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1 Introduction

The study of (quantum) field theories in recent years has been characterised by a relentless
search for common underlying structures. An example of this endeavour is the double copy,
a set of ideas for relating various quantities in a number of different theories. Inspired by
previous work in string theory [1], the double copy was first formulated for scattering
amplitudes in gauge and gravity theories [2, 3], both with and without supersymmetry.
It was subsequently extended to exact classical solutions in ref. [4], which focused on the
special family of Kerr-Schild solutions in gravity. Follow-up work (see e.g. refs. [5–14]) has
attempted to see whether this family of solutions can be extended, and the development
of different techniques is also useful in this regard. Reference [15] (see also refs. [16–18])
presented an alternative exact classical double copy, that uses the spinorial formalism of
General Relativity and related field theories, and which is known as the Weyl double copy.
This is complementary to the Kerr-Schild approach of ref. [4], agreeing where they overlap.
Alternative formalisms offer complementary insights [19–30], and it is also known how to
double-copy classical solutions order-by-order in the coupling constants of given physical
theories, at the price of giving up exactness (see e.g. refs. [31–39]). This may offer new
calculational tools for astrophysical observables, including those related to gravitational
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waves. However, it is also important to probe the origins of the double copy, given that a
fully nonperturbative understanding of its scope and applicability is still missing.1

Recently, refs. [41, 42] provided a derivation of the Weyl double copy using twistor
theory [43–46] (see e.g. refs. [47–51] for pedagogical reviews of this subject, and refs. [20, 52]
for related work on twistor approaches to the double copy). Basic ideas from the latter
include that points in our own spacetime are mapped non-locally to geometric objects in an
abstract twistor space T, and vice versa. Furthermore, physical fields in spacetime map to
cohomological data in twistor space. In more pedestrian terms, one may write solutions of
the field equation for massless free spacetime fields as a certain contour integral in twistor
space known as the Penrose transform. The integrand contains a holomorphic function
of twistor variables, which is defined up to contributions that vanish upon performing the
integral. The freedom to redefine twistor functions in this manner is expressed by saying
that they are cohomology classes (elements of a cohomology group), and in the traditional
twistor theory approach pioneered by refs. [43–45], these are sheaf cohomology groups,
which can be suitably approximated by C̆ech cohomology groups.

The C̆ech approach was used by refs. [41, 42] to derive the Weyl double copy, which led
to an interesting puzzle. The spacetime relationship embodied by the Weyl double copy
turns into a simple product of functions in the integrand of the Penrose transform in twistor
space. As remarked above, however, these are not actually functions, but representatives
of cohomology classes, which are meant to be subjectable to the above-mentioned redefini-
tions. Any non-linear relationship is incompatible with first performing such redefinitions,
and thus it seems that the twistor approach demands certain “special” representatives of
each cohomology class be chosen, with no useful guidance of how to make such a choice. All
that is needed to derive the Weyl double copy in position space is simply to find suitable
representatives in twistor space that do the right job. But it would be nice to know if the
double copy can be given a more genuinely twistorial interpretation, by fixing a procedure
for choosing appropriate representatives.

Another potential issue with refs. [41, 42] is that the C̆ech approach is not so widely
used in contemporary works on twistor approaches to field theory. Instead, it is more com-
mon to use the language of differential forms, where the ambiguities inherent in the Penrose
transform can be characterised by Dolbeault cohomology [53, 54]. That this is equivalent
to the C̆ech approach follows from known isomorphisms between C̆ech and Dolbeault co-
homology groups. Thus, if the double copy has a genuinely twistorial expression, then it
must be possible to describe it using the Dolbeault language. Preliminary and very useful
comments in this regard were made in ref. [55], which presented a classical double copy
defined at asymptotic infinity in spacetime, and showed that it could be used to constrain
Dolbeault representatives in the twistor formalism (see ref. [56] for earlier related work).
Our aim in this paper is to explore the relationship between the Dolbeault and C̆ech ap-
proaches in more detail, and also to go beyond the purely radiative spacetimes considered
in ref. [55]. We will present two different incarnations of the Dolbeault double copy. The
first is ultimately a rewriting of the C̆ech approach, using a known approach for turning

1For recent proofs of the double copy in a perturbative field theory context, see refs. [26, 27, 40].
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representatives of C̆ech cohomology groups into Dolbeault representatives. We will see that
a product structure in twistor space indeed emerges in the Dolbeault framework, which is
ultimately not surprising given that this is essentially inherited from the C̆ech double copy.
Furthermore, this first technique for constructing a Dolbeault double copy will suffer from
the same inherent ambiguities as the C̆ech approach, namely that it is not clear what the
recipe is for picking out a special representative of each cohomology class. Motivated by
this puzzle, we will then present a second Dolbeault double copy, which uses known tech-
niques for writing Dolbeault representatives associated with spacetime fields in Euclidean
signature. We will argue that the spacetime double copy is again associated with a certain
product of functions in twistor space. In this case, however, special representatives of each
cohomology class are indeed picked out: they are the harmonic representatives, which are
uniquely defined for each spacetime field. We hope that our results provide further mo-
tivation for the use of twistor methods in understanding the classical double copy. They
may also prove useful in relating the classical double copy with the original BCJ double
copy for scattering amplitudes, given that twistor methods have appeared naturally in the
study of latter (see e.g. refs. [57–61]).

The structure of our paper is as follows. In section 2, we review the twistor double
copy of refs. [41, 42], using the C̆ech formalism, and also relevant aspects of differential
forms and Dolbeault cohomology needed for what follows. In section 3, we provide a first
example of the twistor double copy in the Dolbeault language, and demonstrate its close
relation to the C̆ech approach. In section 4, we provide a second incarnation, and argue
that it allows us to identify special representatives of each cohomology class. We discuss
the implications of our results in section 5.

2 Review of necessary concepts

In this section, we will review those details of twistor theory that are needed for what
follows, including relevant aspects of C̆ech and Dolbeault cohomology. We will also describe
the twistor double copy of refs. [41, 42], which was formulated in the C̆ech language.
All of these ideas rely on the spinorial formalism of field theory, in which any spacetime
tensor field2 can be converted to a multi-index spinor upon contracting with Infeld-van-
der-Waerden symbols {σaAA′}, defined in a suitable basis3 e.g.

VAA′ = Vaσ
a
AA′ . (2.1)

Spinor indices A and A′ run from 0 to 1, and can be raised and lowered with the 2-
dimensional Levi-Civita symbols εAB, εA′B′ etc. The spinorial formalism makes many nice
properties of field theory manifest. In particular, any multi-index spinor can be decomposed
into sums of fully symmetric spinors multiplied by Levi-Civita symbols. For massless free
fields in spacetime, one may write separate spinors φAB...C and φ̄A′B′...C′ for the anti-self-
dual and self-dual parts of the field respectively. These obey the general massless free field

2Throughout, we will use lower-case Latin letters for spacetime indices, upper-case Latin letters for
spinor indices, and Greek letters for the twistor indices to be defined in what follows.

3A common choice results in the identity matrix for σ0
AA′ , and the Pauli matrices for σi

AA′ .
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equation
∇AA′ φ̄A′...C′ = 0, ∇AA′φAB...C = 0, (2.2)

where ∇AA′ is the spinorial translation of the covariant derivative, and there are 2n indices
for a spin-n field. The cases n = 0, 1 and 2 correspond to solutions of a scalar theory,
gauge theory and gravity, respectively. Then ref. [15] showed that, for vacuum solutions of
Petrov type D, the corresponding spinors were related by the Weyl double copy formula

φA′B′C′D′(x) =
φ

(1)
(A′B′(x)φ(2)

C′D′)(x)
φ(x) . (2.3)

Here φ(1,2)
A′B′ are two potentially different electromagnetic spinors, and the brackets denote

symmetrisation over indices. Follow-up work — including the use of the twistor methods
to be outlined below — has established the validity of eq. (2.3) for other Petrov types [18,
41, 42], albeit at linearised level only in some cases: it is only for types D and N that
Minkowski-space solutions of eq. (2.2) correspond to exact solutions of the field equations.

2.1 Twistor space and the incidence relation

Twistor theory provides an alternative viewpoint on solutions of eq. (2.2). We start by
defining twistor space T as the set of solutions of the twistor equation

∇(A
A′Ω

B) = 0, (2.4)

where ΩB is a spinor field. Until further notice, we will work in complexified
Minkowski space MC , which can be thought of as C4 equipped with the metric ηab =
diag(1,−1,−1,−1), such that the line element in (complex) Cartesian coordinates takes
the form

ds2 = ηabdx
adxb = (dx0)2 − (dx1)2 − (dx2)2 − (dx3)2, xi ∈ C. (2.5)

Given a vector xa = (x0, x1, x2, x3), its spinorial representation following from eq. (2.1) is

xAA
′ = 1√

2

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
, (2.6)

where we have defined the Infeld-van-der-Waerden symbols as in refs. [47, 48]. We may
then write the general solution to the twistor equation of eq. (2.4) as

ΩA = ωA − ixAA′πA′ , (2.7)

where ωA, πA′ are constant (in spacetime) spinors, that we may combine to make a four-
component twistor

Zα = (ωA, πA′). (2.8)

The “location” of a twistor in spacetime is defined to be such that the field ΩA in eq. (2.7)
vanishes, which sets up a non-local map between spacetime and twistor space known as
the incidence relation

ωA = ixAA
′
πA′ . (2.9)
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Given the invariance of this relation under rescalings Zα → λZα, λ ∈ C \ {0}, twistors
satisfying the incidence relation correspond to points in projective twistor space PT. Points
in spacetime correspond to complex lines (Riemann spheres) in projective twistor space.
For a point x in complexified Minkowski space, we denote the corresponding Riemann
sphere by X ∼= CP1. As the components of πA′ vary for a given xAA

′ , they trace out all
points on the Riemann sphere X, so that a given point on X is completely specified by
a given πA′ . To specify all points on X, we must cover it with at least two coordinate
patches, which we will label by U0 and U1 in what follows.

2.2 The Penrose transform and C̆ech cohomology

A key result of twistor theory is the Penrose transform, that relates massless free fields
obeying eq. (2.2) to cohomological data in twistor space. More precisely, the original
formulation of the Penrose transform [44] expresses spacetime fields as contour integrals in
projective twistor space:

φ̄A′B′...C′(x) = 1
2πi

∮
Γ
〈πdπ〉πA′πB′ . . . πC′ f̌(Z)|X , (2.10)

where the measure contains the inner product

〈πdπ〉 = πA
′
dπA′ = εA

′B′πB′dπA′ , (2.11)

and the notation |X denotes restriction to the twistor line X ' CP1 associated with x

by the incidence relation (2.9). Furthermore, the contour Γ is defined on X, such that it
separates any poles of f̌(Zα). All of the functions considered in this paper will have at
most two poles, and we may parametrise the sphere such that they are contained in two
regions N and S around the north and south poles, as shown in figure 1. Let us then define
the coordinate patches

U0 = X \N, U1 = X \ S. (2.12)

That is, U0 (U1) consists of the sphere X excluding the region N (S), and thus contains the
pole P0 (P1). By construction, the twistor function f̌(Zα) is holomorphic on the intersection
U0 ∩ U1. Also, for eq. (2.10) to make sense as an integral in projective twistor space, the
integrand plus measure must be invariant under rescalings of Zα. Thus, f̌(Zα) must be
homogeneous of degree −2n−2. However, one is clearly free to redefine the function f̌(Zα)
up to contributions that vanish upon performing the contour integral. That is, if h0 (h1)
is a holomorphic function on U0 (U1), then the Penrose transform (2.10) is invariant under

f̌ → f̌ + h0 − h1. (2.13)

In simple terms, this corresponds to adding additional functions with poles on only one side
of the contour Γ, such that one may always choose to close the contour in a region with no
poles. The freedom of eq. (2.13) means that it is not correct to regard f̌(Zα) as a function,
but as a representative of a C̆ech cohomology class. We refer the reader to refs. [48, 49]
for excellent pedagogical reviews of C̆ech cohomology in the present context, with a brief
summary as follows. Given an open cover {Ui} of some space X, one may consider a
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Figure 1. The Riemann sphere X in twistor space corresponding to a spacetime point x. We
consider a twistor function f̌(Zα) with poles Pi contained in the regions N and S around the north
and south poles. The contour Γ separates these two poles.

p-cochain fi0i1...ip , consisting of (for our purposes) a function living on the intersection
Ui0 ∩ Ui1 . . . ∩ Uip , where an ordering of the intersection of the sets is implied, such that
fi0i1...ip is defined to be antisymmetric in all indices. Note that fi (a 0-cochain) is simply
a function defined in the single patch Ui. We may further define the coboundary operator
δp, that acts on the set of p-cochains to make (p+ 1)-cochains:

δp({fi0...ip}) = {(p+ 1)ρ[ip+1fi0...ip]}, (2.14)

where square brackets denote antisymmetrisation over indices, and ρi denotes the restric-
tion of a quantity to the patch Ui. The (p + 1)-cochains generated in this manner are
referred to as coboundaries. Furthermore, cochains satisfying δpfi0...ip = 0 are called cocy-
cles, and we can reinterpret the transformation of eq. (2.13) in this language. First, note
that all the quantities that appear are holomorphic functions on the intersection U0 ∩ U1.
Restricting to this intersection, we may write the first term on the right-hand side, with
C̆ech indices made explicit, as f̌01. Given that there are no triple intersections for our
cover, one automatically has δpf̌01 = 0, so that f̌01 is in fact a cocycle.4 The function
h0 (defined on the intersection) stems from a function that is holomorphic throughout the
whole of U0, such that it has the form

h0 = ρ1H0, (2.15)

where H0 is a 0-cochain on U0. Similar reasoning applies to h1, such that we may rewrite
eq. (2.13) with formal C̆ech indices made explicit:

f̌01 → f̌01 + ρ1H0 − ρ0H1. (2.16)

Comparison of the latter two terms with eq. (2.14) shows that this transformation consists
of modifying the 1-cocycle f̌01 by a coboundary.

4For more general covers, consistency of closed contour integrals on triple intersections implies that the
cocycle condition δpfij = 0 indeed holds for all such quantitites appearing in eq. (2.10). See e.g. ref. [48]
for a discussion of this point.
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Cocycles and coboundaries both form groups, denoted by Zp({Ui},S) and Bp({Ui},S),
where S denotes the type of function.5 We will be concerned with holomorphic functions of
homogeneity (−2n− 2) for a spin-n spacetime field, which we denote by S = O(−2n− 2).
Then one may define the pth C̆ech cohomology group

Ȟp({Ui},S) = Zp({Ui},S)
Bp({Ui},S) . (2.17)

Elements of this group are C̆ech cohomology classes, consisting of cocycles that are equiva-
lent up to addition of coboundaries. Equation (2.16) tells us that the quantity appearing in
the Penrose transform of eq. (2.10) is indeed a representative of a C̆ech cohomology class,
and thus an element of the group6 Ȟ1(PT,O(−2n− 2)).

2.3 The Penrose transform and Dolbeault cohomology

An alternative formulation for the Penrose transform exists, which uses the language of
differential forms [53] (see refs. [46, 50] for pedagogical reviews). In general on a complex
manifoldM with complex coordinates zi, one may decompose differential forms into (anti-
)holomorphic parts, such that Ωp,q(M) denotes the space of so-called (p, q) forms

ω = ωa1...apā1...āqdz
a1 ∧ . . . ∧ dzap ∧ dz̄ā1 ∧ . . . ∧ dz̄āq , (2.18)

where the bar on coordinates denotes complex conjugation. The exterior derivative oper-
ator d can then be split as follows:

d = ∂ + ∂̄, (2.19)

where the Dolbeault operators ∂ and ∂̄ act on a (p, q) form to give a (p+ 1, q) and (p, q+ 1)
form respectively, and are individually nilpotent (∂2 = ∂̄2 = 0). Projective twistor space
is a complex manifold, where the precise definition of complex conjugation depends on the
signature of the spacetime we are working in. That is, different real slices of complexified
Minkowski spacetime lead to different types of conjugation in twistor space. However, once
a given choice has been made, we may introduce the Dolbeault operator

∂̄ = dZ̄α
∂

∂Z̄α
, (2.20)

and use it to define holomorphic quantities h by ∂̄h = 0. Then the Penrose transform may
be written as [53]

φA′B′...C′(x) = 1
2πi

∫
X
〈πdπ〉 ∧ πA′πB′ . . . πC′f(Z)|X , (2.21)

which has a number of differences in comparison with eq. (2.10). The quantity dπA′ ap-
pearing in the measure is now to be regarded as a (1,0) form, and the integration is over the

5More precisely, S denotes the so-called sheaf to which the functions belong. The C̆ech cohomology
described here is an approximation to sheaf cohomology, that is sufficient for our purposes.

6Our notation here reminds us that we are considering cohomology groups defined on projective twistor
space, but suggests that they will be independent of the particular cover {Ui} used. That this is indeed the
case follows from the fact that the cover {Ui} used throughout the paper is a so-called Leray cover, such
that C̆ech cohomology groups are isomorphic to the relevant sheaf cohomology groups.
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whole Riemann sphere X, rather than over a contour. For this integral to make sense, the
holomorphic quantity f(Z) must be a (0,1) form which, given we are in projective twistor
space as before, must again have homogeneity −2n− 2 for a spin-n field:

f ∈ Ω0,1(PT,O(−2n− 2)), f(λZ) = λ−2n−2f(Z), ∂̄f = 0. (2.22)

Similarly to eq. (2.10), there is a redundancy in how one chooses f(Z): if we redefine it
according to

f → f + ∂̄g, (2.23)

for some g ∈ Ω0(PT,O(−2s − 2)), and where ∂̄g is globally defined on X, the second
term will vanish as a total derivative on the Riemann sphere when inserted in eq. (2.21).
Furthermore, the additional term preserves the holomorphic property ∂̄f(Z) = 0, by nilpo-
tency of ∂̄. In general, the set of (p, q) forms on a manifoldM satisfying ∂̄h = 0 are called
∂̄-closed, and form a group under addition denoted by Zp,q

∂̄
(M). Forms of the form h = ∂̄g

are called ∂̄-exact, and form the group Bp,q

∂̄
(M). One may then define the (p, q)th Dolbeault

cohomology group

Hp,q

∂̄
(M) =

Zp,q
∂̄

(M)
Bp,q

∂̄
(M) . (2.24)

Elements of this group are Dolbeault cohomology classes, namely ∂̄-closed (p, q) forms that
are defined only up to arbitrary additions of ∂̄-exact forms. It follows from these definitions
that the twistor (0,1)-form f(Z) appearing in eq. (2.21) is a representative element of the
Dolbeault cohomology group

H0,1
∂̄

(PT,O(−2n− 2)), (2.25)

where our enhanced notation relative to eq. (2.24) makes clear that we are considering
holomorphic (0, 1) forms of a certain homogeneity only.

2.4 Connection between Dolbeault and C̆ech descriptions

The previous sections provide two different descriptions of the cohomological identification
of spacetime fields implied by the Penrose transform. Let us now examine the relationship
between them, where we will follow the arguments presented in e.g. refs. [62, 63]. We will
consider explicitly the situation of figure 1 in the Dolbeault approach, so that f(Z)|X is
a (0,1) form that is holomorphic everywhere apart from singularities at P0 and P1. Then
the Dolbeault representative f(Z) associated with a given C̆ech representative f̌(Z) may
be defined as follows. First, given our cover (U0, U1) of X, we may choose a partition of
unity {ηi}, where each ηi is defined in Ui, subject to∑

i

ηi = 1. (2.26)

We may thus write
η0 = η, η1 = 1− η, (2.27)

and also define
fi =

∑
j

f̌ijηj (2.28)
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in Ui, so that we have explicitly

f0 = (1− η)f̌01, f1 = ηf̌10 = −ηf̌01. (2.29)

Then the desired Dolbeault representatives are given by

f(Z) = {∂̄fi}. (2.30)

This satisfies ∂̄f(Z) = 0 by construction. Furthermore, on the intersection U0 ∩ U1, one
has (via eq. (2.29))

∂̄f0 − ∂̄f1 = ∂̄f̌01 = 0, (2.31)

so that f(Z) is indeed uniquely defined globally on X. To check these identifications, it
is instructive to see how the Penrose transform of eq. (2.21) reduces to that of eq. (2.10).
First, note that one may write the integral over the Riemann sphere X = U0 ∪ U1 in
eq. (2.21) as [∫

U0
+
∫
U1
−
∫
U0∩U1

]
〈πdπ〉 ∧ πA′πB′ . . . πC′f(Z)|X .

In the third term, the integrand will contain ∂̄f̌01 evaluated on the intersection (i.e. away
from the poles at P0 and P1), which is zero. Thus, we need only consider the first two
terms. Substituting the results of eq. (2.29), we may rewrite them using Stokes’ theorem
to give (

(1− η)
∮

Γ0
〈πdπ〉πA′πB′ . . . πC′ f̌01(Z)

)
−
(
η

∮
Γ1
〈πdπ〉πA′πB′ . . . πC′ f̌01(Z)

)
, (2.32)

where Γi is the oriented boundary of Ui. These boundaries are depicted in figure 1, and
the absence of poles between each Γi and Γ imply that one may write∮

Γ0
≡
∮

Γ
,

∮
Γ1
≡ −

∮
Γ
,

where one must take the opposite orientation of Γ1 on the sphere into account. The
remaining integral over dπ can be interpreted as a conventional contour integral, such
that eq. (2.32) reproduces the Penrose transform of eq. (2.10), as required. We have here
shown how to go from the C̆ech representative of a twistor function to the corresponding
Dolbeault representative. For a discussion of how to go the other way, we refer the reader
to e.g. refs. [62, 63].

As well as showing how Dolbeault representatives may be defined from their C̆ech
counterparts, we may also reinterpret the cohomological freedom. It follows from eq. (2.28)
that redefining a C̆ech representative by

f̌ij → f̌ij + hi − hj

amounts to redefining the Dolbeault representative according to

f(Z)→ f(Z)− ∂̄
(∑

i

hiηi

)
. (2.33)
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Above, we have used an arbitrary partition of unity on our cover (U0, U1). We can simplify
things, however, by choosing a trivial partition in which η = 0. Then the Dolbeault Penrose
transform can be carried out by integrating solely over the patch U0, even though this does
not cover the entire sphere.

2.5 The twistor double copy

Having reviewed various aspects of the Penrose transform, let us now turn our attention to
the Weyl double copy of eq. (2.3), connecting scalar, gauge and gravity fields in spacetime.
As was recently presented in refs. [41, 42], it is possible to derive this relationship from the
Penrose transform of eq. (2.10) (i.e. in the C̆ech language). The procedure involves choosing
holomorphic twistor quantities f̌(Z), f̌ (i)

EM(Z) of homogeneity −2 and −4 respectively, such
that they correspond to scalar and EM fields in spacetime respectively. One may then form
the product

f̌grav.(Z) = f̌
(1)
EM(Z)f̌ (2)

EM(Z)
f̌(Z)

, (2.34)

which has homogeneity −6 by construction. This corresponds to a gravity field in space-
time, and refs. [41, 42] presented choices for the various functions appearing on the right-
hand side of eq. (2.34) such that the spacetime fields obtained from eq. (2.10) obey the
Weyl double copy of eq. (2.3). For the original type D Weyl double copy of ref. [15], it is
sufficient to choose functions of the form

f̌m(Z) =
[
QαβZ

αZβ
]−m

, (2.35)

for some constant dual twistor Qαβ , and where m = 1 and 2 for the scalar and EM
cases respectively. This is a quadratic form in twistor space, and implies the presence of
two poles on the Riemann sphere X corresponding to a given spacetime point x. The
scalar, gauge and gravity fields linked by eq. (2.34) then share the same poles. These poles
give rise to the principal spinors of their respective spacetime fields, so that one obtains
a geometric interpretation of how kinematic information is inherited between different
theories in spacetime. Furthermore, ref. [42] provided examples of non-type D solutions
(albeit at linearised level due to the limitations of the Penrose transform), showing that
at the very least the twistor double copy provides a highly convenient book-keeping device
for constructing spacetime examples of the Weyl double copy.

However, there is an obvious deficiency of eq. (2.34), discussed in detail in ref. [42].
As reviewed above, the quantities appearing in eq. (2.34) are not in fact functions, but
representatives of cohomology classes, which may in principle be subjected to the equiv-
alence of transformations of eq. (2.13). The product of eq. (2.34), in being a non-linear
relationship, clearly violates this invariance. Upon redefining the scalar and gauge theory
quantities f̌(Z) and f̌ (i)

EM before forming the product, one would obtain a different gravity
solution in general. This does not matter from the point of view of deriving the Weyl
double copy: all that is required is that we find suitable quantitites in twistor space that
correspond to the desired spacetime relationship. However, if the classical double copy
is to be given a genuinely twistorial interpretation, we need a prescription for picking a
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“special” representative for each cohomology class, that eliminates any ambiguity in the
double copy procedure. This has been discussed recently in ref. [55], which focused on
purely radiative spacetimes, namely those that can be completely determined by data at
future null infinity. It is known that this characteristic data can be used, in either gauge
theory or gravity, to uniquely fix a Dolbeault representative in the Penrose transform [56].
Thus, for such spacetimes a natural mechanism arises for fixing the ambiguities inherent
in eq. (2.34). It is not immediately clear, however, how to generalise this argument to
non-radiative spacetimes, and thus we will present alternative arguments in what follows.

3 The twistor double copy in the Dolbeault approach

In the previous section, we reviewed the twistor double copy of eq. (2.34), based on the
Penrose transform of eq. (2.10), in which all twistor functions are to be interpreted as
representatives of C̆ech cohomology classes. Let us now see how one can instead formulate
the same idea within the framework of Dolbeault cohomology. We will begin by studying
a particularly simple example of solutions of eq. (2.2).

3.1 Momentum eigenstates

Momentum eigenstates in spacetime are characterised by a given null momentum with
spinorial translation pa → p̃ApA′ , and are a special case of plane waves. The solution of
eq. (2.2) corresponding to such a wave can then be written as

φ̄A′B′...C′(x) = pA′pB′ . . . pC′e
ip·x, (3.1)

where the basic phase factor eip·x = eip̃ApA′x
AA′ is dressed by an appropriate number of

spinors pA′ , according to the spin of the relevant field. We must then be able to find a
(0,1)-form f(Z) in projective twistor space that, when restricted to the Riemann sphere X
and substituted into eq. (2.21), yields the spacetime field of eq. (3.1) for a given spin. This
(0,1) form will be defined only up to the addition of an arbitrary ∂̄-closed (0,1) form, and
a suitable Dolbeault representative for a plane wave of helicity h can be written as (see
e.g. ref. [50])

f [h] =
( 〈ap〉
〈aπ〉

)−2h+1
δ̄(〈πp〉) exp

[ 〈ap〉
〈aπ〉

[ωp̃]
]
, (3.2)

where aA′ is an arbitrary constant Weyl spinor, and we have introduced a holomorphic
delta function to be inserted into our Penrose transform integral, which may be further
decomposed using the useful identity7

δ̄(u) = ∂̄

(1
u

)
. (3.3)

We have also introduced the inner product

[ωp̃] = ωAp̃A, (3.4)
7Our convention for the holomorphic delta function differs from that of ref. [50] in that we have not

included a factor of (2πi)−1. The reason is that this has already been included in our Penrose transform
definition of eq. (2.21).
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where ωA is the Weyl spinor appearing in Zα according to eq. (2.8). To see that eq. (3.2)
indeed reproduces eq. (3.1), regardless of the choice of aA′ , we may parametrise X in
eq. (2.21) by choosing

πA′ = bA′ + zaA′ ⇒ 〈πdπ〉 = −〈ab〉dz, πA′ = 〈ab〉
〈ap〉

pA′ , (3.5)

where bA′ is another constant spinor such that 〈ab〉 6= 0, and we have used the delta
function condition in the third equation. Without loss of generality, let us choose this
parametrisation to correspond to the patch U0 discussed in the previous section, such that
this contains the support of the holomorphic delta function. Equation (3.2) then becomes,
after restriction to the Riemann sphere X,

f [h]
∣∣∣
X

= 〈ap〉
−1

2πi

(〈ap〉
〈ab〉

)−2h+1
∂̄

 1
z + 〈bp〉

〈ap〉

 exp
[
ixAA

′
pA′ p̃A

]
, (3.6)

where the incidence relation of eq. (2.9) has been used. Substituting this into eq. (2.21),
one finds

pA′ . . . pC′ exp
[
ixAA

′
pA′ p̃A

] 1
2πi

∫
U0
dz ∧ ∂̄

 1
z + 〈bp〉

〈ap〉

 ,
so that carrying out the integral using Stoke’s theorem yields eq. (3.1) as required. Note
that we integrated only over U0 above, rather than the complete Riemann sphere X. In
order to complete the latter, as per the discussion in section 2.4, one should also integrate
over a second patch U1. However, by construction this has been taken so as not to contain
the support of the holomorphic delta function, and thus the further integration will not
affect the above result, as expected given that we have already recovered the plane wave
spacetime field of eq. (3.1).

Now let us examine plane waves of different helicity, and note that we may choose to
rewrite eq. (3.6) (before restriction to X) as

f [h] = ∂̄F [h], (3.7)

where

F [h] = 〈ap〉−1
(〈ap〉
〈ab〉

)−2h+1 1
z + 〈bp〉

〈ap〉

exp
[
i
〈ap〉
〈ab〉

[ωp̃]
]
. (3.8)

It is then straightforward to verify the relationship

F [h+h′] = F [h]F [h′]

F [0] , (3.9)

which can be interpreted as follows. Choosing h = h′ = 1, one finds that eq. (3.7) applied
to F [0] and F [1] yields Dolbeault representatives associated with scalar and gauge theory re-
spectively, such that the Penrose transform of eq. (2.21) gives spacetime scalar and photon
plane waves. Equation (3.9), after substitution into eq. (3.7), yields a Dolbeault represen-
tative for a gravity wave. From eq. (3.1), the resulting spacetime fields are then precisely
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related by the Weyl double copy of eq. (2.3). Thus, eq. (3.9) is a twistor-space expression
of the Weyl double copy, that can be used to generate the Dolbeault representative for a
gravity solution, from similar representatives in scalar and gauge theory. Of course, plane
waves are very special solutions, and it is perhaps not clear that the procedure of eq. (3.9)
generalises to a wider class of solutions. That it indeed generalises in fact follows from the
ideas reviewed in section 2.4, as we now discuss.

3.2 The twistor double copy from Dolbeault representatives

The previous section suggests the following general prescription. Consider Dolbeault rep-
resentatives

f(Z) = ∂̄F (z), f
(l)
EM(Z) = ∂̄F

(l)
EM (3.10)

defined locally on some patch Ui, corresponding to scalar and electromagnetic fields re-
spectively. Then one can form a gravitational Dolbeault representative on Ui by

fgrav. = ∂̄

[
F

(1)
EM(Z)F (2)

EM(Z)
F (Z)

]
. (3.11)

Our claim is then that suitable representatives may be chosen so that the corresponding
spacetime fields obtained from eq. (2.21) are related by the Weyl double copy of eq. (2.3).
To see why, note that one may choose C̆ech representatives in eq. (2.34) so as to obtain
a gravitational C̆ech representative, where the corresponding fields obey the Weyl double
copy. We may then convert each C̆ech representative to a Dolbeault representative using
eqs. (2.28), (2.30). To simplify this procedure, we may choose a trivial partition of unity,
such that η = 0. We may then carry out the Penrose transform of eq. (2.21) by integrating
only over the patch U0, and such that the functions appearing in eq. (3.10) are simply
given by

F (z) = f̌(Z), F
(l)
EM = f̌

(l)
EM. (3.12)

Thus, the Dolbeault double copy formula of eq. (3.11) is ultimately a rewrite of the C̆ech
formula, where the latter is converted to a (0,1) form by the action of the Dolbeault operator
∂̄. Upon integrating the Penrose transform over U0, a non-zero result survives provided
the quantity in the square brackets in eq. (3.11) has a pole in the patch U0. To clarify our
rather abstract discussion, we now present some illustrative examples.

3.2.1 Elementary states

In the C̆ech language, elementary states are holomorphic twistor functions consisting of
simple ratios of factors such as (AαZα), where Aα is a constant dual twistor. They were
originally studied as potential twistor-space wavefunctions for scattering particles (see e.g.
refs. [44, 48]), and have since been reinterpreted as giving rise to novel knotted solutions
of gauge and gravity theory [16, 64–68]. In refs. [41, 42], elementary states were used to
construct examples of Weyl double copies where the gravity solution had arbitrary Petrov
type, albeit at linearised level in certain cases. Given such an elementary state, we may
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form a suitable Dolbeault representative as in eqs. (3.10), (3.12), and thus consider the
following family of (0,1) forms:

f (a,b)(Z) = ∂̄

(
1

(AαZα)a+1(BβZβ)b+1

)
, (3.13)

where 2n = a+ b for a spin-n field, and the dual twistors Aβ = (AA, AA
′), Bα = (BB, BB′).

Upon restricting to the Riemann sphere X of a given spacetime point x, let us choose a
cover (U0, U1) such that the pole in A · Z (B · Z) lies in the patch U0 but not U1 (U1 but
not U0). In U0, eq. (3.13) may then be written as

f (a,b)(Z)
∣∣∣
U0

= 1
(BβZβ)b+1 ∂̄

( 1
(AαZα)a+1

)
. (3.14)

The product between the twistor Zβ and the dual twistor Aβ is given by

AβZ
β |X = ixAA

′
AAπA′ +AA

′
πA′ = (ixAA′AA +AA

′)πA′ ≡ 〈Aπ〉, (3.15)

where we have introduced the Robinson field

AA′ = ixAA
′
AA +AA

′
, (3.16)

and used eq. (2.9). Similarly, one may write

BαZ
α|X ≡ 〈Bπ〉, BA′ = ixAA

′
BA +BA′ , (3.17)

such that eq. (3.14) becomes

f(Z)
∣∣∣
U0

= 1
〈Bπ〉b+1 ∂̄

( 1
〈Aπ〉a+1

)
. (3.18)

Under the Penrose transform, and using our trivial partition of unity, we have

φA′1...A′2n
(x) = 1

2πi

∫
U0
〈πdπ〉 ∧ πA′1 . . . πA′2n

1
〈Bπ〉b+1 ∂̄

( 1
〈Aπ〉a+1

)
, (3.19)

which may be explicitly evaluated by making the following parametrisation for U0:

πA′(z) = AA′ + zBA′ . (3.20)

Note that our requirement that U0 does not contain the pole at 〈Bπ〉 = 0 implies 〈BA〉 6= 0.
Substituting eq. (3.20) into eq. (3.19) then yields

φA′1...A′2n
(x) = 1

2πi
(−1)a

〈BA〉a+b+1

∫
U0
dz πA′1(z) . . . πA′2n

(z)∂̄
( 1
za+1

)
= 1

2πi
(−1)a

〈BA〉a+b+1

∮
∂U0

dz

za+1 πA′1(z) . . . πA′2n
(z), (3.21)
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where Stokes’ theorem has been used in the second line. Taking the residue of the pole at
z = 0, one finds

φA′1...A′2n
(x) = (−1)a

〈BA〉a+b+1
1
a! lim

z→0

da

dza

[
πA′1(z) . . . πA′2n

(z)
]

= (−1)a

〈BA〉a+b+1

(
a+ b

a

)
A(A′1 . . .AA′bBA′b+1

. . .BA′2n). (3.22)

Special cases of this family of spacetime fields indeed obey the Weyl double copy of eq. (2.3),
as already discussed in refs. [41, 42]. Indeed, this will be the case whenever scalar, EM
and gravity fields are chosen such that eqs. (3.10), (3.11) are obeyed for their Dolbeault
representatives in twistor space, as may be easily verified.

3.2.2 General type D vacuum solutions

To go further than the previous section, we may consider the Dolbeault representatives

fm(Z) = ∂̄Fm(Z), Fm(Z) = f̌m(Z), (3.23)

where f̌m(Z) consists of an inverse power of a quadratic form, shown explicitly in eq. (2.35).
On the Riemann sphere X, let us parametrise U0 by

πA′ = (1, ξ) (3.24)

i.e. such that π0′ 6= 0. The quadratic form will assume the general form

QαβZ
αZβ = N−1(x)(ξ − ξ0)(ξ − ξ1) (3.25)

where the normalisation factorN−1(x) inherits its spacetime dependence from the incidence
relation, and the pole ξi is taken to lie exclusively in Ui, as shown in figure 1. The Penrose
transform of eq. (2.21) for each m then evaluates to

φA′...D′(x) = −N
m(x)
2πi

∫
U0
dξ ∧ (1, ξ)A′ . . . (1, ξ)D′

(ξ − ξ1)m ∂̄

( 1
(ξ − ξ0)m

)
= −N(x)

2πi

∮
∂U0

dξ
(1, ξ)A′ . . . (1, ξ)D′
(ξ − ξ0)m(ξ − ξ1)m . (3.26)

Taking the residue of the pole at ξ = ξ0, one finds spacetime fields (for m=1, 2 and 3
respectively)

φ(x) =− N(x)
ξ0−ξ1

, φA′B′(x) = N2(x)
(ξ0−ξ1)3α(A′βB′), φA′B′C′D′ =−

N3(x)
(ξ0−ξ1)5α(A′αB′βC′βD′),

(3.27)
where we have introduced the spinors

α = (1, ξ0), β = (1, ξ1). (3.28)

The fields of eq. (3.27) clearly obey the Weyl double copy of eq. (2.3). Furthermore, as
has been pointed out in ref. [69], use of a general dual twistor Qαβ allows one to span the
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complete space of vacuum type D solutions. We thus recover the results of refs. [41, 42]
in the C̆ech approach, but this was in any case guaranteed by our general argument. The
examples of alternative Petrov types presented in refs. [41, 42] will also generalise to the
Dolbeault approach.

To summarise, in this section we have introduced a general procedure for obtaining
twistor double copies in the Dolbeault formalism, which is essentially a rewriting of the
twistor double copy in the C̆ech approach to twistor theory. Alas, this means that the
Dolbeault approach also suffers from the same apparent ambiguities as the C̆ech double
copy, which we discuss in the following section.

3.3 Cohomology and the Dolbeault double copy

As we reviewed in section 2, the twistor quantities appearing in the Penrose transforms of
eq. (2.10) and (2.21) are representatives of cohomology classes. In eq. (2.10), these are C̆ech
cohomology classes, and we saw that the product of eq. (2.34) is incompatible in general
with the ability to redefine each representative according to the equivalence transforma-
tions of eq. (2.13). In the Dolbeault language, this freedom translates to the ability to add
a ∂̄-exact form to each representative, as expressed in eq. (2.23). One may then investi-
gate whether the prescription of eq. (3.11) respects the ability to redefine each Dolbeault
representative according to eq. (2.23), and it is straightforward to see that it does not.

To show this, recall that the functions appearing in eq. (3.11) are straightforwardly
related to their corresponding C̆ech representatives by eq. (3.12). Redefining the latter
according to eq. (2.13) amounts, from eq. (2.33) and our partition of unity with η0 = 0, to
adding ∂̄h0(Z) to the corresponding Dolbeault representative. Here h0(Z) has poles only
in U1. In eq. (3.11), the conversion of the square brackets to a (0,1) form happens after the
double copy product has already taken place. For our purposes, it is sufficient to consider
equivalence transformations of the functions appearing in the numerator of eq. (3.11), such
that one replaces eq. (3.11) with

fgrav.(Z)→ ∂̄

[
(F (1)

EM(Z) + h
(1)
0 (Z))(F (2)

EM(Z) + h
(2)
0 (Z))

F (Z)

]

= fgrav.(Z) + ∂̄

[
h

(1)
0 (Z)F (2)

EM(Z) + h
(2)
0 (Z)F (1)

EM(Z) + h
(1)
0 (Z)h(2)

0 (Z)
F (Z)

]
. (3.29)

We stress that, despite appearances, this replacement does not have the same form as the
equivalence transformation of eq. (2.23): in the latter, the second term is defined over
the whole Riemann sphere, and thus vanishes as a total derivative when integrated. By
contrast, in eq. (3.29) the second term is defined only locally within the patch U0, and thus
gives a potentially non-zero result after integration. Indeed, Stoke’s theorem implies that
the contribution of the second term in eq. (3.29) to the Penrose transform integral is

1
2πi

∮
∂U0
〈πdπ〉πA′πB′πC′πD′

[
h

(1)
0 (Z)F (2)

EM(Z) + h
(2)
0 (Z)F (1)

EM(Z) + h
(1)
0 (Z)h(2)

0 (Z)
F (Z)

]
.

The terms in the square brackets have poles in U0 in general, and thus this integral will
be non-zero. Thus, as in the C̆ech double copy of refs. [41, 42], redefining the scalar and
EM fields before forming the twistor space product results in a different spacetime field in
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general. As in that case, this is not a problem when it comes to deriving the form and
scope of the Weyl double copy, where one must simply find suitable representatives for
each field in twistor space so as to reproduce the desired spacetime relationship. However,
it would be nice if there were a systematic way to decide which representative should be
chosen. We give one such method in the following section.

4 Dolbeault representatives in Euclidean signature

As we have seen, both the C̆ech and Dolbeault double copies involve forming apparently
ambiguous products of twistor functions, where the non-linear nature of this relationship
is at odds with the fact that these functions are actually representatives of cohomology
classes. It is then natural to ponder whether there are any natural ways to choose “special”
representatives of each class, so that the procedure can be made unambiguous. One such
procedure has been presented recently in ref. [55], which focused on radiative spacetimes.
Here we give a different procedure that works for all examples considered in this paper,
provided one uses Euclidean signature in spacetime. This allows the use of known meth-
ods from complex analysis that can indeed pick out special representatives of Dolbeault
cohomology classes. For reviews of twistor theory in Euclidean signature, see refs. [46, 50],
the latter of which inspires our review of relevant material below.

The spinorial translation of a spacetime point xa has been given in eq. (2.6). One may
impose Euclidean signature by defining the hat-operation

x̂AA
′ = 1√

2

(
x̄0 − x̄3 −x̄1 + ix̄2

−x̄1 − ix̄2 x̄0 + x̄3

)
, (4.1)

where the bar denotes complex conjugation. Demanding that xAA′ = x̂AA
′ yields the

constraints x0 ∈ R and
xl = iyl, yl ∈ R, l ∈ {1, 2, 3},

such that
xax

a = (x0)2 + (y1)2 + (y2)2 + (y3)2 (4.2)

as required. The hat operation in turn induces the following conjugation on 2-spinors:

ωA = (a, b)→ ω̂A = (−b̄, ā), πA′ = (c, d)→ π̂A′ = (−d̄, c̄), (4.3)

such that this operation acts on twistors as follows:

Zα = (ωA, πA′)→ Ẑα = (ω̂A, π̂A′). (4.4)

Using this notation, the Dolbeault operator discussed in section 2.3 takes the form

∂̄ = dẐα
∂

∂Ẑα
= dω̂A

∂

∂ω̂A
+ dπ̂A′

∂

∂π̂A′
. (4.5)

As explained in e.g. ref. [50], it is convenient to rewrite this by introducing a particular basis
for anti-holomorphic vectors and (0,1) forms on the appropriate projective twistor space
(which we denote by PT(R4)). That is, we may write the tangent space of anti-holomorphic
fields as

T 0,1
PT(R4) = span

{
∂̄2 = 〈ππ̂〉πA′ ∂

∂π̂A′
, ∂̄A = πA

′ ∂

∂xAA′

}
, (4.6)
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and the space of (0,1) forms as

Ω0,1(PT(R4)) = span
{
ē2 = 〈π̂dπ̂〉

〈ππ̂〉2
, ēA = π̂A′dx

AA′

〈ππ̂〉

}
, (4.7)

such that the Dolbeault operator of eq. (4.5) is recast as

∂̄ = ē2∂̄2 + ēA∂̄A. (4.8)

We may write the Penrose transform following eq. (2.21), where the twistor function that
appears must be an element of the Dolbeault cohomology group H0,1

∂̄
(PT(R4),O(−2n−2)),

and may be expanded in the above basis as

f = f2ē
2 + fAē

A. (4.9)

The convenience of this basis then becomes apparent. Upon restriction to the Riemann
sphere X corresponding to fixed xAA

′ , only the term involving ē2 survives, and one thus
finds

φA′B′...C′(x) = 1
2πi

∫
X
〈πdπ〉 ∧ πA′πB′ . . . πC′f2|X ē2. (4.10)

Let us now return to the problem of how to pick special representatives of Dolbeault
cohomology classes for given spacetime fields, such that the twistor double copy prescription
of eq. (3.11) becomes more meaningful. First, let us recall that on a complex manifold M ,
one may define a positive definite inner product between two (p, q) forms α, β ∈ Ωp,q(M)
according to

(α, β) ≡
∫
M
α ∧ ∗β̄. (4.11)

We may then define the adjoint Dolbeault operators ∂†, ∂̄† via

(α, ∂β) = (∂†α, β), (α, ∂̄β) = (∂̄†α, β). (4.12)

Then, the Hodge decomposition theorem says that, if M is compact, one may write an
arbitrary (p, q) form ω ∈ Ωp,q(M) as

ω = ∂̄α+ ∂̄†β + γ, (4.13)

where α ∈ Ωp,q−1(M), β ∈ Ωp,q+1(M) and γ ∈ Ωp,q(M). The form γ is called the har-
monic part of ω and satisfies ∂̄ω = ∂̄†ω = 0. We denote by Harmp,q

∂̄
(M) the set of all such

harmonic forms, and there is a known isomorphism between the set Harmp,q

∂̄
(M) and the

Dolbeault cohomology group H0,1
∂̄

(M), which is straightforward to understand: elements
of the latter are cohomology classes; each cohomology class has a unique harmonic rep-
resentative, namely an element of the former. For a ∂̄-closed form (∂̄ω = 0), one finds
∂̄∂̄†β = 0. Consideration of

〈β, ∂̄∂̄†β〉 = 〈∂̄†β, ∂̄†β〉 ≥ 0

then reveals ∂̄†β = 0.
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In our present context, we are concerned with (0,1) forms on the Riemann sphere X
corresponding to a given spacetime point x. As mentioned above, after restriction to X one
has ∂̄|X ≡ ē2∂̄2. The above comments imply that a ∂̄-closed (0,1) form can be written as

f |X = ē2∂̄2g + f∆, (4.14)

where g is a function and

f∆ ∈ Harm0,1
∂̄

(CP1,O(−2n− 2))

is a ∂̄-harmonic (0,1)-form on X ' CP1, where we have also labelled the homogeneity
required for a spin-n field. From eq. (4.14), picking a Dolbeault representative for a given
field to correspond to the purely harmonic part amounts to imposing the requirement8

∂̄†2f |X = 0, (4.15)

and the Penrose transform then assumes the form

φA′B′...C′(x) = 1
2πi

∫
X
〈πdπ〉 ∧ πA′πB′ . . . πC′f∆(Z)|X . (4.16)

To address the relationship with the Weyl double copy, it is worthwhile pointing out that
there is an explicit mechanism to generate harmonic Dolbeault representatives in twistor
space [46]. Given a spacetime spinor field φA′B′...C′(x), one may construct a twistor
function on X as follows:

Φφ = 1
〈ππ̂〉2n+1φA′B′...C′(x)π̂A′ π̂B′ . . . π̂C′ . (4.17)

One may then construct the (0,1) form

fφ = ∂̂Φφ = 2n+ 1
〈ππ̂〉2n

φA′B′...C′ π̂
A′πB

′
. . . πC

′
ē2, (4.18)

where we have introduced the operator

∂̂ ≡ dπ̂A′ ∂

∂π′A
, (4.19)

and used the basis of eq. (4.7). Equation (4.18) indeed turns out to be harmonic.
Conversely, using fφ in the Penrose transform of eq. (4.16) reveals φA′B′...C′ to be the
spacetime field associated with the twistor one-form fφ. To see this, one may write the
Penrose transform out in full as

φA′...C′(x) = 1
2πi

∫
X

〈πdπ〉 ∧ 〈π̂dπ̂〉
〈ππ̂〉2

πA′ . . . πC′
2n+ 1
〈ππ̂〉2n

φD′...E′(x)π̂D′ . . . π̂E′

= 2n+ 1
2πi φD′...E′(x)

∫
X
ω
πA′ . . . πC′ π̂

D′ . . . π̂E
′

〈ππ̂〉2n

= φD′...E′(x)δD′(A′ . . . δ
E′

C′), (4.20)
8Equation (4.15) also occurs when describing Yang-Mills gauge fields in twistor space (see e.g. refs. [46,

50, 63, 70–72] for this and related work), when it is referred to as the harmonic gauge condition. Our
context here is more general, given that the twistor function being referred to may describe a spacetime
field in either scalar, gauge or gravity theory.
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where
ω = 〈πdπ〉 ∧ 〈π̂dπ̂〉

〈ππ̂〉2
(4.21)

is the volume form on CP1 and we have used the identity [63]

1
2πi

∫
X
ω
πA′ . . . πC′ π̂

D′ . . . π̂E
′

〈ππ̂〉2n
= 1

2n+ 1δ
D′

(A′ . . . δ
E′

C′). (4.22)

Thus, fφ is the harmonic Dolbeault representative for the field φA′B′...C′ .
Consider now a pair of EM fields φ(1)

A′B′ , φ
(2)
A′B′ , a scalar φ and a gravity field φGA′B′C′D′

that enter theWeyl double copy of eq. (2.3). From these, we may construct twistor functions
Φ(i), Φ and ΦG according to eq. (4.17). It is then straightforward to verify that eq. (2.3)
implies

ΦG = Φ(1) Φ(2)

Φ . (4.23)

For the gravity solution, we thus obtain a harmonic Dolbeault representative

fG = ∂̂

(
Φ(1) Φ(2)

Φ

)
. (4.24)

We therefore see that the spacetime Weyl double copy implies a simple product structure
in twistor space. Furthermore, eqs. (4.17), (4.18), (4.23) imply that all Dolbeault repre-
sentatives occuring in the scalar, gauge and gravity theories are harmonic. This is perhaps
the cleanest twistorial incarnation of the double copy that we have yet encountered. Each
cohomology class corresponding to a given spacetime field has a unique and minimal rep-
resentative, namely that (0,1) form which is harmonic. We have seen that it is possible
to combine harmonic (0,1) forms in twistor space of homogeneity −2 and −4, in order to
obtain a (0,1) form of homogeneity −6 that is also harmonic. This then fixes which gravity
solution we are talking about upon performing the double copy.

Note that eq. (4.24) bears a resemblance to eq. (3.11), i.e. to our first Dolbeault double
copy obtained as a simple rewriting of the C̆ech approach. However, there are important
differences: the (0,1) form of eq. (3.11) is defined locally, in a single coordinate patch,
whereas that of eq. (4.24) is defined globally, as well as involving a different differential
operator. We may of course apply eq. (3.11) in Euclidean signature, and it is clear that
the Dolbeault representatives defined by eqs. (3.11), (4.24) will not be the same in general.
Nevertheless, for gravity fields which obey the Weyl double copy, the two differing repre-
sentatives correspond to the same spacetime gravity field if the same scalar and gauge fields
are chosen. To see this, note that we may Penrose transform each (0,1) form appearing in
eqs. (3.10), (3.11) to obtain a spacetime field, which we may then plug into eqs. (4.17), (4.18)
to generate harmonic representatives. If the gravity field obtained by Penrose transforming
eq. (3.11) obeys the Weyl double copy, we may plug it into eq. (4.17) to give a function
satisfying eq. (4.23), as noted above. Then eqs. (3.11) and (4.24) correspond to the same
spacetime gravity field, namely to the Weyl double copy of the scalar and gauge fields.

The above discussion implies that there are at least two choices of Dolbeault repre-
sentatives such that a product structure in twistor space leads to the Weyl double copy in

– 20 –



J
H
E
P
0
3
(
2
0
2
2
)
1
8
0

position space: those defined separately by eqs. (3.11), (4.24). Unlike the case of harmonic
representatives, however, eq. (3.11) does not furnish us with a clear interpretation of which
representatives we must choose in order to make the double copy manifest, (i.e. the choice
of C̆ech representatives appears ambiguous). As we have already mentioned above, a third
choice has recently appeared in the literature [55], inspired by previous work [56]. The
authors considered purely radiative spacetimes, namely those that are completely defined
by characteristic data at future null infinity I+. Each point x in Minkowski spacetime
is associated with a spherical surface S2

x, corresponding to where the lightcone of null
geodesics at x intersects I+. Each null geodesic at x, however, corresponds to a point in
projective twistor space PT, and the set of all such points forms the Riemann sphere X
associated with x. There is then a well-defined map from the sphere S2

x to X, such that
characteristic data on S2

x can be used to fix a Dolbeault representative on X whose Penrose
transform leads to a given radiative spacetime field [56]. As argued in ref. [55], this may
be done consistently in scalar, gauge and gravity theories such that a spacetime double
copy is obtained. On the face of it, this procedure appears to be different to either of the
procedures defined above for choosing Dolbeault representatives in the twistorial double
copy, especially given that ref. [55] discussed radiative spacetimes only.

5 Discussion

In this paper, we have considered the classical double copy (specifically the Weyl double
copy of ref. [15]), and how one may formulate this in twistor space. This was already
considered in refs. [41, 42], which showed that a certain product of twistor functions can
be used to derive the Weyl double copy in position space. However, this creates a puzzle,
in that one cannot ordinarily multiply twistor functions together in the Penrose transform
that turns twistor quantities into spacetime fields. The twistorial quantities associated
with any spacetime field can be subjected to equivalence transformations that do not affect
the latter, such that they are representatives of cohomology classes. This casts doubt
on whether the double copy can be furnished with a genuinely twistorial interpretation, or
whether the twistor approach acts merely as a useful book-keeping device, that can be used
to efficiently generate instances of the classical double copy. Furthermore, refs. [41, 42] used
the language of C̆ech cohomology groups, and if the twistor picture makes sense then it must
also be possible to instead use the more widely used framework of Dolbeault cohomology.

We have herein presented two methods for writing the twistor double copy in the
Dolbeault framework. In the first, one may use a well-known procedure for turning C̆ech
representatives into Dolbeault counterparts, in order to recast the Weyl double copy in the
Dolbeault language. The product structure that is inherent in the C̆ech approach then
survives in the Dolbeault approach, for obvious reasons. Whilst it is encouraging that this
works, it still provides no clue as to how one can somehow pick out special representa-
tives of each cohomology class entering the double copy, so that the procedure becomes
unambiguous. To remedy this, we presented a second Dolbeault double copy, which relies
on known techniques for treating Euclidean signature spacetime fields [46, 53]. In this
approach, the Weyl double copy in position space indeed picks out special cohomology
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class representatives in twistor space, namely those (0,1) forms that are harmonic. This is
particularly appealing given that harmonic forms are uniquely defined for each cohomology
class, and in some sense minimal. However, it follows from the first approach presented
here that choosing harmonic forms is not the only way in which a product in twistor space
leads to the same Weyl double copy in position space. Note that is natural to ask what the
harmonic condition in the Dolbeault approach translates to in the C̆ech approach. How-
ever, we have been unable to find a simple answer to this question, which perhaps deserves
further study. Furthermore, neither of the approaches presented here is obviously equiva-
lent to the arguments of ref. [55], which used characteristic data at future null infinity to
fix particular representatives corresponding to radiative spacetimes.

We can perhaps clarify matters by considering the original double copy for scattering
amplitudes. In that case, it is only in certain generalised gauges (consisting of a choice of
gauge and / or field redefinitions) that the double copy — which has a manifest product
structure term-by-term in a graphical expansion of the scattering amplitude — is made
manifest. It is possible to work in different generalised gauges, but at the expense of losing
the simple product form of the double copy [73]. Something like this idea occurs elsewhere
in the double copy literature, with a further example being the Kerr-Schild double copy of
exact solutions of ref. [4]. In that case, the gravity solution must be in a particular coordi-
nate system in order that its single copy can be taken, which is such that a simple product
formula applies between the scalar and gauge fields entering the double copy. Kerr-Schild
coordinates are sufficient for this purpose, although there may be other coordinate systems
that accomplish this. An approach for copying spacetime fields in arbitrary gauges at lin-
earised level has been developed in the convolutional approach of refs. [21–25, 28, 29], which
makes clear the product form of the double copy is not manifest in general. Based on these
remarks, we find it highly plausible that the double copy in twistor space can be given a
general form, such that the product structure is made manifest only for particular cohomol-
ogy representatives. That more than one product structure leads to the same position space
double copy is not a problem, as there may be more than one choice of representatives that
makes the product structure possible. However, it seems unlikely that the product structure
would be true in general, given that it is so obviously incompatible with the equivalence
transformations that define each cohomology class. This leaves the mystery of how one can
choose cohomology representatives a priori so that the twistor space product applies. We
regard our second Dolbeault double copy as particularly useful, given that it uniquely fixes
a representative for each of the fields (scalar, gauge and gravity) entering the double copy.

Our above remarks are of course only speculative,9 and other possibilities remain.
For example, one may have different product structures that are possible in twistor space
(corresponding to different ways of picking cohomology representatives), but such that
these correspond to different double copies in position space. In such a case, one could
formally define the notion of a (non-unique) double copy in twistor space by giving (i) a
method for choosing cohomology representatives for scalar, gauge and gravity fields; (ii) a

9It should be noted that a direct analogy of having to fix (generalised) gauges for a double copy to be
made manifest is curiously unnecessary for the Weyl double copy, which is gauge invariant in spacetime, in
the linearised approximation.
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product formula (or other map) for combining the chosen representatives. It may then turn
out to be the case that only one of these definitions matches the original double copy for
amplitudes, but the remaining double copies may nevertheless be useful for something. The
relationship between the twistor double copy of refs. [41, 42] and the amplitudes double copy
has been very recently addressed in ref. [74], which showed that classical spacetime fields can
be obtained as a Penrose transform of scattering amplitudes which have been transformed
from momentum to twistor space. The known double copy for amplitudes would then imply
a twistor-space double copy, and exactly how this relates to the ideas of this paper would
be very interesting to investigate further. Another possibility is that there is no genuine
double copy in twistor space at all, and that the results obtained thus far in refs. [41, 42, 55]
are coincidental, and do not generalise further. Our present paper gives us hope that this
is far too pessimistic a conclusion, but also tells us that further investigation is necessary.
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