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1 Introduction and summary

One of the most promising ways to study a strongly coupled supersymmetric quantum
field theory is supersymmetric localization [1]. Utilizing this technique, one can compute
the superconformal index [2–4], defined as Sd−1 × S1 partition function of d-dimensional
superconformal field theory. The index counts a certain set of local BPS operators. Once
we introduce a non-local defect in the theory, such as a ray operator Li with an open end,
the previous Hilbert space defined without the ray operator is deformed. The authors of [5]
defined and computed the relevant index that counts states in the deformed Hilbert space
in the context of 5d N = 1 superconformal field theory (SCFT) with En global symmetry;
the index was named ray operator index. The goal of this work is to provide an evidence
of the existence of the line defect OPE L1 × L2 → L3 by comparing ray operator index
associated to each ray operator Li.

The 5d SCFT is believed to be a UV fixed point of IR 5d N = 1 G = Sp(1) SYM with
fundamental matters [6] and a superconformal line defect is UV ancestor of a supersym-
metric Wilson line in the IR gauge theory. One way to classify the superconformal line
defect is to use the 5d superconformal algebra [7]. This is natural in a sense that it only
uses the intrinsic information of the SCFT itself. However, since we rely on the localization
technique that uses the IR gauge theory, to make contact with the computation, it looks
more useful to label the defect by property of its IR counterpart: the representation of
the IR Wilson ray under the IR gauge symmetry.1 Let us then denote superconformal line
defect with its IR descendant labeled by a representation R as LR and the relevant ray
operator index as 〈LR〉.

For the IR gauge theory with G = Sp(1), the simplest nontrivial Wilson ray operator
is labeled by the fundamental representation. Hence, we can think Lfund as the simplest
nontrivial superconformal line operator. An important property of Lfund is that the local
operator that ends on Lfund is charged non-trivially under the center of the global symmetry

1Note, however, that the gauge symmetry does not exist at the UV conformal fixed point.
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Figure 1. Left: theory on R5 with a line defect L stretched along R+ ending at the origin of R5

with a local junction operator O sitting at the end point. Right: theory on S4×S1 with L wrapping
S1 and sitting at the north pole of S4. The system on the left is related to the system on the right
by a conformal transformation, with the local junction operator O being mapped to a state |ψ(O)〉
on S4 (with L sitting at the north pole).

En of the SCFT. Let us denote the center charge c. This can be explicitly observed and
computed by analyzing the index 〈Lfund〉 [5].

We will compute 〈Ladjoint〉 and show that Ladjoint carries 2c by enumerating all global
symmetry representations that appear in 〈Ladjoint〉. This result strongly indicates the
existence of a non-trivial OPE between two superconformal line operators Lfund that leads
to Ladjoint:

Lfund × Lfund → Ladjoint . (1.1)

In section 2, we will review definitions and a brief computation procedure of 5d su-
perconformal index and ray operator index. In section 3, we will present the adjoint ray
operator index and show that the relevant local BPS operators, where the ray ends, carry
double amount of charges under the Z9−n center of the En global symmetry compared to
the center charge of the local operators at the end of the fundamental ray operator.

2 Ray operator index and superconformal index

Ray operator index is Witten index [8] that counts states in the Hilbert space on S4 of
5d SCFTs in the presence of a line defect L piercing the spatial S4 at a point. Due to
state-operator correspondence, this is the same as counting local junction operators O in
the 5d SCFT on R5 where the line defect L stretched along R+ can end — this is depicted
in figure 1.

As 5d SCFTs do not admit a Lagrangian description, we need to rely on the RG
flow invariance of BPS protected operators and compute the index using localization tech-
niques [1, 4]. These are applied to the IR 5d N = 1 gauge theory description of the UV
SCFTs. The line defect of the UV SCFT reduces to a Wilson line defect in the IR non-
abelian gauge theory. In this section, we sketch the procedure to compute the path integral
of the IR gauge theory on S4 × S1 in the presence of a Wilson line defect wrapped along
{North Pole} × S1 ⊂ S4 × S1.

– 2 –
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Before computing the index using localization techniques, it is helpful to recall the
Hamiltonian definition of the index to set up notation. The ray operator index can be
viewed as a character of the line defect enriched Hilbert space Hray (viewed as a module
over the superconformal algebra F (4) whose Cartan sub-algebra is generated by ∆, J±, JR,
which are generators of dilatation, two rotations, and SU(2)R symmetry):

Iray(ε+, ε−,mi,M) = TrHray

[
(−1)F e−β∆e−2ε+(J++JR)−2ε−J−e−

∑
FimieΠM

]
, (2.1)

where F is the fermion number. ε±, mi,M are chemical potentials for J±, flavor symmetry
generators Fi, a certain Sp(1)′ symmetry generator2 Π relevant to an implementation of
the ray operator, and β is the radius of the time circle S1, where the trace is taken over
Hray. Due to state-operator correspondence in conformal field theory, the Hilbert space
is isomorphic to the space of local operators on a flat spacetime sitting at an end of the
line defect.

The practical computation of the above index defined in the Hamiltonian formalism
is through a Lagrangian way — we compute it using the path integral of the IR gauge
theory, whose UV theory is the SCFT. The conjectured RG-flow invariance of the content
of the BPS operators3 ensures that the result obtained in this way gives the index of the
UV SCFT.

Concretely, we consider a 5d N = 1 supersymmetric gauge theory with a gauge group
G = Sp(N), a vector multiplet V, Nf fundamental hypermultiplets Hi, and one anti-
symmetric hypermultiplet HAS . Given the field content, we can utilize [1, 4] to compute the
path integral using supersymmetric localization. More explicitly, we deform the 5d gauge
theory Lagrangian by some Q-exact term, L′ = L + t{Q,V }, where t is some constant
and V is a function of fields in the supermultiplets V, Hi, HAS . Because the theory
is supersymmetric, the path integral does not change after the deformation with any t.
By taking t → ∞, the path integral domain localizes to the moduli space of solutions
of the saddle point equation {Q,V } = 0. In the particular geometry S4 × S1 that we
are studying, the localization locus turns out to be (1) instanton(F = ?F ), (2) anti-
instanton(F = − ? F ) configuration on North and South pole of S4, which are SO(4) fixed
points and (3) perturbative modes of the Lagrangian fields on the rest of S4. We can
summarize the localization result as follows:

I =
∫

[dα]ZpertZinstZanti-inst , (2.2)

where [dα] is Sp(N) Haar measure, given by

[dα] =2N
N !

[
N∏
i=1

dαi
2π sin2 αi

]∏
i<j

[
2 sin

(
αi − αj

2

)]2 [
2 sin

(
αi + αj

2

)]2
. (2.3)

We will explain each factor in (2.2) soon. Note that due to the presence of the line defect
at the North Pole, the moduli space of instanton will be deformed, so we will need to

2We will be more explicit about Π in (2.9).
3In particular, we are counting 1/8-BPS operators annihilated by Q = Q1

2 and S = S2
1 , where QA

m, Sn
B

are (conformal)supercharges with A, B being SU(2)R spinor index and m, n SO(5) vector indices. These
operators satisfy the following unitarity bound {Q, S} = ∆− 2J+ − 3JR ≥ 0.

– 3 –
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take extra care later when we embed the setting into string theory to compute Zinst. On
the other hand, the South Pole contribution is purely from un-deformed anti-instanton
moduli space.

Zpert essentially encodes all the 5d operators that can be built out of elementary
Lagrangian fields that are in the Q-cohomology. If we denote the single-letter index as

f =
∑

letters
(−1)F t2(J++JR)u2J−vfmfi

i = fvec + fasym + ffund (2.4)

where t = e−ε+ , u = e−ε− , v = e−m, mi = e−Fi . f , fi are the generators of the flavor
symmetry associated with the anti-symmetric and fundamental hypermultiplets, respec-
tively, and

fvec = − t(u+ u−1)
(1− tu)(1− tu−1) , fasym = t

(1− tu)(1− tu−1)(v + v−1),

ffund = t

(1− tu)(1− tu−1)

Nf∑
i=1

2 coshmi,

(2.5)

where Nf is the number of fundamental hypermultiplets.
We may write the multiletter index as a Plethystic exponential, and this is equivalent

to the 1-loop determinants of 5d perturbative modes, Zpert.

Zpert = P.E[f] = exp
[∑

R

∞∑
n=1

fR(tn, un, vn)χR(wni )
]
, (2.6)

where

χvec(wi) =
[ N∑
i<j

(
1

wiwj
+ wj
wi

+ wi
wj

+ wiwj

)
+

N∑
i=1

(
w−2
i + w2

i

)
+N

]

χasym(wi) =

 N∑
i<j

(
1

wiwj
+ wj
wi

+ wi
wj

+ wiwj

)
+N

 .
(2.7)

Note that wi and αi appearing in (2.3) are related as wi = eiαi .
The set of BPS instanton operators that are captured by Zinst and Zanti-inst are graded

by the instanton number k. Zinst, also known as Nekrasov partition function [11], can be
expressed as a generating series in q, where each term is relevant for the subsector of the set
of BPS operators with charge k under the U(1) topological symmetry of 5d gauge theory:

Zinst = 1 +
∞∑
K=1

qKZKinst . (2.8)

Each of ZKinst needs to be computed separately.
To compute the K-th instanton partition function ZKinst, it is convenient to embed the

system into string theory, where the 5d gauge theory with gauge group Sp(N) and its
K instantons are realized as N D4-branes and K D0-branes on an O8-plane. Given this
embedding, we also need to explain the string theory realization of the line defect. It was

– 4 –



J
H
E
P
0
3
(
2
0
2
2
)
1
7
8

0 1 2 3 4 5 6 7 8 9
O8 × × × × × × × × ×
D4 × × × × ×
F1 × ×
D4′ × × × × ×

Table 1. The directions of the various branes.

noticed in [5, 9, 10] that the ray-like defect can be implemented as a trajectory of one
end of the fundamental string between the D4-branes and an additional D4′-brane, whose
directions in the spacetime can be found in the following table.

For better graphical illustration, see figure 2. We will come back to a more familiar
IR gauge theory description of the line defect as a Wilson ray in the next section.

Z̃kinst,4 is then a partition function of the K D0-brane worldvolume theory which is 1d
N = 4, G = O(K), GF = Sp(N) supersymmetric quantum mechanics. The field content
is determined by the proper quantization of all possible strings that connects different
D-branes in the system.

Formally, the D0-brane partition function can be written as a form of Witten index as

Z̃kinst = TrHQM

[
(−1)F eβ{Q,Q†}t2(J++JR)u2J−v2J ′Rw2ΠixΠ

]
. (2.9)

where the newly introduced generators(or at the same time charges under those) J ′R, Πi,
and Π are the Cartan generators of SU(2)R′ ,5 that rotates anti-symmetric hypermultiplet
in 5d, Sp(N) of N D4-branes, Sp(1)′ of D4′-brane, respectively, and HQM is the Hilbert
space of the quantum mechanics.

The Witten index can again be computed by the supersymmetric localization of the
quantum mechanical path integral. One should remember that since the gauge group of
the quantum mechanics G = O(K) has two disjoint components, and we need to compute
SQM partition function separately for each of O(K)±. As the procedure and the result were
discussed in the literature [12, 13] extensively, we will just write down the final expression
and use it in the computation in the next section.

To sum up, we may write Z̃kinst as follows.

Z̃kinst(t, u, v, wi, x) =1
2
(
Z̃k+(t, u, v, wi, x) + Z̃k−(t, u, v, wi, x)

)
Z̃k±(t, u, v, wi, x) = 1

|W |

∮ [K/2]∏
i=1

[dφi]Z±,kD0-D0Z
±,k
D0-D4Z

±,k
D0-D4′ZD4-D4′

(2.10)

where k = 2n+ χ with χ = 0, 1 and

|W |χ=0
+ = 1

2n−1n! , |W |
χ=1
+ = 1

2nn! , |W |
χ=0
− = 1

2n−1(n− 1)! , |W |
χ=1
− = 1

2nn! . (2.11)

4We will explain the difference between Z̃k
inst and Zk

inst shortly.
5N = 4 SQM has two SU(2) R-symmetries; one is SU(2)R and the other is SU(2)′R.
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Figure 2. Before expanding in x at ∞, the index captures BPS operators associated with the left
figure. After the expansion, the index counts BPS operators associated with the right figure.

The expression in the square bracket is a Haar measure of O(K),6 and the new fugacity
x = e−iM is that of D4′-brane. Z±,kDi-Dj stand for 1-loop determinants of quantum mechanical
fields that are from quantization of Di − Dj strings in K D0-branes sector. The various
1-loop determinants were computed in [4, 5], and they take the following form:

ZDa-Db =
∏n1
j=1 sinh(~ρj · ~φ+ fj(ε+, ε−, αi,m,M))∏n2
k=1 sinh(~ρk · ~φ+ fk(ε+, ε−, αi,m,M))

, (2.12)

where ~ρj , ~ρk are in the root lattice of G = O(K), ~φ = (φ1, . . . , φ[K/2]), and ni ∈ Z+. We
direct the reader to [4, 5, 12, 13] for the explicit expressions that we used in our calculation.
Looking at the expression, we notice there are many poles in the integrand. We used a
contour prescription called Jeffrey-Kirwan (JK) residue formula [14, 15] to evaluate the dφi
integral.

Given all Z̃kinst, let us define Z̃inst as a generating series

Z̃inst(q, t, u, v, wi, x) =
∑
k=0

qkZ̃kinst(t, u, v, wi, x) . (2.13)

Here Z̃0
inst ≡ ZD4-D4′ , since this factor is not a function of φi, so it can be factored out of

each φi-integral (2.10) and it becomes an overall factor of the entire series.
Although the string theory embedding has the advantage of translating the problem of

computing the instanton partition function to the D0-brane quantum mechanics partition
function, it creates a subtlety involving the “extra” states, which we need to decouple from
Z̃inst to get the true instanton partition function Zinst, as pointed out in [12]. The source of
extra states is the D0-branes that are unbound to D4-branes. This definition simply leads
to the following expression for the extra partition function Zkextra whose integrand does not
involve any 1-loop determinants of the fields obtained from D4-related strings:

Zkextra(t, u, v, x) = 1
2(Zk,+extra(t, u, v, x) + Zk,−extra(t, u, v, x))

Zk,±extra(t, u, v, x) = 1
|W |

∮ [K/2]∏
i=1

[dφi]Z±,kD0-D0Z
±,k
D0-D4′ .

(2.14)

6It can be found in appendix E of [4].
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Let us also define Zextra as a generating series

Zextra(q, t, u, v, x) = 1 +
∑
k=1

qkZkextra(t, u, v, x) . (2.15)

The true instanton partition function Zinst, which is used in the 5d index computation, is
then obtained by eliminating the extra states from Z̃inst

Zinst(q, t, u, v, wi, x) = Z̃inst(q, t, u, v, wi, x)
Zextra(q, t, u, v, x) . (2.16)

As a side remark, it was first noticed in [10], this function is related to the Nekrasov’s qq
character [16]. And for the case of G = U(K), GF = U(N)(flavor symmetry group), and
a general number of D4′-branes, the function has a compact analytic form, written down
in [17].

Now, let us turn to Zanti-inst. In contrast to Zinst, which is modified by the ray-like
defect or D4′-brane in the string theory picture, Zanti-inst is associated to the pure instanton
moduli space. In the D0-brane QM language, we simply exclude D4′-brane in the above
set-up and follow the same procedure by simultaneously taking inverse of q. Of course,
here we also decouple extra unbound D0-branes to D4-branes

Zanti-inst(t, u, v, q, wi) = 1 +∑
k=1 q

−kZ̃kanti-inst(t, u, v, wi)
1 +∑

k=1 q
−kZ̃kextra(t, u, v, wi)

Z̃kanti-inst = 1
2(Z̃k,+anti-inst + Z̃k,−anti-inst), Z̃kextra = 1

2(Z̃k,+extra + Z̃k,−extra)

Z̃k,±anti-inst = 1
|W |

∮ [K/2]∏
i=1

[dφi]Z±,kD0-D0Z
±,k
D0-D4, Z̃k,±extra = 1

|W |

∮ [K/2]∏
i=1

[dφi]Z±,kD0-D0 .

(2.17)
Now that we have all ingredients for the final integral, so let us collect the factors and

rewrite the integral

Iray(t, u, v, q, x) =
∫

[dwi]ZpertZinstZanti-inst (2.18)

It is actually instructive to factor out ZD4-D4′(wi, x) from Zinst to analyze the behavior of
the ray index in the first few leading powers of x. Let us denote Z̄inst = Zinst/ZD4-D4′ .

Iray(t, u, v, q, x) =
∫

[dwi]ZD4-D4′(wi, x)ZpertZ̄instZanti-inst

=
∫

[dwi]
N∏
j=1

(
x−1 − wj − w−1

j + x
)
ZpertZ̄instZanti-inst .

(2.19)

From the last line, we notice the lowest order in x is x−N . It was observed in [5] that for
N = 1, the lowest order term in x, O(x−1) reproduces the superconformal index, and was
argued further that the next order in x, O(x−1+1) is the fundamental ray operator index.
In other words,

Iray = x−1(ISCI + xIfund
ray + . . .

)
. (2.20)

Note that we expand Iray in x = eM at x =∞ consistent with the definition of the ray-like
defect created by the very heavy fundamental strings stretched between the D4-branes and
a D4′-brane.

– 7 –
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3 Adjoint ray as OPE of fundamental ray

3.1 Defect Hilbert space and OPE of ray operators

Recall that the open Wilson ray is in the IR gauge theory needs to end with a local operator
to preserve the gauge invariance.

LOR
= P exp

[
i

∫ ∞
0

(A0 + Φ) dx0
]
OR(0) , (3.1)

where OR(0) denotes a local operator at the origin on which the open Wilson ray labeled
by the representation R may end so that the combination is invariant under the IR gauge
symmetry. The ray index counts the UV image of LOR

, or simply that of OR(0). In this
subsection, we will illustrate how to extract various 〈LOR

〉 from Iray.
To track the UV image of LOR

in (2.20), we need to track the gauge fugacity wi (of
the D4-brane), or more precisely χR(wi). However, since we have already integrated out
wi’s in the previous step (2.19), the final expression Iray (2.20) does not depend on the
gauge fugacity wi. Rather, we may equivalently track the surviving fugacity x(of the D4′-
brane). We can validate this alternative tracking by recalling the UV definition of the
Wilson ray. It is given by the trajectory of the end of the D4-D4′ string in the D4-brane
worldvolume theory, which is the 5d UV SCFT. The other end of the same string is labeled
by x, and the D4-D4′ string(or the field obtained from quantizing the string) transforms
as a bi-fundamental representation under Sp(N)D4 × Sp(1)D4′ , which endows equal status
for w and x.

It is important to notice the final index formula only contains the BPS operators
that transform as antisymmetric representations under Sp(N)D4 × Sp(1)D4′ , since D4-D4′
strings are fermionic. For instance, for N = 1, O(x−N+2) terms encode ray operators that
transform under Sp(1)D4 × Sp(1)D4′ as

(2,2) ∧ (2,2) = (3,1)⊕ (1,3). (3.2)

However, since those operators transformed as (1,3) are essentially from strings that have
both ends on the D4′-brane, it has already been eliminated when we decoupled Zextra.
Hence, we are left with (3,1) = (Adj,1), which we call the adjoint ray operator. In
other words,

Iray
Sp(1) = x−N

(
ISCI + xIfund

ray + x2Iadj
ray + . . .

)
. (3.3)

In our convention, this means that

ISCI = 〈LO1〉, Ifund
ray = 〈LOfund〉, Iadj

ray = 〈LOadj〉. (3.4)

Similarly, we can expect that more complicated representations will appear as coefficients
of xn(with n ≥ 2) in the parenthesis.7

Let us analyze the underlying physical meaning of the above argument and discuss
OPE of LOfund . The generating series (2.20), which we have called as Iray, encodes the

7It will be nice to use the technique discussed in [21] and do the computation for ray operator index for
different R.
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full information of the ray operator index at the UV fixed point. Each coefficient ak of xk
carries a partial information of the full ray operator index, and we can label each of them
with its IR image:8 k-th tensor product of the fundamental Wilson rays of the IR gauge
theory. In other words, the defect Hilbert space at the UV fixed point is a graded Hilbert
space with its grading given by the number k:

Hdefect =
⊕
k=1
Hkdefect. (3.5)

The states in each Hkdefect correspond to the BPS operators due to the state/operator
correspondence, and the set of BPS operators has a structure of a ring with a multiplication
defined by a usual operator product. A natural question is if the quantum number of the
BPS operators such as charge under the global symmetry is correlated with the grading.

A possible starting point of the analysis is to compare the ENf +1 representations that
appear in a product of operators in the k = 1 sector and that appear in the k = 2 sector.
This is in principle a possible task; we indeed obtain all ENf +1 representations of the k = 2
sector. However, for the sake of the comparison, we rather take a detour, which reduces a
big amount of work.

The representative property of the ray operator index is that ENf +1 representations
that appear in the ray index are charged under the center Z8−Nf

of the global symmetry
ENf +1 [5]. We will simply test if the Z8−Nf

center charges of representations that appear
in k = 2 sector matches with two times that of k = 1 sector. Our first example(Nf = 0)
does not have a quark, where the fundamental Wilson ray can end. Hence, the k = 1
sector is absent. However, in the following examples(Nf 6= 0) we include fundamental
hypermultiplets, which provide quarks and we can fill in the k = 1 sector and answer the
above question. In the following subsection, we will do the following.

• We will present adjoint ray operator index for Nf = 0 result for G = Sp(1), Sp(2),
Sp(3). Note that we have included up to 3 instantons in the final expression of
Zinst and Zanti-inst in the integrand (2.18). Since we are only interested in low spin
operators, i.e. low power of t terms, the higher instantons are irrelevant, as they only
contribute to the higher spin operators. This fact guarantees that including up to 3
instantons yields the full answer, if we restrict our attention to low powers of t.

• Test an OPE
H1

defect ×H1
defect → H2

defect (3.6)

for G = Sp(1) gauge theories with an anti-symmetric hypermultiplet and Nf fund-
mental hypermultiplets and θ = 0 for 1 ≤ Nf ≤ 6 by comparing Z8−Nf

center charges
of H1

defect and H2
defect. Depending on the number of fundamental hypermultiplets, the

number of instantons that we include to get a full answer varies. For low Nf such as
1, 2, 3, we observed that including up to 2 instantons suffice for the final index to be
a sum of characters of ENf +1 irreducible representations, but for high Nf such as 4,
5, 6, we included up to 4 instantons for safety, and indeed the final index organizes

8Similar idea was dicsussed in [18–20].
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itself to be a sum of characters of ENf +1. We have only analyzed up to O(t2) order.
Nf = 2 case is unsatisfactory, as we could not observe the exact decomposition of
the index in terms of E3 characters, but guessed the possible representations that are
allowed given the information of the shifted U(1) charges.

3.2 Adjoint ray operator index for G = Sp(1)

Before presenting the result, let us briefly recall the global symmetry enhancement of 5d
N = 1 G = Sp(1) gauge theory with Nf fundamental hypermultiplets, as it is important
to understand the overall structure of the index. The gauge theory has SO(2Nf ) flavor
symmetry and U(1) topological symmetry, which charges the instanton operators [22, 23].
The IR flavor symmetry group enhances to En global symmetry in the UV, where n =
Nf + 1. Since we use the IR gauge theory description to compute the index, we need to
track flavor fugacities fi and instanton fugacity q to write down a sensible index in the UV.
The precise map between the Cartan generators of the UV global symmetry and those of
the IR global symmetry for each Nf was presented in [4].

There is an additional subtlety associated to the instanton fugacity q in the context
of ray index. It was shown in [5] that on states that correspond to a fundamental ray
operator, the U(1) instanton charge receives an anomalous contribution9

2
8−Nf

. (3.7)

In other words, the fundamental ray operator index has an overall factor of q
2

8−Nf . In
the similar vein, we will observe the overall q-power shift for the adjoint ray index in the
presence of Nf fundamental hypers:

2× 2
8−Nf

.

Nf = 0 case. Let us start with the case with no fundamental hypermultiplets(Nf = 0)
in the IR gauge theory. Then, the result of (2.19) is

Iray
Sp(1) = x−1

(
1 + χ3(q)t2 + (1 + χ3(q))χ2(u)t3 +O(t4)

)
+ x1√q

(
χ2(√q) + (χ4(√q) + χ2(√q))t2 +O(t3)

)
+O(x3) .

(3.8)

Note that O(x−1) term of (3.8) successfully reproduces the superconformal index presented
in section 4.1 of [12], providing a consistency check for our computation. There is no O(x0)
term as expected, since the theory does not contain any quark that can be attached to the
end of a fundamental Wilson line. The O(x1) term should be interpreted as index for the
adjoint ray operators Iadj

ray .

Iadj
ray = √q

(
χ2(√q) + (χ4(√q) + χ2(√q))t2 +O(t3)

)
(3.9)

9See section 3.2 of [5] for detail.
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Notice that we do not find I1
ray contribution at x1 order, as expected from the previous

section.
Nf ≥ 1 cases are essentially different from the Nf = 0 case that we have just studied

in the sense that there exist quarks on which the fundamental Wilson ray may end. Hence,
we can test our OPE proposal for these cases.

Adjoint ray operator index for 5d E2 = SU(2) × U(1) SCFT. For simplicity,
we will only write down the adjoint ray index and refer to [5] for the information of the
fundamental ray index.

Iray = O(x−1) +O(x0)

+ x

(
z

1
7
(
χ2(y)t0 + (χ4(y) + 2χ2(y))t2 + χ2(u)(χ4(y) + 3χ2(y))t3 +O(t4)

))
+O(x2)

(3.10)

Here y and z are fugacities for UV flavor symmetry groups SU(2) and U(1) in E2. They
are related to the IR flavor symmetry fugacities q and y1 for U(1)I and SO(2) as

y2 = qy1, z2 = y7
1
q
. (3.11)

E2 = SU(2)×U(1) representations that appear in the adjoint ray index of E2 theory are

21/7, 41/7 (3.12)

where the subscripts are U(1)z charges. They are always 1 mod 7, and it matches with
twice the U(1) charge of fundamental ray operators, which is 4 mod 7.

4 + 4 mod 7 = 1 mod 7 (3.13)

This result is consistent with our proposal.

Adjoint ray operator index for 5d E3 = SU(3) × SU(2) SCFT.

Iray = O(x−1) +O(x0)

+ xq
2
3

(
χE3

[1,0,0] +
[
a1χ

E3
[4,0,0] + a2χ

E3
[1,3,0]

]
t2 +O(t3)

)
+O(x2)

(3.14)

where
χE3

[1,0,0] = 1
q

2
3

+ 2q
1
3 ,

χE3
[4,0,0] = 2

q
5
3

+ 4
q

2
3

+ 6q
1
3 + 3q

4
3 ,

χE3
[1,3,0] = 4

q
5
3

+ 8
q

2
3

+ 6q
1
3 + 4q

4
3 + 2q

7
3 .

(3.15)
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Overall factor q 2
3 indicates the instanton charge shift10 in the adjoint ray index:

q-power shift for Nf = 2 Adjoint ray index: 2× 2
8−Nf

= 2
3 . (3.16)

The possible11 E3 = SU(3)× SU(2) representations that appear in the adjoint ray index
of E3 theory are

3 = [1, 0, 0], 15′ = [4, 0, 0], 24 = [1, 3, 0] (3.17)

Note that our notation for E3 characters [a, b, c] is equivalent to [a, b]× [c] of SU(3)×SU(2).
Z3×Z2 center of SU(3)×SU(2) can be determined by a+ b mod 3 and c mod 2. In (3.17),
we notice c is always 0 mod 2, and a+ b mod 3 is always 1. These central elements match
with twice of Z3 ⊂ SU(3) and Z2 ⊂ SU(2) center charges of the fundamental ray operators,
which are 2 mod 3 and 1 mod 2, respectively.

2 + 2 mod 3 = 1 mod 3, 1 + 1 mod 2 = 0 mod 2 (3.18)

This is again consistent with our proposal in the previous subsection.

Adjoint ray operator index for 5d E4 = SU(5) SCFT.

Iray = O(x−1) +O(x0)

+ xq
4
5

(
χE4

[1,0,0,0] +
[
χE4

[2,0,0,1] + χE4
[0,1,0,1] + χE4

[1,0,0,0]

]
t2 +O(t3)

)
+O(x2)

(3.19)

where
χE4

[1,0,0,0] = 1
q

4
5

+ 4q
1
5 ,

χE4
[2,0,0,1] = 4

q
9
5

+ 16
q

4
5

+ 40q
1
5 + 10q

6
5 ,

χE4
[0,1,0,1] = 15

q
4
5

+ 24q
1
5 + 6q

6
5 .

(3.20)

Overall factor q 4
5 indicates the instanton charge shift in the adjoint ray index:

q-power shift for Nf = 3 Adjoint ray index: 2× 2
8−Nf

= 4
5 . (3.21)

The E4 = SU(5) reps that appear in the adjoint ray index:

5 = [1, 0, 0, 0], 45 = [0, 1, 0, 1], 70 = [2, 0, 0, 1] (3.22)
10See [5] for more detail.
11U(1)I charges in the adjoint ray index after shifting with q2/3, the list of possible U(1) charges are

7−3k
3 , where k ∈ Z+. Rescaling it by 3, we have 7 − 3k. We select the proper representations of E3 by

looking at their SO(4) × U(1) tensor decomposition, and in particular the U(1) charge of the decomposed
representations. The possible representations are those with U(1) charge 7−3k that appear in the adjoint
ray index.

– 12 –



J
H
E
P
0
3
(
2
0
2
2
)
1
7
8

The representation [a, b, c, d] corresponds to a Young diagram with total number of boxes
4a+ 3b+ 2c+ d. All the representations appear above has 4 mod 5 boxes. To see the Z3
charges, we need to decompose each representation in terms of SO(6)×U(1) representations
using the branching rule SU(5)→ SO(6)×U(1):

5 = 1−4 ⊕ 41

45 = 15−4 ⊕ 41 ⊕ 201 ⊕ 66

70 = 4̄−9 ⊕ 1−4 ⊕ 15−4 ⊕ 41 ⊕ 361 ⊕ 106

(3.23)

Reading U(1) charges, we see they are all 1 mod 5. Therefore, they are charged 1 under Z5.
These central elements match with twice of Z5 center charge, 3 mod 5, of the fundamental
ray operators.

3 + 3 mod 5 = 1 mod 5 (3.24)

This is consistent with our proposal in the previous subsection.

Adjoint ray operator index for 5d E5 = SO(10) SCFT.

Iray = O(x−1) +O(x0)

+ xq1
(
χE5

[1,0,0,0,0] +
[
8χE5

[2,0,0,0,0] + χE5
[0,0,1,0,0] + χE5

[1,0,0,0,0] − 112
]
t2 +O(t3)

)
+O(x2)

(3.25)

where
χE5

[1,0,0,0,0] = 1
q

+ 8 + q,

χE5
[2,0,0,0,0] = 1

q2 + 8
q

+ 36 + 8q + q2,

χE5
[0,0,1,0,0] = 28

q
+ 64 + 28q

(3.26)

The overall factor q1 indicates the instanton charge shift in the adjoint ray index:

q-power shift for Nf = 4 Adjoint ray index: 2× 2
8−Nf

= 1. (3.27)

The nontrivial E5 = SO(10) representations that appear in the adjoint ray index are

10 = [1,0,0,0,0], 54 = [2,0,0,0,0], 120 = [0,0,1,0,0]. (3.28)

Z4(of Spin(10)) center charge can be computed by the shifted U(1) charge plus 2 times Z′′2
charge, where Z′′2 is a subgroup of the center Z′2 × Z′′2 of Spin(8). As we have an integral
q-charge shift in the adjoint index shown in (3.27), the index is still an integral power series
in q even after the shift, which indicates the shifted U(1) charge is even. In the branching
rule of Spin(10) representations into representations of Spin(8)×U(1), even U(1) charge is
paired with representations of Spin(8) that appear in tensor products of 8c. The Z′′2 center
charge of basic Spin(8) representations 8v, 8s, 8c are 0,1,1.
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Looking at the decomposition12 of each Spin(10) representations in (3.28),

1 = 1,
10 = 12 ⊕ 1−2 ⊕ 8c0

54 = 1−4 ⊕ 8c−2 ⊕ 10 ⊕ 350 ⊕ 8c−2 ⊕ 14

120 = 28−2 ⊕ 560 ⊕ 8c0 ⊕ 282,

(3.29)

we can read center charges: 1, 10, 54, 120 has 0, 2, 0, 2 Z4 center charge.
There are two choices of Z4 center charge [5], 1 mod 4 or 3 mod 4, of fundamental ray

operator depending on the representations being spinor or co-spinor under SO(8).13 As a
result, the potential center charges of the adjoint ray index are

1 + 1 mod 4 = 3 + 3 mod 4 = 2 mod 4 or,
1 + 3 mod 4 = 0 mod 4.

(3.30)

This is consistent with our calculation.

Adjoint ray operator index for 5d E6 SCFT.

Iray = O(x−1) +O(x0)

+ xq
4
3

(
χE6

[1,0,0,0,0,0] +
[
χE6

[0,0,0,1,0,0] + χE6
[1,0,0,0,0,1] + χE6

[1,0,0,0,0,0] − 144
]
t2 +O(t3)

)
+O(x2)

(3.31)
where

χE6
[1,0,0,0,0,0] = 1

q
4
3

+ 16
q

1
3

+ 10q
2
3 ,

χE6
[0,0,0,1,0,0] = 45

q
4
3

+ 160
q

1
3

+ 130q
2
3 + 16q

5
3 ,

χE6
[1,0,0,0,0,1] = 16

q
7
3

+ 256
q

4
3

+ 592
q

1
3

+ 576q
2
3 + 144q

5
3 .

(3.32)

Overall factor q 4
3 indicates the instanton charge shift in the adjoint ray index:

q-power shift for Nf = 5 Adjoint ray index: 2× 2
8−Nf

= 4
3 . (3.33)

The nontrivial E6 representations that appear in the adjoint ray index are

27 = [1,0,0,0,0,0], 351 = [0,0,0,1,0,0], 1728 = [1,0,0,0,0,1] (3.34)

12Note that 8c, not the standard 8v, appears in the above decompositions, since the embedding Spin(8)×
U(1) is not the standard one, but related to it by triality. I thank Lakshya Bhardwaj who pointed out this
subtlety.

13I thank Lakshya Bhardwaj for pointing out this.
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Once again, we need to look the decomposition to read off Z3 center charge of each repre-
sentation.

27 = 1−4 ⊕ 102 ⊕ 16−1

351 = 45−4 ⊕ 16−1 ⊕ 144−1 ⊕ 102 ⊕ 1202 ⊕ 1̄65

1728 = 1̄6−7 ⊕ 1−4 ⊕ 45−4 ⊕ 210−4 ⊕ 21̄6−1 ⊕ 144−1 ⊕ 560−1 ⊕ 102

⊕ 1202 ⊕ 1̄262 ⊕ 1445

(3.35)

Their U(1) charges are all 2 mod 3, from which we read off Z3 charge 2. These central
elements match with twice of Z3 center charge, 1 mod 3, of the fundamental ray operators.

1 + 1 mod 3 = 2 mod 3. (3.36)

Result is consistent with our proposal in the previous subsection.

Adjoint ray operator index for 5d E7 SCFT.

Iray = O(x−1) +O(x0) + xq2
(
χE7

[1,0,0,0,0,0,0] + χE7
[1,0,0,0,0,0,0]t+O(t3)

)
+O(x2) (3.37)

where
χE7

[1,0,0,0,0,0] = 1
q2 + 32

q
+ 68 + 32q + q2. (3.38)

Overall factor q2 indicates the instanton charge shift in the adjoint ray index:

q-power shift for Nf = 6 Adjoint ray index: 2× 2
8−Nf

= 2. (3.39)

The nontrivial E7 representations that appear in the adjoint ray index are

133 = [1,0,0,0,0,0] (3.40)

Note that 133 is the representation that appears in the superconformal index of E7 theory.
Since we know in general the superconformal index only contains En representations with
trivial center charges, this implies that 133 has 0 charge under Z2 center.

These central elements match with twice of Z2 center charge, 1 mod 2, of the funda-
mental ray operators.

1 + 1 mod 2 = 0 mod 2. (3.41)
Result is consistent with our proposal in the previous subsection.

3.3 Adjoint ray operator index for G = Sp(2), Sp(3)

For Sp(N) with N ≥ 2, we need to treat them separately. Consider, for instance, N = 2.
The O(x−N+2) terms encode ray operators that transform under Sp(2)D4 × Sp(1)D4′ as

(4,2) ∧ (4,2) = (Adj,1)⊕ (Asym,3)⊕ (1,3) . (3.42)

Extra states not related to D4-brane, (1,3), are decoupled from the index as before, so we
are left with

(Adj,1)⊕ (Asym,3) . (3.43)
Therefore,

Iray
Sp(N≥2) = x−N

(
ISCI + xIfund

ray + x2(Iadj
ray + Iasym

ray ) + . . .
)
. (3.44)

In this subsection, we will only present the result for Nf = 0 case.
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Adjoint ray operator index for G = Sp(2).

Iray
Sp(2) = x−2(1 + χ2(v)t+ (χ2(u)χ2(v) + 2χ3(v) + χ3(q))t2 +O(t3)

)
+ x0

(√
qχ2(√q) + (√qχ2(v)χ2(√q) + χ2(v) + 2√qχ2(√q)− 2)t

+
(√
q(χ4(√q) + χ2(v)χ2(√q)(2χ2(u) + 2χ3(v))) + χ2(v)2 − 2χ2(v)

)
t2
)

+O(x2)

(3.45)

Note that O(x−2) term in (3.45) successfully reproduces the superconformal index pre-
sented in section 4.2 of [12], providing a consistency check for our computation. The O(x0)
term contains contributions both from Iadj

ray and Iasym
ray .

Adjoint ray operator index for G = Sp(3).

Iray
Sp(3) = x−2(1 + χ2(v)t+ (χ2(u)χ2(v) + 2χ3(v) + χ3(q))t2 +O(t3)

)
+ x0

(√
qχ2(√q) + (√qχ2(v)χ2(√q) + χ2(v) + 2√qχ2(√q)− 2)t

+
(√
q(3χ2(√q) + χ4(√q) + χ2(v)χ2(√q)(2χ2(u) + 2χ3(v)))

− 4 + 2χ2(v)2 − 2χ2(v)
)
t2
)

+O(x2)

(3.46)

Similar to G = Sp(2) case, O(x0) term contains contributions both from Iadj
ray and Iasym

ray .
As a final remark, it would be interesting to see if the index computation given in this

work can be reproduced in a geometric way using the realization of the 5d SCFT in terms
of M-theory on Calabi-Yau 3-fold [24, 25](for instance, see [26, 27].) Moreover, it would be
nice to make contact with recent works on the global form of flavor symmetries and 2-group
symmetries in the line of [28, 29]. Lastly, it is curious if there exist universal expressions
for the ray index; this turns out to be the case for the superconformal index [30].
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