimes, according to the behavior of electric field
evolution and to the configurations of potential and lowest-lying wavefunctions. Quali-
tatively the distinction is that in the DW regime the barriers are high enough that the
electric field can be localized to a specific value and will remain at this value for a long
time with high probability, whereas in the MW and nearly SHO regimes it will rapidly
evolve to other values.

For a fixed m/g, the three regimes can be reached by tuning the size of the spatial
circle mL. The right columns of figures 8, 9 and 10 illustrate the transitions from DW to
MW and from MW to nearly SHO in terms of wavefunctions of the ground and the first
excited states. We now proceed to determine the boundaries separating the regimes in
terms of mL by using the electric field deviation σE/g as an indicator.

As discussed in subsection 4.2, σE/g ≈ 1/2 for both the ground and the first excited
state in DW regime while it significantly exceeds 1/2 in MW regime for α = 1/2 (i.e.
k = 1). For a given m/g with α = 1/2, we define the DW-MW boundary xbdy on the
N -site lattice as the value of x such that

σE/g,i(x;N)− σDWE/g,i
σDWE/g,i

≡
σE/g,i(x;N)− 0.5

0.5 = 5% , (4.23)
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Figure 11. The standard deviations in the spatially averaged electric field for the ground state
σE/g,0 and for the first excited state σE/g,1 as functions of x ≡ 1/(ga)2 on N = 10 lattice with
m/g = 50 and α = 0.5. A smaller spatial circle size corresponds to a larger x according to
mL = m

g
N√
x
. The blue and orange points are respectively the lattice data of σE/g,0 and σE/g,1. The

green dot-dashed curve denotes σE/g,0 for a pure quantum SHO given by (4.21) whereas the red
dotted curve is σE/g,1 for the SHO given by (4.22). The purple dashed line denotes the constant
σE/g,0 = σE/g,1 = 1/2, which corresponds to the perfect DW case.

where i = 0, 1 corresponds to the ground and the first excited states respectively. Figure 11
plots σE/g,0 and σE/g,1 as functions of x for m/g = 50 on N = 10 lattice. Figure 12
shows the DW-MW boundaries xbdy based on both σE/g,0 and σE/g,1 for m/g = 50 and
N = 6, 8, 10, 12, 14, 16. The data points (xbdy, N) are fit pretty accurately to

N = Ax
1
2
bdy , (4.24)

with A a fitting constant. Together with N√
x

= mL
m/g , which is fixed in our continuum

extrapolation, we identify the factor A = mLbdy
m/g . In this way, we obtained the physical

DW-MW boundary mLbdy. The fitting curves and the corresponding mLbdy are plotted
and compared against various mL in figure 12.

The transition between MW and the nearly SHO regimes can be seen in figure 11 as
well. As x gets very large and thus the spatial circle size L shrinks to about a single fermion
Compton wavelength, both σE/g,0 and σE/g,1 approaches the values for a SHO (cf. (4.21)
and (4.22)).

5 Worldline instantons in the massive Schwinger model

In this section, we use the worldline formalism of path integrals to study tunneling processes
in the massive Schwinger model on a circle. We identify the worldline instantons responsible
for k ∈ Z quenched tunneling without pair production when 2m2

gE > mL � 1, i.e. the DW
regime (e.g. top rows of figures 2, 3 and 4), and compute the corresponding one-loop
transition amplitudes.
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Figure 12. The boundary separating the double-well regime and the multiwell regime for m
g = 50.

The boundaries xbdy derived from σE/g,0 and σE/g,1 on the lattices of N = 6, 8, 10, 12, 14, 16
sites are shown as blue and orange dots respectively. Blue and orange solid curves are the fitting
curves (4.24) of σE/g,0 and σE/g,1 respectively. The boundary in terms of the physical space size,
mLbdy, is derived from the fitting parameter A = mLbdy

m/g . The white region above the fitting curves
is the double well regime while the orange/brown region below the fitting curves is the multiwell
regime. The gray shaded rectangular region (x < (m/g)2) is ruled out due to the violation of
eq. (2.21). The gray shaded region in the bottom (x > (N ·m/g)2, i.e. mL < 1), which is beyond
the semiclassical regime, requires much larger lmax to explore and is not presented in this work.

We begin with a review on the worldline formalism applied to quantum electrodynam-
ics, following [10, 25, 26]; readers who are familiar with it may skip directly to the next
subsection. Consider quantum electrodynamics in d-dimensional Euclidean spacetime with
the gauge field A. The Euclidean action is obtained from the Lorentzian action by a Wick
rotation, in which the Euclidean time xd is defined by t = −ixd with t being the Lorentzian
time. Accordingly the Euclidean gauge field Aµ is related to its Lorentzian counterpart
ALµ as AL0 = iAd, ALj = Aj , (j = 1, · · · , d − 1). Let us first consider scalar electrodynam-
ics, with A coupled to a complex scalar φ, and look at the normalized vacuum survival
probability amplitude expressed as a path integral:

〈0out|0in〉 =
∫
B.C.
DADφDφ∗ exp(−SA[A]− S[φ, φ∗, A])

/∫
B.C.
DA exp(−SA[A]) , (5.1)

where

S[φ, φ∗, A] =
∫
ddx φ∗(∆2

A +m2)φ, ∆A ≡ −(∂µ + igAµ)2, (5.2)

SA[A] = +1
4

∫
ddx FµνFµν −

∫
ddx ∂µ(FµνAν), (5.3)

where µ, ν = 1, · · · , d and Fµν = ∂µAν − ∂νAµ is the Euclidean field strength. Here
an appropriate gauge-fixing is to be performed, and we have included the boundary term
in SA[A] in order to have a well-defined variational problem with Fµν fixed at infinity
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as boundary condition [27, 28]. Integrating out φ, we obtain, at fixed A, the Euclidean
effective action ΓE,scalar[A], given by

〈0out|0in〉[A] ≡ exp(−ΓE,scalar[A]), (5.4)

−ΓE,scalar[A] = log
(

det
(
∆0 +m2)

det(∆A +m2)

)
= − tr log

(
∆A +m2

∆0 +m2

)
(5.5)

= + tr
∫ ∞

0

ds

s

(
e−(∆A+m2)s − e−(∆0+m2)s

)
(5.6)

=
∫ ∞

0

ds

s

∫
ddx〈x|e−(∆A+m2)s|x〉+ constant (5.7)

=
∫ ∞

0

ds

s
e−m

2s
∫
x(s)=x(0)

Dx(u) exp
(
−
∫ s

0
du

(
ẋ2

4 + igA · ẋ
))

(5.8)

≡
∫ ∞

0

ds

s
e−m

2sZscalar(s,A), (5.9)

where ẋµ ≡ dxµ/du, This expresses the effective action ΓE,scalar[A], at fixed A, as a path
integral of a closed worldline xµ(u) with periodic boundary condition, integrated over the
proper time s.

For spinor quantum electrodynamics, we introduce Feynman’s spin factor Φ[x(u), A]:

Φ[x(u), A] ≡ 1
2 Trγ P exp

(
ig

4 [γµ, γν ]
∫ s

0
du Fµν(x(u))

)
(5.10)

=
∫
ψ(s)=−ψ(0)

Dψ(u) exp
(
−
∫ s

0
du

(1
2ψ

µψ̇µ − igψµψνFµν(x(u))
))

, (5.11)

where Trγ is the trace over the (Euclidean) Gamma matrices, P denotes path-ordering,
ψ̇µ ≡ dψµ/du, and in the second line, we have expressed it as a fermionic path integral
using the coherent state formalism [29–31], which is necessary for a consistent semi-classical
analysis [32, 33]. The effective action is obtained by augmenting (5.8) with Φ[x(u), A],

ΓE,spinor[A] =
∫ ∞

0

ds

s
e−m

2s
∫
x(s)=x(0)

Dx(u)e
−
∫ s

0 du

(
ẋ2
4 +igA·ẋ

)
Φ[x(u), A] (5.12)

≡
∫ ∞

0

ds

s
e−m

2sZspinor(s,A),

Zspinor(s,A) ≡
∫
x(s)=x(0)

Dx(u)
∫
ψ(s)=−ψ(0)

Dψ(u) e−S[x,ψ,A](s), (5.13)

S[x, ψ,A](s) ≡
∫ s

0
du

(
ẋ2

4 + igA · ẋ+ 1
2ψ

µψ̇µ − igψµψνFµν(x(u))
)
. (5.14)

Including the dynamics of the gauge field, the vacuum survival amplitude (5.1) (for
both scalar and spinor electrodynamics) becomes

〈0out|0in〉 =
∫
B.C.
DA exp (−SA[A]− ΓE [A])

/∫
B.C.
DA exp(−SA[A]) (5.15)

≡ 〈exp (−ΓE [A])〉 −→ exp 〈(−ΓE [A])〉 . (5.16)
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The last line requires some explanation. In general, the exponential and the expecta-
tion value in the second equality do not commute. And since, from (5.8), ΓE [A] has a
natural interpretation as a sum contributed by worldline single-instanton solutions, the
non-commutativity is the result of correlations between single-instantons at different loca-
tions in the Euclidean spacetime, due to the dynamical gauge field [10]. In the weak-field
limit, we can make the dilute instanton gas approximation, wherein these correlations are
ignored and one arrives at (5.16). Explicitly, in this approximation, (5.16) becomes [34]

〈0out|0in〉 = 1 +

 ∞∑
n=1

1
n!

∫
B.C.
DA e−SA[A]

n∏
j=1

∫ ∞
0

dsj
sj
e−m

2sjZ(sj , A)
/∫

B.C.
DA e−SA[A]

 .
(5.17)

At each n, there are n uncorrelated single-instantons at different locations in the Euclidean
spacetime, with the factor 1/n! accounting for the exchange of identical instantons. The
integral over A is evaluated semi-classically by expanding around a background classical
solution Acl,n, and integrating over the fluctuation δA.

From now on, we focus on the spinor case. In this case, it is more convenient to
evaluate the effective action in (5.17) by first performing the path integral Z(s) in (5.13)
for each worldline, following [26].7 Factoring out x(0) = x(s) = x̃ from the path integral,
Zspinor(s) reads

Z(s) =
∫
ddx̃

∫
x(s)=x(0)=x̃

Dx(u)
∫
ψ(s)=−ψ(0)

Dψ(u) e−S[x,ψ,A](s) ≡
∫
ddx̃ Z̃spinor(s, x̃).

(5.18)
The classical equations of motion satisfied by the worldline instantons (xµ(u), ψµ(u)) areẍclµ = 2igFµν(xcl(u))ẋνcl − 2igψαclψ

β
cl∂µFαβ(xcl(u))

ψ̇clµ = 2igFµν(xcl(u))ψνcl
, (5.19)

which are to be supplemented by that of the gauge field. One obvious class of solutions is
with ψcl = 0, so that at the classical level, the problem reduces to that of scalar electrody-
namics. We assume that there are no non-trivial classical fermion solutions contributing
to the path integral. In (5.18), we expand the worldline x(u) as a sum of the classical path
xcl(u) and fluctuations δx(u),

xµ(u) = xµcl(u) + δxµ(u), δxµ(0) = δxµ(s) = 0. (5.20)

Here the fluctuation δxµ(u) satisfies the Dirichlet boundary condition, since we have fac-
tored out the endpoint x(0) = x(s) = x̃ from the path integral in (5.18). This fluctuation
gives the following contribution to the path integral:

1
(4πs) d2

√√√√√ detD
(
−1

4δµν
d2

du2

)
detD

(
−1

4δµν
d2

du2 + 1
2 igFµν(xcl(u)) d

du

) ≡ 1
(4πs) d2

√
detD Λfree

µν

detD Λµν
, (5.21)

7In appendix D, we provide alternative calculations for the worldline instantons studied in this section,
but for scalar quantum electrodynamics; there, we first integrate over the proper time, and then perform
the path integral, as in [10].
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The subscript D in the determinants refers to Dirichlet boundary condition. The factor
1/(4πs) d2 is a normalization factor; when gFµν(xcl(u)) = 0, the path integral reduces to
a free particle path integral with mass m = 1/2. The fermionic path integral around the
trivial solution gives the following contribution [35]√√√√√detA

(
d
du − 2igFµν(xcl(u))

)
detA

(
d
du

) , (5.22)

where the subscript A refers to anti-periodic boundary condition. We have set the normal-
ization of this ratio of determinants to be unity to be consistent with the fact that, when
F = 0 on the worldline, the spin factor defined in (5.10) evaluates to Φ = 1. Including the
on-shell contribution exp(−S[xcl](s)), Z̃(s, x̃) in (5.18) becomes

Z̃(s, x̃) = e−S[xcl](s)

(4πs) d2

√
detD Λfree

µν

detD Λµν

√√√√√detA
(
d
du − 2igFµν(xcl(u))

)
detA

(
d
du

) . (5.23)

5.1 Tunneling on a circle

On a small circle of circumference L < 2m/gE, pair production is exponentially suppressed,
and a transition of the electric field without pair production dominates. We study the prob-
lem with the dynamics of the gauge field turned on, taking into account the backreaction
of the worldline instantons to the gauge field. We are interested in finding the worldline
instanton solutions that mediate the transition amplitude from one value of the electric
field to another.

As in (5.17), we express an (un-normalized) transition amplitude as a sum of multi-
instantons, which involves a path integral over the dynamical gauge field,

〈Ef,out|Ei,in〉 =
∫
E(tE→−∞)=Ei
E(tE→+∞)=Ef

DA exp (−SA[A])×
(∑

n

(−Γ(n)
E [A])

)
(5.24)

=
∑
n

∫
E(tE→−∞)=Ei
E(tE→+∞)=Ef

DA exp (−SA[A])×
(
−Γ(n)

E [A]
)
, (5.25)

where SA[A] = +1
4

∫
d2x FµνF

µν −
∫
d2x ∂µ(FµνAν), (5.26)

and E is the Lorentzian electric field which is related to the Euclidean field strength Fµν
as E = iF12 = −iF21. In (5.25), we used the dilute instanton gas approximation to
commute the gauge field path integral with the sum over multi-instantons. Each Γ(n)

E [A]
is contributed by n worldline instantons, satisfying the boundary conditions E(x2 ≡ tE →
+∞) = Ef , E(x2 ≡ tE → −∞) = Ei.

For each n, we have n charged point particles xi(ui) coupled to the gauge field by the
Wilson line action along their worldlines Ci. The terms in the action involving A read

SA,n ≡ +1
4

∫
d2x FµνF

µν −
∫
d2x ∂µ(FµνAν)

+ ig
n∑
i=1

∫
Ci

dui

[
Aµ(xi(ui))

dxµi (ui)
dui

− ψµ(ui)ψν(ui)Fµν(xi(ui))
]
. (5.27)
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Varying the action wrt. A gives Gauss’ law; focusing on the trivial fermion solution ψcl = 0,

∂µ(Fµνcl,n(x)) = +ig
n∑
i=1

∫
Ci

dui δ
(2)(x− xi(ui))

dxνi (ui)
dui

, (5.28)

which simply says that the on-shell electric field Fcl changes by one unit of g as it crosses
a charged worldline. Substituting (5.28) back to the action (5.27), the on-shell action is

SA,n[Acl,n] = −1
4

∫
d2x F cl,n

µν Fµνcl,n = +1
2

∫
d2x E2

cl,n. (5.29)

After that, one integrates over the fluctuation δA = δ̄A+δ̃A in (5.25). We have factored out
the variation δ̄A due to the variations of the worldlines and the fermions; the corresponding
contributions are accounted for in Γ(n)

E [A]. As it turns out, the quadratic action of the
remaining fluctuation δ̃A is that of a free field, decoupled from the worldlines and their
fluctuations, as long as the worldlines do not intersect. Therefore, we can absorb its
contributions in the normalization of the amplitude.

5.1.1 |k| = 1: straight line instantons

By calculating the transition amplitude 〈Ef = −g/2|Ei = +g/2〉, we will argue that it
is the straight line instantons that account for |k| = 1 quenched tunneling without pair
production when mL� 1 (cf. the top row of figure 2).

We first consider the survival probability amplitude at E = +g/2, 〈+g/2|+ g/2〉. The
gauge field satisfies the boundary condition E(tE → ±∞) = +g/2. We wish to express the
amplitude as a sum of multi-instantons,

〈+g/2|+ g/2〉 =
∑
n

exp (−SA,n[Acl,n]) (−Γ(n)
E ), (5.30)

where Γ(n)
E is contributed by n worldline instantons.

The n-worldline instanton solution which leads to (−Γ(n)
E ) and satisfies the boundary

condition E(x2 → ±∞) = +g/2 only exists for n even. It is given by n straight lines
running in the compact x1-direction with alternating orientations, with n/2 of them in the
(+x1) direction and n/2 in the (−x1) direction. This is illustrated in figure 13a. From (5.12)
and (5.18), we have

Γ(n)
E =

n∏
i=1

∫ ∞
0

dsi
si
e−m

2si

∫ x̃2
i−1

−∞
dx̃2

i

∫ L

0
dx̃1

i Z̃(si, x̃i), x̃2
0 ≡ −∞+ tE , (5.31)

Z̃(si, x̃i) =
∫
ψi(si)=−ψi(0)

Dψi(ui)
∫
xi(si)=xi(0)=x̃i

Dxi(ui)

× exp
[
−
∫ si

0
dui

(
ẋ2
i

4 + igA · ẋi + 1
2ψ

µ
i ψ̇iµ − igψ

µ
i ψ

ν
i Fµν(xi(u))

)]
. (5.32)

We take the electric field Ē ≡ E(xicl(u)) on the worldline to be the average (mean) of
that at its two sides. On the trivial fermion solution ψcl = 0, from Gauss’ law (5.28) and
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x1

x2

...

E = +g/2

E = −g/2

E = −g/2

E = +g/2

x̃2n

x̃2n−1

x̃22

x̃21

n even

L

(a) n even for 〈+g/2|+ g/2〉.

x1

x2

...

E = −g/2

E = +g/2

E = −g/2

E = −g/2

E = +g/2

x̃2n

x̃2n−1

x̃23

x̃22

x̃21

n odd

L

(b) n odd for 〈−g/2|+ g/2〉.

Figure 13. The multi-straight line instanton solutions contributing to 〈±g/2|+ g/2〉.

E(x2 → ±∞) = +g/2, we find that Ē ≡ E(xicl(ui)) = 0. The worldlines as solutions
to (5.19) are given by

x1
icl(ui) = ±Lui

si
+ x̃1

i , x
2
icl(ui) = x̃2

i ∈ (−∞, x̃2
i−1),

Ē ≡ E(xicl(ui)) = 0, E(x2 → ±∞) = +g/2.
(5.33)

Since E(xicl(ui)) = 0, the ratio of determinants due to the fluctuations (for both bosonic
and fermionic) is exactly one, so we have

Z̃(si, x̃i) = e
− L2

4si

4πsi
. (5.34)

Hence, (5.31) becomes

Γ(n)
E = (itL)n

n!

n∏
i=1

∫ ∞
0

dsi
4πs2

i

e
−m2si− L2

4si (5.35)

= (itL)n
n!

(
m

πL
K1(mL)

)n
mL�1≈ 1

n!

(
(it) 1√

2π

√
m

L
e−mL

)n
, (5.36)

whereKν(x) is the modified Bessel function of the second kind, mL� 1 is the semi-classical
regime. Moreover, from (5.29), the on-shell action of the gauge field is

SA,n[Acl,n] = +1
2

∫
d2x E2

cl,n = 1
2

∫
d2x

(
g

2

)2
, (5.37)

which can be absorbed in the normalization of the transition amplitude. Therefore, the
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survival amplitude (5.30) is

〈+g/2|+ g/2〉 =
∑
n even

1
n!

(
(itL) m

πL
K1(mL)

)n
(5.38)

=
∞∑
n=0

(−1)n
(2n)! (t(m/π)K1(mL))2n (5.39)

= cos (t(m/π)K1(mL)) mL�1≈ cos
(
t

1√
2π

√
m

L
e−mL

)
(5.40)

From this, it is apparent that we have normalized the amplitude correctly as we threw away
the infinite gauge field action. The exponent of the time scale associated to this process is
independent of the electric field value E = ±g/2. Thus, this process cannot be mediated
by the production of a real pair by taking energy out of the electric field.

We can similarly compute 〈−g/2| + g/2〉, in which case the multi-instanton solutions
are n straight lines, n odd, along x1, with (n − 1)/2 running in the (+x1) direction and
(n+ 1)/2 running in the (−x1) direction. This is illustrated in figure 13b. In the end, after
an appropriate normalization, one gets

〈−g/2|+ g/2〉 = sin (t(m/π)K1(mL)) mL�1≈ sin
(
t

1√
2π

√
m

L
e−mL

)
. (5.41)

The fact that 〈+g/2|+g/2〉 and 〈−g/2|+g/2〉 are given by cosine and sine and their square
norms sum to one is in agreement with the bosonized description studied in section 4, in
which E = ±g/2 are the two degenerate global minima of the sine-Gordon potential, and
the transitions between them are mediated by the Coleman double-well instantons yielding
cosine and sine. Comparing (5.41) with (3.3), we extract the ground state energy splitting
∆E1,0/g for background E = g/2 from the straight line instantons,

(∆E1,0
g

)
instanton

= 2

√
(m/g)2

2πmL e−mL . (5.42)

In figure 14, we plot the instanton estimates (5.42) of E1,0/g for α = 0.5 in curves and
compare them with the continuum extrapolated lattice results. For relatively large m/g and
relatively large mL where the instanton semiclassical computation applies, the instanton
estimates agree remarkably well with the lattice results.

5.1.2 |k| = 2: lemon instantons

Next, we wish to identify the worldline instantons that compute the amplitude 〈+g| − g〉.
This corresponds to |k| = 2 quenched tunneling when mL� 1 (cf. the top row of figure 3).
From (5.14) and (5.25), we have the Euclidean action

S =
n∑
i=1

∫ si/2

−si/2
dui

(
ẋ2
i

4 + igA · ẋi + 1
2ψ

µ
i ψ̇iµ − igψ

µ
i ψ

ν
i Fµν(xi(ui))

)
+ SA. (5.43)

Note that we have now taken ui ∈ [−si/2, si/2). For the trivial fermion background ψcl = 0,
the equations of motion (5.19) for each worldline (with the worldline index i suppressed)
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Figure 14. The continuum extrapolated (N/
√
x fixed, N → ∞) lattice results (dots) versus the

straight line instanton estimate (5.42) (curves) of the energy difference ∆E1,0/g between the ground
and first excited states for background field α = 0.5. Top panel: each color represents a fixed value
of m/g; bottom panel: each color represents a fixed value of mL.

x1

x2

E = +g

(1) (1)(1)

E = 0

E = −g

(2) (2)(2)

x̃2

LL L

. . . . . .

Figure 15. The single-lemon instanton (5.45), (5.46) contributing to 〈+g| − g〉.

become {
ẍ1
cl = +2giF12ẋ

2
cl

ẍ2
cl = −2giF12ẋ

1
cl.

(5.44a)
(5.44b)

As before, we take the electric field E(xcl(u)) on the worldline to be the average (mean)
of that at its two sides; Gauss’ law (5.28) and E(x2 → ±∞) = ±g imply that E(xi(ui)) =
±g/2 ≡ ±Ē.
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We identify a single-instanton solution, illustrated in figure 15, which we dub the
“lemon instanton”. It consists of two circle segments (1) and (2) running in the positive x1-
direction, patched together at u = 0 and u = ±s/2, where the worldline has a continuous
zeroth and first derivatives, while the second derivative changes sign. This solution is
periodic since x1 ∼ x1 +L. The region enclosed by the worldline has E = 0, while outside
we have E = ±g, and on the segments, E(1) = −E(2) = Ē ≡ g/2. Explicitly, the solution
is given by

(1):
{
x1
cl = +a sin (b(u/s+ 1/4)) + x̃1

x2
cl = +a(cos (b(u/s+ 1/4))− cos (b/4)) + x̃2 , u ∈ [−s/2, 0] (5.45)

(2):
{
x1
cl = +a sin (b(u/s− 1/4)) + x̃1

x2
cl = −a(cos (b(u/s− 1/4))− cos (b/4)) + x̃2 , u ∈ (0, s/2). (5.46)

Taking into account the periodicity in x1 ∼ x1 + L, the parameters take the values

b = 2gĒs, a = L

2 sin
(
gĒs

2

) . (5.47)

The on-shell action of (5.43) for this single-instanton solution takes the form

SE1,0 =
∫ s/2

−s/2
du

ẋ2
cl
4 +

���
���1

2

∫
d2x g2 − 1

2g
2 × (Lemon Area) (5.48)

= gĒ

2 L2 cot
(
gĒs

2

)
. (5.49)

One-loop calculations. Around the lemon instanton, the bosonic fluctuation operator
in (5.23) takes the form

Λµν ≡ −
1
4δµν

d2

du2 + 1
2 igFµν(xcl(u)) d

du

= 1
4s2

 − d2

dv2 −(2gĒs)sign(v) ddv
+(2gĒs)sign(v) ddv − d2

dv2

 (5.50)

= U−1 1
4s2

− d2

dv2 − i(2gĒs)sign(v) ddv 0
0 − d2

dv2 + i(2gĒs)sign(v) ddv

U, (5.51)

U ≡ 1√
2

 i 1
−i 1

 . (5.52)

Here we have defined u ≡ sv, so that v ∈ [−1/2, 1/2). The eigenmodes of the fluctuation
operator must have continuous zeroth and first derivatives. By diagonalizing the operator,
the eigenmodes that satisfy Dirichlet boundary condition are easily found to be

y(1),n =

(+
√

2 sin (2πnv) sin
(
bv
2

)
,+
√

2 sin (2πnv) cos
(
bv
2

)
) , −1/2 ≤ v ≤ 0

(−
√

2 sin (2πnv) sin
(
bv
2

)
,+
√

2 sin (2πnv) cos
(
bv
2

)
) , 0 < v < 1/2

,

y(2),n =

(−
√

2 sin (2πnv) cos
(
bv
2

)
,+
√

2 sin (2πnv) sin
(
bv
2

)
) , −1/2 ≤ v ≤ 0

(−
√

2 sin (2πnv) cos
(
bv
2

)
,−
√

2 sin (2πnv) sin
(
bv
2

)
) , 0 < v < 1/2

,
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where b = 2gĒs as in (5.47), and n = 1, 2, . . .. The eigenvalues are

λn =
[( 2π

2gĒs

)2
n2 − 1

4

]( 1
4s2

)
(2gĒs)2, n = 1, 2, . . . , (5.54)

with multiplicity two. The functional determinant can be computed by a Riemann zeta
function regularization to become

detD Λµν =
∞∏
n=1

([( 2π
2gĒs

)2
n2 − 1

4

]( 1
4s2

)
(2gĒs)2

)2

= sin2 (gĒs/2)
(2gĒs/4)2 (4s2). (5.55)

Furthermore, the determinant of the free operator Λfree
µν = −(1/4s2)δµνd2/dv2 (with Dirich-

let condition) is easily found to be det Λfree
µν = 4s2, so√

detD Λfree
µν

detD Λµν
= gĒs/2

sin (gĒs/2)
. (5.56)

The fermionic fluctuation operator with anti-periodic boundary condition at v = ±1/2
reads

d

du
− 2igFµν(xcl(u)) = 1

s

 d
dv +(gĒs)sign(v)

−(gĒs)sign(v) d
dv

 (5.57)

= U−1 1
s

 d
dv + i(gĒs)sign(v) 0

0 d
dv − i(gĒs)sign(v)

U, (5.58)

where U is the same matrix as in (5.52). Since the operator is first-order, the eigenmodes
only need to be continuous at v = 0 (in addition to being anti-periodic at v = ±1/2). They
are easily found to be

yψ,n =

U−1(C1e
(+igĒs+iπ(2n+1))v, C2e

(−igĒs+iπ(2n+1))v) , −1/2 ≤ v ≤ 0
U−1(C1e

(−igĒs+iπ(2n+1))v, C2e
(+igĒs+iπ(2n+1))v) , 0 < v < 1/2

, (5.59)

where C1,2 are constants. They have eigenvalues λψ,n = iπ(2n+ 1)/s, where n ∈ Z. Thus,
the eigenvalues are independent of gĒ, and so the determinant is canceled by that of the
free operator.

Substituting (5.49), (5.56) and (5.23) back to the effective action (5.12), we have

ΓE =
∫
d2x̃

∫ ∞
0

ds

s
e
−m2s− gĒ2 L2 cot

(
gĒs

2

)
1

4πs
gĒs/2

sin (gĒs/2)
. (5.60)

The integral over the proper time s is very similar to that in [5]. We evaluate it by the
saddle point approximation. The saddle points are given by

sp = 2
gĒ

[
sin−1

(
L

/2m
gĒ

)
+ πp

]
, p = 0, 1, 2, . . . , (5.61)
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and have on-shell actions

Sp ≡ m2s+ gĒ

2 L2 cot
(
gĒs

2

)∣∣∣∣∣
s=sp

(5.62)

= mL

√
1−

(
L

/2m
gĒ

)2
+m

(2m
gĒ

)[
sin−1

(
L

/2m
gĒ

)
+ πp

]
(5.63)

L� 2m
gĒ−→ 2mL+ πpm

(2m
gĒ

)
. (5.64)

Including the pre-factors, we finally get

ΓE =
∞∑
p=0

(it)(−1)p

4
√

2π

√
gĒ

√
L

/2m
gĒ

(
1−

(
L

/2m
gĒ

)2
)− 1

4 [
sin−1

(
L

/2m
gĒ

)
+ πp

]−1
e−Sp

(5.65)
L� 2m

gĒ−→ it

4
√
π

√
m

L
e−2mL. (5.66)

The dominant saddle, p = 0, has the same action as that of Brown’s instanton in [2].
It is instructive to consider different limits. When L → (2m/gĒ) where pair production
becomes kinematically favored, Sp=0 → πm2/gĒ, which is the same as the on-shell action
of Schwinger pair production. On the other hand, in the small circle limit L� (2m/gĒ),
the p > 0 saddles are exponentially suppressed. The p = 0 saddle dominates, with action
approaching Sp=0 → 2mL. The asymptotic form of the action can be understood intu-
itively: in this limit, the area enclosed by the lemon vanishes, and the action is given by
(m times) the length of the worldline. As in the straight line case, the fact the on-shell
action does not depend on the electric field value in the small circle limit suggests that the
process does not involve the production of a real pair.

Moreover, in the present case, the gauge field fluctuation δ̃A not due to the variation of
the worldline again decouples; its contribution can again be absorbed in the normalization
of the amplitude. In the end, if the lemon instanton were the only solution contributing to
the amplitude, then we would get, in the weak-field and small circle limits,

〈+g| − g〉 = sin
(

t

4
√
π

√
m

L
e−2mL

)
. (5.67)

Comparing (5.67) with (3.3), the energy difference between the second and the first
excited states ∆E2,1/g for background E = g can be obtained from the lemon instantons as

(∆E2,1
g

)
lemon

= 2

√
(m/g)2

16πmLe
−2mL . (5.68)

However, by comparing the lemon instanton estimates (5.68) with the continuum extrap-
olated lattice results of ∆E2,1

g for various m/g and mL, we find that they do not agree.
Instead, if we modify the prefactor by multiplying it with an extra factor Rc

2L = (m/g)2

mL ,
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Figure 16. The continuum extrapolated (N/
√
x fixed, N → ∞) lattice results (dots) versus the

modified lemon instanton estimate (5.69) (curves) of the energy difference ∆E2,1/g between the
second and first excited states for background field α = 0. Top panel: each color represents a fixed
value of m/g; bottom panel: each color represents a fixed value of mL.

where Rc ≡ m
gĒ

= 2m
g2 is the critical radius of the lemon instanton, the modified lemon

instanton estimate (∆E2,1
g

)
modified lemon

= 2
√

1
16π

(m/g)3

(mL)3/2 e
−2mL (5.69)

is then consistent with the lattice result for relatively large m/g and relatively large mL
where the semiclassical calculation applies.

In figure 16, the modified lemon instanton estimates (5.69) of E2,1/g for α = 0 (the
spectrum of which is equivalent to that for α = 1) are plotted in curves and compared with
the continuum extrapolated lattice results for various m/g and mL.

Other instantons? The discrepancy in the pre-factor of the tunneling time scale between
the numerical results and that given by the lemon instanton (5.45) alone suggests that,
among other possibilities, we may have missed some other contributing single-instanton
solutions. One class of candidates is the “chain instantons”, illustrated in figure 17. Each
of them is a worldline intersecting itself some odd number Nlemon times, generalizing the
single-lemon. One can apply the one-loop calculations of the single-lemon to these “Nlemon-
chains”. In the small circle limit, the area enclosed by each Nlemon-chain vanishes, and the
action of each chain is given by Schain → 2mL, same as for the single-lemon. The one-
loop pre-factor is found to be Nlemon

√
m/L, up to a numerical factor. Therefore, after
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x1

x2

E = +g

E = 0

E = −g

L

. . .

. . .

Figure 17. A possible “chain instanton” contributing to 〈+g| − g〉.

x1

x2E = +3g/2

E = +g/2

E = −g/2

E = −3g/2

L

Figure 18. A proposed “lime wedge” instanton contributing to 〈+3g/2| − 3g/2〉.

including these chains, the effective action would still take the form ΓE ∝ it
√
m/Le−2mL,

not to mention that the sum would be divergent. In other words, this still does not agree
with our numerical results. We will investigate it further in a future work.

5.1.3 |k| ≥ 3: higher-order instantons

We have only discussed instantons mediating the transition amplitudes between eigenstates
with E = ±g/2 and E = ±g respectively. We propose that, for tunneling between higher
electric field values (i.e. |k| ≥ 3 quenched tunneling when mL � 1), the instantons can
be constructed by combinations of the lemon and the straight line, in a way that obeys
Gauss’ law. For example, for 〈+3g/2| − 3g/2〉 (cf. the top row of figure 4), we expect the
“lime wedge” instanton, illustrated in figure 18, to contribute. In the small circle limit, its
action is approximately 3mL.

Following this pattern, we predict that, in the small circle limit, the time scale of
the transition amplitude 〈+kg/2| − kg/2〉 for any positive integer k has an exponential
dependence given by exp(kmL). This exponential dependence on k appears to be consistent
with the energy gaps computed via the lattice and numerical quantum mechanics at least
up to k = 3 (cf. table 2). When the circle is sufficiently small that Kaluza-Klein modes can
be neglected, it also follows from the bosonized quantum mechanical description in that
there are k barriers separating the local minima corresponding to E = ±kg/2 (cf. figure 8).
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6 Summary and outlook

We have analyzed the massive Schwinger model with periodic boundary conditions using
four distinct techniques, all of which agree quantitatively. Our analysis reveals several
novel features. These results raise a number of questions for future investigations:

• Finding the correct method for computing the pre-factor for the novel instantons
described in section 5 in the case k > 1 and including the chain instantons.

• Exploring the relation between non-perturbative effects in the fermionic and
bosonized descriptions. Specifically, how are the (ferminonic) instantons described in
section 5 related to quantum mechanical tunneling in the bosonized description?

• The quantization of the electric field in the Schwinger model serves as a toy model
for higher-dimensional theories with higher-form fluxes. Such theories can be used
to build models of vacuum energy and inflation (for instance [36–38]). It would be
interesting to investigate the implications of our findings for these theories, and to
explore the bosonized version of this quantization.
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A Lattice formulation of massive Schwinger model

In this appendix, we review the Kogut-Susskind approach [12–14] to the lattice Hamiltonian
formulation of the massive Schwinger model. The lattice Hamiltonian (2.4), which plays
a central role in our lattice simulation, will be derived. We also present here some facts
about the lattice simulation that are omitted in the main text.

A.1 Staggered fermions

Naively putting spinors on a lattice results in the fermion doubling problem [39]. In 1 + 1
dimensions, this problem is completely resolved by the staggered fermion approach due to
Kogut and Susskind [12], wherein the spinor indices are identified with spatial “indices”.
That is, the two components of a local Dirac spinor are placed on adjacent spatial sites. We
put the upper components on even n sites while the lower components on odd n sites, i.e.

ψ ≡

ψupper

ψlower

 ≡
ψe
ψo

 , (A.1)

ψe(n) = χ(n) for n even , ψo(n) = χ(n) for n odd , (A.2)
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where χ is a one-component spinor. The mass dimensions of the spinors defined above are
[ψ] =

[
ψ̄
]

= [ψe] = [ψo] = [χ] = 1
2 . We introduce dimensionless spinor φ = a

1
2χ for later

use; it is not to be confused with the dual bosonic field in the main text.

A.2 Discretization of the Hamiltonian

Our goal is to obtain the discretized version of Hamiltonian (2.2) in the temporal gauge
A0 = 0.

Fermion kinetic term. The massless Dirac term in terms of staggered fermions reads

HD ≡ −
∫

dx ψ̄iγ1∂1ψ =
∫

dx iψ†γ0γ1∂1ψ =
∫

dx i
(
ψ†e∂1ψo + ψ†o∂1ψe

)
. (A.3)

Here the gamma matrices in Dirac basis are given by

γ0 = σz =

1 0
0 −1

 , γ1 =

 0 1
−1 0

 , γ5 = γ0γ1 = σx =

0 1
1 0

 , (A.4)

with γ0 = γ0 and γ1 = −γ1.
A staggered fermion field is well-defined locally on a single lattice site whereas its

spatial derivative contains information about the neighborhood of the site it sits on. Since
the fermion kinetic term HD contains an “interaction” between the local field and its
derivative ψ†∂1ψ, we need to specify where this “interaction” happens. It is convenient to
make it happen on the same site ψ† sits on. For instance, ψ†e∂1ψo(n) ≡ ψ†e(n)∂1ψo(n) is
defined for even n, with the spatial derivative of ψo on even n lattice given by8

∂1ψo(n) ≈ ψo(n+ 1)− ψo(n− 1)
2a . (A.5)

For odd n, ψ†o∂1ψe(n) ≡ ψ†o(n)∂1ψe(n) can be defined in the same manner. Diagrammati-
cally illustrated in figure 19 is how spatial derivatives on staggered lattice are defined. The
fermion field kinetic term (A.3) can then be written as “hopping” terms,

i
(
ψ†e∂1ψo + ψ†o∂1ψe

)
≡

i
[
ψ†e∂1ψo(n) + ψ†o∂1ψe(n+ 1)

]
if n even

i
[
ψ†e∂1ψo(n+ 1) + ψ†o∂1ψe(n)

]
if n odd

=


i

2a

[
χ†(n) (χ(n+ 1)− χ(n− 1)) + χ†(n+ 1) (χ(n+ 2)− χ(n))

]
if n even

i
2a

[
χ†(n+ 1) (χ(n+ 2)− χ(n)) + χ†(n) (χ(n+ 1)− χ(n− 1))

]
if n odd

(A.6)

8We stress that for even n, ψe(n), ψo(n − 1) and ψo(n + 1) are well-defined according to (A.2). In
contrast, ψo(n), ψe(n− 1) and ψe(n+ 1) are meaningless for even n.
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Figure 19. Spatial derivatives of one-component fermion fields on staggered lattice for even
n (upper) and odd n (lower) cases. The spatial derivatives in the figure are expressed by
∂1ψo(n) ≡ ψo(n+1)−ψo(n−1)

2a , ∂1ψe(n + 1) ≡ ψe(n+2)−ψe(n)
2a , ∂1ψo(n + 1) ≡ ψo(n+2)−ψo(n)

2a , and
∂1ψe(n) ≡ ψe(n+1)−ψe(n−1)

2a .

On the lattice, the integral is translated into a summation of operators on all sites as9

HD →
i

2a · a
∑
n even

[
χ†(n) (χ(n+ 1)− χ(n− 1)) + χ†(n+ 1) (χ(n+ 2)− χ(n))

]
= i

2

[ ∑
n even

χ†(n)χ(n+ 1)−
∑
n′ odd

χ†(n′ + 1)χ(n′)

+
∑

n′′ odd
χ†(n′′)χ(n′′ + 1)−

∑
n even

χ†(n+ 1)χ(n)
]

= i

2
∑
n

[
χ†(n)χ(n+ 1)− χ†(n+ 1)χ(n)

]
= i

2a
∑
n

[
φ†(n)φ(n+ 1)− φ†(n+ 1)φ(n)

]
. (A.7)

In the second line we redefine the dummy indices n′ ≡ n − 1 and n′′ ≡ n + 1. In the last
line the fermion field χ is transferred to the one-component dimensionless fermion field φ.

Fermion mass term. The discretization of the fermion mass term is

Hm ≡
∫

dx mψ̄ψ =
∫

dx mψ†γ0ψ =
∫

dx m
[
ψ†eψe − ψ†oψo

]
→ a

∑
n even

m
[
χ†(n)χ(n)− χ†(n+ 1)χ(n+ 1)

]
= a

∑
n

m
[
(−1)nχ†(n)ψ(n)

]
=
∑
n

m
[
(−1)nφ†(n)φ(n)

]
. (A.8)

Gauge field kinetic term. In temporal gauge A0 = 0, the field equation for gauge
field is −Ȧ1 = E, which indicates that the electric field E is canonically conjugate to

9The summation runs over either all even n sites or all odd n sites, depending on which expression in (A.6)
is used. It is easy to see that these two summations are equivalent by manipulating the dummy index.
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Figure 20. Gauge field A(n,+) ≡ A(n) ≡ A1(n) living between sites is specified by its starting
site and its spatial direction.

A1(n) ≡ A(n). On the lattice this commutation relation is [A(n), E(m)] = i 1
aδn,m. In

terms of the dimensionless link phase θ(n) ≡ agA1(n) and the dimensionless lattice electric
field L(n), the commutation relation reduces to [θ(n), L(m)] = iδn,m. The most general
operator L(n) takes the form of L(n) = E(n)

g − F
g ≡

E(n)
g − α where F is a constant

background field.
The canonical commutation relation immediately implies that e±iθ(n) is a L-shift op-

erator on the n-th link,
e±iθ(n) |l(n)〉 = |l(n)± 1〉 , (A.9)

where |l(n)〉 is the eigenstate of L(n) with eigenvalue l(n). As seen from (4.1), physics is
periodic in θ ≡ 2πα with period 2π. Without loss of generality, we take α ∈ [0, 1) such
that L(n) is an integer on the n-th link for a certain n. By Gauss’ law (2.7), L(n) for all
n are automatically integers.

The gauge kinetic term is then discretized in terms of L(n) and constant α as

HG ≡
∫

dx 1
2E

2 → a
∑
n

1
2E

2(n) = 1
2ag

2∑
n

[L(n) + α]2 . (A.10)

Gauge invariant interaction term. The gauge field defined on a lattice lives on the
links connecting adjacent sites and has certain direction on each link. The gauge field
“starting” from n-th site and pointing to (n+ 1)-th site is defined as

A1(n) ≡ A(n) ≡ A(n,+) ≡ A(n, n+ 1) . (A.11)

A consistency condition for the gauge field living between n-th and (n + 1)-th sites is
A(n, n+ 1) ≡ A(n,+) = −A(n+ 1,−) ≡ −A(n+ 1, n). Figure 20 illustrates the definition
of gauge field between sites.

One can further define the Wilson line (or the link field) from n-th to (n+ 1)-th sites
on one dimensional spatial lattice is related to the gauge field A1 as

U(n,+) ≡ U(n, n+ 1) ≡ eiagA(n,n+1) = eiagA(n,+) = eiagA(n) ≡ eiθ(n) , (A.12)

and the link from n-th to (n− 1)-th sites is

U(n,−) ≡ U(n, n− 1) ≡ eiagA(n,n−1) = eiagA(n,−)

= e−iagA(n−1,+) = e−iagA(n−1) = e−iθ(n−1) = U †(n− 1,+) . (A.13)

To incorporate the gauge invariant interaction term Hint =
∫

dx gψ̄γ1A1ψ into the full
Hamiltonian, one can simply promote the ordinary derivative to the covariant derivative.
This turns the fermion kinetic term HD to the covariant kinetic term HD +Hint.
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The covariant derivative of ψo on even n sites is defined by

D1ψo(n) = U(n, n+ 1)ψo(n+ 1)− U(n, n− 1)ψo(n− 1)
2a , (A.14)

which is generalized from (A.5). The covariant derivative acting on ψe is obtained accord-
ingly. Substitution ∂µ → Dµ promotes (A.3) to

HD +Hint =
∫

dx i
(
ψ†eD1ψo + ψ†oD1ψe

)
. (A.15)

The covariant kinetic term becomes dressed “hopping” terms

i
(
ψ†eD1ψo + ψ†oD1ψe

)
≡

i
[
ψ†eD1ψo(n) + ψ†oD1ψe(n+ 1)

]
if n even

i
[
ψ†eD1ψo(n+ 1) + ψ†oD1ψe(n)

]
if n odd

(A.16)

where

• for even n,

i
[
ψ†eD1ψo(n) + ψ†oD1ψe(n+ 1)

]
= i

2a
[
χ†(n)eiθ(n)χ(n+ 1)− χ†(n)e−iθ(n−1)χ(n− 1)

+χ†(n+ 1)eiθ(n+1)χ(n+ 2)− χ†(n+ 1)e−iθ(n)χ(n)
]
, (A.17)

• for odd n,

i
[
ψ†eD1ψo(n+ 1) + ψ†oD1ψe(n)

]
= i

2a
[
χ†(n+ 1)eiθ(n+1)χ(n+ 2)− χ†(n+ 1)e−iθ(n)χ(n)

+χ†(n)eiθ(n)χ(n+ 1)− χ†(n)e−iθ(n−1)χ(n− 1)
]
. (A.18)

The discretization of the covariant term is derived as

HD +Hint →
i

2a · a
∑
n even

[
χ†(n)eiθ(n)χ(n+ 1)− χ†(n)e−iθ(n−1)χ(n− 1)

+χ†(n+ 1)eiθ(n+1)χ(n+ 2)− χ†(n+ 1)e−iθ(n)χ(n)
]

= i

2
∑
n

[
χ†(n)eiθ(n)χ(n+ 1)− χ†(n+ 1)e−iθ(n)χ(n)

]
= i

2a
∑
n

[
φ†(n)eiθ(n)φ(n+ 1)− φ†(n+ 1)e−iθ(n)φ(n)

]
, (A.19)

Full lattice Hamiltonian. Putting everything together, the full Schwinger Hamilto-
nian (2.2) is discretized as

Hlat = HD +Hint +Hm +HG

= i

2a
∑
n

[
φ†(n)eiθ(n)φ(n+ 1)− φ†(n+ 1)e−iθ(n)φ(n)

]
+
∑
n

m
[
(−1)nφ†(n)φ(n)

]
+ 1

2ag
2∑

n

[L(n) + α]2 . (A.20)
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A.3 Jordan-Wigner transformation

In 1+1 dimensions, fermionic degrees of freedom can be mapped onto spin degrees of
freedom via Jordan-Wigner transformation which is explicitly given by

φ(n) =
∏
l<n

[iσ3(l)]σ−(n) = exp

iπ2 ∑
l<n

σ3(l)

σ−(n) , (A.21)

φ†(n) =
∏
l<n

[−iσ3(l)]σ+(n) = exp

−iπ2 ∑
l<n

σ3(l)

σ+(n) , (A.22)

where σ3(n), σ±(n) ≡ 1
2 (σ1(n)± iσ2(n)) are Pauli operators acting on n-th site. This map

faithfully captures the internal dynamical structure of a spinor in the sense that it preserves
the canonical anti-commutation relations {φ†(m), φ(n)} = δm,n, {φ(m), φ(n)} = 0 and
{φ†(m), φ†(n)} = 0.

Applying the Jordan-Wigner transformation (A.21) and (A.22) to the lattice Schwinger
model, we obtain

φ†(n)φ(n+ 1) = −iσ+(n)σ−(n+ 1) , (A.23)
φ†(n+ 1)φ(n) = iσ+(n+ 1)σ−(n) , (A.24)

(−1)nφ†(n)φ(n) = (−1)nσ+(n)σ−(n) = (−1)n 1
2 [1 + σ3(n)] . (A.25)

In terms of Pauli operators and other bosonic operators, the lattice Schwinger Hamilto-
nian (A.20) is given by

Hlat = 1
2a
∑
n

[
σ+(n)eiθ(n)σ−(n+ 1) + σ+(n+ 1)e−iθ(n)σ−(n)

]
+
∑
n

(−1)nm2 [1 + σ3(n)] + 1
2ag

2∑
n

[L(n) + α]2 , (A.26)

which is eq. (2.4) in the main text.

B The cutoff lmax and the continuum extrapolation of energy levels

In our lattice simulation implementation, the dimension of the lattice Hilbert space is
determined by the number of lattice sites N and the electric field cutoff lmax. An excessive
lmax can be computationally expensive, while one that is too small could lead to physical
effects being missed out from simulation results. Throughout this work, we use “sufficiently
large” values of lmax that achieve error . O(10−10) for the lowest four energy levels E/g.
More explicitly, our choices of lmax for the entire parameter regime of 1 ≤ m/g ≤ 50 and
1 ≤ mL ≤ 8 are

lmax =



30, if 30 < m/g ≤ 50, 1 ≤ mL < 2
25, if 10 < m/g ≤ 30, 1 ≤ mL < 2
20, if 30 < m/g ≤ 50, 2 ≤ mL < 4
15, if 10 < m/g ≤ 30, 2 ≤ mL < 4 or 4 < m/g ≤ 10, 1 ≤ mL < 2
10, otherwise

(B.1)
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As briefly mentioned in section 2, we perform the finite volume continuum extrapolation
with N√

x
fixed and N →∞ to extract physical quantities which are independent of lattice

parameters. Among the important quantities is the energy gap ∆Ei,i−1/g. We fit the lattice
results of the energy difference ∆Ei,i−1/g(m/g,mL;N) to

∆Ei,i−1
g

(m/g,mL;N) =
∆E [N→∞]

i,i−1
g

+ βN−ξ (B.2)

using the functions FindFit and NonlinearModelFit in Mathematica. The fitting pa-
rameters are β and ξ. And ∆E [N→∞]

i,i−1 /g is the extrapolated value of the energy difference
between the i-th and (i− 1)-th energy eigenstates.

For 10 ≤ m/g ≤ 50 and 4 ≤ mL ≤ 8, we use N = 8, 10, 12, 14, 16 data to carry out the
extrapolation fits while for other parameter regimes, we use N = 8, 10, 12, 14 data.

C More about the prefactor c

In this appendix, we present more details about the prefactor c shown up in the bosonized
action (4.1). We determine the physical values of c via the continuum extrapolation of the
lattice data of c. Its dependence on the mass-coupling ratio m/g and the size of the spatial
circle mL is then investigated.

As proposed in section 4, we find the optimal c up to O(0.01) such that the numerical
bosonized quantum mechanics generates the closest value of the ground energy difference
∆E1,0/g for α = 0.5 produced by lattice simulation for givenm/g,mL andN . The prefactor
c determined this way are denoted by c(m/g,mL;N). In tables 4–7, we summarize values
of c(m/g,mL;N) for 1 ≤ m/g ≤ 50, 1 ≤ mL ≤ 8 and various lattice sites N .

In order to get the physical values of c which do not depend on N , we perform the
finite volume continuum extrapolation by fitting c(m/g,mL;N) to

c(m/g,mL;N) = c[N→∞](m/g,mL)− vN−u (C.1)

for fixed m/g and mL and get the fitting parameters c[N→∞](m/g,mL), v and u by
using the functions FindFit and NonlinearModelFit in Mathematica. The data of
c(m/g,mL;N) fit the extrapolation model (C.1) quite well, indicating that c(m/g,mL;N)
converges to c[N→∞](m/g,mL) as N → ∞. The values of c[N→∞](m/g,mL) are summa-
rized in the last columns of tables 4–7.

To study the dependence of c on the mass-coupling ratiom/g and the size of the spatial
circle mL, we further fit c[N→∞](m/g,mL) to the model

c[N→∞](m/g,mL) = η ·
(
m

g

)γ
· (mL)δ , (C.2)

using the functions FindFit and NonlinearModelFit inMathematica. The best fit is found
to be

η ≈ 2.0187 , γ ≈ 1.00447 , δ ≈ −0.816478 . (C.3)

In figure 21, we plot the extrapolated prefactor c[N→∞] as a function of m/g and mL.
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Figure 21. The continuum extrapolated prefactor c[N→∞] as a function of m/g and mL. Top
panel: the blue dots are the continuum extrapolated prefactors c[N→∞] summarized in tables 4–7
while the orange surface is the function (C.2) with the best fit (C.3). Middle panel: the dependence
of c[N→∞] on mL for various fixed m/g values. Bottom panel: the dependence of c[N→∞] on m/g
for various fixed mL values.
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D Alternative approach to computing worldline instantons

In this appendix, we provide alternative calculations for the worldline instantons studied in
section 5, but for scalar quantum electrodynamics. Specifically, we first integrate over the
proper time, and then perform the path integral, as in [3, 10]. The calculations in section 5
suggest that the spin factor does not make any contributions to the effective actions for
the class of instantons we investigated (see (5.34) and (5.59)). Thus, the scalar results here
can provide a direct check against the spinor results in section 5.

Recall from (5.9) that

− ΓE [A] =
∫ ∞

0

ds

s
e−m

2s
∫
x(s)=x(0)

Dx(u) exp
(
−
∫ s

0
du

(
ẋ2

4 + igA · ẋ
))

. (D.1)

Integrating out the proper time s, in the weak-field regime m
√∫ 1

0 duẋ
2 � 1, this becomes

approximately

− ΓE [A] ≈
√

2π
m

∫
x(1)=x(0)

Dx 1
(
∫ 1

0 duẋ
2) 1

4
exp

−m
√∫ 1

0
duẋ2 − ig

∫ 1

0
duA · ẋ

 . (D.2)

We now have a non-local worldline action,

S = m

√∫ 1

0
du ẋ2 + ig

∫ 1

0
du A · ẋ, (D.3)

from which the equations of motion satisfied by the worldline instantons are

mẍclµ√∫ 1
0 du ẋ

2
cl

= igFµν(xcl(u))ẋνcl, ẋ2
cl = constant ≡ a2, a > 0. (D.4)

Around a single-instanton xcl, the quadratic action is

δ2S =
∫ 1

0
du

∫ 1

0
du′ δxµ(u)Mµν(u, u′)δxν(u′), where (D.5)

Mµν(u, u′) =
[(

m

(
∫
ẋ2
cl)

1
2

)
δµν

(
− d2

du2

)
+ igFµν(xcl(u)) d

du

]
δ(u− u′) (D.6)

− m

(
∫
ẋ2
cl)

3
2
ẍcl µ(u)ẍcl ν(u′)

≡ Lµν(u)δ(u− u′)− m

(
∫
ẋ2
cl)

3
2
ẍcl µ(u)ẍcl ν(u′). (D.7)

In the last line, we separated the operator Mµν(u, u′) into the local part with Lµν(u) and
the non-local part.10 Since we have not factored the endpoint x(0) = x(1) out of the path
integral the fluctuation δxµ(u) satisfies the periodic boundary condition,

Periodic Condition: δxµ(0) = δxµ(1). (D.8)
10Studies of eigenvalue problems of non-local Sturm-Liouville operators such as (D.6) exist in the litera-

ture; see e.g. [40] and [41].
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Under this, we takeMµν as self-adjoint, so that the spectral theorem applies. The quadratic
operatorMµν(u, u′) around a saddle point xcl typically has zero modes, which contribute to
the path integral by some factor N0 [42]. The non-zero eigenmodes contribute to the path
integral (D.2) by the functional determinant with zero modes discarded,

(
det′M (n)

µν

)−1/2
.

Therefore, the path integral in (D.2) is, at the quadratic level,

− ΓE [A] ≈
√

2π
m

∑
n

1
(
∫ 1

0 du ẋ
2
cl,n) 1

4
e−Sn,0Nn,0

(
det′M (n)

µν

)− 1
2 . (D.9)

Here for each inequivalent single-instantons xcl,n, we have denoted the on-shell actions by
Sn,0 and the zero mode factors by Nn,0. We have approximated (

∫ 1
0 du ẋ

2)− 1
4 by its on-shell

value at each instanton xcl,n.

D.1 The straight line instantons

The effective action (5.31) for the amplitude 〈+g/2|+ g/2〉 is

−Γ(n)
E =

n∏
i=1

∫ ∞
0

dsi
si
e−m

2si

∫ x̃2
i−1

−∞
dx̃2

i

∫ L

0
dx̃1

i Z̃(si, x̃i), x̃2
0 ≡ −∞+ tE , (D.10)

Z̃(si, x̃i) =
∫
xi(s)=xi(0)=x̃i

Dxi exp
(
−
∫ si

0
dui

(
ẋ2
i

4 + igA · ẋi

))
. (D.11)

We have adopted the formula for scalar quantum electrodynamics. From (D.9), for
m
√∫ 1

0 du ẋ
2 � 1, we have

− Γ(n)
E ≈

(2π
m

)n
2

 n∏
i=1

1
(
∫ 1

0 dui ẋ
2
cl,i)

1
4

 e−Sn,0Nn,0
(
det′M (n)

µν

)− 1
2 . (D.12)

Since the electric field on the instanton worldlines is zero, Ē ≡ E(xicl(ui)) = 0, the equation
of motion (D.4) for n instantons (n even) is again solved by straight lines,

x1
icl(ui) = ±Lui + x̃1

i , x
2
icl(ui) = x̃2

i ∈ (−∞, x̃2
i−1),

Ē ≡ E(xicl(ui)) = 0, E(x2 → ±∞) = +g/2.
(D.13)

From this, we have the on-shell action

m

√∫ 1

0
dui ẋ2

icl = mL ⇒ Sn,0 = nmL. (D.14)

This also means that the regime m
√∫ 1

0 du ẋ
2 � 1 corresponds to the semi-classical regime

mL� 1, i.e. the on-shell action Sn,0 = nmL� ~. To find the zero mode factor Nn,0, note
that for our straight line instantons, the reparametrization mode redundancy ui −→ ui+δui
coincides with the translation of x1

icl, thus we only have a volume factor,

Nn,0 = 1
n!

(
itL

2π

)n
. (D.15)
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Next, since Ē ≡ E(xicl(ui)) = 0 and xicl(ui) are linear, the quadratic operator M (n)
µν is

simply

M (n)
µν =

n
⊗
i=1

(
−δµν

m

L

d2

du2
i

)
⇒

(
det′M (n)

µν

)− 1
2 =

(
m

L

)n
. (D.16)

Therefore, (D.12) (in the regime mL� 1) becomes

− Γ(n)
E [A] =

(2π
m

)n
2
( 1
L

)n
2
e−nmL

( 1
n!

(
itL

2π

)n)(m
L

)n
= 1
n!

(
(it) 1√

2π

√
m

L
e−mL

)n
,

(D.17)
from which (5.40) follows.

D.2 The lemon instantons

Classical solutions. Focusing on the single-instanton solution, the equations of mo-
tion (D.4) explicitly read 

ẍ1
cl = + iga

m
F12ẋ

2
cl

ẍ2
cl = − iga

m
F12ẋ

1
cl

a2 = (ẋ1
cl)2 + (ẋ2

cl)2, a > 0.

(D.18a)

(D.18b)

(D.18c)
The solution is given by (see figure 15)

(1):
{
x1
cl = (a/b) sin (b(u+ 1/4)) + x̃1

x2
cl = +(a/b)(cos (b(u+ 1/4))− cos (b/4)) + x̃2 , u ∈ [−1/2, 0] (D.19)

(2):
{
x1
cl = (a/b) sin (b(u− 1/4)) + x̃1

x2
cl = −(a/b)(cos (b(u− 1/4))− cos (b/4)) + x̃2 , u ∈ (0, 1/2). (D.20)

We have taken u ∈ [−1/2, 1/2). Periodicity in x1 ∼ x1 + L, i.e. x1
cl(0) − x1

cl(−1/2) = L =
x1
cl(1/2)− x1

cl(0), implies

b = 4 sin−1
(
L

/(2m
gĒ

))
, a =

√∫
ẋ2
cl =

(
m

gĒ

)
4 sin−1

(
L

/(2m
gĒ

))
. (D.21)

The weak-field limit becomes

m

√∫
ẋ2 � 1 ⇒

(
m2

gĒ

)
4 sin−1

(
L

/(2m
gĒ

))
� 1

L� 2m
gĒ⇒ 2mL� 1. (D.22)

Note that
L −→ 2m

gĒ
⇒ b −→ 2π. (D.23)

The on-shell action for this single-instanton solution takes the form

SE1,0 = m

√√√√∫ 1
2

− 1
2

du ẋ2
cl +

�
���

��1
2

∫
d2x g2 − 1

2g
2 × (Lemon Area) (D.24)

= mL

√
1−

(
L

/(2m
gĒ

))2
+m

(2m
gĒ

)
sin−1

(
L

/(2m
gĒ

))
. (D.25)
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One-loop corrections. In the quadratic action (D.6), the fluctuations must have
continuous zeroth and first derivatives. The path integral (D.2) is defined with peri-
odic boundary condition x(+1/2) = x(−1/2). Alternatively, we can pull the endpoint
x(+1/2) = x(−1/2) = x̃ out from the path integral, perform the path integral with Dirich-
let condition on δxµ(u), and then integrate over x̃. This was done when we integrated over
the proper time later, in (5.20), and in [3]. In this choice,Mµν(u, u′) has no zero modes and
the path integral is contributed by detMµν . Following [3], we make use of the matrix deter-
minant lemma to write the determinant detMµν (for either choice of boundary condition) as

detMµν = detLµν ×
(

1− m

(
∫
ẋ2
cl)

3
2

∫ 1
2

− 1
2

du

∫ 1
2

− 1
2

du′ ẍµcl(u)Gµν(u, u′)ẍνcl(u′)
)
. (D.26)

Here Gµν(u, u′) is the Green’s function of Lµν under the specified boundary condition.

The local part. We wish to compute the determinant detLµν for either periodic or
Dirichlet boundary condition, where

Lµν =

 − m

(
∫
ẋ2

cl)
1
2

d2

du2 igF12(xcl(u)) d
du

−igF12(xcl(u)) d
du − m

(
∫
ẋ2

cl)
1
2

d2

du2

 = m

a

 − d2

du2 −sign(u)b ddu
+sign(u)b ddu − d2

du2

 , (D.27)

u ∈ [−1/2, 1/2), and a and b were defined in (D.21). We define the periodic function
sign(u) as

sign(u) ≡


+1 , −1 < u < −1/2, 0 < u < 1/2, . . .
−1 , −1/2 < u < 0, 1/2 < u < 1, . . .
c ∈ [−1, 1] , u = . . .− 1/2, 0, 1/2, . . .

. (D.28)

Crucially, in order that the determinant detLµν be well-defined, Lµν must be self-adjoint
acting on the space Ω of fluctuations with inner product

(~x, ~y) ≡
∫ 1/2

−1/2
du ~x · ~y , (~x, L~y) != (L~x, ~y), ∀~x, ~y ∈ Ω, (D.29)

so that the spectral theorem applies. Let us denote Lµν in (D.27) as

Lµν = m

a

 − d2

du2 +b(u) d
du

−b(u) d
du − d2

du2

 , where b(u) ≡ −sign(u)b. (D.30)

For any ~x, ~y ∈ Ω, (we shifted the range of u by ε to avoid the ambiguity in b(u) at u = ±1/2)

a

m
(~x, L~y) = a

m

∫ 1
2−ε

− 1
2−ε

du ~x · L~y (D.31)

= a

m
(L~x, ~y) +

∫ 1
2−ε

− 1
2−ε

du ∂u
(
−x1∂uy

1 + ∂ux
1y1 − x2∂uy

2 + ∂ux
2y2 + b(u)(x1y2 − x2y1)

)
−
∫ 1

2−ε

− 1
2−ε

du ∂ub(u)(x1y2 − x2y1). (D.32)
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Imposing that the fluctuations δxµ(u) have continuous zeroth and first derivatives at u = 0
and u = ±1/2, the boundary terms all cancel, and so

a

m
(~x, L~y)− a

m
(L~x, ~y) = −

∫ 1
2−ε

− 1
2−ε

du ∂ub(u)(x1y2 − x2y1) = 2b
(
x1y2 − x2y1

)∣∣∣u=0

u=− 1
2
.

(D.33)
Therefore, we conclude that for Lµν to be self-adjoint, the space Ω of fluctuations on which
it acts consists of those with continuous zeroth and first derivatives at u = 0 and u = ±1/2,
and must satisfy

self-adjoint Lµν : (~x, L~y)− (L~x, ~y) =
(
m

a

)
2b
(
x1y2 − x2y1

)∣∣∣u=0

u=− 1
2

!= 0, ∀~x, ~y ∈ Ω.
(D.34)

With the self-adjointness condition of Lµν sorted out, we now find its eigenvalues
and eigenmodes explicitly, for either choice of boundary condition. This is conveniently
achieved by first diagonalizing Lµν in (D.27):

Lµν = m

a

 − d2

du2 −sign(u)b ddu
+sign(u)b ddu − d2

du2

 (D.35)

= U−1m

a

− d2

du2 − sign(u)ib ddu 0
0 − d2

du2 + sign(u)ib ddu

U = U−1DU, (D.36)

U ≡ 1√
2

 i 1
−i 1

 . (D.37)

Continuity of zeroth and first derivatives at u = 0 and u = ±1/2 imposes strong constraints
on the eigenmodes. The only zero modes allowed are (1, 0) and (0, 1) which generate the
global translations. They are zero modes with periodic boundary condition; if we impose
Dirichlet condition, there are no zero modes.

The eigenmodes are given by

y(1),n =

(+
√

2 sin (2πnu) sin
(
bu
2

)
,+
√

2 sin (2πnu) cos
(
bu
2

)
) , −1/2 ≤ u ≤ 0

(−
√

2 sin (2πnu) sin
(
bu
2

)
,+
√

2 sin (2πnu) cos
(
bu
2

)
) , 0 < u < 1/2

,

y(2),n =

(−
√

2 sin (2πnu) cos
(
bu
2

)
,+
√

2 sin (2πnu) sin
(
bu
2

)
) , −1/2 ≤ u ≤ 0

(−
√

2 sin (2πnu) cos
(
bu
2

)
,−
√

2 sin (2πnu) sin
(
bu
2

)
) , 0 < u < 1/2

,
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y(3),n =



1√
2n(+2n cos(2πnu) sin

(
bu
2

)
− b

2π sin(2πnu) cos
(
bu
2

)
,

+2n cos(2πnu) cos
(
bu
2

)
+ b

2π sin(2πnu) sin
(
bu
2

)
) , −1/2 ≤ u ≤ 0

1√
2n(−2n cos(2πnu) sin

(
bu
2

)
+ b

2π sin(2πnu) cos
(
bu
2

)
,

+2n cos(2πnu) cos
(
bu
2

)
+ b

2π sin(2πnu) sin
(
bu
2

)
) , 0 < u < 1/2

,

y(4),n =



1√
2n(−2n cos(2πnu) cos

(
bu
2

)
− b

2π sin(2πnu) sin
(
bu
2

)
,

+2n cos(2πnu) sin
(
bu
2

)
− b

2π sin(2πnu) cos
(
bu
2

)
) , −1/2 ≤ u ≤ 0

1√
2n(−2n cos(2πnu) cos

(
bu
2

)
− b

2π sin(2πnu) sin
(
bu
2

)
,

−2n cos(2πnu) sin
(
bu
2

)
+ b

2π sin(2πnu) cos
(
bu
2

)
) , 0 < u < 1/2

,

where n = 1, 2, . . .. They all have eigenvalues

λn =
[(2π

b

)2
n2 − 1

4

](
m

a

)
b2, n = 1, 2, . . . . (D.39)

Of these, y(1),n and y(2),n satisfy the Dirichlet condition vanishing at u = ±1/2, and
moreover vanish at u = 0.

We need to check if y(i),n are orthogonal under the inner product (y(i),n, y(j),n′) ≡∫ 1/2
−1/2 y(i),n · y(j),n′ . It can be easily shown that the inner products are orthogonal — all
save one: the inner product

(y(3),n, y(4),n′) = b

(n2 − n′2)π2 ((−1)n+n′ − 1), n 6= n′, (D.40)

cannot be made vanishing. This means that the modes y(3),n and y(4),n′ are not orthogonal
when n and n′ are not both even or both odd (n 6= n′ in particular). By the spectral
theorem, this implies that Lµν acting on the space spanned by y(3),n and y(4),n′ is not
self-adjoint. Indeed, we can compute the obstruction (D.34) to the self-adjointness of Lµν ,

(y(3),n,Ly(4),n′)−(Ly(3),n,y(4),n′) =
(
m

a

)
2b
(
y(1),n×y(2),n′

)∣∣∣u=0

u=− 1
2

=
(
m

a

)
4b(1−(−1)n+n′),

(D.41)
which is non-vanishing precisely for the cases where their inner products (D.40) do not
vanish. In fact, y(3),n and y(4),n (which have positive eigenvalues) are not orthogonal to the
constant zero modes (1, 0) and (0, 1) either.

We thus reach the conclusion that, Lµν is not self-adjoint on the space Ω of periodic,
first-order differentiable vectors with the inner product (D.29). The corresponding func-
tional determinant is then ill-defined. To avoid this problem, we therefore choose to impose
Dirichlet condition on the fluctuations by pulling the endpoint x(+1/2) = x(−1/2) = x̃

out from the path integral and integrate over it in the end. This space is spanned by y(1),n
and y(2),n in (D.38). Since they vanish at u = ±1/2, and also at u = 0, they satisfy the
self-adjoint condition (D.34). Thus, in the Dirichlet problem, Lµν has no zero modes and
has eigenvalues

λn =
[(2π

b

)2
n2 − 1

4

](
m

a

)
b2, n = 1, 2, . . . . (D.42)
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with multiplicity two. The functional determinant is then

detLµν =
∞∏
n=1

([(2π
b

)2
n2 − 1

4

](
m

a

)
b2
)2

= sin2 (b/4)
(b/4)2

(
m

a

)−1
. (D.43)

Furthermore, the determinant of the free operator Lfree
µν = −(m/a)δµνd2/du2 (with Dirichlet

condition) is easily found to be detLfree
µν = (m/a)−1, so

√
detLfree

µν

detLµν
= b/4

sin (b/4) . (D.44)

We can also reproduce (D.44) by the Gel’fand-Yaglom method [43], similar to what was
done in [3].

The non-local part. Next, we compute the non-local part of the function determinant
detMµν (D.26) with Dirichlet condition,

1− m

(
∫
ẋ2
cl)

3
2

∫ 1
2

− 1
2

du

∫ 1
2

− 1
2

du′ ẍµcl(u)Gµν(u, u′)ẍνcl(u′). (D.45)

Recall that the Dirichlet eigenmodes are y(1),n and y(2),n in (D.38), which are real and
orthonormal. The Green’s function Gµν(u, u′) of Lµν (for the Dirichlet problem) is then

Gµν(u, u′) =
∑
i=1,2
n∈N

1
λn
yµ(i),n(u)yν(i),n(u′), (D.46)

which results in

1− m

(
∫
ẋ2
cl)

3
2

∫ 1
2

− 1
2

du

∫ 1
2

− 1
2

du′ ẍµcl(u)Gµν(u, u′)ẍνcl(u′) (D.47)

= 1− m

a3

∑
i=1,2
n∈N

1
λn

∫ 1
2

− 1
2

du

∫ 1
2

− 1
2

du′ ẍclµ(u)yµ(i),n(u)y(i),n(u′)ν ẍclν(u′) = b

4 cot (b/4). (D.48)

Therefore, substituting (D.44) and (D.48), the (Dirichlet) determinant of the full operator
Mµν is

√
detM free

µν

detMµν
=
√

detLfree
µν

detLµν
×
(

1− m

(
∫
ẋ2
cl)

3
2

∫ 1
2

− 1
2

du

∫ 1
2

− 1
2

du′ ẍµcl(u)Gµν(u,u′)ẍνcl(u′)
)− 1

2

(D.49)

= b/4
sin(b/4)

(
b

4 cot(b/4)
)− 1

2
. (D.50)
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Finally, plugging in (D.25), (D.21) and (D.50), the effective action (D.2) around the
lemon instanton (D.19) in the approximation 2mL� 1 is

−ΓE [A]≈
√

2π
m

∫
x(1)=x(0)

Dx 1
(
∫ 1

0 du ẋ
2) 1

4
exp

−m
√∫ 1

0
du ẋ2− ig

∫ 1

0
du A · ẋ

 (D.51)

=
√

2π
m

1
(
∫ 1

0 du ẋ
2
cl)

1
4
e−SE1,0(itL)

( m

2πa

)√detM free
µν

detMµν

 (D.52)

= (it)

√
gĒ

4
√

2π

√
L

/2m
gĒ

(
1−

(
L

/2m
gĒ

)2
)− 1

4 [
sin−1

(
L

/2m
gĒ

)]−1
e−SE1,0 (D.53)

which is the same as the contribution from the dominant p = 0 saddle in (5.65). In the
second equality, the factor m/2πa gives the correct normalization to the ratio of functional
determinants, cf. (5.21).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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