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1 Introduction

The evaluation of Feynman integrals is a central problem one needs to address when
computing loop corrections in any perturbative quantum field theory (QFT). Modern
approaches to the calculation of loop corrections to various quantities in QFT proceed by
decomposing them into a sum of products of algebraic coefficients and master integrals.
The algebraic coefficients depend on the loop order, the quantity being computed and
the QFT under consideration. The master integrals, on the other hand, only depend on
the underlying kinematics and loop order. The evaluation of master integrals is thus an
interesting problem on its own.

Despite receiving a lot of attention in recent years, the calculation of Feynman integrals
still poses a major challenge in obtaining two-loop corrections for processes of great physical
interest. At the multi-leg and multi-loop frontier, the complete set of master integrals
required for the scattering of five massless particles has been computed [1–5], which has led
to a large number of new analytic two-loop amplitudes in both supersymmetric theories
and in QCD [3, 6–20].
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More recently, all planar master integrals relevant for the scattering of a massive
particle and four-massless ones were computed [21, 22]. These results have already allowed
the calculation of the two-loop QCD corrections to the ud̄→ W+bb̄ process [23] and the
production of a Higgs boson in association with a bb̄ pair [24] at leading color, as well
as the calculation of new two-loop form factors in planar N = 4 SYM [25]. Even more
recently we have also seen results for the two-loop helicity amplitudes for the production of
a W boson in association with two jets at leading color [26]. However, for other important
physical processes at hadron colliders, such as the production of a Z or Higgs boson in
association with two jets, as well as sub-leading color effects in the production of a W boson
in association with two jets, the planar integrals considered in refs. [21, 22] are not sufficient.
To extend the results of ref. [21] beyond the planar limit there are five new topologies of
master integrals that must be computed. These can be grouped into two sets: there are
three distinct hexa-box topologies, and two distinct double-pentagon topologies. While one
of the hexa-box topologies has been considered previously [27], in this paper we compute
for the first time the full set of hexa-box topologies.

Our calculation of the hexa-box master integrals follows the approach used in ref. [21],
which gives us detailed insight into the analytic structure of the master integrals but also
allows one to numerically evaluate the master integrals at any phase-space point. We start
by constructing differential equations for the master integrals [28–32], choosing a basis
of ‘pure’ master integrals [33] so that the differential equations take a particularly simple
‘canonical’ form [34], which only involves d log forms. In practice, we construct the basis with
a heuristic approach that is validated by constructing the differential equation and observing
the canonical form. Contrary to the massless five-point case [35], we find that the collection of
d log forms which appear in the differential equations is not given by the permutation closure
of those arising in the planar topologies [21]. Indeed, we find a new class of square root, not
associated to a momentum-space gram determinant. In order to determine the remaining
d log forms, we use the approach of ref. [21] and consider much simpler differential equations
where the propagators are put on shell. To obtain the analytic form of the differential
equation we use the numerical sampling method of ref. [36], which trivializes the integral
reduction of the differential equations and can be implemented over finite fields [37, 38].

Once the canonical differential equation is known, it is trivial to determine the so-called
‘symbol’ [39–41] of the master integrals, which gives valuable insight into the analytic
structure of the master integrals in a compact format. In a nutshell, these integrals evaluate
to multi-valued functions with complicated branch-cut structures, and the symbol encodes
the information about the position of all logarithmic singularities. The symbol is built
out of ‘letters’, which are algebraic functions of the kinematic variables that vanish at the
logarithmic singularities of the integrals. The symbol contains non-trivial information about
the analytic properties of the master integrals and scattering amplitudes. For instance,
the analytic form of the letters can be used to greatly simplify the calculation of loop
amplitudes [10, 11]. The symbols also encode the discontinuities of Feynman integrals,
which are constrained by physical considerations. As expected, we observe that the symbols
of the hexa-box integrals satisfy the Steinmann relations [42–46]. However, interestingly,
we find that the ‘extended Steinmann relations’ [47] are in general not satisfied.
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The differential equation can also be used to numerically evaluate the master integrals.
One approach would be to analytically solve the differential equation in terms of multiple
polylogarithms (MPLs). However, given the high number of variables and the weight of
the MPLs, for the hexa-box integrals we consider this would lead to lengthy expressions
which are specific to a given phase-space region and highly non-trivial to analytically
continue. Instead, we numerically solve the differential equations using generalized power
series [48, 49], a method which was already shown to be suitable for the planar two-loop
five-point one-mass integrals [21]. Compared to Monte-Carlo based approaches [50–54], the
numerical solution of the differential equation in terms of generalized power series allows to
obtain high-precision results (see also the approaches of refs. [55, 56]), which, for instance,
means that we can evaluate the integrals in singular regions of phase space to arbitrary
precision. To obtain numerical values for the hexa-box integrals, we determine a set of
initial conditions by requiring that the integrals are free of spurious branch cuts in their
Euclidean region. These initial conditions correspond to the value of the integrals at a
Euclidean phase-space point, and they were obtained to more than 100 digits with an
in-house code. We then use the code of ref. [49] to obtain high-precision numerical values
in different regions of phase space, which can themselves be used as initial conditions for
subsequent evaluations.

To facilitate the use of our results, we include a set of supplementary files which contain
all our analytic and numerical results. For each of the three hexa-box topologies, we include a
file with the definition of the pure basis, anc/*/*_pure_basis.m, and a file with a graphical
representation of the master integrals anc/*/*_graphs.m. The differential equations can
be assembled from the list of matrices in anc/*/*_connection.m and the alphabet in
anc/alphabet.m. We also include the file anc/usageExample.m which illustrates the use
of the supplementary files, and allows to compute the symbols of all master integrals to the
desired weight.

The paper is structured as follows. In section 2 we describe the kinematics relevant
for the master integrals we will be computing and introduce quantities such as Gram
determinants that will be important for the construction of the differential equations. In
section 3 we define the hexa-box topologies. Next, in section 4 we discuss the canonical
differential equations and present the pure bases for each topology. In section 5 we discuss
the symbol alphabet, the analytic form of the differential equations and some properties
of the symbols of the hexa-box integrals. Finally, in section 6 we discuss the numerical
solution of the differential equations, before we present our conclusions in section 7.

2 Scattering kinematics and notation

We consider the scattering of five particles, four of which are massless. We denote their
momenta by pi, i = 1, . . . , 5, which satisfy the momentum conservation ∑5

i=1 pi = 0 and,
without loss of generality, we take p2

1 6= 0, and p2
i = 0 for i = 2, . . . , 5. The Mandelstam

variables sij = (pi + pj)2 for arbitrary i and j can all be written as linear combinations of
the six variables

~s = {p2
1 , s12 , s23 , s34 , s45 , s15} . (2.1)
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These six variables are however not sufficient to specify a point in the five-particle phase
space. Indeed, this space is separated into two halves which are mapped onto each other by
a space-time parity transformation. The parity label of each point can be captured by the
parity-odd contraction with the Levi-Civita tensor

tr5 = 4iεαβγδ pα1 p
β
2p

γ
3p
δ
4 . (2.2)

A ubiquitous set of quantities that appears when describing the kinematics of a scattering
process are the Gram determinants one can form with (subsets of) the momenta pi. They
are given by the determinants of the Gram matrix G(q1, . . . , qn), which we define as

G(q1, . . . , qn) = 2V T (q1, . . . , qn) g V (q1, . . . , qn) = 2 {qi · qj}i,j∈{1,...,n} , (2.3)

where V (q1, . . . , qn) is a 4× n matrix whose columns are the vectors qi. For concreteness,
in this paper we use the metric g = diag(+,−,−,−), which we extend with further minus
signs when working with D-dimensional momenta. It is clear from eq. (2.3) that the Gram
determinants are just polynomials in the Mandelstam variables. We will be particularly
interested in the three-point Gram determinant

∆3 = − detG(p1, p2 + p3)
= s2

23 + s2
45 + p4

1 − 2s23s45 − 2p2
1s23 − 2p2

1s45

= λ(p2
1, s23, s45) ,

(2.4)

where λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc is the Källén function, and in the five-point
Gram determinant

∆5 = detG(p1, p2, p3, p4)
= (s12s15 − s12s23 − p2

1s34 − s15s45 + s34s45 + s23s34)2

− 4s23s34s45(p2
1 − s12 − s15 + s34) .

(2.5)

The five-point Gram determinant ∆5 is closely related to the tr5 defined in eq. (2.2), as we
have that

∆5 = tr2
5 . (2.6)

It is then very tempting to identify tr5 with
√

∆5, but one must take care with this
identification. While tr5 is a square root of ∆5, the branch choice (correspondingly the
sign) is fixed by the underlying set of momenta defining the phase-space point. In contrast,
the branch choice/sign of

√
∆5 can conveniently be fixed by the standard prescription of

the square-root map. With this convention
√

∆5 depends only on the sij themselves and
not on tr5. Consequently, tr5 is odd under parity transformations while

√
∆5 is invariant,

and to relate tr5 to
√

∆5 we must encode the different choices of branch of the square root.
To avoid these complications, and because it is sufficient for the purpose of this paper, we
will avoid referring to tr5 and instead use ∆5 and

√
∆5.
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Figure 1. Two-loop five-point one-mass non-planar hexa-box topologies. The thick external line
with label 1 denotes the massive external leg.

Another quantity that will appear throughout this paper and which is closely related
to ∆5 is

Σ5 = (s12s15 − s12s23 − s15s45 + s34s45 + s23s34)2 − 4s23s34s45(s34 − s12 − s15) . (2.7)

In particular we note that in the limit where p2
1 → 0 the two quantities coincide, that is

Σ5 = ∆5 for p2
1 = 0 ,

as is manifest from eqs. (2.5) and (2.7). We will see below how this polynomial appears in
the construction of the pure basis.

Given a phase-space point P = {p1, p2, p3, p4, p5}, it is natural to consider the points
obtained by permuting the massless legs. More formally, let us consider the different
points σ(P ) = {p1, pσ(2), pσ(3), pσ(4), pσ(5)} where σ ∈ S4 corresponds to a permutation
of {2, 3, 4, 5}. The action of σ on the sij is trivially defined as σ(sij) = (pσ(i) + pσ(j))2.
While ∆5 is invariant under these permutations,1 ∆3 is not. We find that there are three
independent permutations of ∆3, namely

∆(1)
3 = λ(p2

1, s23, s45) , ∆(2)
3 = λ(p2

1, s24, s35) and ∆(3)
3 = λ(p2

1, s25, s34) . (2.8)

The polynomial Σ5 defined in eq. (2.7) is also not invariant under a general σ ∈ S4, and we
find that it appears in six different permutations, which we denote by Σ(k)

5 , for k = 1, . . . , 6,
with Σ(1)

5 = Σ5.

3 Hexa-box topologies

There are three non-planar hexa-box topologies with a single massive external leg that are
not related by a relabelling of the external momenta. These three topologies are depicted
in figure 1. We denote them by I

[f ]
hb , with f ∈ {mzz, zmz, zzz} distinguishing the mass

assignment for the three external legs of the hexagon sub-loop: they can all have zero mass
1As is

√
∆5, but we note that tr5 is not!
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(zzz), the middle leg can be massive (zmz), or the first leg can be massive (mzz). Each
topology defines a linear space Y [f ] of integrals corresponding to linear combinations of
integrals of the form

I
[f ]
hb [~ν] =

∫ dD`1
iπD/2

dD`2
iπD/2

ρ−ν9
9,f ρ−ν10

10,f ρ−ν11
11,f

ρν1
1,f ρ

ν2
2,f ρ

ν3
3,f ρ

ν4
4,f ρ

ν5
5,f ρ

ν6
6,f ρ

ν7
7,f ρ

ν8
8,f

, (3.1)

where we set D = 4 − 2ε. Each element in this spanning set is distinguished by a set
of integer values ~ν, with the restriction that ν9, ν10, ν11 ≤ 0. Concretely, the propagator
variables (ρi,f , i = 1, . . . , 8) and the irreducible scalar products (ρi,f , i = 9, . . . , 11) are
defined for each topology as

~ρmzz =
{
`21, (`1 + p1)2, (`1 + p1 + p2)2, (`1 + p1 + p2 + p3)2, (`1 + `2 − p5)2, (`1 + `2)2,

`22, (`2 + p4)2, (`2 + p1)2, (`1 + p4)2, (`2 + p1 + p2)2
}
,

~ρzmz =
{
`21, (`1 + p5)2, (`1 + p5 + p1)2, (`1 + p5 + p1 + p2)2, (`1 + `2 − p4)2, (`1 + `2)2,

`22, (`2 + p3)2, (`2 + p5)2, (`1 + p3)2, (`2 + p5 + p1)2
}
,

~ρzzz =
{
`21, (`1 + p2)2, (`1 + p2 + p3)2, (`1 + p2 + p3 + p4)2, (`1 + `2 − p5)2, (`1 + `2)2,

`22, (`2 + p1)2, (`2 + p2)2, (`1 + p1)2, (`2 + p2 + p3)2
}
. (3.2)

In figure 1, where we assume that all external momenta are incoming, we include the index
associated with each propagator and the routing of the loop momenta `1 and `2.

The integrals specified in eq. (3.1) define a space of integrals Y [f ] associated with each
topology. In this paper we compute a basis of these spaces, i.e., a set of master integrals
associated with each topology. The projection of any element of this space onto the basis
of master integrals can be algorithmically constructed with integration-by-parts (IBP)
identities [57–59]. The dimensions of the bases are

dim(Y [mzz]) = 86, dim(Y [zmz]) = 86, dim(Y [zzz]) = 135. (3.3)

While it is trivial to find some basis for each of these spaces, one of the main results of this
paper will be the construction of pure bases, which have particularly nice properties. This
will be discussed in detail in the next section.

Even though the dimensions given in eq. (3.3) are rather large, there is a substantial
overlap between these different spaces, as the same master integrals can appear in different
topologies. Furthermore, some of the master integrals have been computed previously: the
planar five-point integrals were given in ref. [21], and the integrals associated with Feynman
diagrams with four external legs in refs. [60–62]. The master integrals that appear for the
first time in the three non-planar hexa-box topologies are depicted in figure 2. Finally, we
note that a full set of master integrals for topology I [mzz]

hb [~ν] has already been computed
in ref. [27].

– 6 –
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3 masters 3 masters 3 masters

3 masters 3 masters 3 masters 6 masters

1 master 4 masters

Figure 2. Propagator structures of two-loop five-point non-planar master integrals in the hexa-box
topologies.

4 Canonical differential equation and pure basis

4.1 Canonical differential equation

A particularly powerful method to evaluate Feynman integrals with many scales is by solving
the differential equations they satisfy [28–32, 34]. Let I be a vector containing the set of
master integrals associated with a given topology (such as the mzz, zmz or zzz hexa-boxes).
We consider the master integrals as functions of the Mandelstam variables ~s, and treat the
dimensional regulator ε = (4−D)/2 as a parameter. The vector I satisfies the differential
equation

dI = M I , (4.1)

where the connection M is a matrix of differential forms which depends rationally on the
dimensional regulator ε. The form of the differential equation (4.1) follows from the fact that
differential operators generate linear combinations of elements in the space Y [f ] associated
with each topology, which can then be mapped back into the basis I. For complicated enough
integrals, this procedure can be a bottleneck in determining the differential equations.

The construction of the differential equation can be simplified in two ways. First, it is
clear that the form of the connection M depends on the basis I, and M will be particularly
simple if a basis of so-called ‘pure’ functions is chosen [34]. For such a basis, the connection
can be written as

M = εM , M =
∑
α

Mα d log (Wα) , (4.2)

where the elements of the matrices Mα are rational numbers and the Wα are algebraic
functions of the Mandelstam variables ~s, known as the ‘letters’ of the ‘(symbol) alphabet’

– 7 –
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A associated with the topology under consideration. If the connection M takes the form
given in eq. (4.2), the differential equation is said to be in canonical form.

The second simplification is in the way the connection M is determined once a pure
basis has been found [3, 21, 36]. Instead of performing fully analytic IBP reductions for the
whole system, we determine the new letters from much simpler ‘cut’ differential equations,
where all integrals that do not contain the set of cut propagators are set to zero. Once all
the letters Wα have been determined, the matrices Mα are computed from fully numerical
IBP reductions.

In the remainder of this section, we will discuss the construction of the pure bases
of master integrals for the non-planar five-point one-mass integrals of figure 2. The
determination of the associated connections M will be left to the next section. In both cases
we will find it useful to consider a ‘random-direction differential equation’ [21], which allows
us to replace the connection M by an algebraic function of the kinematics and dimensional
regulator. More explicitly, we choose an arbitrary direction ~c in the six-dimensional space
of the Mandelstam variables and compute

~c · ∇~s I = C(ε, ~s )I , (4.3)

where∇~s = { ∂
∂p2

1
, ∂
∂s12

, . . .} is the gradient operator with respect to the Mandelstam variables
in eq. (2.1). For a pure basis, i.e., in the case of a canonical differential equation, C(ε, ~s ) is
given by

C(ε, ~s ) = ε
∑
α

Mα ~c · ∇~s log(Wα) , (4.4)

and, assuming the vector ~c is generic, it captures the dependence of M on the Mα and Wα.
In practice, we find the matrix C(ε, ~s ) particularly useful as it can be evaluated on numerical
kinematic configurations, by performing numerical IBP reductions of the left-hand side of
eq. (4.3).

4.2 Pure basis

The construction of a pure basis for multi-scale Feynman integrals remains challenging,
despite much recent progress [3, 4, 21, 36, 63–69]. Moreover, starting from five external
legs, four-dimensional analyses are often not sufficient, see e.g. refs. [3, 4]. In this section we
discuss how a basis of pure master integrals for all the integrals in figure 2 was constructed.
As we explain below, this process requires the calculation of numerical IBP reductions.
These were obtained with two publicly available codes, Kira 1.2 [70] (see also [71]) and
FIRE6 [72]. We remark that there exist other finite-field-based methods for numerical IBP
reduction such as refs. [73, 74].

Throughout this section, we will often use the functions µij when constructing pure
integrals. These correspond to contractions of the components of the loop momenta beyond
four dimensions, which we denote `(D−4)

i . Explicitly,

µij = `
(D−4)
i · `(D−4)

j . (4.5)

These functions can also be written as polynomials in the ρi,f and the Mandelstam variables
~s, see eqs. (2.1) and (3.2). The latter representation is more convenient if one wants to
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Figure 4. Double-box with 4 master integrals.

rewrite integrals defined with the help of these functions as members of the vector spaces Y [f ].
For convenience and to remove any ambiguity related to conventions, we provide a routine
to compute the functions µ11, µ22 and µ12 in the supplementary file anc/determinants.m.

The integrals listed in figure 2 can be grouped into two classes: the cases for which the
number of master integrals is the same as in the massless limit p2

1 → 0, and the cases with
an increased number of master integrals. For instance, for the three independent hexa-box
topologies on the top row of figure 2 we find that the number of master integrals is the
same. In such cases, the trivial generalization of the pure basis from the massless case [36]
to the massive case gives a complete set of pure master integrals. Despite not being the
main difficulty in constructing a complete basis of master integrals, we note that the pure
bases we present here for these integrals (which we list below) are particularly compact.

The cases for which the master-integral count changes are more challenging to handle.
These cases are the penta-box diagram depicted in figure 3 and the double-box integral shown
in figure 4. In order to determine a basis of pure integrals (beyond those corresponding
to generalizations of the massless case) we use a similar approach in both cases. We
start by constructing educated guesses for pure master integrals by studying their leading
singularities [75], the goal being to check if they can be written as dlog forms with unit
leading singularity (see e.g. [76]). In complicated cases, this analysis can be done under the
condition that all of the inverse propagators are set to zero (i.e., on their ‘maximal cut’).
Working on the maximal cut has another benefit: the differential equations on the maximal
cut are much simpler, as all integrals that do not involve all the cut propagators are set
to zero. We thus verify if, under these cut conditions, we obtain a canonical differential
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equation of the form of eq. (4.2) or eq. (4.4). This can be done fully numerically, by setting
the Mandelstam variables and the dimensional regulator to generic numerical values. In fact,
to be more precise, at this stage we simply check that the ε dependence factorizes in the
matrix C(ε, ~s ) of eq. (4.4), and we cannot yet guarantee that it only involves dlog forms and
matrices of rational numbers. Nevertheless, for now we assume that ε factorization implies
purity of the basis we are constructing (in the next section we discuss how this assumption
is verified). Once we have built enough pure master integrals on the maximal cut, we start
releasing cut conditions and check, numerically, if the ε dependence still factorizes in the
differential equation. If it is not the case, we correct the candidate pure integral with terms
proportional to the propagator which is no longer set to zero.

Either by generalizing the pure integrals from p2
1 = 0 to p2

1 6= 0 or by following the steps
above, we constructed bases of master integrals for all the diagrams depicted in figure 2.
Before listing the integrands corresponding to the pure bases, let us discuss a particular
example in more detail, as it will illuminate the appearance of the (square-root of the)
polynomial in eq. (2.7). We consider the double-box integral of figure 4,

Idb =
∫ dD`1
iπD/2

dD`2
iπD/2

N (1)

(`1 + p2)2(`1 + p2 + p3)2(`1 + `2 − p5)2(`1 + `2)2`22(`2 + p1)2 . (4.6)

By analogy with the planar case [34, 76], given that it is a double-box integral we expect
that the integral should be pure for some function N (1) that depends only on the external
kinematics and, furthermore, that it should be possible to compute this function by studying
the leading singularity of the scalar integral in exactly four dimensions. In order to do this,
we consider a loop-by-loop approach and write

Idb ∼ N (1)
∫ d4`2
`22(`2 + p1)2

(∫ d4`1
(`1 + p2)2(`1 + p2 + p3)2(`1 + `2 − p5)2(`1 + `2)2

)
, (4.7)

where we did not keep track of conventional numerical normalization factors. The innermost
integral over the loop momentum `1 corresponds to a so-called ‘two-mass easy’ box in four
dimensions. It is well know that such an integral has a dlog representation [77], and that
its leading singularity is (see e.g. [78])

Rbox = 1
(`2 − p2 − p3)2(`2 + p1 + p3 + p4)2 − (`2 − p2)2(`2 + p1 + p4)2 . (4.8)

To proceed, we use the factorization properties of this leading singularity [79], i.e. we define
momenta q and q̄ such that

q · (`2 − p2) = 〈p3|(/̀2 − /p2)|p5] and q̄ · (`2 − p2) = [p3|(/̀2 − /p2)|p5〉, (4.9)

which allow us to factorize the denominator of Rbox,

Rbox = 1
(q · [`2 − p2]) (q̄ · [`2 − p2]) . (4.10)

We are now left with the task of determining N (1) such that the differential form

ω = N (1) d4`2
(`2)2(`2 + p1)2(q · [`2 − p2]) (q̄ · [`2 − p2]) (4.11)
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has unit leading singularity. This can be achieved in a simple and enlightening manner by
using the embedding-space formalism of ref. [80], see also refs. [78, 81] for applications to
Feynman integrals.

This formalism upgrades the 4-dimensional form to a form in a 6-dimensional projective
space which is integrated over the light cone. We label points in the 6-dimensional embedding
space with capital letters. A vector V in embedding space is written in terms of a four-
dimensional vector v and two light-cone components, i.e.,

V = (v, V +, V −) . (4.12)

The scalar product between two embedding-space vectors V and W is defined as

(VW ) = −2(v · w)− V +W− − V −W+ . (4.13)

We then introduce the following vectors in embedding space:
Y = (`,−`2, 1), X0 = (0, 0, 1), X1 = (−p1,−p2

1, 1),

Xq =
(
−1

2q, q · p2, 0
)
, Xq̄ =

(
−1

2 q̄, q̄ · p2, 0
)
.

(4.14)

Note that as q and q̄ are massless, all of these vectors square to zero with the scalar product
of (4.13). The Y vector corresponds to the loop momentum, and the Xi vectors correspond
to the external momenta in each denominator. In these variables, the differential form
in (4.11) can be rewritten as

ω = d6Y δ ((Y Y ))
vol(GL(1))

N (1)

(Y X0)(Y X1)(Y Xq)(Y Xq̄)
, (4.15)

which can be analyzed in exactly the same way as the integrands of one-loop integrals were
studied in ref. [78]. In particular, to compute the leading singularity of this integral we
simply need to change variables to the propagators, which are now linear in Y , and then
impose the conditions (Y XI) = 0, for I = 0, 1, q, q̄. Since ω only has simple poles, this
amounts to computing the Jacobian determinant of the change of variables and imposing
the conditions (Y XI) = 0. The leading singularity of ω is then

Rω = N (1)√
Σ(2)

5

, (4.16)

where

Σ(2)
5 = det


(X0X0) (X0X1) (X0Xq) (X0Xq̄)
(X1X0) (X1X1) (X1Xq) (X1Xq̄)
(XqX0) (XqX1) (XqXq) (XqXq̄)
(Xq̄X0) (Xq̄X1) (Xq̄Xq) (Xq̄Xq̄)

 ,

= det


0 p2

1 −q · p2 −q̄ · p2
p2

1 0 q · p4 q̄ · p4
−q · p2 q · p4 0 −1

2q · q̄
−q̄ · p2 q̄ · p4 −1

2q · q̄ 0

 ,

= (p2
1(s12 − s45)− s12(s15 + s23) + s15s45 + s23s34 − s34s45)2

+ 4s12s23(p2
1 − s15)(s12 − s34 − s45) .

(4.17)
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This expression is a permutation of the polynomial Σ5 defined in eq. (2.7), corresponding
to p4 ↔ p5. To obtain the representation of Σ(2)

5 in terms of Mandelstam invariants, we
used that

q · q̄ = −s35 , (4.18)
(q · pa)(q̄ · pb) = tr+ (3, a, 5, b) , (4.19)

where
tr±(i1 . . . in) = tr

([1± γ5
2

]
/pi1
· · · /pin

)
, (4.20)

which can be readily written in terms of Mandelstam invariants (see e.g. eq. (5.10) of ref. [21]).
In summary, given the above calculation we expect that the integral

Idb =
∫ dD`1
iπD/2

dD`2
iπD/2

√
Σ(2)

5
(`1+p2)2(`1+p2+p3)2(`1+`2−p5)2(`1+`2)2`22(`2+p1)2 (4.21)

should be pure. Through similar arguments, we can build pure candidates for all the master
integrals required for the diagrams in figure 2, and verify numerically that they satisfy a
differential equation where the ε dependence factorizes from the connection.

We close this section by listing the candidate pure basis we have computed for each of
these diagrams. In the following list, all expressions for the inverse propagators ρi can be read
from the associated diagrams. We note that the same information can be found in the supple-
mentary files anc/f/f_pure_basis.m for f ∈ {mzz, zmz, zzz}, and we also include a pictorial
representation of the bases in anc/f/f_graphs.m which was generated using ref. [82].

Hexa-boxes.

1

54

3

2

ℓ1

ℓ2

1

6

5

7

8

4

3

2

N (1)
hb,mzz = ε4

√
∆5 (`1−p4)2µ11 ,

N (2)
hb,mzz = ε4

√
∆5 (`1−p5)2µ11 ,

N (3)
hb,mzz = ε4s12s23

[
(`1−p4)2(`1−p5)2−ρ1ρ4

]
.

(4.22)

5

43

2

1

ℓ1

ℓ2

1

6

5

7

8

4

3

2

N (1)
hb,zmz = ε4

√
∆5 (`1−p3)2µ11 ,

N (2)
hb,zmz = ε4

√
∆5 (`1−p4)2µ11 ,

N (3)
hb,zmz = ε4

[
s12s15−p2

1s34
][

(`1−p3)2(`1−p4)2−ρ1ρ4
]
.

(4.23)

2

51

4

3

ℓ1

ℓ2

1

6

5

7

8

4

3

2

N (1)
hb,zzz = ε4

√
∆5 (`1−p1)2µ11 ,

N (2)
hb,zzz = ε4

√
∆5 (`1−p5)2µ11 ,

N (3)
hb,zzz = ε4s23s34

[
(`1−p1)2(`1−p5)2−ρ1ρ4

]
.

(4.24)
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Penta-boxes.

2

5

43

ℓ1

ℓ2
1

6

5

7

8

3

2 1

N (1)
pb,1 = ε4

[
s23(s34−s12−s15+p2

1)(`1−p1)2+C(1)
pb,1 ρ1

]
,

N (2)
pb,1 = ε4

[
s23s12(`1−p5)2+C(2)

pb,1 ρ1
]
,

N (3)
pb,1 = ε4s23

[
(`1−p1)2(`1−p5)2−ρ1(`1−p1−p5)2

]
,

N (4)
pb,1 = ε3

√
∆5 p

2
1
µ12+µ11

ρ8
,

N (5)
pb,1 = ε4

√
∆5µ12 ,

N (6)
pb,1 = ε4

√
∆5µ11 .

(4.25)

3

5

12
ℓ1 + p1

ℓ2

4

5

6

8

7

2

3 4

N (1)
pb,2 = ε4

[
s23s34(`1−p4)2+Cpb,2 ρ4

]
,

N (2)
pb,2 = ε4

√
∆5µ11 ,

N (3)
pb,2 = ε4s23

[
(`1−p4)2(`1−p5)2−`21ρ4

]
.

(4.26)

1

5

32

ℓ1

ℓ2
1

6

5

7

8

3

2 4

N (1)
pb,3 = ε4

[
(s12s15−s34p

2
1)(`1−p4)2+Cpb,3 ρ1

]
,

N (2)
pb,3 = ε4

√
∆5µ11 ,

N (3)
pb,3 = ε4(s12−p2

1)
[
(`1−p4)2(`1−p5)2−ρ1(`1−p4−p5)2

]
.

(4.27)

5

4

21

ℓ1

ℓ2
1

6

5

7

8

3

2 3

N (1)
pb,4 = ε4

[
s15s45(`1−p3)2+Cpb,4 ρ1

]
,

N (2)
pb,4 = ε4

√
∆5µ11 ,

N (3)
pb,4 = ε4(s15−p2

1)
[
(`1−p3)2(`1−p4)2−ρ1(`1−p3−p4)2

]
,

(4.28)

with

C
(1)
pb,1 = 1

2
(
s12(s23 − s15) + p2

1(s12 − s45) + s15s45 − s34(s23 + s45)
)
,

C
(2)
pb,1 = −s23s34 − C(1)

pb,1 ,

Cpb,2 = −1
2
(
s12 (s23 − s15) + p2

1s34 + s23s34 − s45 (s34 − s15)
)
,

Cpb,3 = −1
2
(
s12 (s23 + s15)− s34

(
p2

1 + s23 − s45
)
− s15s45

)
,

Cpb,4 = 1
2
(
s12 (s23 − s15) + s34 (s45 − s23)− s15s45

)
.

(4.29)
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Double-boxes.
1

54

3

2

3

2
67

8
5

ℓ1 + p1

ℓ2 Ndb,1 = ε4
√

∆5 . (4.30)

2

51

4

3

3

2
67

8
5

ℓ1 + p2

ℓ2

N (1)
db,2 = ε4

√
Σ(2)

5 ,

N (2)
db,2 = ε4

1
8
{

tr
[
(/̀2−/p2)/p3/p1/p5

]
+tr

[
(/̀2+/p1+/p4)/p3/p1/p5

]
+8
[
(`2+p1)2−`22

]
(s12−s34−s45)

}
,

N (3)
db,2 = ε3

√
∆5µ12

( 1
ρ7

+ 1
ρ8

)
,

N (4)
db,2 = ε3

[
p2

1
ρ7

[
(`2−p2−p3)2(`2+p1+p3+p4)2

−(`2−p2)2(`2+p1+p4)2
]
+C(4)

db,2

]
, (4.31)

with

C
(4)
db,2 = (s23 − s45 − p2

1)ρ2ρ5
ρ3
− (s12 + s15)ρ3ρ6

ρ2
+ 1
ε

(1− 2ε)(1− 3ε) p2
1

s12 − p2
1
ρ3ρ5

+ 1
ε2

(1− 2ε)(2− 3ε)(1− 3ε) p2
1

(s12 − p2
1)s12

ρ3ρ5ρ7.

(4.32)

5 Analytic differential equations

Having constructed bases of master integrals for which the ε dependence factorizes in the
differential equations, we now construct the analytic form of the connections to verify that
they are indeed of the form given in eq. (4.2). We will assume that ε factorization implies the
form of eq. (4.2), which we take as an ansatz. After determining the algebraic functions Wα

that constitute the letters of the alphabet of each topology, we will then fit the matrices of
rational numbers Mα from numerical evaluations of the differential equations. The success
of this procedure will both confirm that the bases of master integrals introduced in the
previous section are indeed pure and give us the analytic form of the differential equations.

5.1 The symbol alphabet

Our strategy for determining the symbol alphabet is the same as the one used in ref. [21],
where we used numerical evaluations of the differential equations and cut differential
equations to reconstruct the full symbol alphabet of each topology. The random-direction
differential equation defined in eq. (4.3) will play a central role in this procedure.
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The first question we can ask about the symbol alphabet is how many letters it has. To
determine the dimension of the symbol alphabet, we compute the matrix C(ε, ~s) at enough
random phase-space points ~sk so that the entries of the matrices C(ε, ~sk) become linearly
dependent for different k (we refer the reader to ref. [21] for a very detailed description of
the approach). We find

dim
(
A[mzz]

)
= 39 , dim

(
A[zmz]

)
= 56 , dim

(
A[zzz]

)
= 63 . (5.1)

The next step is to obtain analytic expressions for the letters in the alphabet of each
topology. We start from the alphabet of the planar integrals that was determined in
ref. [21]. This alphabet should be completed by the letters obtained by considering all the
permutations of the massless external legs. These permutations are trivial to construct, but
we must remove the ones that are not independent. Through this procedure, we obtain a
set of 156 independent letters. We can then verify that the space spanned by the 39 letters
of the mzz alphabet is included in the space spanned by the 156 letters we constructed by
closing the planar alphabet under all permutations. This is not true, however, for the zmz
and zzz alphabets, which means we are missing some letters for these two topologies.

Up to permutations, there are four missing letters. One of them appears in a four-point
topology and is available in the literature [61, 62]. To determine the three missing letters,
we analyze the differential equations for the new five-point one-mass non-planar integrals
depicted in figure 2. We find that the three new letters appear in the last topology of
figure 2. In fact, it is sufficient to study the differential equations for the associated integrals
on their ‘maximal cut’. In practice, this means that we can work modulo integrals which
do not have all six propagators of this topology, which greatly simplifies the form of the
differential equation. As a further simplification, we consider the differential equation on a
univariate slice [10, 11], that is along a line in phase-space where the Mandelstam variables
depend linearly on a single variable. We find that the new letters are simple functions
depending on the square root of the polynomial Σ(1)

5 defined in eq. (2.7). Before listing the
remaining ones, we comment on how we organize the complete symbol alphabet.

As noted in section 3, when computing two-loop five-point one-mass amplitudes we
must consider other hexa-box topologies corresponding to permutations of the massless
external momenta of the thee topologies considered here. In order to obtain the associated
letters, we complete the new letters by including their image under these transformations.
We find an alphabet with 204 letters.

Up to permutations, there are three different square roots that appear in our symbol
letters:

√
∆3,
√

∆5 and
√

Σ5, defined respectively in eqs. (2.4), (2.5) and (2.7). While
Feynman integrals must be invariant under a flip of the sign of the square-roots, this
invariance might be broken by the definition of the pure basis. The operations of flipping
the sign of each square root compose to form a group, which is known in the mathematics
literature as a ‘Galois group’. To organize the letters, we choose them to have simple
transformation properties under each element of this group. That is, we choose letters
that either map onto themselves or their reciprocal when the signs of the square roots
are flipped. We find that there are 127 letter which are Galois invariant, and 77 which
transform non-trivially under the Galois group.
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As the alphabet is closed under permutations by construction, we can group the letters
into permutation orbits starting from a generating set of letters. We denote as S4 the group
of permutations of the four massless momenta. A given generating letter may be invariant
under some permutation of a subset of the massless momenta, and hence it is sufficient to
consider equivalence classes defined by these groups. We denote such a set of inequivalent
permutations as S4/G, where G is the sub-group of S4 which leaves the given generator
invariant. G is in general a product of permutation groups, which for example we denote
as S3[3, 4, 5] for the set of permutations of legs 3, 4 and 5. As in ref. [21], we organize the
alphabet first by the Galois properties of the letters, and then by their mass dimension.
Several letters can be written in a very compact form by using the symbol tr± defined in
eq. (4.20).2 With these notational devices in hand, the Galois invariant letters are

W1 = p2
1 ,

{W2, . . . ,W5} = {σ (s12) : σ ∈ S4/S3[3, 4, 5]} ,

{W6, . . . ,W11} = {σ (s23) : σ ∈ S4/(S2[2, 3]× S2[4, 5])} ,

{W12, . . . ,W15} = {σ (2 p1 · p2) : σ ∈ S4/S3[3, 4, 5]} ,

{W16, . . . ,W27} = {σ
(
2 p2 · (p3 + p4)

)
: σ ∈ S4/S2[3, 4]} ,

{W28, . . . ,W33} = {σ
(
tr+(1 2 1 5)

)
: σ ∈ S4/(S2[2, 5]× S2[3, 4])} ,

{W34, . . . ,W45} = {σ
(
tr+(1 2 1 [4 + 5])

)
: σ ∈ S4/S2[4, 5]} ,

{W46, . . . ,W57} = {σ
(
tr+(1 [2 + 3] 4 [2 + 3])

)
: σ ∈ S4/S2[2, 3]} ,

{W58, . . . ,W69} = {σ
(
tr+(1 2 [4 + 5] [2 + 3])

)
: σ ∈ S4/S2[4, 5]} ,

{W70, . . . ,W93} = {σ
(
tr+(1 2 3 4)− tr+(1 2 4 5)

)
: σ ∈ S4} ,

{W94, . . . ,W117} = {σ
(
tr+(1 2 1 [1 + 5] 4 [1 + 5])

)
: σ ∈ S4} .

(5.2)

We stress that the letters in (5.2) which make use of tr+ are non-trivially invariant under
the
√

∆5 → −
√

∆5 Galois transformation. The letters with non-trivial Galois properties are

{W118, . . . ,W123} =

σ
s12 + s13 +

√
∆(1)

3

s12 + s13 −
√

∆(1)
3

 : σ ∈ S4/(S2[2, 3]× S2[4, 5])

 ,

{W124, . . . ,W129} =

σ
s12 − s13 +

√
∆(1)

3

s12 − s13 −
√

∆(1)
3

 : σ ∈ S4/(S2[2, 3]× S2[4, 5])

 ,

{W130, . . . ,W137} =
{
σ

(tr+(1 2 3 4)
tr−(1 2 3 4)

)
: σ ∈ S

}
,

2We note a subtlety in representing the letters in terms of tr±. If expanded in terms of Mandelstam
invariants, the expression involves tr5, and not

√
∆5. These two expressions behave differently under

permutations. In our alphabet (and supplementary files), we make the replacement tr5 →
√

∆5 and then
build the remaining letters via permutations.
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{W138, . . . ,W161} =
{
σ

(tr+(1 5 3 [1 + 2])
tr−(1 5 3 [1 + 2])

)
: σ ∈ S4

}
,

{W162, . . . ,W185} =

σ
s12s23 + s23s34 − s34s45 + s45s15 − s12s15 +

√
Σ(1)

5

s12s23 + s23s34 − s34s45 + s45s15 − s12s15 −
√

Σ(1)
5

 : σ ∈ S4

 ,

{W186, . . . ,W188} =
{
σ

(
Ω−−Ω++

Ω−+Ω+−

)
: σ ∈ S4/(S2[2, 3]× S2[4, 5]× S2[s23, s45])

}
,

{W189, . . . ,W194} =
{
σ

(
Ω̃−−Ω̃++

Ω̃−+Ω̃+−

)
: σ ∈ S4/(S2[3, 4]× S2[2, 5])

}
, (5.3)

where

Ω±± = s12s15 − s12s23 − s15s45 ± s34

√
∆(1)

3 ±
√

∆5 ,

Ω̃±± = p2
1s34 ±

√
∆5 ±

√
Σ(1)

5 ,

(5.4)

and the set of permutations S is given by

S =
{
{1, 2, 3, 4, 5}, {1, 2, 3, 5, 4}, {1, 2, 4, 3, 5}, {1, 2, 4, 5, 3},
{1, 2, 5, 3, 4}, {1, 3, 2, 4, 5}, {1, 3, 2, 5, 4}, {1, 4, 2, 5, 3}

}
.

(5.5)

Finally, the square roots in the problem are also letters

{W195, . . . ,W197} =
{
σ

(√
∆(1)

3

)
: σ ∈ S4 S4/(S2[2, 3]× S2[4, 5]× S2[s23, s45])

}
,

W198 =
√

∆5 ,

{W199, . . . ,W204} =
{
σ

(√
Σ(1)

5

)
: σ ∈ S4/(S2[3, 4]× S2[2, 5])

}
.

(5.6)

We finish with two comments. First, the new letters that cannot be obtained from
the closure of the planar alphabet under permutations are generated by W58, W162, W189
and W199. W58 appears in four-point integrals [61, 62], and the remaining three letters
appear for the first time in the last five-point topology in figure 2. Second, the complete
alphabet can be found in the supplementary file anc/alphabet.m, written explicitly in
terms of Mandelstam invariants and the square roots of the polynomials ∆3, ∆5 and Σ5
and their permutations. The later are given explicitly in the file anc/roots.m.

5.2 Analytic differential equations from numerical samples

Once the alphabet has been determined, we take eq. (4.4) as an ansatz, where we assume
the matrices Mα to be matrices of rational numbers. Using the same numerical evaluation
of the differential equations which were used to determine the dimensions of the symbol
alphabet quoted in eq. (5.1), and assuming our ansatz is complete, we can determine the
Mα. This can be done through linear algebra as detailed in ref. [21]. For each of the three
non-planar hexa-box topologies, we have successfully determined the matrices Mα. This
confirms that the connections take the form given in eq. (4.2), which in turn confirms that
the bases we have constructed are indeed pure.
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The matrices that allow to reconstruct the analytic form of the differential equations
we have obtained can be found in the supplementary files anc/f/f_connections.m, for
f ∈ {mzz, zmz, zzz}. We provide a Mathematica example file anc/usageExample.m, that
assembles the differential equation for each topology in terms of the alphabet quoted above.

5.3 Symbols of non-planar hexa-box integrals

Having confirmed that we have pure bases of master integrals for the three hexa-box
topologies, and with the analytic differential equations in hand, we can now study some of
the analytic properties of the master integrals by constructing their so-called symbol [39].

We start by normalizing all master integrals so that their Laurent expansion around
ε = 0 has no negative powers. It then follows from the form of the canonical differential
equation discussed in section 4.1 that

I =
∑
i=0

I(i)εi , I(i+1) =
∫ ∑

α

Mαd log(Wα) I(i) . (5.7)

Furthermore, the derivative of I(0) vanishes, which means it has to be a constant vector.
The primitive I(n) at arbitrary order n, can be written as an iterated integral

I(n) =
∑

α1,...,αn

eα1,...,αn

∫
d logWα1 · · · d logWαn , (5.8)

and the number of integrations is called the weight of the function, which we note is tied
with the order in the ε expansion. To obtain the integral functions, we should specify the
integration contour and boundary conditions, which we will discuss in the next section.
Here, we focus on the integrand of eq. (5.8) which already captures a lot of the analytic
structure of the solution. The symbol associated with these integrals is defined as

S[I(n)] =
∑

α1,...,αn

eα1,...,αn [Wα1 , · · · ,Wαn ] , (5.9)

where the coefficients e are computed from products of the matrices Mα. If I is a vector
of master integrals, then its symbol is constrained to satisfy the first-entry condition [83],
which states that the first entry of all the terms in the symbol tensor (i.e., Wα1 in the
equation above) must correspond to a physical channel of the topology. The sets of first
entries F of each of the three hexa-box topologies in figure 1 are different, and given by

Fmzz = {p2
1, s12, s23, s34, s45, s15, s35, s14} ,

Fzmz = {p2
1, s12, s23, s34, s45, s15, s35, s24} ,

Fzzz = {p2
1, s12, s23, s34, s45, s15, s25, s14} .

(5.10)

The first-entry condition for topology f then states that eα1,...,αn = 0 if Wα1 /∈ Ff .
Equivalently, it states that the weight-zero solution I(0), which we recall is a constant, must
be in the kernel of all Mα for Wα /∈ Ff . This turns out to be a surprisingly strong condition
that fully determines I(0) for the three hexa-box topologies up to an overall normalization
(the canonical differential equation is invariant under rescaling of I by an ε dependent
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function). Imposing the first-entry condition, and using the canonical differential equations
we have constructed, it is trivial to construct the symbol of all the master integrals in each
of the hexa-box topologies. To illustrate the usage of the differential equations we include
in the supplementary files, we provide a routine to compute the symbol of the integrals in
the example file anc/usageExample.m.

The first-entry condition follows from the fact that the discontinuities of Feynman
integrals should be at physical thresholds [83]. The Steinmann relations impose a further
constraint on the analytic structure of Feynman integrals, as they state that there should
not be double discontinuities on overlapping channels [42–46]. This constrains the first
two entries of the symbol of Feynman integrals. For each of the hexa-box topologies, the
Steinmann relations impose conditions on different double discontinuities. For mzz and
zzz, the forbidden overlapping channels are any pair of distinct elements of {s12, s14, s15},
corresponding to letters {W2,W4,W5}. For zmz, only a single pair of channels is forbidden
{s12, s15}, corresponding to {W2,W5}. It is easy to verify by computing the symbols at
weight 2 that the Steinmann relations are satisfied by all master integrals. Nevertheless,
we note a major difference compared to the planar case: for the planar two-loop five-point
integrals considered in ref. [21], we observed that the integrals satisfied a stronger version
of the Steinmann relations, called the ‘extended Steinmann relations’ [47]. These state
that the pairs of letters that are forbidden in the first two entries of the symbol can in fact
not appear in the n-th and (n+ 1)-th entries for any n. In ref. [21], this stronger version
of the Steinmann relations was seen to be a consequence of the fact that the product of
the matrices associated with the constrained channels vanished, and so the letters could
never appear next to each other. For the non-planar hexa-boxes we find that the extended
Steinmann relations are not always satisfied. The situation is as follows:

• mzz: the extended Steinmann relations are satisfied. Indeed, we find that

M2M4 = M4M2 = M2M5 = M5M2 = M4M5 = M5M4 = 0 . (5.11)

• zmz: the extended Steinmann relations are not satisfied. By explicit calculation of
the symbols through weight 6, we find that the master integrals whose symbols involve
the sequence [. . . ,W2,W5, . . .] are at positions {1, 2, 3, 8, 9, 10}, and the sequence
[. . . ,W5,W2, . . .] appears at positions {1, 2, 3, 11, 12, 13} of the list of master integrals.

• zzz: the extended Steinmann relations are satisfied for some pairs of channels, but
not all. Indeed, we find that

M2M5 = M5M2 = M4M5 = M5M4 = 0 , (5.12)

which implies that letters W2 andW4 never appear next toW5. By explicit calculation
of the symbols through weight 6, we find that the master integrals whose symbols
involve the sequence [. . . ,W2,W4, . . .] are at positions {1, 2, 3, 10, 11, 12, 13, 14, 15}
and the integrals whose symbols involve the sequence [. . . ,W4,W2, . . .] are at positions
{1, 2, 3, 4, 5, 6, 7, 8, 9}.

It would certainly be interesting to further investigate the reasons why the extended
Steinmann relations hold in some cases and not in others, but we leave this for future work.

– 19 –



J
H
E
P
0
3
(
2
0
2
2
)
1
8
2

6 Numerical solution of differential equations

6.1 Summary of the approach

To solve the differential equations for the non-planar hexa-box topologies we will follow
the approach of refs. [48, 49]. In this section we will simply outline the main steps of this
approach. Aside from the two references above, we refer the reader to ref. [21] for a more
detailed discussion in the very closely related context of the solution of the planar penta-box
topologies.

We consider a vector I(~s) of pure integrals that satisfies the differential equation

dI(~s) = εM(~s) I(~s) . (6.1)

We assume the solution is known at the point ~sb, and our goal is to compute the solution
at a point ~se. To achieve this, we consider the one-dimensional path

~s(t) = ~sb + (~se − ~sb) t , t ∈ [0, 1] . (6.2)

On this path, the differential equation takes the form

dI(t, ε)
dt = εA(t)I(t, ε) , A(t) = dM(~s(t))

dt . (6.3)

This differential equation can be iteratively solved order by order in ε. By normalizing
the integrals appropriately, we can ensure that the series around ε = 0 has no negative
powers, that is

I(t, ε) =
∑
i=0

I(i)(t) εi , I(i)(t) =
∫ t

0
A(t′)I(i−1)(t′) dt′ + c(i) , (6.4)

where the integration constants c(i) are determined by the boundary value I(0, ε). At each
order in ε, the solution is constructed by patching together locally-valid solutions, which
are themselves written in terms of generalized power series. The local solution around the
point tk is generically given by

I(i)
k (t) =

∞∑
j1=0

Ni,k∑
j2=0

c(i,j1,j2)
k (t− tk)

j1
2 log (t− tk)j2 , (6.5)

where Ni,k is the maximum power of the logarithms in the local solution (which is bounded
from above by the order i of the ε expansion). The constants c(i,j1,j2)

k are constrained by
continuity conditions between patches and depend on the boundary data as well as the
expansion of A(t) around the point tk. To make this approach practical for numerical
evaluations, the local solutions in eq. (6.5) are truncated at a finite value of j1. This value
is determined by requiring that the solutions should be valid to a given numerical accuracy.

As already noted above, we only gave a very brief outline of the approach we use to
solve the differential equations, and we refer the reader to refs. [21, 48, 49] for more details.
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6.2 Initial value

The general solution to the differential equation in eq. (6.1) will have branch cuts starting
at all the surfaces in the space of the Mandelstam variables where M is singular. Feynman
integrals, however, have a more constrained branch-cut structure, and in particular they
should be purely real or purely imaginary in their Euclidean region E . The Euclidean region
associated to each of the three hexa-box topologies is different:

Emzz = {~s ∈ R6 | p2
1 < 0, s12 < 0, s23 < 0, s34 < 0, s45 < 0, s15 < 0, s35 < 0, s14 < 0} ,

Ezmz = {~s ∈ R6 | p2
1 < 0, s12 < 0, s23 < 0, s34 < 0, s45 < 0, s15 < 0, s35 < 0, s24 < 0} ,

Ezzz = {~s ∈ R6 | p2
1 < 0, s12 < 0, s23 < 0, s34 < 0, s45 < 0, s15 < 0, s25 < 0, s14 < 0} .

(6.6)

Requiring that Feynman integrals should be either purely real or purely imaginary in their
associated Euclidean region E implies that there should not be any branch cuts in E , and
this can be used to constrain the initial condition required to solve their differential equation.
This is very closely connected to the first-entry condition discussed in section 5.3, which
fully determined the weight 0 solution of the differential equation.

To determine the initial value beyond weight 0, we employ the technique developed
in [21], to which we refer the reader for further details. Here we simply present a summary
of the approach. Let ~sE,0 be the point in E where we want to determine the initial condition,
and let us assume that the initial condition is known at order εi−1. Our goal is then to
determine the components of the vector I(i)(~sE,0). Using the strategy outlined above, we
transport the solution from ~sE,0 to some other point ~sE,1 ∈ E along a straight line, chosen
such that the line from ~sE,0 to ~sE,1 is fully contained in E . The coefficients c(i,j1,j2)

k in the
local solutions of eq. (6.5) depend linearly on the unknown components of I(i)(~sE,0). The
requirement that there should not be logarithmic branch cuts in E means that there should
be no logarithms in these local solutions. That is, the branch-cut constraint amounts to
setting to zero any coefficients of the form c

(i,j1,j2)
k for which j2 = 1. We note that 0 ≤ j2 ≤ 1

because the initial condition at the previous order must satisfy the same condition and is
assumed to be known, and we can only generate one power of logarithm per integration. By
collecting all such conditions on the path between ~sE,0 and ~sE,1, we construct a system of
linear equations for the components of I(i)(~sE,0). This procedure can then be repeated by
considering further points ~sE,k and collecting more conditions on the path from ~sE,0 to ~sE,k.
In general, for a vector of n Feynman integrals, we can use this procedure to construct at
most n− 1 independent conditions which determine the vector I(i)(~sE,0) up to an overall
normalization. We note, however, that since the vector I contains many integrals that are
already known (for instance, because they correspond to lower-point topologies), we do not
need to collect the maximum number of conditions, but simply to find the conditions that
determine the value of the unknown integrals at ~sE,0.

For the zzz hexa-box topology, we choose as the initial point

~sEzzz,0 = (−13,−7,−31,−22,−4,−17) . (6.7)
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If we consider the paths from ~sEzzz,0 to the three points

~sEzzz,1 =
(
−117

55 ,−
8
21 ,−

68
139 ,−

6
127 ,−

83
173 ,−

61
82

)
,

~sEzzz,2 =
(
−446

137 ,−
31
119 ,−

40
53 ,−

15
137 ,−

32
27 ,−

149
96

)
,

~sEzzz,3 =
(
−104

61 ,−
39
55 ,−

59
115 ,−

21
184 ,−

1
2 ,−

88
145

)
,

(6.8)

we obtain 134 independent conditions. This is the maximal number we could have expected
given that there are 135 master integrals in this topology. To fix the remaining degree of
freedom, we set the master integral corresponding to the sunrise integral with external mass
q2 to be

Sr(q2) = 4(−q2)−2εΓ(1− ε)3Γ(1 + 2ε)
Γ(1− 3ε) . (6.9)

In our conventions, for instance, the p2
1-sunrise integral appears in position 135 of the zzz

master integrals.
For the mzz topology, we choose as the initial point

~sEmzz,0 = (−13,−7,−21,−2,−4,−10) . (6.10)

We then consider the paths from this point to the three points

~sEmzz,1 =
(
−6829

10 ,−14777
20 ,−903

10 ,−
14677

20 ,−27
20 ,−

3389
5

)
,

~sEmzz,2 =
(
−4874

5 ,−3913
4 ,−2079

20 ,−9407
10 ,−65

4 ,−
19426957

18640

)
,

~sEmzz,3 =
(
−193817

20 ,−192017
20 ,−147

2 ,−191917
20 ,−11

20 ,−
38743

4

)
,

(6.11)

and obtain 82 independent conditions. The undetermined initial conditions all correspond
to known single-scale integrals.

Finally, for the zmz topology we determined the initial condition at

~sEzmz,0 = (−13,−7,−21,−2,−4,−30) . (6.12)

We consider the paths to

~sEzmz,1 =
(
−155

128 ,−
103
83 ,−

51
109 ,−

17
82 ,−

69
197 ,−

101
85

)
,

~sEzmz,2 =
(
−69

43 ,−
148
137 ,−

12
77 ,−

57
89 ,−

23
97 ,−

77
73

)
,

~sEzmz,3 =
(
−181

105 ,−
79
88 ,−

21
74 ,−

38
67 ,−

33
103 ,−

89
93

)
,

(6.13)

and collect 62 conditions along the way. The undetermined integrals are either simple
integrals that can be computed to arbitrary order in ε, or integrals that appear in the mzz or
zzz hexa-box topologies (sometimes for different permutations of the massless momenta) and
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Initial State > 0 < 0
2, 3 s23, s45, s15, p

2
1 s12, s34

2, 4 s15, p
2
1 s12, s23, s34, s45

2, 5 s34, p
2
1 s12, s23, s45, s15

3, 4 s12, s34, s15, p
2
1 s23, s45

3, 5 s12, p
2
1 s23, s34, s45, s15

4, 5 s12, s23, s45, p
2
1 s34, s15

Table 1. Signs of the Mandelstam variables in ~s for the production of a massive vector boson (of
momentum p1) in association with two jets in QCD. We consider the channels corresponding to any
pair of massless momenta in the initial state.

can thus be computed with the differential equations and boundary conditions determined
for these two topologies.

We note that we have not made an effort to prove whether or not we could have found
other lines in Emzz and Ezmz that would allow to obtain more conditions for the mzz and
zmz topologies respectively. This is certainly an interesting question which we leave for
future study.

Having established our strategy to determine the initial values for each integral, we
computed them with two independent implementations. The first was using the code of
ref. [49], and the second was using an in-house implementation that builds upon the same
ideas. With the latter, we obtained the initial conditions with 100 digit precision and
these high-precision evaluations can be found in the supplementary files. Using the code of
ref. [49], we were able to validate all of our initial conditions to at least 25 digits. We note
that, due to the larger number of master integrals and larger alphabet, the main challenge
in this procedure is the determination of the weight-4 boundary conditions for the zzz
topology.

6.3 Numerical evaluations in physical regions

Having determined the value of the integrals at a point as described in the previous section,
we can then use the approach summarized in section 6.1 to obtain the solutions at arbitrary
points in phase-space. With phenomenological applications in mind, we focus here on the
points corresponding to the production of a massive vector boson in association with two
jets in QCD. The massless partons are assigned the massless momenta pi, i = 2, . . . , 5, and
the massive momentum p1 is assigned to the vector boson which we assume to decay, into
e.g. a lepton pair. This requires that p1 is timelike, that is p2

1 > 0. There are six different
channels of the form

pi + pj → p1 + pk + pl , (6.14)

where i, j, k, l take distinct values in {2, 3, 4, 5}. In table 1 we present the signs of the
Mandelstam variables in ~s for each of the channels.
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To demonstrate that we are indeed able to evaluate the master integrals in phase-space re-
gions of physical interest, we choose a point in each of the physical regions defined in table 1,

~sph-1 =
(137

50 ,−
22
5 ,

241
25 ,−

377
100 ,

13
50 ,

249
50

)
,

~sph-2 =
(137

50 ,−
22
5 ,−

91
100 ,−

377
100 ,−

9
10 ,

249
50

)
,

~sph-3 =
(137

50 ,−
22
5 ,−

91
100 ,

13
50 ,−

9
10 ,−

9
4

)
,

~sph-4 =
(137

50 ,
357
50 ,−

91
100 ,

241
25 ,−

9
10 ,

249
50

)
,

~sph-5 =
(137

50 ,
357
50 ,−

91
100 ,−

161
100 ,−

9
10 ,−

9
4

)
,

~sph-6 =
(137

50 ,
357
50 ,

13
50 ,−

161
100 ,

241
25 ,−

9
4

)
.

(6.15)

These points are the same we have used in ref. [21] for the evaluation of the planar topolo-
gies and have been chosen at random in each of the regions. We include high-precision
evaluations at these points in our supplementary files, which were obtained with the code
of ref. [49]. The numbers we provide are correct to 100 digits, and can be directly used as
boundary conditions for evaluations in each of the physical regions. We close this section by
noting that some points cannot be reached with a straight line from the Euclidean boundary
point as it would require to analytically continue through a non-physical threshold. Instead,
we take an indirect path built from two line segments that avoids this problem.

6.4 Validation

Let us first describe the validation of the Euclidean initial values discussed in section 6.2.
First, as already noted, the results we present were computed with an in-house implementa-
tion of the algorithm of ref. [48], and validated at lower precision with their evaluation with
the code of ref. [49]. Second, we have also computed them with an independent in-house
implementation of the algorithm of ref. [48]. Third, the results for the mzz topology and
selected integrals in the zmz and zzz topologies were reproduced by the authors of ref. [27].
Finally, we have used the code we have developed for the determination of the high-precision
initial values to extend the analysis to weight five and verify that our weight-four numerical
results guarantee the absence of non-physical branch cuts inside the Euclidean region.

The high-precision evaluations at the physical points of ref. eq. (6.15) have been
obtained with the publicly available code of ref. [49], and can thus be easily reproduced. As
a consistency check we verified that we obtain the same value at each point independently of
which point is used as initial value. Finally, we have performed lower-precision comparisons
with the second in-house implementation of the algorithm of ref. [48].
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7 Conclusions

In this paper we have taken an important step towards completing the calculation of the full
set of two-loop master integrals with one massive and four massless legs. The calculation of
the three distinct hexa-box non-planar topologies was performed with well established and
tested techniques: after constructing a pure basis of master integrals, we obtained their
differential equation and solved them in terms of generalized power series.

While the techniques we use are well established, the complexity of the calculation is
noteworthy. Indeed, in the most complicated topology the differential equation contains
135 integrals and the dimension of the symbol alphabet is 63. To handle this complexity
when constructing the differential equations, we find it important to leverage the power of
an approach based on ansätze and numerical samples, and to consider differential equations
on maximal cuts. The results we obtain for the pure basis and the symbol alphabet are
particularly compact. The alphabet itself is generated by appropriate permutations of
only 21 elements, with 204 letters in total. An interesting feature compared to the planar
alphabet, is the appearance of a new type of square-root which leads to new letters with
non-trivial Galois-group properties.

Having obtained the differential equations for each of the three non-planar hexa-box
topologies, we computed their symbols. As expected, the Steinmann relations are satisfied,
but we find that the extended Steinmann relations are in general not satisfied in the zmz
and zzz topologies. It would certainly be interesting to understand why this is the case, as
this would also shed new light on why these relations hold for planar integrals.

In order to obtain numerical values for the master integrals from their differential
equations, we must determine them at a point and use this evaluation as a boundary
condition for the differential equation. Once again, the large number of master integrals
and symbol letters makes this a non-trivial problem. We developed our own dedicated
code to compute a high-precision initial value for all the master integrals in their respective
Euclidean region. This is achieved by imposing that there are no non-physical singularities
in this region of phase-space. Imposing this condition allowed us to obtain numerical
evaluations valid to more than 100 digits, which can then be used to obtain numerical
values for the master integrals in all regions of phase-space. As an example, we also
provide high-precision evaluations in the six different physical regions corresponding to the
production of a massive particle in association with two jets in QCD.

Our results are a new essential ingredient for the calculation of the two-loop corrections
for very important processes, such as the production of a Higgs boson or a massive vector
boson in association with two jets at hadron colliders. The analytic insight we gained
from studying the symbols of the non-planar hexa-box master integrals will be crucial
in computing the two-loop amplitudes for these processes, and the ability to numerically
evaluate the integrals in all regions of phase space makes our results usable for computing
theoretical predictions to physical observables. Finally, the results presented in this paper
will be very important in evaluating the remaining topologies required to complete the
calculation of the full set of two-loop master integrals with one massive and four massless legs.
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