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1 Introduction

The standard model (SM) is the most successful model in describing the observed phenomena,
however, there are still intriguing questions, such as the nature and the origin of dark matter
(DM), waiting to be answered. There is a wide variety of astrophysical and cosmological
observations as well as theoretical arguments that led the scientific community to adopt
DM as an essential part of the standard cosmological model (for a fascinating review on
history of DM see [1]).

The evidence of DM was strong enough that many strategies have been pursued to
reveal its particle nature. For decades, the leading theory of particle DM was a single-
component thermal relic with weak size couplings and mass, known as a weakly interacting
massive particle (WIMP). These one-component scenarios are increasingly constrained by
experimental measurements. Therefore, workers in the field compelled to examine more
complex models of dark sector including the multicomponent ones where the total relic
abundance of DM is due to the existence of multiple DM species [2–45]. After all, it should
not be surprising if the dark sector has multiple species like SM itself.

On the other hand, SM has a crossover rather than a true phase transition [46], while
some extensions of the SM, e.g., with DM candidates [47–72], lead to first order phase
transitions with gravitational wave (GW) signals. In the case of first order phase transition,
just below the critical temperature, the Universe goes from a metastable quasi-equilibrium
state into a stable equilibrium state, through a process of bubble nucleation, growth, and
merger which generates GWs [73–77]. GW signatures are therefore a new window towards
new physics, complementary to that provided by the Large Hadron Collider. Another
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motivation for studying electroweak phase transitions is the requirements to explain the
matter-antimatter asymmetry in the universe [78], which one of them, departure from
thermal equilibrium, is inevitable in a first-order phase transition.

The first direct detection of GWs was performed in 2015 [79]. The signal came from
the strongest astrophysical sources of GWs, i.e., compact binary systems, in frequency from
35 to 250 Hz. Here, we are interested in production of GWs by first-order phase transitions
(for a recent review see [80]). For GWs sourced by cosmological phase transitions, the
relevant mission is Laser Interferometer Space Antenna (LISA) [81] which is a space-based
interferometric gravitational wave detector working with three satellites orbiting the Earth.
LISA is most sensitive at frequencies in the range 10−3 − 10−2 Hz and its planned launch
year is 2034 with a mission life-time of 4 years. The Big Bang Observer (BBO) [82] is a
proposed follow-up experiment consisting of four LISA-like detectors.

In this paper, a model with three motives will be presented. We come up with a
beyond SM model to provide a solution for DM problem, hierarchy problem, and vacuum
instability. As a solution for hierarchy problem [83], the model has classical conformal
symmetry. On the other hand, SM suffers from vacuum instability and beyond SM models
with bosonic degrees of freedom can probably solve this issue. As mentioned, due to the
strict constraints of direct detection on one-component DM models, two component DM
models are more appropriate. Therefore, our two-component DM model consists (bosonic)
scalar and vector DM. We assume that the dark sector interacts with the SM particles
only through the Higgs portal. The dark sector consists of three new fields, a real scalar, a
complex singlet and a real vector field and it introduces a dark UD(1) gauge symmetry. Our
model is a two-component DM model which both DM particles are bosons: one DM particle
is spin zero and the other is spin one. As a potential solution to the hierarchy problem, we
constrain our model to be a classically scale-invariant extension of the SM. Within this
framework, all the particle masses are generated dynamically, by means of the Coleman-
Weinberg mecha.nism [84]. After constructing the model, we study DM phenomenology
including relic density and DM-Nucleon cross section. DM relic density is reported by
Planck Collaboration [85], and DM-Nucleon cross section is constrained by direct detection
experiments such as the LUX [86], PandaX-II [87] and XENON1T [88]. These experiments
are gradually approaching the so-called neutrino floor which is the ultimate sensitivity of
future direct detection experiments [89]. We also concentrate on investigating the possibility
of achieving a strongly first-order electroweak phase transition within the parameter space of
the model. To study electroweak phase transition, we present the complete expression of the
finite-temperature 1-loop effective potential, including the contributions of the resummed
thermal bosonic daisy diagrams, and show that the finite-temperature corrections induce
a first-order electroweak phase transition. We identify regions of parameter space of the
model which is consistent with DM relic density and direct detection constraints, while
simultaneously realizing a strongly first-order electroweak phase transition. The GW signal
from the phase transition is sufficiently strong to be detectable by LISA and BBO.

The rest of the paper is organized as follows. In section 2, we introduce our model.
Section 3 is dedicated to DM phenomenological constraints. In section 4, we study the
electroweak phase transition and GWs spectrum. Our result is given in section 5 where we
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simultaneously consider DM phenomenolgy and GW spectrum using two benchmark points
(BMs) as shown in table 1. Finally, we conclude in section 6.

2 The model

Our model consists three beyond SM fields which all of them are bosons, namely, a complex
singlet φ, a real singlet S, and a real Abelian vector field Vµ. In our setup, the complex
scalar field φ has unit charge under a dark UD(1) gauge symmetry with the vector field Vµ.
All of these fields are singlet under SM gauge group. However, the dark sector is invariant
under the charge conjugation of UD(1) and parity of S:

φ→ φ∗, Vµ → −Vµ, and S → −S. (2.1)

Due these two symmetries, the model can have two component DM. In the dark sector
the discrete symmetry Vµ → −Vµ forbids the kinetic mixing between the SM UY (1) gauge
boson Bµ and the vector field Vµ which makes Vµ stable and a DM candidate. The other
DM candidate is due to S → −S symmetry which makes the real singlet field stable.

The Lagrangian is given by

L = LSM + 1
2(∂µS)(∂µS) + (Dµφ)∗(Dµφ)− 1

4VµνV
µν − V (H,φ, S), (2.2)

where Vµν = ∂µVν − ∂νVµ, Dµφ = (∂µ + igVµ)φ, and LSM is the SM Lagrangian without
the Higgs potential term.

We constrain V (H,φ, S) by:

• gauge symmetry,

• Z2 symmetry,

• scale invariance, and

• renormalizablity.

Regarding these constraints V (H,φ, S) reads

V (H,φ, S) = λH(H†H)2 + λφ(φ∗φ)2 + λHφ(H†H)(φ∗φ)

+ 1
2λHS(H†H)S2 + 1

2λφS(φ∗φ)S2 + 1
4λSS

4. (2.3)

In this model, dark sector interacts with SM via Higgs portal. Because of Z2 symmetry,
the real singlet field, S, does not get vacuum expectation value (VEV), but electroweak
symmetry, as well as Abelian dark symmetry spontaneously break after H and φ develop
VEVs. In the unitary gauge, H† = (0, h1√

2) and φ = h2√
2 , the tree level potential is given by

Vtree(h1, h2, S) = 1
4λHh

4
1 + 1

4λφh
4
2 + 1

4λHφh
2
1h

2
2

+ 1
4λHSh

2
1S

2 + 1
4λφSh

2
2S

2 + 1
4λSS

4. (2.4)
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The local minimum of the tree level potential defines the VEVs of the fields which we take
as (〈h1〉, 〈h2〉, 〈S〉) = (ν1, ν2, 0), leading to the following condition

λH > 0 ∧ λHφ < 0 ∧ λφ =
λ2
Hφ

4λH
∧ ν1
ν2

=
√
−λHφ2λH

. (2.5)

The last relation defines the flat direction in field space where the tree level potential is
minimum, along this direction Vtree(ν1, ν2, 0) = 0. Now we substitute h1 → ν1 + h1 and
h2 → ν2 + h2 which mixes h1 and h2. The mass eigenstates, h and ϕ, can be obtained from
the following rotation (

h

ϕ

)
=
(

cosα − sinα
sinα cosα

)(
h1
h2

)
, (2.6)

where tanα = ν1/ν2 (〈h〉 = 0 and 〈ϕ〉 = ν =
√
ν2

1 + ν2
2). We identify h, which is

perpendicular to the flat direction, as the SM-like Higgs observed at the LHC with Mh =
125GeV [91, 92]. On the other hand, we know from SM that ν1 = 246GeV. The field ϕ is
along the flat direction, thus its tree level mass is zero. However, 1-loop correction leads
to a specific value along flat direction as the minimum of the potential which gives the
following mass to ϕ (see subsection 4.1):

M2
ϕ = 1

8π2ν2

(
M4
h +M4

S + 3M4
V + 6M4

W + 3M4
Z − 12M4

t

)
, (2.7)

where MS,V,W,Z,t being the masses for scalar DM, vector DM, W and Z gauge bosons, and
top quark, respectively, after symmetry breaking. We can substitute the parameters of the
Lagrangian using

λHφ = −M
2
h

ν2 , λφ = M2
h

2ν2 tan2 α, λH = M2
h

2ν2 cot2 α,

MV = g cosα ν, M2
S = 1

2
(
λφS cos2 α+ λHS sin2 α

)
ν2. (2.8)

According to these relations there are five free parameters which we choose them as
MS ,MV , g, λφS , and λS . On the other hand, λS is irrelevant in DM phenomenology and
phase transition studied in this paper, therefore we left with only four parameters.

3 Dark matter phenomenology

In the following we will focus on the DM relic density constraint reported by Planck
collaboration [85] and the available data on direct DM detection.

3.1 Relic density

It is considered in general that in WIMP scenarios, the DM relic density is inversely
proportional to the thermally averaged DM annihilation cross section into SM particles. In
the case of two-component DM, the situation is more interesting since there are additional
important processes such as conversion of one DM component into another which complicates
the analysis. We use the public numerical code micrOMEGAs [93] for solving the two
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DM

DM

h,ϕ
SM

Figure 1. Pair annihilation processes for both scalar and vectorial DM components.

DM1

DM1

h,ϕ

DM2

DM2

Figure 2. DM conversion via Higgs portal.

Boltzmann equations governing the cosmological evolution of our DM candidates, the scalar
DM (S) and the Vector DM (V ). The Boltzmann equations are determined by three types
of processes:

• DM Annihilation: pair annihilation of both DM components into SM particles,

• DM Conversion: which converts one DM component into another, and

• DM Semi-(co)annihilation: which could change the abundances of both DM compo-
nents

The relevant diagrams for the annihilation processes of the two DM components are presented
in figure 1. There are no (subleading) semi-annihilation and co-annihilation processes in our
scenario. As we see in figure 1, Feynman diagrams are the same for both DM components.
In these figure, SM and SM stand for massive SM particles and anti-particles, respectively.
Besides DM annihilation into SM particles, the two DM candidate can also annihilate into
each other (DM conversion: S S ←→ V V ) which are shown in figure 2.

The coupled Boltzmann equations for scalar S and vector V DM are given by:
dnV
dt

+ 3HnV = −
∑
j

〈σV V→jjυ〉
(
n2
V − n2

V,eq

)
− 〈σV V→SSυ〉

(
n2
V − n2

V,eq
n2
S

n2
S,eq

)
, (3.1)

dnS
dt

+ 3HnS = −
∑
j

〈σSS→jjυ〉
(
n2
S − n2

S,eq

)
− 〈σSS→V V υ〉

(
n2
S − n2

S,eq
n2
V

n2
V,eq

)
, (3.2)

where j runs over SM massive particles and h, ϕ. By changing the variable, x = M/T and
Y = n/s, where T is the photon temperature and s is the entropy density, one can rewrite
the Boltzmann equations in terms of Y = n/s:

dYV
dx

=−
√

45
π
Mpl g

1/2
∗

M

x2

∑
j

〈σV V→jjv〉
(
Y 2
V −Y 2

V,eq

)
+〈σV V→SSv〉

(
Y 2
V −Y 2

V,eq
Y 2
S

Y 2
S,eq

) ,
(3.3)

dYS
dx

=−
√

45
π
Mpl g

1/2
∗

M

x2

∑
j

〈σSS→jjv〉
(
Y 2
S −Y 2

S,eq

)
+〈σSS→V V v〉

(
Y 2
S −Y 2

S,eq
Y 2
V

Y 2
V,eq

) ,
(3.4)
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where g1/2
∗ is the degrees of freedom parameter and Mpl is the Planck mass. The last terms

in summations are new terms in Boltzmann equations which describe the conversion of DM
particles into each other. Since these two cross sections are described by the same matrix
element, we expect 〈σV V→SSv〉 and 〈σSS→V V v〉 are not independent and their relation is:

Y 2
V,eq〈σV V→SSv〉 = Y 2

S,eq〈σSS→V V v〉. (3.5)

The interactions between the two DM candidates take place by exchanging two scalar
mass eigenstates h and ϕ where the coupling of V to h is suppressed by sin α. Therefore,
it is usually the ϕ-mediated diagram that gives the dominant contribution. Notice that
the conversion of the heavier particle into the lighter one is relevant. The relic density
for each DM candidate is related to Y at the present temperature through ΩS,V h

2 =
2.755× 108MS,V

GeV YS,V (T0), where h is the Hubble expansion rate at present times in units of
100 (km/s)/Mpc, and the total relic density of DM according to the data by the Planck
collaboration should be [85],

ΩDMh
2 = ΩSh

2 + ΩV h
2 = 0.120± 0.001. (3.6)

Finally, we define the fraction of the DM density of each component by,

ξV = ΩV

ΩDM
, ξS = ΩS

ΩDM
, with ξV + ξS = 1. (3.7)

Figure 3 depicts the relic density of both DM components as a function of free parameters
of the model. According to these figure, λφS , and MS are not relevant in ΩV (Note that, in
general, ΩV depends on MS , because Mϕ is a function of MS). However, ΩS depends on all
four parameters. In this case, besides λφS and MS which are relevant, λHS can also change
ΩS . On the other hand, considering eq. (2.8), λHS is dependent in all free parameters:

λHS = 2M2
S/ν

2 − λφS cos2 α

sin2 α
= 1
ν2

1

(
2M2

S −
λφS
g2 M2

V

)
. (3.8)

So it is not a surprise that all free parameters can effect the relic density of scalar DM.
The minimum in figure 3(c) at MS ' Mh

2 is due to resonance, and maximum in all four
diagrams is due to λHS ' 0.

3.2 Direct detection

The direct detection experiments aim to study DM-Nucleon interactions. These events
induced by DM particles from the Milky Way’s halo. The Standard Halo Model assumes
that the DM particles are distributed in an isotropic isothermal sphere with a Maxwellian
velocity distribution. The local DM density ρ0 adopted for the interpretation of direct
detection experiments is ρ0 = 0.3GeV/c2/cm3. The possibility of DM direct detection in
the form of WIMPs was first discussed in [94]. The idea is simple: since in most scenarios
the WIMP carries no electric charge, therefore it will not interact with the atomic electrons,
however, DM particles can elastically scatter off the atomic nucleus and the momentum
transfer gives rise to a nuclear recoil which might be detectable.

– 6 –



J
H
E
P
0
3
(
2
0
2
2
)
1
8
8

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 0.01  0.02  0.03  0.04  0.05  0.06

MS=100 GeV, MV=300 GeV, g=0.2

Ω
h

2

λφS

Planck

ΩSh
2

ΩVh
2

(a)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

 0.2  0.4  0.6  0.8  1  1.2  1.4  1.6  1.8  2

MS=100 GeV, MV=300 GeV, λφS=0.01MS=100 GeV, MV=300 GeV, λφS=0.01

Ω
h

2

g

Planck

ΩSh
2

ΩVh
2

(b)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 50  100  150  200  250

MV=300 GeV, λφS=0.01, g=0.2

Ω
h

2

MS [GeV]

Planck

ΩSh
2

ΩVh
2

(c)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

 300  400  500  600  700

MS=100 GeV, λφS=0.01, g=0.2

Ω
h

2

MV [GeV]

Planck

ΩSh
2

ΩVh
2

(d)

Figure 3. Variation of DM Relic density respect to parameter space.

DM

h,ϕ

DM

q q

Figure 4. DM-quark interaction via t channel exchanges of the h and ϕ states.

In our model both DM candidates interact with quarks via Higgs portal, see figure 4,
which results in a spin independent DM-Nucleon cross section.

The relevant DM-quark interaction terms in Lagrangian are:

Lq = −
∑
q

mq

ν1
cosαh qq + mq

ν1
sinαφ qq,

LS = λhsshS
2 + λφssφS

2,

LV = λhvvhVµV
µ + λφvvφVµV

µ, (3.9)

where q stands for quarks and

λhss = −1
2 (ν1 cosαλHS − ν2 sinαλφS) ,

λφss = −1
2 (ν2 cosαλφS + ν1 sinαλHS) ,

λhvv = − sinα g2ν2,

λφvv = + cosα g2ν2. (3.10)
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DM scattering on nuclei have a characteristic energy scale of the order of 1GeV and
very low momentum exchange between the DM and the nucleon. On the other hand, the
low DM velocity allows to consider this process in the nonrelativistic limit. Therefore, the
scattering of DM with nucleons can be described by effective four field interactions between
the DM and the SM quarks. After integrating the scalar mediators out, the low-energy
5-dimensional effective interaction of the DM with quarks will be

LS−q = αsS
2∑

q

mqqq,

LV−q = αvVµV
µ
∑
q

mqqq, (3.11)

where

αs = λHS
2

(
cos2 α

M2
h

+ sin2 α

M2
ϕ

)
− λφS cos2 α

2

(
1
M2
h

− 1
M2
ϕ

)
,

αv = g2 cos2 α

(
1
M2
h

− 1
M2
ϕ

)
. (3.12)

From this, it is possible to obtain effective interactions between the DM particle and a
nucleon which gives DM-Nucleon cross section of scalar DM and vector DM [95]

σs = α2
s

M4
N

π(MN +MS)2 f
2
N ,

σv = α2
v

M4
N

π(MN +MV )2 f
2
N , (3.13)

where MN is the nucleon mass and fN = 0.3 parametrizes the Higgs-Nucleon coupling.
The Higgs portal scattering that we discussed here led to spin independent interactions

of the DM with nuclei. Some of the present constraints on DM-Nucleon spin independent
interactions come from the world leader experiments, such as LUX [86], PandaX-II [87]
and XENON1T [88]. Finally, the DARWIN experiment [96], with sensitivity close to the
irreducible background coming from scattering of SM neutrinos on nucleons (the so-called
neutrino floor [89]), would be the ultimate DM detector. In section 5, we constrain the
model with the results of the PandaX-II experiment [87] which set an upper limit on the
spin-independent WIMP-Nucleon cross section with the lowest exclusion at MDM = 40GeV:

PandaX-II : σDM-N . 8.6× 10−47 cm3. (3.14)

Note that in above constraint, it is assumed that the local DM density is only provided by
one DM specie. However, in our scenario both scalar and vector DM contribute to the local
DM density. Assuming that the contribution of each DM candidates to the local DM density
is the same as their contribution to the relic density, many authors constrain the rescaled
DM-Nucleon cross sections, i.e., ξSσs and ξV σv, with experimental results. However, both
DM candidates contribute the DM signatures and one must combine both signatures. For
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Figure 5. Variation of DM-Nucleon spin-independent cross section respect to parameter space. In
all digrams the fixed parameters are: MS = 1800GeV , MV = 600GeV , g = 0.2 , λφS = 0.5.

the large DM mass case, where DM energy is much larger than detector threshold energy,
the statistical combination is easy and the direct detection constraint reads [90]

ξS
σs
MS

+ ξV
σv
MV

.
σ

M

∣∣∣∣
PandaX-II

, (3.15)

where
σ

M

∣∣∣∣
PandaX-II

' 0.001 zb
GeV , (3.16)

for M & 40GeV.
We have depicted DM-Nucleon cross section as a function of free parameters of the

model in figure 5. Again, λφS is irrelevant in vector DM phenomenology, e.g., σv. In all
diagrams there are some dips where αs or αv vanishes. According to eq. (3.12), If λHS = 0,
then we expect that dips occur at the same place where Mh ' Mϕ. But, in general, the
dips occur at different places as we see in figure 5. Another interesting feature is the double
dips of σv in (d) diagram of figure 5. If we solve αv = 0 (⇒Mh = Mϕ) to find MV , we will
find two solutions corresponding these double dips.

In our model, indirect detection limits are not competitive with the ones from direct
detection and we will not explicitly discuss them here.

4 Electroweak phase transition

In order to study the electroweak phase transition in our model, we need to construct
the effective potential. In our scenario, the effective potential is a function of the scalar
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field ϕ and temperature T . As the Universe cools down, the VEV varies from 〈ϕ〉 = 0 to
〈ϕ〉 = ν 6= 0. In the following subsections we derive 1-loop effective potential and study
GWs during the cosmological phase transition.

4.1 One-loop effective potential

The effective potential were initially studied at 1-loop level by Coleman and Weinberg [84].
A few years later, Gildener and Weinberg, presented their formulation for a scale invariant
theory with many scalar fields [97]. As we discussed in section 2, along the flat direction,
the tree-level potential is zero, therefore, 1-loop corrections are dominated. The 1-loop
effective potential at zero temperature is given by

V 1-loop(ϕ) = aϕ4 + bϕ4 ln ϕ
2

Λ2 , (4.1)

where

a = 1
64π2ν4

n∑
k=1

gkM
4
k

(
ln M

2
k

ν2 − Ck

)
,

b = 1
64π2ν4

n∑
k=1

gkM
4
k , (4.2)

and Λ is the renormalization group (RG) scale. The other parameters are: Ck = 3/2 (5/6)
for scalars/spinors (vectors), Mk for the measured mass of particles, and gk for the number
of degrees of freedom of the particle k (it is positive for bosons and negative for fermions).
In order to have a non-zero VEV, the potential (4.1) should have a minimum at ϕ 6= 0:

dV 1-loop

dϕ

∣∣∣∣
〈ϕ〉6=0

= 0,

d2V 1-loop

dϕ2

∣∣∣∣
〈ϕ〉6=0

> 0, (4.3)

which leads to
〈ϕ〉 = ν = Λe−( a2b+ 1

4 ) and b > 0. (4.4)

Considering both eq. (4.1) and eq. (4.4) one can substitute RG scale Λ and find a final
expression for the 1-loop potential in terms of b coefficient and the true vacuum expectation
value ν:

V 1-loop(ϕ) = bϕ4
(

ln ϕ
2

ν2 −
1
2

)
, (4.5)

and for the mass of ϕ we have M2
ϕ = 8bν2 which gives eq. (2.7). Vacuum stability of a

model depends on the behavior of the effective potential. If the vacuum of the effective
potential is a global minimum, then the vacuum is absolutely stable. Vacuum stability
up to Planck scale puts constraint on the parameters of models. After the discovery of
125GeV Higgs boson at the LHC, we know that for SM the vacuum is not stable if no new
physics is assumed (for a brief review of vacuum stability in SM see [98]). In conformal
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models tree-level potential is zero along flat direction and 1-loop contribution determines the
behavior of the effective potential. According to conditions (4.3), the effective potential (4.5)
has global minimum if b > 0. To fulfill this condition, considering eq. (4.2), we need new
bosonic degrees of freedom with constrained masses. Albeit, for full treatment of vacuum
stability, one should obtain one-loop β-functions and solve renormalization group equations
(RGEs) in order to derive running coupling constants (see, e.g., [99, 100] where classically
scale-invariant non-Abelian extensions of the SM are constructed satisfying perturbativity
and stability up to the Planck scale.)

Apart from 1-loop zero-temperature potential (4.5), the 1-loop corrections at finite
temperature also contribute to the effective potential which is given by [101]

V 1-loop
T 6=0 (ϕ, T ) = T 4

2π2

n∑
k=1

gkJB,F

(
Mk

ν

ϕ

T

)
, (4.6)

where JB,F are thermal functions:

JB,F(x) =
∫ ∞

0
dy y2 ln

(
1∓ e−

√
y2+x2

)
. (4.7)

We approximate thermal functions JB(x) and JF(x) in terms of modified Bessel functions
of the second kind, K2 (x),

JB(x) ' −
3∑

k=1

1
k2x

2K2 (kx) ,

JF(x) ' −
2∑

k=1

(−1)k
k2 x2K2 (kx) , (4.8)

which is a good approximation both in high and low temperature regimes [61]. We also
consider resummed daisy graphs contribution given by [102]

Vdaisy(ϕ, T ) =
n∑
k=1

gkT
4

12π

(Mk

ν

ϕ

T

)3
−
((

Mk

ν

ϕ

T

)2
+ Πk(T )

T 2

)3/2
 , (4.9)

where the sum runs only over scalar bosons and longitudinal degrees of freedom of the
gauge bosons.1 The thermal masses in (4.9), Πk(T ), are given by

Πh/ϕ = T 2

24

(
1
2(9g2

SM +3g′2SM)+6λ2
t +λHφ+6λH +λHS 0

0 6g2 +λHφ+6λφ+λφS

)
,

ΠS = T 2

24 (λHS +6λS +λφS) , ΠV = 2
3g

2T 2,

ΠW = 11
6 g

2
SMT

2, ΠZ/γ = 11
6

(
g2

SM 0
0 g′2SM

)
T 2. (4.10)

1For the magnitude of theoretical uncertainties in perturbative calculations of fist-order phase transitions,
including usual daisy-resummed approach see [103, 104].
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Figure 6. Variation of νC and TC (νN and TN ) respect to parameter space. In all digrams the
fixed parameters are: MS = 1800GeV , MV = 800GeV , g = 0.85.

Finally, our effective potential contains Gildener-Weinberg term (4.5) and finite-
temperature contributions (4.6) and (4.9):

Veff(ϕ, T ) = V 1-loop(ϕ) + V 1-loop
T 6=0 (ϕ, T ) + Vdaisy(ϕ, T ). (4.11)

In our calculations, in order to get Veff(0, T ) = 0 at all temperatures, we subtract a
constant term from potential: Veff(ϕ, T )→ Veff(ϕ, T )− Veff(0, T ). Having potential (4.11),
now we are ready to study phase transition.

4.2 First order phase transition and gravitational waves

The first order phase transitions in the early Universe leave imprints in GWs which could
be detected in the future. Many beyond Standard Models predict a first-order phase
transition at the electroweak scale. This transition also provides an explanation for the
matter-antimatter asymmetry in our Universe. In the first order phase transition, just below
the critical temperature, the Universe goes from a metastable false vacuum into a stable
true vacuum, through a process of bubble nucleation, growth, and merger. Such a first-order
phase transition may occur in the early Universe and naturally produces GWs [73–77]. In
the following we will study the dynamics of first-order phase transition and search for the
parameter points of our model that can cause such transitions.

The effective potential (4.11), at some critical temperature TC , have two degenerate
minima separated by a high barrier: one in ϕ = 0 and the other in ϕ = νC 6= 0:

Veff(0, Tc) = Veff(νc, Tc),
dVeff(ϕ, TC)

dϕ

∣∣∣∣
ϕ=νC

= 0. (4.12)

By solving these two equations, one can obtain νC and TC . Although, all independent
parameters of the model contribute in the effective potential, we find that daisy term is
negligible compared to other terms, therefore λφS and λS are irrelevant and dynamic of the
phase transition only depends on MS ,MV , and g. In figure 6, we have depicted νC and TC
as a function of free parameters of our model.
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Above the critical temperature ϕ = 0 is the true vacuum and the symmetry is not
broken. As the Universe cools down, the temperature drops below the critical one and
we expect a phase transition from the false vacuum ϕ = 0 to the true vacuum ϕ 6= 0 via
thermal tunneling at finite temperature. Once this transition has happened, bubbles of the
broken phase form in the sea of the symmetric phase and spread throughout the universe
converting the false vacuum into the true one.

The bubbles formation starts after the temperature drops below TC , however it goes
sufficiently fast to fill the universe with bubbles of the new phase only at some lower
temperature, the nucleation temperature TN , where the corresponding euclidean action is
SE = S3(TN )/TN ∼ 140.2 The function S3(T ) is the three-dimensional Euclidean action
for a spherical symmetric bubble given by

S3(T ) = 4π
∫ ∞

0
dr r2

(
1
2

(
dϕ

dr

)2
+ Veff(ϕ, T )

)
, (4.13)

where ϕ satisfies the differential equation which minimizes S3:

d2ϕ

dr2 + 2
r

dϕ

dr
= dVeff(ϕ, T )

dϕ
, (4.14)

with the boundary conditions:

dϕ

dr

∣∣∣∣
r=0

= 0, and ϕ(r →∞) = 0. (4.15)

In order to solve eq. (4.14) and find the Euclidean action (4.13), we have used AnyBubble
package [106]. In figure 6, we have also depicted νN and TN as a function of g, MS , and
MV .

The stochastic GW background produced by strong first-order electroweak phase
transitions comes from three contributions:

• bubble walls collisions and shocks in the plasma,

• sound waves to the stochastic background after bubble collisions but before expansion
has dissipated the kinetic energy in the plasma, and

• turbulence forming after bubble collisions.

These three processes may coexist, and each one contributes to the stochastic GW back-
ground:

ΩGWh
2 ' Ωcollh

2 + Ωswh
2 + Ωturbh

2. (4.16)

2This condition at the vacuum-dominated period shoud be treated more carefully (see, e.g., [105]).
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Figure 7. Variation of α and β/H∗ respect to parameter space. In all digrams the fixed parameters
are: MS = 1800GeV , MV = 800GeV , g = 0.85.

All of the above contributions are controlled by four thermal parameters:

• the nucleation temperature, TN ,

• the strength parameter which is the ratio of the free energy density difference between
the true and false vacuum and the total energy density, α,

α =
∆
(
Veff − T ∂Veff

∂T

) ∣∣∣∣
TN

ρ∗
, (4.17)

where ρ∗ is

ρ∗ = π2g∗
30 T 4

N , (4.18)

• the inverse time duration of the phase transition, β,

β

H∗
= TN

d

dT

(
S3(T )
T

) ∣∣∣∣
TN

, (4.19)

• and the velocity of the bubble wall, vw, which is anticipated to be close to 1 for the
strong transitions [107].

In figure 7, we have depicted α and β/H∗ as a function of independent parameters of
our model. For the chosen parameters we found α ∼ 10−2 − 10−1 and β/H∗ ∼ 102 − 103.

In the process of the GW production, first the bubbles of the stable phase collide and
merge. This stage is subdominant compared to the subsequent stages of GW production,
unless the bubbles grow as large as the Hubble length itself. The bubble collision contribution
is given by [108]

Ωcoll(f)h2 = 1.67× 10−5
(
β

H∗

)−2 ( κα

1 + α

)2 ( g∗
100

)− 1
3
(

0.11 v3
w

0.42 + v2
w

)
Scoll, (4.20)

where Scoll parametrises the spectral shape given by

Scoll = 3.8 (f/fcoll)2.8

2.8 (f/fcoll)3.8 + 1
, (4.21)
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with

fcoll = 1.65× 10−5
( 0.62
v2
w − 0.1vw + 1.8

)(
β

H∗

)(
TN
100

)(
g∗

100

)1/6
Hz. (4.22)

After the bubble collision, the shells of fluid kinetic energy continue to expand into the
plasma as sound waves. These different waves overlap and source the dominant contribution
to the GW signal which is given by3 [110]

Ωsw(f)h2 = 2.65× 10−6
(
β

H∗

)−1 ( κvα

1 + α

)2 ( g∗
100

)− 1
3
vw Ssw. (4.23)

The spectral shape of Ssw is

Ssw = (f/fsw)3
(

7
3 (f/fsw)2 + 4

)3.5

, (4.24)

where

fsw = 1.9× 10−5 1
vw

(
β

H∗

)(
TN
100

)(
g∗

100

)1/6
Hz. (4.25)

Finally, the last stage is the turbulent phase which its contribution to the GW spectrum
is given by [111]

Ωturb(f)h2 = 3.35× 10−4
(
β

H∗

)−1 (κturbα

1 + α

)3/2 ( g∗
100

)− 1
3
vw Sturb, (4.26)

where
Sturb = (f/fturb)3

(1 + 8πf/h∗) (1 + f/fturb) 11/3 , (4.27)

and

fturb = 2.27× 10−5 1
vw

(
β

H∗

)(
TN
100

)(
g∗

100

)1/6
Hz. (4.28)

In eq. (4.27), the parameter h∗ is the value of the inverse Hubble time at GW production,
redshifted to today,

h∗ = 1.65× 10−5
(
TN
100

)(
g∗

100

)1/6
. (4.29)

In the formulas of GW spectrum we have used [112, 113]

κ = 1
1 + 0.715α

(
0.715α+ 4

27

√
3α
2

)
,

κv = α

0.73 + 0.083
√
α+ α

, κturb = 0.05κv, (4.30)

where the parameters κ, κv, and κturb denote the fraction of latent heat that is transformed
into gradient energy of the Higgs-like field, bulk motion of the fluid, and MHD turbulence,
respectively.

3A recent study in [109] suggests the existence of a suppression factor for the sound wave contribution
due to the finite lifetime of the GWs. The factor takes an asymptotic value of 1 for a very long lifetime.
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5 Results

After having studied DM phenomenology and electroweak phase transition of our two-
component DM model in the previous sections, we will now concentrate on the question of
whether it is feasible to correctly reproduce the known features of DM and first order phase
transition at the same time. On the DM side, we have relic density constraint as well as the
upper bound of DM-Nucleon cross section obtained in direct detection experiments. On
the other hand, we are looking for strong first order phase transition which leads to GW
production at the early Universe. Obviously, the above requirements will impose constraints
on the parameter space of the model, which is the subject of the present section.

In order to obtain the parameter space consistent with DM relic density (see eq. (3.6))
and direct detection constraint (see eq. (3.15)), we should scan over four independent
parameters of the model, i.e., MS ,MV , g, and λφS . To do so, regarding the strong constraint
on DM-Nucleon cross section, we first obtain g and λ using the following equations

αv

∣∣∣∣
g=g

= 0, αs

∣∣∣∣
λφS=λ

= 0. (5.1)

Considering eqs. (2.7), (2.8), (3.8) and (3.12), the solutions are given by

g(MV ,MS) = MV√∑n

k=1 gkM
4
k

8π2M2
h
− ν2

1

.

λ(MV ,MS , g) =
2M2

S

(
sin2 αM2

h + cos2 αM2
ϕ

)
ν2 cos2 αM2

ϕ

. (5.2)

Now, looking for the correct value of DM relic density (3.6) and regarding perturbativity
constraints (all couplings < 4π)), we scan over random values of MS and MV , while we
choose 0.9 g < g < 1.1 g and 0.9λ < λφS < 1.1λ. In this way, according to eq. (3.13),
we restrict ourselves to the small values of σs and σv which can possibly evade the direct
detection constraint (3.15). According to this strategy, we obtain DM relic density for
40GeV .MDM . 2000GeV.

In figure 8(a) and (b), the parameter space consistent with DM relic density is obtained
based on our strategy. In (c) and (d), for these parameters, rescaled DM-Nucleon cross
sections, i.e., ξSσs and ξV σv, are also depicted. As we see, there are some points between
the PandaX-II direct detection bound and the neutrino floor which can be probed in
the future direct detection experiments. Although DM relic density and direct detection
experiments restrict the model, there are some parts of the parameter space which is not
excluded yet. In figure 8(c) and (d), we have also depicted the fraction of vector DM, ξV .
As we see, for some scatter points, vector DM is dominated, while for the other points
DM mostly consists of scalar DM. Note that, although our strategy strongly restricts the
parameter space in order to get unconstrained DM-Nucleon cross section, still there are
some points which violate direct detection constraint (3.15). This points are depicted with
hollow circles and they should be excluded even when they are below the upper bound of
Pandax-II. Therefore, considering ξSσs and ξV σv separately is not enough and in order to
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Figure 8. (a) and (b): parameter space consistent with DM Relic density. Cyan region is not
allowed because in this region M2

ϕ < 0 (see eq. (2.7)) and we do not have a global vacuum. (c) and
(d): Rescaled DM-Nucleon cross section for the parameter space already constraind by DM relic
density. Hollow circles are excluded by direct detection constraint (3.15).

constrain two component DM models by direct detection experiments, one should combine
both signatures.

Now looking for the first order electroweak phase transition and GW, we scan over the
parameter space once more. In accordance with the DM results, we choose the same range
of the parameters as figure 8. The result is shown in figure 9.

In study of phase transition and GW, the relevant parameters are MS ,MV , and g. We
found that for around 14 percent of the parameter space scanned here, first order phase
transition can occur, generating a stochastic background of GWs. Most peaks of the GW
spectrum are detectable by LISA and BBO detectors.4

So far, we have studied DM phenomenology and phase transition separately. Now we
consider both aspects simultaneously which gives us figure 10. In this figure, we have used
the scatter points already obtained in the study of DM phenomenology, and saw if they also
produce first order phase transition and GWs. In general, the DM freeze-out temperature
TF ∼MDM/20 may be greater than nucleation temperature TN in some parameter points.

4For a new type of sensitivity curves for gravitational-wave signals from cosmological first order phase
transitions for LISA and BBO see [114–116].
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Figure 9. The peak of GW spectrum against frecuency. LISA and BBO sensitivities are also de-
picted.
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Figure 10. (a): Rescaled DM-Nucleon cross section VS DM mass. The scatter points are already
consistent with DM relic density (3.6) and direct detection (3.15) constraints. (b): GW peak VS
frequncy for the same points of the parameter space.

In this case, as the phase transition is not completed, the freeze-out can be affected. For
phenomenology of a late phase transition see [117]. However, for the parameter points in
figure 10, we have compared freeze-out temperature with nucleation temperature and find
out TF < TN where TF ∼ max(MS ,MV )/20. Therefore, this issue does not affect our result
and the DM properties would not be modified between TF and the present day, at least for
the parameter space considered in figure 10 (where 0.31 . TF /TN . 0.47).

As figure 10 implies, for some points in the parameter space, the model is consistent with
DM constraints, while at the same time generates first order electroweak phase transition
and GWs detectable by LISA and BBO. To be more explicit, we have chosen two benchmark
points given in table 1. In this table all relevant quantities, including independent parameters
of the model, DM properties, and phase transition parameters, are given.

For these benchmark points, the GW spectrum is depicted in figure 11. For both
benchmark points, around the peak, the dominated contribution of GW signal is sound
wave. For the first benchmark point, scalar DM is dominant, while for the second one, vector
DM makes most of DM relic density. The peak of the GW spectrum for both benchmark
points falls within the observational window of LISA.
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# λφS g MS (GeV) MV (GeV) Mϕ (GeV)

1 0.036 1.469 52.37 559.4 132.3
2 5.491 0.118 761.0 53.78 124.4

# ΩSh
2 ΩV h

2 ΩDMh
2 ξSσS (zb) ξV σV (zb)

1 1.09× 10−1 7.72× 10−4 1.10× 10−1 2.93× 10−3 2.29× 10−2

2 1.00× 10−3 1.12× 10−1 1.13× 10−1 2.99× 10−2 1.83× 10−5

# TC (GeV) TN (GeV) α β/H∗ (ΩGWh
2)max

1 135.9 78.19 0.257 187.2 3.71× 10−11

2 161.0 81.14 0.234 68.72 7.59× 10−11

Table 1. Two benchmark points with DM and phase transition parameters.
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Figure 11. GW spectrum for benchmark points of the table 1.

Finally, we should mention that sound wave contribution dominates for all scatter
points in figure 10 and it is almost indistinguishable from the sum of the three sources, at
least around the GW peak. However, far from the peak, this is not necessarily the case. For
example, after the fracture of the first benchmark curve around 0.1 HZ, the bubble collision
contribution will be dominated.

6 Conclusion

In this work we studied a two-component DM model as an extension of the SM with classical
scale symmetry. It realizes electroweak symmetry breaking through Gildener-Weinberg
mechanism and gives a natural solution to the hierarchy problem. The model consists three
new fields: a real scalar, a complex scalar, and a vector field which two of them, the real
scalar field and vector field, can play the role of DM. Our two-component DM model is
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obtained by adding them to the SM via the Higgs-portal. The Boltzmann equations for both
DM components were solved numerically and in order to determine a region of parameter
space that is consistent with Planck and PandaX-II data a scan over four dimensional
parameter space was performed.

After introducing the model and investigating DM phenomenology, we focused on the
phase transition dynamics. With the aim of exploring the nature and the strength of the
electroweak phase transition, the full finite-temperature effective potential of the model at
one loop level has been obtained. Despite the absence of a barrier in the zero-temperature
potential, it was demonstrated that the finite-temperature effects induce a barrier between
the symmetric and the broken phase vacua, and thereby give rise to a first-order electroweak
phase transition which can generate GWs.

The spectrum of these GWs can be described in terms of only four properties: the
bubble nucleation temperature TN , the strength parameter α, the transition rate parameter
β, and the bubble wall speed vw. These are all computable from the underlying particle
physics model and therefore are functions of the independent parameters of our model.
The space missions such as LISA and BBO could detect these GWs if the phase transition
took place at scale of electroweak symmetry-breaking. LISA and BBO are particle physics
experiments, as well as astrophysical observatories. Albeit, much should be done to realize
the goal of making LISA into a particle physics experiment to complement the Large Hadron
Collider (LHC). On the other hand, although continuing efforts at the LHC will be able to
examine some of the beyond Standard Models, there remain many that cannot be probed
through collider experiments on a timescale as good as LISA and BBO, if at all.

Our results indicate the model can survive DM relic density and direct detection
constraints, while at the same time produce GWs during the first order electroweak phase
transition. A positive GW signal at LISA and BBO would most likely point toward new
physics at the TeV scale such as the classically scale invariant potential studied here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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