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1 Introduction

Observables computed in quantum field theory often depend on interesting transcendental
numbers and special functions that arise from Feynman integrals. Understanding the
structure of the perturbative expansion, and finding efficient ways of computing it are
important challenges.

In practice, the integrated answers can be organised according to the complexity of
special functions and numbers appearing in them. For example, in anomalous dimensions
one encounters, among others, (multiple) zeta values ζn = ∑

k≥1 1/kn. This concept also
extends naturally to functions written in terms of iterated integrals, see e.g. [1]. At a
given loop order, there is a heuristic bound for the maximal value of n, also referred to
as transcendental weight, or ‘transcendentality’ [2], namely 2L for L-loop integrals in four
dimensions (cf. [3] and references therein). A remarkable conjecture states that for certain
quantities, the maximal weight terms agree between the maximally supersymmetric Yang-
Mills theory (N = 4 sYM) and quantum chromodynamics (QCD) [2]. Maximal weight refers
to the terms with n = 2L, where L is the loop order. This observation was instrumental in
obtaining three-loop anomalous dimensions of twist-two anomalous dimensions in N = 4
sYM [2] from the QCD results. More recently, it was used to predict the planar four-loop
value of the planar cusp anomalous dimension in N = 4 sYM [4].

Unfortunately, the one-to-one correspondence between maximal weight terms in N = 4
sYM and QCD is restricted to certain observables only. In the original case, it can be
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argued that it comes about thanks to special properties of the DGLAP evolution equation
that governs twist-two anomalous dimensions [5], namely that the gluonic contributions
give the relevant contributions in this case. For more general observables, this does not
seem to be the case, and, therefore, the maximal weight terms can differ between N = 4
sYM and QCD. Nevertheless, one can ask: is there a good way of obtaining the maximal
weight contributions of an observable?

Insight into this question comes from studies in N = 4 sYM. It was noticed, heuristically,
that observables computed in this theory are expressed in terms of maximal weight functions
(see e.g. the review [6] and references therein). It turns out that this property can be
anticipated by looking at the types of Feynman integrals that appear in that theory [7, 8].
What was noticed is that integrals in this theory seem to have the special property that
their integrands can be written as a ‘d log’ form. In particular, this means that they do
not have any double pole on any (generalised unitarity) cuts. This observation was crucial,
among other things, to bootstrap integrands of the theory, in combination with generalised
unitarity or related techniques. In some cases, the d log property can be proven via loop
level recursion relations [9].

Although initially observed in N = 4 sYM, the idea of d log integrands and their connec-
tion to maximal weight functions turned out to be dramatically useful in the computation
of generic Feynman integrals. In the state-of-the-art approach, one uses integration-by-parts
(IBP) relations [10–12] to write scattering amplitudes in terms of a basis of Feynman integrals,
called master integrals (MIs), where a major problem and bottleneck is in their computation.
MIs are known to satisfy (a system of) differential equations, but the latter is typically com-
plicated, and depends on the set of kinematic invariants and on the dimensional regulator
ε, where e.g. D = 4− 2ε. Moreover, the form of the differential equations depends on the
choice of integral basis. A key observation is that if a basis of maximal (and uniform) weight
integrals is chosen, then the differential equations take a simple, canonical form [13]. In that
form, the differential equations can be solved easily in a series expansion in the dimensional
regulator ε. These ideas have led to numerous new calculations relevant for phenomenology.

In this paper, we build on the insights of loop integrands. We wish to understand
directly at integrand level what terms lead to the ‘maximal weight’ part of the answer,
avoiding the (often computationally heavy) IBP machinery. To do this, we propose a way
of systematically extracting the ‘maximal weight’ contributions of Feynman integrands,
without the need to evaluate the integrals.

The procedure we propose is the following. For a given scattering process, one first
considers the denominator structure of the Feynman integrals. Firstly, for each denominator
structure, one determines the most general set of d log integrands that can be written down.
This is an algorithmic procedure, in principle. Secondly, one imagines a decomposition of the
original integrand in terms of the d log basis just constructed, plus other terms. The latter
have, by construction, at least a double pole, and are therefore expected to produce less
than maximal weight terms only. The third step then consists in projecting the amplitude
onto the d log basis only. We show how the coefficients of these integrals are obtained
via a residue calculation (making use of algebraic geometry techniques). In this way, we
define a maximal weight projection of the original integrand. The method we propose bears
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several connections and was in part inspired by unitarity-based methods [14–29], and can
be considered as a complementary tool.

In what situations do we expect the procedure we propose to apply? Let us discuss
two possible caveats. The first one is related to the class of functions that can appear in
Feynman integrals, and the second one has to do with dimensional regularisation [30, 31].
Let us discuss these two issues in turn.

Firstly, we expect the method to work as described in cases where the integrals
evaluate to multiple poly-logarithms, for which the concept of transcendental weight is well
understood (at least, to the satisfaction of physicists). For integrals evaluating to more
general transcendental functions, such as elliptic poly-logarithms and beyond, modifications
are likely to be needed, which however go beyond the scope of this work.

Secondly, in practice it is often desirable to compute Feynman integrals in dimensional
regularisation, with e.g. D = 4− 2ε. Of course, it is much easier to perform the integrand
analysis in integer dimensions, and often this is in fact sufficient (see e.g. a discussion in [32]).
The distinction between integer and non-integer dimension can become relevant in cases
that involve many independent momenta, because then certain Gram determinants vanish
in e.g. D = 4 dimensions, but not in D = 4− 2ε. See e.g. [33], where a more refined d log
analysis is performed, using Baikov representations [34–38]. For the purposes of the present
paper, we wish to restrict ourselves to a four-dimensional integrand analysis. This means
that we tacitly assume that maximal weight terms can be extracted from the knowledge
of naive four-dimensional integrands. Since this may not be the case in all situations, we
therefore study this important point in this paper. We show that if one is interested in
knowing one-loop amplitudes up-to and including the finite part only, then considering
naive four-dimensional integrands is sufficient. On the other hand, the same is not true
for evanescent terms in the dimensional regulator — those terms may contribute maximal
weight terms at five points, for example. The latter affect the analysis at higher loops,
so that one can hope to extract the maximal weight terms there only when considering
appropriately renormalised observables. We discuss explicit examples of these features for
two-loop five-point scattering amplitudes.

In order to validate our method, we illustrate it for a two-loop scattering process in QCD,
namely H → gg amplitudes at the two-loop order. In order to do so, we first generate all
Feynman diagrams, which include non-planar cases. We then construct an explicit basis of
d log integrands for all relevant Feynman diagram topologies. With this basis at our disposal,
we project the general integrands onto our d log basis. This new expression is expected to give
the maximal weight part of the QCD process. We test this hypothesis by explicitly comparing
the original and the projected expression after an IBP reduction. We also plug in the
explicit values of MIs to illustrate the effect of the projection at the level of the ε-expansion.

The outline of this paper is as follows. Section 2 contains a review of d log representations,
and discusses the representations that will be needed for the purpose of this paper. In
section 3, we describe in more detail the idea of the maximal weight projection, before
applying it in section 4 to H → gg amplitudes at the two-loop order. Then, in section 5,
we discuss in which cases subtleties with evanescent terms can be expected, and discuss
ideas on avoiding them. Finally, we give our conclusion and outlook in section 6.
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2 d log basis for H → gg integrands at two loops

In this section, we briefly review how to find Feynman integrands that admit a d log
representation in four dimensions. Many examples of such Feynman integrals can be found
in the literature, especially at one loop, see e.g. [39]. This provides very useful information
for constructing the higher-loop d log representations that we will need for the H → gg

that we wish to study. The reason is that in many cases, one can obtain a higher-loop
representation using a loop-by-loop approach. The representations obtained in this way
have the additional advantage that they tend to involve few terms, and often can be written
in terms of single terms only.

In order to consistently apply the maximal weight projection method, it is important
that we classify all d log integrands for a given Feynman integral topology, as otherwise
we might miss relevant contributions. In order to address this issue, we can profit from
an algorithmic method for identifying d log integrands [40, 41]. Ref. [41] also provides a
public implementation, the Mathematica package Dlog. This algorithm takes as input a
given Feynman diagram topology (i.e., the propagator structure) and considers, as starting
point, an ansatz for the most general numerator that can lead to d log integrands. The
ansatz is finite because the numerator is restricted to obey certain power counting rules [41].
The algorithm then employs a convenient parametrisation of the four-dimensional loop
momenta, similar to what we will use later in this section. The resulting integrand is a
rational function in 4L integration variables, and depends on the external kinematics, and
on the parameters of the ansatz. The algorithm then analyses, iteratively, residues that
can be taken in each integration variable, until one arrives at the leading singularities, i.e.
the maximal residues of the integrand. Whenever a double or higher pole is encountered,
a condition is placed on the ansatz parameter to nullify the expression. In this way, a
complete list of d log integrands for a given integral topology is obtained.

In this way, the algorithm [41] informs us of the total number of d log integrals that we
need to consider, and it also suggests a basis for them. In what follows, we also need to
know the explicit d log representation. This feature has not been implemented in the Dlog
procedure for performance reasons, but could be incorporated easily. However, a typical
d log representation would involve many terms, even for simple integrands, whereas we know
that often, one can find a one-term d log representation, which is clearly advantageous. For
this reason, we prefer, for the present purpose, to construct more compact d log forms by
the loop-by-loop approach alluded to earlier.

Thus, we begin this section with the study of one-loop d log integrands that we will
need later in our two-loop analysis. It turns out that the classes of integrands we need
contain either Feynman or eikonal propagators.

2.1 One-loop d log integrands

Let us illustrate the procedure for constructing d log representations for one-loop Feynman
integrands. We do so for convenience of readers, and in order to keep this paper self-
contained. Of course, similar discussions can be found in the literature, see e.g. [39, 40].
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Figure 1. d log basis for integrand family (2.3).

As was mentioned earlier, we take the loop momentum to be four-dimensional for this
analysis. It is useful to choose a convenient parametrisation in a four-dimensional basis
E = {e1, e2, e3, e4}, such that we can write

kµi = αi,1 e
µ
1 + αi,2 e

µ
2 + αi,3 e

µ
3 + αi,4 e

µ
4 . (2.1)

If there are at least two independent massless momenta, say p1 and p2. In this case, a
particularly convenient choice of the basis vectors is as follows,

eµ1 = pµ1 , eµ2 = pµ2 , eµ3 = 〈1|γµ|2]/2 , eµ4 = 〈2|γµ|1]/2 . (2.2)

Here, angle and square brackets refer to the spinor-helicity formalism [42].
Let us apply this method to the four-point integrals shown in figure 1(a). It stands for

an integrand the ones constructed only from Feynman propagators and consider the family
of integrands generated from the following set of propagators,

I = d4k1N
(k1 − p1)2 k2

1 (k1 + q2)2 (k1 + q2 + q3)2 , (2.3)

where p2
i = 0 and qi can be considered as massless (qi = pi) or massive (q2

i 6= 0), depending
on the case we wish to consider, with the momentum conservation p1 + q2 + q3 + q4 = 0.
Therefore, the kinematic invariants can be cast as, s = (p1 + q2)2 and t = (q2 + q3)2.

d log forms for one-loop integrands with massless propagators. Given the inte-
grand (2.3), and the parametrisation (2.1), we would now like to generate a d log basis
for the family of integrands (2.3). To this end, we rely on the Mathematica package
Dlog, where, after using its built-in routines, we find a set of five one-loop d log integrands.
This set of d log integrands, depicted in figure 1, consists of one scalar box, and four scalar
triangles.

Having found the d log basis, let us now illustrate how one can write down an explicit
d log representation. For example, consider the triangle integral depicted in figure 1(d),
where for simplicity we take q2 = p2 to be massless,

I = d4k1

(k1 − p1)2 k2
1 (k1 + p2)2 . (2.4)

A short calculation shows that, upon plugging in the parametrisations (2.1), (2.2), and
taking the Jacobian factor into account, one obtains,

I = dα1 dα2 dα3 dα4
s ((α1 − 1)α2 − α3α4) (α1α2 − α3α4) (α1 (α2 + 1)− α3α4) , (2.5)
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where we have dropped an irrelevant (because kinematic-independent) overall factor. Notice
that, to simplify the notation in this section, we define the loop components of the loop
momentum parametrisation (2.1) as α1,i = αi.

The integrand (2.4) contains three denominator factors, and it appears natural to
change variables α1,2,3 → τ1,2,3 according to

τ1 = ((α1 − 1)α2 − α3α4) s ,
τ2 = (α1α2 − α3α4) s ,
τ3 = (α1 (α2 + 1)− α3α4) s . (2.6)

Remarkably, upon doing so, one finds the following simple expression,

I = 1
s
d log τ1 d log τ2 d log τ3 d logα4 . (2.7)

At this stage we emphasise that it is remarkable that eq. (2.7) consists of a single term only.
We will in fact find similar forms for the other integrals considered in this paper as well. To
appreciate that this is by no means guaranteed, let us write an equivalent expression in the
αi variables,

ω1m−tri (k1;p1, p2) = −d log (α4)d log (α2)d log (α3)d log (α1α2−α3α4)

−d log (α4)d log (α2)d log
(
α2

2 +α2 +α3α4
)
d log [α1 (α2 +1)−α3α4]

+d log (α4)d log (α2)d log
(
α2

2 +α2 +α3α4
)
d log (α1α2−α2−α3α4)

+d log (α4)d log (α2)d log (α3)d log [α1 (α2 +1)−α3α4] . (2.8)

Having made this comment, let us return to the simpler representation of eq. (2.7). Taking
into account the explicit definitions for τi and α4 in terms of denominators and scalar
products, we note that this integrand can be re-expressed as follows,

I = 1
s
d log (k1 − p1)2 d log k2

1 d log (k1 + p2)2 d log (2 k1 · e3) . (2.9)

In this form it is clear that the overall factor 1/s corresponds to the four-dimensional leading
singularity of the scalar triangle I. Hence, accounting for the latter, we can define the d log
integrand,

I
(

k1

p1

p2

s

)
≡ ω1m−tri (k1; p1, p2) , (2.10)

with,

ω1m−tri (k1; p1, p2) = d log (k1 − p1)2 d log k2
1 d log (k1 + p2)2 d log (2 k1 · e3) . (2.11)

In eq. (2.10), the l.h.s., I(· · · ) stands for the integrand of the loop topology, whose
Feynman propagators can be read off from the diagram. Thus, we have found a d log form
ω1m−tri (k1; p1, p2) for the scalar “one-mass triangle” integral. In the pictorial representation
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of integrands, here and in the following, external thin and thick lines represent, respectively,
massless (on-shell) and massive (or off-shell) momenta.

As illustrated for the scalar triangle in eq. (2.4), finding an explicit d log representation
for a given integrand family, say (2.3), is a procedure at integrand level. Relations that arise
as consequence of dimensional regularisation at integral level are not taken into account at
this stage. For instance, in the case where all external momenta are massless, we have five
d log basis integrands, but upon using IBP relations, only three of them are independent.
In fact, it is important for the consistency of our method that a complete integrand basis is
constructed.

Let us return to the construction of one-loop d log representations. Following the same
strategy adopted for the one-loop scalar triangle, we find algebraic expressions for the
following d log forms (which correspond to different kinematic configurations of integrals
figure 1). For the two-mass triangle, we have

ω2m−tri (k1; p1, q2) ≡ I
(

k1

p1

q2

(2 p1 · q2)
)

(2.12)

= d log (k1 − p1)2 d log k2
1 d log (k1 + q2)2 d log (2k1 · e3) ,

For the “two-mass-hard” and “two-mass-easy” boxes, we have [39],

ω2mh−box (k1; p1, p2, q3)

≡ I
(

k1

p1

p2

q4

q3

s t

)
(2.13)

= ∓d log (k1 − p1)2(
k1 − k±1

)2 d log k2
1(

k1 − k±1
)2 d log (k1 + p2)2(

k1 − k±1
)2 d log (k1 + p2 + q3)2(

k1 − k±1
)2 ,

and

ω2me−box (k1; p1, q2, p3)

≡ I
(

k1

p1

q2

q4

p3

(
s t− q2

2 q
2
4

))
(2.14)

= ∓d log (k1 − p1)2(
k1 − k±1

)2d log k2
1(

k1 − k±1
)2d log (k1 + q2)2(

k1 − k±1
)2d log (k1 + q2 + p3)2(

k1 − k±1
)2 ,

respectively. Here k± are the two solutions of the maximal cut conditions,(
k±1 − p1

)2
=
(
k±1

)2
=
(
k±1 + q2

)2
=
(
k±1 + q2 + q3

)2
= 0 . (2.15)

Let us emphasise that the additional prefactors that appears in the definition of
integrands correspond to four-dimensional leading singularities of the scalar Feynman
integrand. Also, let us note that although the d log form of the four-point Feynman
integrands involves the auxiliary factor

(
k1 − k±1

)2
, the integrand does not have a residue

at k1 = k±1 . We refer interested readers to [39] for more details.
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d log forms for integrands with eikonal and Feynman propagators. We shall
see in section 2.2 that when following a loop-by-loop approach for writing down d log
integrands, additional one-loop d log forms are needed. The required integrands containing
both standard massless Feynman propagators, and eikonal propagators. The latter are
factors of the form 1/(2k · pi). Hence, to complete the set of building blocks needed to
generate the two-loop d log forms in section 2.2, we presently provide their explicit algebraic
expressions.

We have,

ω1m−tri
Eikonal 1 (k1; p1, p2) ≡ I

(
(−2k1 ·p1)

k1

p1

p2

s

)
(2.16)

= d log (−2k1 · p1) d log k2
1 d log (k1 + p2)2 d log (2k1 · e3) ,

ω1m−tri
Eikonal 2 (k1; p1, p2) ≡ I

(
(−2k1 ·p1)

p1

p2
k1+p2

s

)
(2.17)

= d log (−2k1 · p1) d log (k1 − p1)2 d log (k1 + p2)2 d log (2k1 · e3) ,

ωBox
Eikonal 1 (k1; p1, p2) ≡ I

 k1−p1

k1+p2

(2k1 ·e4)(2k1 ·e3)

p1

p2

s2

 (2.18)

= d log 2k1 · e3
k2

1
d log 2k1 · e4

k2
1

d log (k1 − p1)2

k2
1

d log (k1 + p2)2

k2
1

,

ωBox
Eikonal 2 (k1; p1, p2) ≡ I

 k1−p1

k1+p2

(2k1 ·e4)(2k1 ·e3)

p1

p2

s k2
1

 (2.19)

= d log (k1 − p1)2

2k1 · e4
d log (k1 + p2)2

2k1 · e3
d log 2k1 · p1

2k1 · e4
d log (2k1 · e3) .

Notice that in the pictorial representation of the integrands, eikonal propagators are depicted
as dashed lines. To make the definition unambiguous, their explicit denominator factor, e.g.
(2p1 · k), is printed next to the line. For instance, we have explicitly,

I
(

(−2k1 ·p1)

k1

p1

p2

s

)
= s

d4k1

(−2k1 · p1)k2
1 (k1 + p2)2 . (2.20)

2.2 Two-loop d log integrands

Let us now turn our attention to the calculation of algebraic expressions for two-loop d log
integrands. A procedure similar to the one presented in the previous section could be
carried out, namely to parametrise the loop momenta, k1 and k2, according to (2.1) and
to look for the explicit algebraic expressions in terms of products of d log forms. However,
to profit from the simple algebraic expressions obtained for one-loop d log integrands, one
can recycle and use them in the calculation of d log integrands at higher loops. In this
section, we follow such a loop-by-loop approach, where one-loop d log integrands are the
needed building blocks for the generation of multi-loop ones. We explicitly provide the
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↑k1

ց
k2+p2

p1

p2

(a)

↑k1

↑k2

p1

p2

(b)

↑k1

↑k2

p1

p2

(c)

→
k1

րk2+p2
p1

p2

(d)

Figure 2. Representative two-loop (parent) topologies with seven propagators present in the
scattering amplitude H → gg.

k1

k2+p2

p1

p2

(a)

p1

p2

k1

k2+p2

(b)

p1

p2

k1

k2

(c)

k1k2

p1

p2

p1

p2

(d)

Figure 3. Representative two-loop planar triangles that admit a d log representation.

derivation of planar and non-planar d log three-point Feynman integrands at two loops and
also discuss representative four-point d log forms.

We are interested in finding a d log basis for the process H → gg at two loops. This
involves the generation of planar and non-planar Feynman diagrams, as shall be illustrated
in detail in section 4. The complete set of Feynman diagrams contributing to this scattering
amplitude can be grouped into four ‘parent’ topologies with six propagators, as depicted in
figure 2. Let us discuss them in turn.

In order to study all possible planar three-point Feynman integrands at two loops,
which correspond to figures 2(a), 2(b), 2(c), it is convenient to use the following notation,

I = d4k1 d
4k2N

k2
1k

2
2 (k1 − k2)2 (k1 − p1)2 (k2 − p1)2 (k1 + p2)2 (k2 + p2)2 , (2.21)

to account for all possible propagators (see direction flow of the loop momenta in figure 2).
Different choices of N correspond to the integral families mentioned previously. The

advantage of the formulation in terms of eq. (2.21) is that they can all be described
simultaneously.

In order to determine all numerator factors N that lead to d log forms, we employ the
Dlog program of [41]. This readily gives us the following list of nine d log forms:

• two versions of figure 3(a), obtained by flipping k1 ↔ k2,

• four versions of figure 3(b), obtained by flipping k1 ↔ k2, and by flipping the graph
along the vertical axis,

• two versions of figure 3(c), obtained by flipping k1 ↔ k2,

• the squared triangle integrand of figure 3(d).
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Recall that we operate at integrand level, and hence, relations at integral level, e.g. sector
symmetries and IBP identities, are not considered. Taking the latter into account would
lead to four independent Feynman master integrals, which correspond to the ones depicted
in figure 3, but we work with the basis of nine d log integrands listed above.

Let us now turn to the computation of algebraic expressions for the d log integrands
of figure 3. Thus, we begin the discussion with the ladder three-point scalar integrand
depicted in figure 3(a). We notice that, due to the way how this integrand is constructed,
one can decompose it in terms of two one-loop integrands. The first one corresponds to a
scalar box with two off-shell external momenta, whereas the second one, that is generated
from the former, can be understood as a one-mass scalar triangle,

ω
(2)
p,(a) = I

(
k1

k2+p2

p1

p2

s2
)

= I
(

k1

p1

p2

k2
2 s

)
× I

(
k2

p1

p2

s

)
. (2.22)

Notice that in l.h.s. of eq. (2.22) we consider the integrand of figure 3(a) with its appropriate
four-dimensional leading singularity, which was provided by Dlog and is needed to have a
complete d log form for this integrand. Then, to follow a loop-by-loop approach, we start
by considering the subset of Feynman propagators, in the two-loop integrand, that depends
on k1. These propagators generate a one-loop scalar box with two off-shell, −k2 − p2 and
k2 − p1, and two on-shell, p1 and p2, momenta, whose d log form, after taking into account
the prefactor that comes from the leading singularity of the integrand, was considered in
eq. (2.13). Notably, this prefactor, s k2

2, allows to analyse the part of integrand that only
contains k2 but not k1, in such a way that a one-mass scalar triangle, together with its d log
representation, is straightforwardly generated.

Hence, the two-loop d log integrand ω(2)
p,(a) of eq. (2.22) is expressed as a product of two

one-loop d log integrands,

ω
(2)
p,(a) = ω2mh−box (k1; p2, p1, k2 − p1) ω1m−tri (k2; p1, p2) , (2.23)

whose explicit algebraic expressions were given in eqs. (2.11) and (2.13).
A similar analysis and decomposition of the remaining two-loop d log integrands of

figure 3 can be carried out with the help of the building blocks discussed in the previous
section. We find,

ω
(2)
p,(b) = I

( p1

p2

k1

k2+p2

s

)

= I

 k1

p1

−k2

(−2p1 · k2)

× I ( (−2p1 · k2)

p1

p2
k2+p2

s

)
,

= ω2m−tri (k1; p1,−k2)ω1m−tri
Eikonal 1 (k2; p1, p2) , (2.24)
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ω
(2)
p,(c) = I

( p1

p2

k1

k2

s

)

= I

 k1

p1

−k2

(−2p1 · k2)

× I ( (−2p1 · k2)

k2

p1

p2

s

)
,

= ω2m−tri (k1; p1,−k2)ω1m−tri
Eikonal 2 (k2; p1, p2) , (2.25)

ω
(2)
p,(d) = I

(
k1k2

p1

p2

p1

p2

s2
)

= I
(

k1

p1

p2

s

)
× I

(
k2

p1

p2

s

)
,

= ω1m−tri (k1; p1, p2)ω1m−tri (k2; p1, p2) . (2.26)

The remaining d log forms for the full set of nine integrands are simply given by relabelling
of loop momenta, as discussed above. Hence, for the purpose of illustrating the discussion
in section 4, we express ω′p,(i) as reflection of ωp,(i), namely, ω′p,(i) = ωp,(i)

∣∣
k1↔k2

.
Let us continue our analysis with d log integrands that arise in non-planar sector of the

three-point two-loop Feynman integrands. This Feynman diagram has six propagators (see
figure 3(d)), and therefore we look for d log integrands of the form,

I = d4k1 d
4k2N

k2
1 (k1 − p1)2 (k2 − p1)2 (k1 − k2)2 (k1 − k2 − p2)2 (k2 + p2)2 , (2.27)

for some (in general, loop-momentum-dependent) numerator N . We introduce the quantity
k2

2, in addition to the denominator factors in eq. (2.27), to express this numerator in terms
of irreducible scalar products.

Thus, by making use of the built-in routines of Dlog, we find eight d log integrands:

• two versions of figure 3(b), obtained by shrinking either the first or second propagator
of (2.27),

• two versions of the reflection figure 3(b), obtained by shrinking either the fourth or
firth propagator of (2.27),

• two versions of figure 3(c), obtained by shrinking either the third or sixth propagator
of (2.27),

• one version of the non-planar triangle of figure 4(a),

• one version of figure 4(b), which corresponds to the non-planar triangle with the
irreducible scalar product k2

2.

Notice that in this d log basis, obtained from the non-planar sector through the integrand
family (2.27), six of these d log integrands were already considered in the planar sector.
This pattern was expected due to the isomorphisms between sub-topologies coming from
planar and non-planar sectors, and leads to identities after integration. However, for our
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k1

k1−k2

p1

p2

(a)

k1

k1−k2

p1

p2

(

k
2

2

)

(b)

Figure 4. Two-loop non-planar triangles that admit a d log form. The factor (k2
2) in the d log

integrand (b) corresponds to an irreducible scalar product in the numerator.

integrand analysis of this non-planar class of diagrams, it is important that we write down
the planar integrals from the sub-sectors in the notation of eq. (2.27) (for more details
see section 3).

In the following, to simplify the notation for non-planar d log integrands by keeping
in mind the isomorphism between different sub-topologies, we introduce the shorthand
notation ωnp,(i);j in the d log forms to express that the loop topology of this integrand is
isomorphic to the graph class (i) in the planar sector (see figure 3) when the jth propagator
in the integrand family (2.27) is removed.

Since the d log expressions for the planar topologies can be obtained from the formulas
given above by a simple change of variables, let us focus on the genuine non-planar integrals
of figure 4.

We have the loop-by-loop decomposition,

ω
(2)
np,(e) = I


k1

k1−k2

p1

p2

s2


= I

(
k1

p1

p2

(2e3 · k2)(2e4 · k2)
)
× I

 k2−p1

k2+p2

(2e4 · k2)(2e3 · k2)

p1

p2

s


= ω2me−box (k; p1,−k2, p2)ωBox

Eikonal 1 (k2; p1, p2) , (2.28)

and

ω
(2)
np,(f) = I


k1

k1−k2

p1

p2

s k2
2


= I

(
k1

p1

p2

(2e3 · k2)(2e4 · k2)
)
× I

 k2−p1

k2+p2

(2e4 · k2)(2e3 · k2)

p1

p2

s k2
2


= ω2me−box (k; p1,−k2, p2)ωBox

Eikonal 2 (k2; p1, p2) . (2.29)

To summarise, in this section, we studied the algebraic structure of d log integrands at
one and two loops, focusing on integrals needed for the gg → H process, which includes
planar and non-planar Feynman diagrams. We found a complete list of d log integrands
with the help of the algorithm Dlog, and then provided, for each of the basis elements,
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expressions in a d log form. For studies at integrand level, a loop-by-loop approach turned
out to be sufficient, and very useful. This approach allowed us to easily find d log forms
with a single term only.

The main results of this section are the two-loop d log representations given in eqs. (2.23),
(2.24), (2.25), (2.26), (2.28), (2.29). The complete list of expressions for the d log planar
and non-planar integrand basis (9 and 8 integrands, respectively) is obtained from these by
symmetry/reparametrisation, as explained above. These expressions are the main input for
the maximal weight projection method that is discussed in section 3.

3 Maximal weight projection

3.1 Description of the method

As discussed in the introduction, we are interested in the following general question: can
we extract the maximal transcendental weight piece of a quantity in perturbative quantum
field theory, such as scattering amplitudes or correlation functions? Our starting point is an
expression of the quantity of interest in terms of Feynman diagrams. The idea is to analyse
the expression for the Feynman integrand, i.e. prior to an (often computationally-heavy)
analysis of relations between integrated functions.

Recall that we expect the maximal weight of an L-loop integral in four dimensions to
be 2L [3]. Moreover, the concept of weight can be applied to the Laurent series of integrals
in dimensional regularisation, with D = 4− 2ε. In this context, one assigns weight −1 to
ε [13]. In this way, a uniform and maximal weight function at L loops is one where each
term in the ε expansion has weight 2L.

Based on experience from N = 4 sYM and related insights into differential equations
that Feynman integrals satisfy, we expect that one can predict which terms in the integrand
give maximal weight contributions, and which do not. In the case of Feynman integrals
evaluating to multiple poly-logarithms, which is our focus in this paper, the idea is that
Feynman integrals whose integrands can be written in d log form contribute to the maximal
weight piece. Therefore, the first step in our method is to obtain a basis of such d log
integrands for the quantity of interest. Let us denote the set of m d log integrands at L by

d log integrand basis : {I(L)
i } , i ∈ {1, . . . ,m} . (3.1)

In addition to knowing what the basis elements are, we also need to know an explicit
expression of their integrand in d log form, i.e. an expression of the form

I(L)
i =

∑
j

bij

4L∏
k=1

d logαijk . (3.2)

Here, we have assumed that we consider integrals in four dimensions, but one could also
consider other integer dimensions.

To give an explicit example of (3.2), consider the one-loop triangle integral from
eq. (2.11). In this case, L = 1, and the sum over j in eq. (3.2) involves a single term only.
This fact is a special property that can sometimes be achieved [39], and is the case for all
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integrals considered in this paper. We find it likely that this property is closely related
to novel geometric interpretations of scattering amplitudes and Feynman integrals, see
e.g. [43–45]. Having single-term d log representations will be useful in the following, but is
not essential to our method.

One procedure for obtaining a basis (3.1), and the explicit representations (3.2) was
discussed in section 2, and a basis for planar and non-planar d log integrands relevant for
the process gg → H at two loops was given. Remarkably, in the representations we found,
the sum over j in eq. (3.2) has a single term only.

Let us assume that a basis and explicit expressions of d log integrands have been found.
Further, let A(L) be the quantity we are interested in, for which we have a representation
in terms of a loop integrand ω(L),

A(L) =
ˆ
ω(L) . (3.3)

As mentioned in the introduction, we will consider ω in four dimensions, even if A is
computed in D = 4− 2ε dimensions. Section 5 will address in more detail questions related
to evanescent terms.1

The next step is then to imagine a decomposition of ω(L) in terms of our d log basis,
plus other terms,

ω(L) =
m∑
i=1

ci I(L)
i + . . . . (3.4)

The ellipses correspond to terms with at least a double pole. These are the terms that we
wish to drop when the projection onto the d log basis is performed. The reason is that we
expect such terms to contribute less-than-maximal weight terms only. In other words, given
eq. (3.4) we define the projection operator P at integrand level as follows,

P
(
ω(L)

)
=

m∑
i=1

ci I(L)
i . (3.5)

Let us remark that in this decomposition no relations at integral level are needed. This is
essential for the analysis we carry out throughout this paper. We stress that the expectation
that the projection (3.5) captures all maximal weight terms of the original expression (up-to
the caveats mentioned earlier) is a conjecture.

Taking into account eq. (3.2), the integrand of the amplitude ω(L) must have the form

P
(
ω(L)

)
=

n∑
i=1

c̃i

4L∏
j=1

d log (τi,j) , (3.6)

with τi,j being some (often rational) functions depending on the loop components α of
parametrisation (2.1).

1A related comment is that we do not expect the regularisation scheme to play a role when extracting
the maximal transcendental weight of a given scattering amplitude.
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Let us note that in r.h.s. of eq. (3.6) in general, n > m. For instance, if we take ω to be
the integrand of the one-mass triangle, then we have n = 1, but according to eq. (2.8) we may
have m = 4. This is related to the fact that d log representations are by no means unique.

Our goal is to determine the m coefficients ci. As mentioned above, this is a problem
that is very close to what is usually done when using generalised unitarity methods, see
e.g. [46, 47]. In fact, the set of n coefficients c̃i contains the necessary information we are
looking for. In practice, if we can compute a subset of c̃i whose map to the ci has rank m,
then we can invert the system.

In order to extract the coefficients c̃i in eq. (3.6), we make use of the Cauchy residue
theorem, similar to the way how it is carried out in generalised unitarity. Thus, the locus
where residues are extracted is determined once and for all by the set of d log forms present
in the decomposition of scattering amplitude. Then, we can naively extract c̃i as,

c̃i =
˛
τi,1=0

. . .

˛
τi,4L=0

ω(L) . (3.7)

Let us explain what we mean by ‘naively’. The way residues are extracted in uni-variate
rational functions is unambiguous. However, for multi-variate rational functions, the
extraction of residues in a variable-by-variable approach, is more subtle. In particular,
residues in τi,j = 0 do not commute.

This subtlety can, in principle, be overcome by employing the Grothendieck residue [48].
However, for the calculations carried out in this paper, we make use of methods based
on Gröbner basis and polynomial division.2 Indeed, the computation of multi-variate
residues [48, 50], has been applied to the calculation of multi-loop scattering amplitudes in
the context of generalised unitarity [22, 51–55]. Let us also comment that the study of multi-
variate polynomial division has been employed to perform reductions of multi-loop scattering
amplitudes at integrand level [17–24], inspired by the well-known Ossola-Papadopoulos-
Pittau (OPP) decomposition [16]. In the present work, we rely on the partial-fraction
decomposition introduced by Lĕınartas [56, 57], which allows for an unambiguous extraction
of certain coefficients of poles. Improved versions of the Lĕınartas’ decomposition have
been recently provided in refs. [58–62], where an extensive use of multivariate polynomial
division, or, said differently, reduction of polynomials, through Gröbner basis is carried
out. In this paper, we use of the Mathematica package MultivariateApart provided
together with ref. [62].

Before applying the method to a quantum field theory calculation, as an invitation let
us first provide a toy example.

3.2 Beta function toy example: an invitation

In order to illustrate the decomposition of a given integrand in terms of d log forms as well
as the extraction of the maximal weight contribution of a given integrand, let us start with
the one-dimensional example of the beta function. In view of its compact structure, one

2For a pedagogical and detailed discussion of techniques to perform multi-variate polynomial division, we
refer the reader to ref. [49].
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can easily cast interesting properties and the main objective of this manuscript that in the
following sections is extended to scattering amplitudes.

Let us define the one-form

ωa,b = dz z−1−b+ε (1− z)−1−a+ε , (3.8)

where ε is the analog of the dimensional regularisation parameter. With this, we can define,

Ia,b =
ˆ 1

0
ωa,b = Γ (−a+ ε) Γ (−b+ ε)

Γ (−a− b+ 2ε) . (3.9)

Thanks to the presence of ε, the integral is well-defined for integer values of a, b.
In analogy with the dimensional regularisation case, let us now study d log forms for

ε = 0. We find that there are two forms, namely,

{d log z,−d log (1− z)} . (3.10)

These d log forms correspond to the integrands ω0,−1 and ω−1,0.
Due to a z ↔ 1− z symmetry, we have that, after integration, Ia,b = Ib,a, so that in

particular I−1,0 = I0,−1. Inspecting the result (3.9), and expanding in ε, we find,

I0,−1 = I−1,0 = 1
ε
− π2

6 ε+ 2 ζ3 ε
2 +O

(
ε3
)
. (3.11)

We see that all terms in the expansion in ε of I−1,0 have uniform transcendental weight 1, if
one assigns weight −1 to ε [13].

Let us now consider a generic integrand that can be expressed in terms of ωa,b. We
would like to use our projection method to extract the leading weight contribution of the
integral. To do this, we apply decomposition (3.6) in terms of the d log integrands (3.10),

ωa,b = c0 [d log z] + c1 [−d log (1− z)] + . . . , (3.12)

where once again ellipsis corresponds to terms with at least a double pole, which are assumed
to be irrelevant for the d log decomposition, and ci are unknown coefficients that we need
to determine.

It is clear from eq. (3.12) that c0 is calculated by considering a contour integral around
z = 0. Applying this to the definition of ωa,b in eq. (3.8), we have,

c0 =
˛
z=0

ωa,b|ε=0 =
˛
z=0

dz

za+1 (1− z)b+1 =
(
a+ b

a

)
. (3.13)

Likewise, c1 is determined from a residue at z = 1. In this particular example, it turns
to be c1 = c0. Taking into account the relation I−1,0 = I0,−1, we find the maximal weight
projection

Ia,b = 2
(
a+ b

a

)
I−1,0 + weight drop terms

=
(
a+ b

a

)(
2
ε
− π2

3 ε+ 4 ζ3 ε
2
)

+O
(
ε3
)

+ weight drop terms . (3.14)
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Figure 5. Representative two-loop Feynman diagrams for the scattering amplitude H → gg. Curly,
dashed, and straight lines represent, respectively, gluon, ghost, and massless fermions particles.

In this specific case the leading weight piece, I−1,0 has weight 1, see eq. (3.11). This means
that “weight drop terms” in this specific case are terms with transcendental weight 0 or less.

In order to have a very explicit example, let us consider the values a = 5 and b = 3,
whose integrated expression, after expanding up-to second order in ε, becomes,

I5,3 = 112
ε
− 56

3 π2 ε+ 224 ζ3 ε
2

− 2216
15 − 19468

225 ε+ ε2
(
−234554

3375 + 1108
45 π2

)
+O

(
ε3
)
. (3.15)

Here, the first line of eq. (3.15) corresponds exactly to the maximal weight contribution, as
predicted by our decomposition (i.e., after setting a = 5 and b = 3 in eq. (3.14)), while the
terms in the second line all have less transcendental weight compared to the first line.

4 Application: H → gg at two loops

In the previous section, we provided a procedure to extract maximal leading transcendental
weight terms of Feynman integrals. This is done by applying a unique partial fractioning of
the Feynman integrand via Lĕınartas’ decomposition method. In this way, given the knowl-
edge of d log forms for a given multi-loop scattering amplitude, an algebraic decomposition,
as the one displayed in eq. (3.6), can straightforwardly be achieved.

In this section we, wish to apply this new method to the two-loop scattering amplitude
H → gg in the large top quark mass limit. This tests the method for the multi-variate
decomposition in a non-trivial setting that involves both planar and non-planar Feynman
diagrams. We have already provided a basis of d log forms for this process in section 3. We
now work out the d log decomposition of planar and non-planar integrands.

This scattering amplitude, because of Lorentz and gauge invariance, admits the decom-
position,

A(2)
Hgg = g4

S gEFT

(
gµ1µ2 − 2pµ2

1 pµ2
2

s12

)
δa1a2εµ1

1,a1ε
µ2
2,a2 A

(2)
1 , (4.1)

with gS and gEFT stand for strong and Hgg-effective coupling constants, respectively, and
ai correspond to colour indices.

In order to carry out the calculation of A(2)
1 , we consider as internal particles: gluons,

ghosts and massless fermions, as depicted for representative diagrams in figure 5. The gen-
eration of Feynman diagrams and construction of their integrands were carried out with aid
of the Mathematica packages FeynArts [63], FeynCalc [64, 65], and FeynRules [66].
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Since our approach strongly relies on algebraic manipulations at integrand level, we
perform a grouping of diagrams according to the propagators present in the integrand
families (2.21) and (2.27), for planar and non-planar sectors, respectively. Within those,
four parent topologies, or Feynman integrands with six propagators, are found and displayed
in figure 3.

Thus, with the integrands obtained in the common set of propagators, we can project
the latter onto the d log basis studied in section 2.2, by following the procedure described
in section 3. In effect, for this form factor, we expect to have the decomposition,

P
(
A

(2)
1

)
=

9∑
i=1

cp,i ω
(2)
p,i +

8∑
i=1

cnp,i ω
(2)
np,i . (4.2)

Here P(. . .) corresponds to the projection of a given integrand onto the two-loop d log basis,
and the labels ‘p’ and ‘np’ stand for planar and non-planar, respectively. See section 2.2 for
the definition of the nine planar and eight non-planar forms ωp,i and ωnp,i, respectively.

To proceed with the extraction of coefficients for each d log integrand, we plug the
parametrisation of loop momenta (2.1) and expand out the various four-dimensional scalar
products between internal and external momenta that appear in the form factor at integrand
level. In other words, according to the notation of eq. (3.6), the integrand for this scattering
amplitude becomes,

ω(2) = I(Ds, s; {α}) . (4.3)

Here, Ds = (g[Ds])µµ corresponds to the dimension where internal particles, e.g. gluons, live
in, and is related with the dimension in the momentum integration as follows,

Ds = D + nε = 4− 2ε+ nε . (4.4)

In the four-dimensional helicity scheme, Ds = 4 and nε = 2ε, while in conventional
dimensional regularisation, Ds = D and nε = 0 [67].

In eq. (4.3), {α} = {α1,1, . . . , α1,4, α2,1, . . . , α2,4, } accounts for the set of loop momen-
tum components, according to parametrisation (2.1). These algebraic manipulations are
performed with the aid of the Mathematica packages S@M [68] and T@M [69] that
explicitly work out the various spinor products in terms of a reduced set of variables [70–72].
For this particular example, we only need to deal with the single kinematic invariant
s = (p1 + p2)2 and we set the dimension where internal particles live to four (cf. the
discussion in section 5).

We extract the coefficient of each d log integrand by appropriately taking the residue,
making use of the package MultivariateApart. In more detail, say we would like
to identify c̃i in eq. (3.6). We choose variables τi,j with j = 1 . . . 4L. Then, we apply
MultivariateApart, after which the integrand has the form c̃i/(

∏4L
j=1 τi,j) +R, where R

is the remainder of the polynomial division. In this form, one can read off the coefficient c̃i.
Let us remark that in the case studied here, the leading singularities c̃i are rational

functions in the kinematic variables. This is not the case in general. These c̃i can involve
square roots that may arise from the change of variables from the loop momenta to the
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τi,j . For instance, this occurs in the case of the two-dimensional massive bubble integral.
However, the c̃i are constant from the point of view of the partial fractioning (since the
latter only concerns the τi,j , but not the external kinematics). Therefore, the appearance of
square roots in them does not represent a conceptual problem for our procedure.

For the planar integrands, we find,

P

 ↑k1

ց
k2+p2

p1

p2

 =
[
−2ωp,(a) + 3

2
(
ωp,(b) + ω′p,(b)

)]
s ,

P

 ↑k1

↑k2

p1

p2

 =
[
−3

4ωp,(b) −
1
2ωp,(c)

]
s ,

P

 ↑k1

↑k2

p1

p2

 =
[
−3

4ω
′
p,(b) −

1
2ωp,(c)

]
s , (4.5)

whose algebraic expressions are reported in section 2.
The projections (4.5) allow us to extract the maximal weight contributions in the planar

sector,

P
(
A

(2)
1

) ∣∣∣∣∣
planar

=
[
−2ωp,(a) + 3

4
(
ωp,(b) + ω′p,(b)

)
− ωp,(c)

]
s . (4.6)

Let us emphasis once again that in this decomposition no relations at integral level were
involved and that is exactly the reason for the presence of the two d log forms ωp,(b) and
ω′p,(b), whose individual structure at integrand level is different, but after integration they
turn out to be the same,

ˆ
`1,`2

ω′p,(b) =
ˆ
`1,`2

ωp,(b) , (4.7)

where, here and in the following, we use the shorthand notation,

ˆ
`s

• ≡ e(4−D)γE/2
ˆ

dD`s
ı πD/2 • , (4.8)

with D = 4− 2ε.
Hence, with the additional relation (4.7), we can directly compare our result, obtained

purely in four dimensions, against the one that involves relations at integral level. To do so,
we generate IBP identities through the publicly available software Reduze [73], where, in
the integrand constructed for the form factor, we substitute the integral relations generated
by the latter and choose the master integrals that appear in figure 3. Thus, setting Ds = 4
in the reduced integrand, we recover the very same result of eq. (4.6), after taking into
account relation (4.7).
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Let us now turn our attention to the non-planar sector, in which the only non-vanishing
Feynman diagram, after projecting onto the d log basis for this sector turns out to be,

P
(
A

(2)
1

) ∣∣∣∣∣
non-planar

= P


→

k1

→

k1−k2

p1

p2


=
[
− 1

2ωnp,(e) −
3
8
(
ωnp,(b);1 + ωnp,(b);2 + ωnp,(b);4 + ωnp,(b);5

)
+ 1

2
(
ωnp,(c);3 + ωnp,(c);6

) ]
s . (4.9)

Let us also notice that ωnp(f) does not appear in this d log decomposition and it
is due to cancellations, yet at integrand level, that arise from the generation of this
amplitude. However, in view of this cancellation, it is worth elucidating in more details the
decomposition of non-vanishing contributions of this d log form. To do so, we consider a
particular integrand where the presence of ωnp,(f) is expected,

P


k1

k1−k2

p1

p2

s (k2
2)M

 = ωnp,(f) (−s)M−1 , (4.10)

with M ∈ N.
We emphasise that the decomposition (4.10) was carried out by following the procedure

presented in section 3 and it was checked up-to M = 20, which, for realistic computations
of scattering amplitudes, one does not need to take into account such a high degree.
Additionally, we made use of IBP identities to reduce the integrand (with up-to M = 4) in
eq. (4.10), to check that the four-dimensional projection is in agreement with the former,
after setting D = 4.

Finally, we add up all contributions coming from planar and non-planar sectors,
obtaining,

P
(
A

(2)
1

)
=
[
− 2ωp,(a) −

1
2ωnp,(e)

− 3
8

(
ωnp,(b);1 + ωnp,(b);2 + ωnp,(b);4 + ωnp,(b);5 − 2ωp,(b) − 2ω′p,(b)

)

+ 1
2

(
ωnp,(c);3 + ωnp,(c);6 − 2ωp,(c)

)]
s , (4.11)

where, similar to the behaviour at integral level of the d log forms displayed in eq. (4.7), we
find an analogue for the non-planar d log integrands,

ˆ
`1,`2

ωnp,(i);j =
ˆ
`1,`2

ωp,(i) , (4.12)
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that leads the form factor to be expressed as,
ˆ
`1,`2

P
(
A

(2)
1

)
=
ˆ
`1,`2

[
− 2ωp,(a) −

1
2ωnp,(e)

]
s , (4.13)

finding full agreement with approaches that rely on relations at integral level.
Let us now put all results together. Since the main purpose of our procedure is to

extract the maximal transcendental weight piece of a given scattering amplitude, let us
work this out explicitly. Using the known expressions for the ε-expansion of the master
integrals (see e.g. [74, 75]), we find,

ˆ
`1,`2

P
(
A

(2)
1

)
=
(
− 1
ε4

+ π2

12ε2 + 25ζ3
6ε + 7π4

120

)
s+O (ε) . (4.14)

This result is in perfect agreement (up-to an irrelevant normalisation factor) with the
maximal leading terms of eq. (17) of ref. [76].

Let us discuss this result. We see that the projection method gives us a preliminary
insight of the structure of the scattering amplitude under consideration. In particular,
thanks to the decomposition into d log forms, it is straightforward to extract the maximal
transcendental weight contribution of a given scattering amplitude. The procedure proposed
in section 3 allows us to unambiguously calculate multi-variate residues, which is essential
to extract the coefficients of d log integrands in the form factor decomposition (4.2). We
find this procedure very efficient. In particular, because of the approach we follow is
at integrand level, the calculation of IBP identities in four dimensions is replaced by a
multi-variate polynomial division modulo Gröbner basis. Remarkably, contrary to the
traditional generation of the former, there is no obstacle when increasing the rank in the
numerator for a given integrand, as depicted in eq. (4.10) for a monomial with degree 20
since the polynomial division is straightforwardly performed.

5 Analysis of evanescent numerator terms

In the previous sections, we discussed an algebraic procedure to extract maximal transcen-
dental weight of multi-loop scattering amplitude. In the present paper, we implemented
this approach in a purely four-dimensional formulation, as this has many practical advan-
tages. A natural and important question is to what extend subtleties can arise due to this
approximation. In this section, we address this in more detail.

In particular, one can write down evanescent integrand terms, by which we mean
integrands that vanish in four dimensions, but are non-zero in D = 4 − 2ε dimensions.
For example, given enough momenta in a given scattering process, such terms can be
constructed in terms of certain Gram determinants. Closely related to this are ‘µ’-terms,
which depend on the difference between the D- and four-dimensional part of loop momenta.
We wish to study in which situations such terms can impact the maximal weight projection.

We do so by analysing the one-loop case in detail, in subsection 5.1. Based on the
conclusions drawn there, we then investigate four- and five-particle processes at two loops
in subsection 5.2.
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5.1 One-loop analysis

To start this discussion, let us extend the four-dimensional parametrisation (2.1) to D
dimensions,

kαi [D] = kαi + kαi [D−4] , (5.1)

where we closely follow the notation of ref. [67]. In this decomposition, kαi and kαi [D−4]
live in independent sub-spaces, kαi · kαi [D−4] = 0, and the extra dimensional product, or
evanescent terms, are often defined as, µij = −ki [D−4] · kj [D−4]. In effect, the splitting
D-dimensional loop momenta (5.1) has been extensively used in the four-dimensional helicity
and ’t Hooft-Veltman regularisation schemes, in which external momenta are always cast in
four dimensions.

Analytic expressions for one-loop helicity amplitudes have been known for a long
time. Interestingly, these amplitudes display a simple dependence in terms of the so-called
evanescent terms µ11. In effect, any N -point one-loop scattering amplitude in renormalisable
theories can be decomposed as follows [77, 78],

A(1)
N =

∑
i∈pentagons

ei I
(1),D
5,i [1]

+
∑

i∈boxes
di I

(1),D
4,i [1] +

∑
i∈triangles

ci I
(1),D
3,i [1] +

∑
i∈bubbles

bi I
(1),D
2,i [1] +

∑
i∈tadpoles

ai I
(1),D
1,i

+
∑

i∈boxes
di,1 I

(1),D
4,i [µ11] +

∑
i∈boxes

di,2 I
(1),D
4,i

[
µ2

11

]
+

∑
i∈triangles

ci,1 I
(1),D
3,i [µ11]

+
∑

i∈bubbles
bi,1 I

(1),D
2,i [µ11] , (5.2)

in which I
(1),D
n,i corresponds to the D-dimensional i-th n-point Feynman integral whose

numerator, at integrand level, is given by the argument of the former. For instance, a
three-point topology with an evanescent terms in the numerator is expressed as I(1),D

3,i [µ11].
The small letters, {a, b, . . . , e}, are rational coefficients that only depend on the kinematics
of the process under consideration and not on the ε parameter.

As a consequence of working in D = 4− 2ε dimensions, one can relate scalar one-loop
pentagon integrands as follows [79–81],

ẽi I
(1),D
5,i [1] = I

(1),D
5,i [µ11] +

∑
i∈boxes

d̃i I
(1),D
4,i [1] , (5.3)

where, similar to coefficients {a, . . . , e} in decomposition (5.2), d̃i and ẽi are rational
functions that only depend on kinematics of the scattering process.

Relation (5.3) is straightforwardly obtained once the loop momentum components α
are expressed in terms of the five denominators as well as µ11. The latter is clearly manifest
after performing a polynomial division modulo appropriate Gröbner basis. Likewise, by
following the latter argument, higher multiplicity scalar integrands, i.e. N > 5, can always
be reduced to pentagon integrands, since denominators (or inverse of Feynman propagators)
are not independent in the former integrand.
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Let us now analyse the evanescent terms, i.e. those with µ11 numerators. There are
questions that we want to answer. First, can they produce leading weight terms, i.e terms
of weight two? Second, if so, at what order in ε do the leading weight terms appear?

To answer these questions recall that we can trade integrals with an insertion of µ11
for higher-dimensional scalar integrals [82]. For one insertion of µ11, one has

I
(1),D
n,i [µ11] =− ε I(1),D+2

n,i [1] . (5.4)

At this stage we can use knowledge of the transcendental weight of the six-dimensional
integrals appearing on the r.h.s. of eq. (5.4). It turns out that the six-dimensional box
integral has maximal weight two, while six-dimensional pentagon and hexagon integrals
have maximal weight three. More generally, we expect six-dimensional integrals with n ≥ 5
to have maximal weight three. Taking into account the overall factor ε in eq. (5.4), we
conclude that I(1),D

n,i [µ11] has maximal weight one for n = 4, and maximal weight two
for n ≥ 5. Moreover, since the six-dimensional integrals are finite, the evanescent terms
contribute at O(ε).

In other words, for n = 4 the evanescent terms generated by µ11 in the numerator are
irrelevant for the maximal weight projection. For n ≥ 5, this is no longer the case, unless
one truncates the ε expansion at the finite part.

A similar analysis of transcendental weight drop in one-loop scalar integrals can be
carried out by means of integrands constructed from Gram determinants. Let us define

G

(
k1, . . . , ks
q1, . . . , qs

)
≡ det

i,j∈s×s
(2ki · qj) ,

G (k1, . . . , ks) ≡ G
(
k1, . . . , ks
k1, . . . , ks

)
. (5.5)

Then, a five-point integrand constructed from a Gram determinant, after an analysis at
integrand level [80], becomes,

I
(1),D
5,i [G (k1, p1, p2, p3, p4)] = −2G (p1, p2, p3, p4) I(1),D

5,i [µ11] . (5.6)

We emphasise that at integrand level either side of eq. (5.6) vanishes in four dimension but
yet gives contributions in D with a weight drop in the transcendental degree, as previously
discussed for evanescent terms.

In summary, we find that for one-loop scattering amplitudes with n ≥ 5, the four-
dimensional projection method may miss maximal weight terms starting from the O(ε)
terms. For example, at n = 5, the pentagon integral (5.3) with evanescent numerator µ11
starts as ε× (weight three). This means that evanescent terms do not affect the maximal
weight piece for n-point one-loop amplitudes up-to and including the finite part. The
situation is even better for n ≤ 4 one-loop amplitudes, where evanescent terms do not lead
to maximal weight pieces at all.

5.2 Two-loop analysis at four and five points

In view of the results of the one-loop analysis of the previous section, it is interesting to think
about higher loops. In particular, we saw that evanescent terms in one-loop amplitudes can
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lead to maximal weight terms starting from O(ε) for amplitudes with five or more external
legs. In two-loop amplitudes, one may have a situation where evanescent terms in one loop
are multiplied by divergences originating from another loop (most clearly this happens
for products of one-loop amplitudes), and this can lead to maximal weight pieces that are
missed, if the evanescent numerators are not kept. It is easy to write down examples of
this. Does this mean that the four-dimensional projection method cannot be used starting
from two loops and five points?

Of course, if this is the case, one could try to adapt the method by treating the
D-dependence of integrands more carefully, as is done for example in Baikov representa-
tion [34–38]. However, this is clearly much more work, and it would be desirable to find
a positive four-dimensional statement. Hope comes from the fact that in most physical
situations, at the end of the day, we wish to compute a (finite) result in four dimensions.
Moreover, both ultraviolet and infrared divergences are very well understood, in principle,
and satisfy factorisation formulas. Can we profit from these insights?

Let us discuss the divergences in turn. In the case of ultraviolet divergences, we
heuristically know that they only involve less-than-maximal weight terms, so we can ignore
them for the purpose of this discussion. The situation is different for infrared divergences,
as they do involve maximal weight terms. So an infrared double pole, for example, when
multiplied to the evanescent pentagon discussed in the last subsection, would produce a
divergent maximal weight term at two loops. However, we know from general factorisation
properties of infrared divergence that such terms are related to infrared counter-terms,
multiplied by lower-loop amplitudes. For this reason, one can hope that such terms
cancel when appropriate, infrared renormalised finite terms are considered. Such terms are
sometimes called ‘hard functions’ in the QCD literature [33, 83–86].

In this subsection, we therefore discuss in some more detail the issue. We first study
the four-point case, where, based on the above discussion, we do not expect any issue due
to evanescent terms. Then, we discuss an explicit example of a five-point amplitude in
N = 4 super Yang-Mills that illustrates both the issue mentioned above, and its resolution.
The aim of this subsection is not to provide a general proof, but rather to collect relevant
observations that in our view points towards a more general pattern.

Evanescent two-loop four-point terms have non-maximal weight. We wish to
analyse relevant evanescent terms for planar two-loop four-point amplitudes (see ref. [14] for
closely related work). Let us begin by writing down the most general integrand that could
appear in a massless Yang-Mills theory. In other words, we write all graphs with cubic
vertices, and with at most one loop momentum per vertex. The numerator is then expressed
as a linear combination of 1316 monomials (ki · qj) with qj ∈ {k1, k2, p1, . . . , p3}. Then, we
project this integrand onto four dimensions through parametrisation (2.1). At this point,
all scalar products between external and internal momenta are expressed in terms of loop
momentum components, namely, (ki · qi) → {α} with qi ∈ {k1, k2, p1, p2, p3}. By asking
the latter projection to vanish, we find that our most generic vanishing four-dimensional
integrand can be expressed in terms of 31 unknown coefficients. For example, one particular
term in our ansatz is just the following Gram determinant, G (k1, k2, p1, p2, p4). Let us call
the evanescent numerator with the 31 coefficients N4.
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Figure 6. Representative two-loop planar boxes that admit a d log representation.

Next, we use IBP identities to reduce those integrands to a linear combination of eight
master integrals. The latter are chosen such that they admit a d log representation [40], and
correspond to the master integrals displayed in figures 3 and 6. Interestingly, we observe
that the generic four-dimensional evanescent satisfies

ˆ
k1,k2

N4
double box propagators =ε

8∑
i=1

bi(ε)ω(2)
i , (5.7)

with bi being rational functions in ε that are regular at ε = 0. This equation allows us to
conclude that the evanescent two-loop four-point terms lead to a weight drop. In other
words, they are irrelevant for the maximal weight projection, at any order in ε.

Evidence that infrared-renormalised five-point amplitudes are free of
ambiguities. The planar N = 4 super Yang-Mills five-point amplitude [87, 88] provides
an instructive case of study of the effect of evanescent terms.

Let us write the amplitude as

A5 = A5;treeM5 , (5.8)

where A5;tree is the tree-level amplitude. The loop factor,

M5 = 1 + g2M
(1)
5 + g4M

(2)
5 + . . . , (5.9)

is a function that depends on kinematic invariants, on the coupling g2 = g2
YMNc/(16π2),

and on the dimensional regulator ε.
The one-loop amplitude M (1)

5 consists of a sum of five infrared-divergent box integrals,
plus exactly the evanescent pentagon integral (5.3) discussed above. Therefore, this consti-
tutes an explicit field-theory example of the issue discussed above. Our projection would
give the correct result up-to and including the finite part.

In this particular case, there is additional structure that allows us to trace the effect of
the evanescent terms. In fact, the one-loop evanescent terms are parity-odd, while all other
one-loop terms are parity even. Interestingly, the duality between scattering amplitudes
and Wilson loops states that [89–92]

logM5 ∼ logW5 +O(ε) , (5.10)

where W5 is a pentagonal Wilson loop. Here we do not wish to go into the details of this
relation, but merely point out that the Wilson loop is parity even. Therefore, if the duality
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relation (5.10) holds (and this has been verified), then it implies something about the parity
odd terms of the amplitude, and hence about the evanescent terms. Expanding the l.h.s. of
eq. (5.10) in the coupling, we learn that apart from M

(1)
5 , the following quantity must be

parity even,

M
(2)
5 − 1

2
(
M

(1)
5

)2
+O(ε) . (5.11)

However, the product
(
M

(1)
5

)2
clearly involves parity odd terms at 1/ε, as explained above.

Since the whole expression must be parity even, there must be corresponding parity odd
terms in M (2)

5 to cancel the terms from the product. In other words, certain evanescent
terms in M (2)

5 cancel the unwanted evanescent terms coming from the product of lower-loop
amplitudes, at least to O(ε).3

How can we interpret this result? The quantity logM , or equivalently, the two-loop
expression in eq. (5.11) appears naturally when solving an infrared renormalisation group
equation in a conformal field theory (see also refs. [94, 95]). In other words, it takes care of
the known partial exponentiation of non-Abelian soft and collinear divergences. In a more
general, non-conformal field theory one could write down similar equations, that involve the
β function, that take case of infrared sub-divergences. Based on the observations made here,
we find it likely that the four-dimensional projection gives the correct maximal weight terms,
when applied to properly defined infrared-subtracted ‘hard’ parts of scattering amplitudes.
In the present paper, we have shown hints for this statement to be true in the context of
the massless planar N = 4 super Yang-Mills two-loop five-point amplitude, but we expect
this to be true for general Yang-Mills theories, and also for higher-point amplitudes. It
would be very interesting to formally prove such a statement.

6 Conclusion and outlook

In this paper, we proposed a method to extract the maximal weight contribution of scattering
amplitudes. The method does not require integration-by-parts identities, but operates
directly at the level of the Feynman loop integrand. It draws on insights that Feynman
integrals with d log integrands evaluate to maximal weight functions. For a given scattering
process, the idea is to project the Feynman integrand onto a basis of such functions. As
such, the method combines well with generalised unitarity approaches.

After working out the method and discussing possible subtleties, we gave a proof-of-
principle application, and extracted the maximal weight terms of the two-loop scattering
amplitudes gg → H (in the heavy top-quark mass limit), which involves both planar and
non-planar Feynman diagrams. We found the method to work very efficiently.

For simplicity and convenience, we worked in this paper mostly with four-dimensional
integrands, which have obvious advantages. We discussed the scope and limitations of the

3We remark that this is closely related to the observation that the same amplitude can be obtained using
a purely four-dimensional construction of loop integrands, see for example refs. [9] and [93]. One possible
interpretation of this is that the different integrands (with or without the evanescent terms, in this case)
correspond to different scheme choices.
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four-dimensional approach. In particular, we showed that certain evanescent terms are
irrelevant for one-loop amplitudes up-to and including the finite part. We argued that the
same may hold true when considering appropriately defined infrared subtracted finite parts
of higher-loop amplitudes, and gave an explicit five-point two-loop example of this.

There are several interesting directions for further research:

1. A natural next step is to apply the method beyond the proof-of-principle cases
presented here. Extracting the maximal weight terms of QCD amplitudes would allow
to shed a first light on their analytic structure. For example, very recently, four-
dimensional d log basis integrals have been presented for planar two-loop six-particle
scattering processes [29], and it would be very interesting (keeping in mind however
the discussion regarding evanescent terms) to obtain maximal weight expressions for
six-gluon scattering in Yang-Mills theory, for example.

2. In some cases, one may be interested in extracting the maximal weight terms to all
orders in the dimensional regulator ε. In this case, one does need to keep evanescent
terms. In order to do so, one needs to be able to perform the projections discussed in
this paper, while keeping some information on the (D − 4)-dimensional components
of the loop momentum. A similar issue appears in the construction of uniform weight
integrals in the context of the canonical differential equations method, and it was
shown how to overcome it in Baikov representation [34–38]. It would be interesting
to study our projection method in this setup.

3. The projection method requires the knowledge of a basis of d log integrands for a
given scattering process. There is substantial knowledge and work on solving this
problem [33, 58, 96–99], especially since this is also useful input for the canonical
differential equations method [13]. It may be interesting to generalise this in at
least two directions. Firstly, as was observed in the literature, in many cases one
can find d log representations that consist of a single term only. This is clearly
desirable from the point of view of our projection method, but also beyond, see e.g.
ref. [100] (direct integration). Can one understand when and how this property can be
achieved. Secondly, we know that d log representations are closely related to geometric
interpretations of scattering amplitudes, see e.g. refs. [43, 44]. Is it possible to find a
basis of d log integrands by geometric means?

4. Finally, a further exciting direction is the extension of the projection method beyond
leading weight. Amusingly, those “most complicated terms” (following the language
of ref. [2]) are the easiest to extract with our method. It should be noted, however,
that the terms of lower transcendental weight typically involve more complicated
coefficients compared to the maximal weight ones. Therefore, a yet-to-be-devised
method for obtaining less-than-maximal weight terms would need to generate those
more complicated coefficients. At present, we have a good understanding of which
integrands lead to maximal weight functions, and, conversely, which features of
integrands lead to a weight drop. But can one quantify the weight drop property —
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for example, if the leading weight terms have weight 2L, is it possible to define a basis
of next-to-maximal weight terms that have weight 2L − 1, and so on? This would
provide a very useful new expansion. One hint on how to identify such integrals could
come from the canonical differential equations method [13]. In this approach it is
especially clear that next-to-maximal weight integrals can be generated by taking a
derivative of the leading weight terms (however, these integrals will have non-constant
leading singularities).
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