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1 Introduction and outline

Probing de Sitter (dS) space in a more precise and systematic way is not merely a perverse
preoccupation of the perturbed physicist. On the contrary, such ventures can serve at least
two important purposes. First of all, many models [1–3] have been put forward over the
years in an attempt to describe (d+1)-dimensional dS space at a microscopic level, and in
particular to clarify the meaning of the entropy associated to the cosmological horizon. In
order to constrain or rule out such proposals, one needs precise macroscopic data to test
them against. Secondly, in the Swampland spirit [4], many constraints have been proposed
that aim to establish which low-energy effective field theories (EFT) can be consistently
coupled to gravity. Some of the constraints relevant to dS survive even in the limit where
gravity is decoupled [5] and one could ask how they manifest within the EFT itself.
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As for the systematic extraction of exact macroscopic data, it was shown in [6] how
to do so for arbitrary field content, by calculating 1-loop integrals on the sphere and
interpreting them as quasicanonical thermal partition functions in the dS static patch. The
equivalence was demonstrated by making use of SO(1, d+ 1) Harish-Chandra characters.
The resulting character formalism has been developed for pure dS in general dimension d > 1.
In the current work, our starting point is to include a uniform background electromagnetic
field (2.4) in the simplest case d = 1. This gives a surprisingly rich toy model which links
representation theory to vacuum instability and black hole superradiance. We determine the
modifications required in the character formalism to capture the background and explore
to what extent one can still extract exact static patch results from the sphere partition
function. In particular, the electric field gives rise to pair creation, and we study how the
thermal nature of the static patch affects this quantum instability of the vacuum. The
dS2 setup arises naturally through dimensional reduction from charged or rotating Nariai
spacetimes, where recently proposed Swampland bounds [5] constrain the EFT. Below, we
give the outline of the paper and summarize our results.

In section 2, we derive the character integral representation of the 1-loop partition
function for charged scalars (2.12) and spinors (2.19) in the presence of the background
Wu-Yang U(1) field (2.4) on S2, starting from the Euclidean spectrum of the Klein-Gordon
and Dirac operators [7], as discussed in appendix A. The character formulas receive key
modifications due to the background field. Encoded in them lies the quantum instability of
the vacuum and these modifications conspire in such a way that the UV-divergences are left
unchanged. At a technical level, the character representation allows one to simply read off
these UV-divergences and algorithmically find the exact results (2.14) and (2.21) in terms
of Hurwitz ζ-functions. Taking the de Sitter length l to be very large, the correct flat space
results [8–10] are obtained. Following [6], we calculate the static patch energy U and entropy
S of the quantum fields. The background field makes the setup out-of-equilibrium, resulting
in complex U and S. At large values of the mass, the instability is sufficiently suppressed
and it does become meaningful to discuss their real parts. Both increase monotonically with
the field, except for the scalar at small values of the mass and field, as seen in figure 2 and 3.

In section 3, we write down the symmetry generators which commute with the equations
of motion. We find that the background field shifts the standard so(1, 2) generators.
Nonetheless, their action on boundary fields (3.14) allows us to find the character χ(t)
directly as the trace tr e−iHt. The quasicanonical interpretation of sphere partition functions
stems from the fact that the character admits a quasinormal mode (QNM) expansion [6].
This is closely related to the fact that these QNMs can be constructed algebraically as a
consequence of the large symmetry group of dS [11–14]. We verify that the same expansion
of the character holds in our setup with background field. At the end of section 3, we also
comment on Green functions and find the retarded propagator. Without flux, the conformal
equivalence dS2 × S1 ∼ AdS3 implies an SL(2,R)× SL(2,R) symmetry which factorizes the
propagator [15]. This particular symmetry is broken by the presence of flux on dS2, and by
consequence, the structure of the retarded propagator in this case is more involved.

The use of characters allows for an efficient extraction of the finite and imaginary parts
of the 1-loop partition function. This imaginary part determines the persistence of the
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vacuum, which is subject to Schwinger pair production in the presence of a background
electric field [16–19]. In flat space, the relevant modes in a constant electric field were found
long ago in [20] and treated more recently in [21]. In section 4, we calculate the scalar (4.2)
and spinor (4.9) vacuum persistence for the dS2 static patch by analytic continuation from
S2. The same method was applied for AdS2 and H2 in [22]. As in that case, the semiclassical
instanton contributions come with alternating sign in the scalar case and same sign in the
spinor case. Compared to AdS2, however, in dS2 there is no threshold for pair production.

Our method of obtaining the Schwinger pair production rate is similar to the ζ-function
approach of [23, 24]. The crucial difference is that we include the effect of the static patch
thermal background by retaining periodicity in Euclidean time. Our setup is therefore more
closely related to the work of [25], where the current created in the dS2 planar patch in the
global vacuum was calculated. In particular, the semiclassical contributions (4.16) due the
(anti)screening instantons [26, 27] appear with the same prefactor and relative sign in our
result for the vacuum persistence as in the current found in [25]. We similarly find the same
IR hyperconductivity, in contrast to the non-thermal static patch results [23, 24]. In higher
dimensions, the current was found in [28]. Pair production in (A)dS has received much
attention in the literature and has mostly been analyzed using Bogoliubov coefficients from
a global perspective, including the cosmological pair production present without flux [29–31],
see also [32] for a discussion of the observer-dependence. In the case without flux, propagators
in various dS patches, the imaginary part of the effective action, pair production, and the
relation to rotation from Euclidean sphere have been discussed in [33, 34].

Furthermore, we apply the character formalism as developed for AdS in [35] to study
vacuum instability in the AdS2 black hole background. Unlike in dS2, there is a minimum
value for the electric field above which pair creation becomes possible. Our results are
in agreement with and clarify the ζ-function regularized result (4.25) of [22]. Finally, a
physical setup in which charged particles in a uniform electric field on dS2 appear is obtained
by dimensionally reducing charged or rotating Nariai spacetimes [23, 24, 36]. We note
in particular that the scalar mass region in which there is IR hyperconductivity [25] (see
figure 8) is excluded by the Festina Lente (FL) bound [5, 37]. Pair creation, which does
not depend on the details of the gravitational collapse [38], is discussed more generally for
de Sitter black holes in [28, 39]. The AdS2 setup arises in the near-horizon extremal Kerr
limit [40].

2 Character integrals for particles in background flux

In this section, we will rewrite the 1-loop partition function for charged particles on a sphere
with background U(1) flux in terms of a character integral. There are several advantages of
doing so. At a technical level, this allows one to simply read off the UV-divergences and
algorithmically find the exact result in terms of Hurwitz ζ-functions. At a conceptual level,
the result can moreover be interpreted as the quasicanonical partition function in the de
Sitter static patch, as shown in [6]. In this section, we will apply these methods to dS2 and
generalize them by the inclusion of a background uniform U(1) field, to which we minimally
couple charged scalars and spinors.
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Our starting point will thus be to Wick rotate the dS2 static patch to S2 of radius l

ds2 = l2(dθ2 + sin2 θdϕ2) . (2.1)

For most of this paper, we will set l = 1, restoring it when needed by dimensional analysis.
The 2-sphere can be covered by the usual two charts

UN ≡
{

(θ, ϕ)| 0 ≤ θ ≤ π

2 + ε

}
,

US ≡
{

(θ, ϕ)| π2 − ε ≤ θ ≤ π
}
,

(2.2)

on which we will consider the Wu-Yang U(1)-connection [7]

AN = B(1− cos θ)dϕ ,
AS = −B(1 + cos θ)dϕ ,

(2.3)

corresponding to the potential produced by a magnetic monopole located at the center of
the sphere. For the gauge transformation on UN ∩US to be well-defined, one needs 2B ∈ Z.
The field strength is then determined to be proportional to the volume form

F = dA = B sin θ dθ ∧ dϕ , (2.4)

and clearly keeps the SO(3) symmetry. In the dS2 static patch, the analytic continuation
B → iE corresponds to having a constant electric field. For simplicity of notation, we will
assume that the field B > 0 and set the charge e = 1.

2.1 1-loop partition function in the scalar case

We wish to evaluate the Euclidean path integral for a charged scalar on S2, minimally
coupled to a U(1) gauge field with uniform field strength,

Zφ =
∫
Dφ∗Dφ e−

∫
φ∗(D2+m2)φ , (2.5)

where D2 ≡ −(~∇ − i ~A)2. A convenient UV-regularized version of this path integral is
obtained via the heat kernel method [41]:

logZφ,ε =
∫ ∞

0

dτ

τ
e−ε

2/4τ Tr e−τ(D2+m2) . (2.6)

Using the spectrum of D2, as reviewed in appendix A.1, we find

logZφ,ε =
∫ ∞

0

dτ

τ
e−ε

2/4τe−τη
2
φ

∞∑
n=0

D3
n+Be

−τ(n+B+ 1
2 )2

, ηφ ≡
√
m2 −B2 − 1

4 , (2.7)

where D3
n+B is the degeneracy of the nth eigenvalue of D2. Following [6], we use the

Hubbard-Stratonovich trick to perform the sum over n, writing
∞∑
n=0

D3
n+Be

−τ(n+B+ 1
2 )2 =

∫
A
du

e−u
2/4τ

√
4πτ

f(u) , f(u) ≡
∞∑
n=0

D3
n+Be

iu(n+B+ 1
2 ) , (2.8)
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(a) original contour (b) folded contour (c) rotated folded contour

Figure 1. To arrive at the character integral from the Hubbard-Stratonovich trick, we fold the
contour A (red) along the branch cut from (2.10) with branch point +iε (green dot), and then rotate
u = it. The blue dots represent the poles of f(u).

with integration contour A = R + iδ, δ > 0 (see figure 1). Using the degeneracies (A.11),
the sum can now be evaluated to give

f(u) =
∞∑
n=0

(
2
(
n+B

)
+ 1

)
eiu(n+B+ 1

2 )

=
(1 + eiu

1− eiu + 2B
)
eiu(B+1/2)

1− eiu .

(2.9)

Consider first real, positive ηφ, i.e. 4m2 > 4B2 +1, corresponding to the complementary
series representations of SO(1, 2). Keeping Im u = δ < ε, we can now perform the τ -integral
to obtain

logZφ,ε =
∫
A

du√
u2 + ε2

e−ηφ
√
u2+ε2f(u) . (2.10)

After deforming the contour as in figure 1 to wrap along the branch cut and changing
variables to u = it, the integral becomes

logZφ,ε =
∫ ∞
ε

dt√
t2−ε2

(1+e−t
1−e−t +2B

)
e−(B+ 1

2 )t+iηφ
√
t2−ε2 +e−(B+ 1

2 )t−iηφ
√
t2−ε2

1−e−t . (2.11)

The result for imaginary ηφ, corresponding to the principal series representations, is
obtained by analytic continuation. Formally taking the ε→ 0 limit above, we obtain the
character integral

logZφ =
∫ ∞

0

dt

t

(1 + e−t

1− e−t + 2B
)
e−Btχ(t) , χ(t) ≡ e−( 1

2 +iηφ)t + e−( 1
2−iηφ)t

1− e−t . (2.12)

Here χ(t) is the SO(1, 2) character of the unitary irreducible representation characterized by
∆ = 1

2 + iηφ. Looking at (2.12), we note that, apart from the appearance of B in ηφ, there
are two more key modifications compared to the case B = 0, which was discussed in [6].
Indeed, the background field appears both as an extra term in the prefactor and through an
exponential factor. The former stems from the Landau levels in flat space, as can be seen
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by taking the dS length very large. The other term in the prefactor, (1 + e
t)(1− e−t)−1 is

also present when B = 0 and takes into account the compact geometry. On the other hand,
the exponential factor e−Bt contributes as a shift in energy.

UV-divergences arise when ε, or equivalently t, becomes small. By locality, there should
not be any ε−1 divergence of the partition function for odd d. This includes our situation,
namely d = 1. For B = 0, this was ensured by the fact that the integrand in (2.12) is odd
in t. For general B, this is not obvious at first sight since the integrand no longer has a
definite parity. Nonetheless, the UV (small-t) expansion gives

1
t

(1 + e−t

1− e−t + 2B
)
e−Btχ(t) = 2

( 2
t3

+
1
3 −m

2

t
+ . . .

)
. (2.13)

The absence of a t−2 term means that there is no divergence of the form ε−1. Moreover,
the divergences that do arise are independent of the flux. In general, the leading divergence
of the small-t expansion has a coefficient of 2n, where n is the number of on-shell degrees
of freedom, which for a complex scalar is n = 2. The t−1 term is the Weyl anomaly and has
coefficient c

3 when m = 0, where c is the central charge. In this case, it is that of 2 real free
bosons, namely c = 2.

Using the above UV-expansion and the heat kernel regularization scheme of appendix C
of [6], we can then exactly evaluate (2.12), leading to the final result

logZφ = 2ζ ′(−1,∆ +B) + 2ζ ′(−1, ∆̄ +B)− 2iηφζ ′(0,∆ +B)

+ 2iηφζ ′(0, ∆̄ +B) + 2η2
φ +

(2
3 − 2m2

)
logM + 4

ε2
,

(2.14)

where M ≡ 2e−γ/ε and γ is the Euler-Mascheroni constant. In section 2.3 and 4.1 respec-
tively, we will further analyze and interpret the real and imaginary parts of the partition
function that arise when continuing to imaginary flux.

Finally, let us comment on the flat space limit. To restore factors of l, we must restore
l in the metric and take D2 → D2/l2 in (2.5). Keeping track of such factors throughout
the above derivation then leads to the modification m→ ml and B → Bl2. In Lorentzian
signature we rotate B → iE. The flat space limit is obtained by taking l → ∞, while
keeping m,E fixed in (2.12). Upon subtracting the background energy, we then retrieve
the flat space result [8, 10]

logZφ,flat = iEV

4π

∫
dτ

τ
eiτ

m2
E

( 1
sinh τ −

1
τ

)
, (2.15)

with V = 4πl2 being the Euclidean volume. This can be seen in several ways. At the level
of the character integral, one can for instance use the Riemann-Lebesgue lemma to see that
only terms with ηφ−E survive. Perhaps the most insightful way, however, starts at the level
of the spectrum (A.10)–(A.11), which at large B describes the non-relativistic Landau levels.

2.2 1-loop partition function in the spinor case

In this section, we wish to evaluate the path integral for a minimally coupled Dirac spinor

Zψ =
∫
Dψ̄Dψ e−

∫
ψ̄[( /∇−i /A)+m]ψ , (2.16)

where /D ≡ −i( /∇− i /A), following essentially the same steps as in the scalar case.
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The spectrum of /D is obtained in appendix A.2. Note that the non-zero modes of /D
come in pairs λN,n = ±

√
n(n+ 2B) whereas the zeromodes (n = 0) are unpaired. Pairing

the non-zero eigenvalues together in the heat kernel regularization, we may rewrite the path
integral as

logZψ,ε = −
∫ ∞

0

dτ

τ
e−ε

2/4τe−τη
2
ψ

( ∞∑
n=1

D3
n+B− 1

2 ,
1
2
e−τ(n+B)2 +Be−τB

2
)
, (2.17)

where
ηψ ≡

√
m2 −B2 . (2.18)

The first term in parentheses stems from states which in the flat space limit correspond to
the two towers of Landau levels, one for each spin, while the second term corresponds to
the unpaired zeromodes. Now we apply the Hubbard-Stratonovich trick and integrate along
the same contour as in the scalar case. After formally taking ε→ 0, the integral becomes

logZψ = −
∫ ∞

0

dt

t

(
csch t

2 + 2B cosh t

2

)
e−Btχ(t) , χ(t) ≡ e−( 1

2 +iηψ)t + e−( 1
2−iηψ)t

1− e−t .

(2.19)
Compared to the case B = 0, we see that the structural modifications to the character
integral are parallel to what we discussed below (2.12) for the scalar result.

As a check of locality, there should not be any ε−1 divergence of the partition function.
Indeed we see

1
t

(
csch t

2 + 2B cosh t

2

)
e−Btχ(t) = 2

(
2
t3
−

1
6 +m2

t
+ . . .

)
, (2.20)

implying the absence of a UV-divergence of the form t−2 which would give an ε−1 divergence.
The coefficients in (2.20) are understood from the on-shell degrees of freedom and central
charge of a Dirac spinor, n = 2 and c = 1, corresponding to 2 free fermions. That the ε−2

deep-UV-divergence does not depend on B is clear. For the logarithmic Weyl anomaly
term, note that in the massless case, left- and right-moving fermions ψ± in d = 1 can be
understood as neutral fermions propagating in a background with a complexified Weyl
factor [40]. For the sphere with uniform field B, it takes the form (1 ± 2iB) log sech u,
with u = log tan θ

2 in terms of the usual S2-coordinate. In general, such complexified Weyl
transformation gives rise to an anomaly c

6(R ∓ 4iB). Combining now the contributions
from ψ±, one finds that the field strength cancels out and the coefficient of the t−1 term is
given by c

3 in the massless case, as argued before.
We can now compare (2.14) and (2.21) and try to choose the field content such that

the UV-divergences cancel and the partition function is finite. The leading ε−2 is cancelled
for any value of the mass by including the same amount of Dirac spinors as complex scalars.
However, also demanding cancellation of the log ε divergences imposes a nontrivial relation
between the masses of the two fields. From (2.14) and (2.21), we find that the result will
be UV-finite if m2

φ = m2
ψ + 1

2 , or equivalently η2
φ = η2

ψ + 1
4 .

– 7 –
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In heat kernel regularization, the spinor character formula (2.19) can be exactly
evaluated. We find

logZψ =−2ζ ′
(
−1,∆+B+ 1

2

)
−2ζ ′

(
−1, ∆̄+B+ 1

2

)
+2iηψζ ′

(
0,∆+B+ 1

2

)
−2iηψζ ′

(
0, ∆̄+B+ 1

2

)
−2η2

ψ+
(1

3 +2m2
)

logM− 4
ε2
,

(2.21)

where M ≡ 2e−γ/ε as before.
As an example, let us consider the special case of a massless spinor. In the massless

limit ηψ = iB, (2.21) simplifies. In particular, the Hurwitz ζ-functions satisfy [42]

ζ ′(0, a) = log Γ(a)√
2π

,

ζ ′(−1, 2B + 1) = ζ ′(−1) + log(H(2B)) ,
(2.22)

where ζ ′(−1) = 1
12 − logA, with A ≈ 1.282 being the Glaisher-Kinkelin constant. H is the

hyperfactorial function, which for integer arguments, such as 2B on the sphere, takes the form

H(2B) =
2B∏
k=1

kk . (2.23)

The finite part of (2.21) then becomes

Zfin
ψ,2B = e−4ζ′(−1) [Γ(2B + 1)]2B

H(2B)2 e2B2
. (2.24)

Finally, in the flat space limit, taking into account the background subtraction, the
path integral correctly gives [8, 10]

logZψ,flat = − iEV4π

∫ ∞
0

dτ

τ
eiτ

m2
E

(
coth τ − 1

τ

)
, (2.25)

with V = 4πl2 being the Euclidean volume. This reduction is most easily seen at the level
of the spectrum. The coth term essentially captures the contribution from the towers of
Landau levels built on the two spin states. The other term in (2.19) captures the thermal
nature of the sphere partition when interpreted in the static patch, as we will review in the
next section.

2.3 Static patch thermodynamics

When we turn off the flux in our 1-loop calculations, we are effectively dealing with a free
QFT. Bosonic and fermionic oscillator modes of frequency ω are in thermal equilibrium in
the static patch, at inverse temperature β. Using an integral representation of the logarithm,
one can represent the thermal partition function as [6]

log Tr e−βH =
∫ ∞

0

dt

2t

(
1 + e−2πt/β

1− e−2πt/β χbos(t)−
e−2πt/β

1− e−2πt/β χfer(t)
)

= logZ , (2.26)

– 8 –



J
H
E
P
0
3
(
2
0
2
2
)
1
6
5

where the Harish-Chandra character is the Fourier transform of the density of states1

χ(t) =
∫ ∞
−∞

ρ(ω)eiωt . (2.27)

The relative factor of 2 difference between our results at zero flux and (2.26) is because
the latter was derived for uncharged particles. One can now use β = 2πl to obtain
thermodynamical quantities of interest, such as the energy U or entropy S, by taking
suitable derivatives of the partition function

U = −2π∂l logZ , S = (1− l∂l) logZ . (2.28)

Several examples were given in [6]. The entropy can be interpreted as an entanglement
entropy across the static patch horizon. Its leading divergence follows an area law, whereas
the coefficient of the logarithmic divergence is universal.

In the presence of a background flux, the setup becomes inherently time-dependent and
the system is no longer in equilibrium. Even worse, the vacuum is rendered unstable due to
the spontaneous creation of Schwinger pairs. As we shall discuss in detail in section 4, this
effect manifests itself through an imaginary contribution to logZ. By consequence, if one
chooses to apply the equilibrium expressions (2.28), one would find complex U and S. For
the energy, the imaginary part has a familiar interpretation as a decay width, whereas it is
a priori not clear what to make of the entropy in this case. Nevertheless one can adopt a
pragmatic point of view and simply study its real part. In particular, when the particle
mass m is large or the field value E is small, pair creation effects are quite suppressed and
it should be meaningful in this regime to study thermodynamic properties of the system.

The Hartle-Hawking state prepared by the path integral on the hemisphere depends
on the electric field, and therefore the static patch energy and entropy will too. The dS
length is reinstated in (2.12) and (2.19) by m → ml and B → iEl2, after which we can
apply (2.28). From the UV expansions (2.13) and (2.20), we reach the same conclusions for
the divergent parts of the entropy as in the case without flux: the leading divergence of
the entropy follows an area law and the logarithmic one has a universal coefficient. These
divergences are moreover independent of the field strength, so it is meaningful to look at
the change in their finite part as we switch on the field. The result is shown in figure 2 for
the charged scalar and in figure 3 for the charged spinor.

In the spinor case, both U and S increase monotonically with the background field. For
the scalar, this is no longer true when the mass is small, even at small values of the field,
where the vacuum instability is still suppressed. The bound is not precisely at 4m2 = 1 as
one might have expected. Since a real field in the static patch corresponds to imaginary
flux on the sphere, the partition function is in fact complex. We have plotted here only the
real parts of the energy and entropy. The interpretation is less clear2 to us than that of the

1More precisely, we are interested in the trace over static patch excitations whereas the character is
calculated from the density of states in the global vacuum. There is however a one-to-one map between
them, as detailed in [6]. In section 3.1, we will calculate the character directly from the action of the
so(1, 2) generators.

2In light of this, it is perhaps relevant to note that there are still differences with a proper thermal
state, in which there would be a nonzero Debye mass. As shown in [43], the dS isometries instead lead to a
vanishing mass.
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(a) energy as function of electric field (b) entropy as function of electric field

Figure 2. When turning on a flux in the static patch, the Euclidean partition function of the
charged scalar becomes complex. Using (2.28) we calculate the finite parts of the energy U and
entropy S as function of the electric field E. In the above plots, we display the real parts, where
the value at zero field has been subtracted. From magenta to blue we have m = 0.2, 0.5, 1. For
sufficiently large mass, these quantities are monotonic as function of E. For smaller masses 4m2 . 1
this is not the case. In section 4, we will find a similar effect in the Schwinger pair production rate.
The low mass range is excluded by the FL bound [37].

(a) energy as function of electric field (b) entropy as function of electric field

Figure 3. For the charged spinor, we calculate the finite parts of the energy U and entropy S as
function of the electric field E as we did for the scalar in figure 2. The main difference is that for
spinors, U and S are both monotonic as function of electric field E, which was not the case for
scalars. From magenta to blue we have m = 0.2, 0.5, 1.

imaginary part of the partition function, which we can understand in terms of Schwinger
pair production. This will be discussed in detail in section 4, where we will also note that
the small mass range is in fact excluded by the FL bound [37].

3 dS algebra, quasinormal modes, and propagators

In this section, we will write down the symmetry generators which commute with the
equations of motion, and obtain the character directly from their action on boundary fields.
The analysis for the case without background flux was performed in [6]. There, it was
also shown that the character admits a quasinormal mode expansion, and a quasicanonical
partition function picture was put forth. Here we demonstrate that the same expansion holds
when including a uniform background field. At the end of this section we also comment on
Green functions and find the retarded propagator. Without flux, the conformal equivalence
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dS2 × S1 ∼ AdS3 implies an SL(2,R)× SL(2,R) symmetry which factorizes the retarded
propagator [15]. The presence of flux on dS2 breaks this symmetry and the structure of the
retarded propagator in this case is more involved. We restrict the discussion to the case of
the charged scalar.

3.1 The character from boundary generators

Following appendix A of [6], we will construct the scalar character χ by explicitly evaluating
the single-particle trace tr e−iHt in global dS2. The metric is obtained from the one on the
sphere by

ds2 = dθ2 + sin2 θdϕ2 θ=−it+π/2−−−−−−−−→ ds2 = −dt2 + cosh2(t)dϕ2 . (3.1)

After a further coordinate transformation,

ds2 = −dt2 + cosh2(t)dϕ2 sech t=cosϑ−−−−−−−→ ds2 = (cosϑ)−2(dϑ2 + dϕ2) , (3.2)

so the ϕ-circle can be thought of as the future conformal boundary of global dS2. The field
strength is proportional to the volume form and we can choose a gauge as follows

F = E cosh t dt ∧ dϕ , A = E sinh t dϕ . (3.3)

In solving the Klein-Gordon equation by separating the time dependence of the scalar field(
(∇µ − iAµ)2 −m2

)
φ = 0 , φ(t, ϕ) = y(t)Y (ϕ) , (3.4)

one finds that the late time behavior is given by

y(t)→ c1e
−∆t + c2e

−∆̄t , ∆ = 1
2 + iηφ , ηφ ≡

√
m2 + E2 − 1

4 , (3.5)

where ∆̄ ≡ 1−∆ and ∆ becomes the scaling dimension of the corresponding boundary state.

Boundary states and conformal generators. The next step is to consider primary
states living on the conformal boundary produced by a boundary conformal field O(ϕ) of
dimension ∆ acting on an SO(1, 2)-invariant global vacuum state |vac〉:

|ϕ〉 ≡ O(ϕ)|vac〉 ,
〈
ϕ
∣∣ϕ′〉 = δ(ϕ− ϕ′) . (3.6)

Before constructing the conformal generators, let us first construct the bulk generators
which satisfy the so(1, 2) algebra

[LAB, LCD] = ηBCLAD + ηDBLCA + ηADLBC + ηCALDB . (3.7)

Being associated to a symmetry, they must commute with the equations of motion (3.4).
This leads us to the following symmetry generators in the case with flux:

L0,1 ≡ −i
[
sinϕ∂t + cosϕ tanh t

(
∂ϕ + iE

sinh t

)]
,

L0,2 ≡ −i
[
cosϕ∂t − sinϕ tanh t

(
∂ϕ + iE

sinh t

)]
,

L1,2 ≡ −i∂ϕ .

(3.8)
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The conformal algebra

[H,P ] = iP , [H,K] = −iK , [K,P ] = 2iH (3.9)

can be constructed from the above generators by taking the combinations

H = −L0,2 , P = L1,2 + L0,1 , K = L1,2 − L0,1 . (3.10)

Evaluated on states |ϕ〉 living on the future boundary, the conformal generators behave as

H|ϕ〉 = i
(

sinϕ∂ϕ + ∆ cosϕ
)
|ϕ〉 ,

P |ϕ〉 = i
(
(1 + cosϕ)∂ϕ −∆ sinϕ

)
|ϕ〉 ,

K|ϕ〉 = i
(
(1− cosϕ)∂ϕ + ∆ sinϕ

)
|ϕ〉 ,

(3.11)

where ∆ is the scaling dimension (3.5) of the bulk scalar field φ, as determined from the
late time behavior of the global dS2 modes.

Calculation of the character. We are now able to calculate the character χ(t) =
tr e−iHt as a trace over boundary states. First we take into account the action of H to write

χ(t) =
∫ 2π

0
dϕ〈ϕ|e−iHt|ϕ〉 =

∫ 2π

0
dϕ et∆ cosϕ

〈
ϕ

∣∣∣∣2 arctan
(
et tan ϕ2

)〉
. (3.12)

The integral is thus seen to reduce to a sum over the fixed points of H, namely ϕ = 0 and
π. We thus find the character

χ(t) =
∫ 2π

0
dϕ e∆t cosϕ δ

(
ϕ− 2 arctan

(
et tan ϕ2

))

= e∆t

|1− et| + e−∆t

|1− e−t| = e−∆t + e−∆̄t

|1− e−t| .

(3.13)

This is in agreement with the character defined in section 2.1 and the character as obtained
from a sum over quasinormal modes in the next section. Note that the shift in the
operators (3.8) did not influence the eventual result of the calculation (3.12), besides the
change in ∆.

Following [6], we could have instead conformally mapped to planar boundary coordinates
via x = tan ϕ

2 , under which the states transform as primaries (1
2(1 + x2))∆|x〉 = |ϕ〉. In

this basis, H,P,K take the form of shifted dilatation, translation, and special conformal
transformations:

H|x〉 = i
(
x∂x + ∆

)
|x〉 , P |x〉 = i∂x|x〉 , K|x〉 = i

(
x2∂x + 2∆x

)
|x〉 . (3.14)

The calculation proceeds as before, but one has to be careful to include the fixed points at
both x = 0 and x =∞.

One could have also started with the Wu-Yang potential on the sphere rather than (3.3).
After Wick rotation to the static patch, the generators (A.5) would then have a non-
Hermitian piece proportional to E, which eventually drops out when calculating the trace.
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3.2 The character as a quasinormal mode sum

As we have seen so far, the Harish-Chandra character contains information about the normal-
izable eigenfunctions used in the heat kernel, but also about the de Sitter isometries (3.11).
In fact, these symmetries act on 2 towers of quasinormal modes [14] as a discrete sum over
which the character can be expanded. Although these solutions are not normalizable in
the same sense as the modes used in the heat kernel, both sets of modes contain the same
information. In AdS, this equivalent description in terms of either a continuous or discrete
spectrum was first pointed out by [44]. In dS, it led to the quasicanonical interpretation of
the partition function (2.12) in [6].

When we add a uniform electric field in dS2, the story does not change and the character
still has a quasinormal mode expansion, essentially because the dS2 isometries are unbroken
by the field. Let us work in the static patch. The metric in our coordinates is obtained by
rotating the spherical one by t = −iϕ and x = cos θ. It then takes the usual form

ds2 = −(1− x2)dt2 + dx2

1− x2 . (3.15)

We consider a minimally coupled charged scalar with background flux in the following gauge:

F = E dt ∧ dx , A = −Ex dt , (3.16)

so that the electric field points in the negative x-direction.

Solution of the Klein-Gordon equation with flux. The solution to the Klein-Gordon
equation in this background is well-known [36]. Assuming the scalar field φ has time
dependence exp(−iωt), separation of variables φ(x, t) = f(x)e−iωt brings the equations of
motion in the form (

(ω − Ex)2

1− x2 −m2
)
f − 2xf ′ + (1− x2)f ′′ = 0 , (3.17)

which can be further reduced to a hypergeometric equation by substituting

f(x) = (1− x)α(1 + x)βg(x) , α = − i2(ω − E) , β = − i2(E + ω) . (3.18)

One solution is then found by taking

g(x) = 2F1

(1
2 − iηφ − iω,

1
2 + iηφ − iω; 1− i(ω − E); 1− x

2

)
. (3.19)

Since (3.17) is real, a second solution for f(x) is simply the complex conjugate of the first
one. Looking at the mode (3.18) and expanding it around x = 1, one can see it is purely
incoming (ω < E) or outgoing (ω > E) since for ε� 1

φ(1− ε, t) ∼ ε−
1
2 i(ω−E)e−iωt ∼ e−iωt+i(ω−E)u , (3.20)

with the last term given in coordinates x = tanh u. For the complex conjugate mode, the
same holds true near x = −1. The u-coordinates are especially useful since the modes appear
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(a) mass m = 1 and frequency ω = 4 (b) mass m = 5 and frequency ω = 4

Figure 4. We plot the real part of the scalar solution φ which is outgoing at x = 1, in the case
where the field E = 0, at time t = 0. For larger mass transmission is suppressed.

(a) E = 0 (b) E = 1 (c) E = 1.8

Figure 5. We plot the real part of the charged scalar φ which is outgoing at u =∞. The frequency
ω = 2 and mass m = 2 are kept fixed, while varying background field E. Increasing E reduces the
transmission coefficient (3.22). It increases the momentum of the wave near x = −1 and decreases it
near x = 1. At ω = E, the wave near x = 1 changes direction.

as plane waves near the horizons at u = ±∞. In fact, in terms of these coordinates, (3.17)
at E = 0 can be recognized as a Schrödinger problem with Pöschl-Teller potential. For
non-zero flux, one has a Rosen-Morse potential

V (u) = m2 + E2

cosh2 u
+ 2Eω tanh u . (3.21)

This type of problem is indeed exactly solvable. In particular for the upside down potential,
it features a supersymmetric structure [45, 46].

Behavior of the normal modes. We plot the real part of the fields in figure 4 in the
case without flux, for which the modes become Legendre functions, as in [47]. Transmission
through the Pöschl-Teller potential barrier at the origin is less likely for larger mass.

Some solutions with background flux are also plotted in figure 5. At ω = E, the waves
near u = ∞ change direction, and the same happens for the waves near u = −∞ when
ω = −E. The intermediate ω interval is known as the level crossing region. Modes in
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this range appear as having positive or negative energy depending on which side of the
potential they are on, and are the ones relevant for superradiance and Schwinger pair
production [18, 19]. This holds for general step-like potentials, of which the Rosen-Morse
potential (3.21) is one concrete example. From the relative amplitude of the right-moving
waves near u = −∞ and u =∞, one finds the transmission coefficient

|T |2 = sinh(π(ω − E)) sinh(π(ω + E))
cosh(π(ω − ηφ)) cosh(π(ω + ηφ)) , (3.22)

as previously obtained in for instance [23]. Transmission at fixed ω decreases when increasing
the flux or the mass. Upon reaching the level crossing region, (3.22) becomes negative and
one has superradiance. An equivalent system arises in the study of a charged scalar in a
rotating Nariai spacetime [36].

Quasinormal modes and the character. The quasinormal modes are now found by
demanding that the outgoing solution defined by (3.19) is also purely outgoing at x = −1.
Expanding (3.18) near x = −1, or equivalently u = −∞, we find the following incoming part:

φ(−1 + ε, t)|incoming ∼
Γ(iE − iω)Γ(iE + iω)
Γ(∆̄− iω)Γ(∆− iω)

e−iωt+i(ω−E)u . (3.23)

The above incoming part is absent when we hit the poles of the Γ-functions in the denom-
inator, thus determining the quasinormal frequencies as

iω+ = ∆ + n , iω− = ∆̄ + n , n ∈ N . (3.24)

Summing over these modes, we indeed retrieve the previously obtained scalar character

χ(t) =
∞∑
n=0

e−iω+t + e−iω−t = e−∆t + e−∆̄t

1− e−t , (3.25)

as in (2.12) and (3.13).

3.3 Retarded propagator and Green functions

The results of the previous section would give the impression that all of the algebraic
structure present without flux survives when we turn on a background electric field. This is
not the case, however. In this section, we will calculate the retarded static patch propagator
following [15, 48]. We will see that, unlike in the case without flux, it no longer factorizes in
an obvious way. For completeness, we will also derive the coordinate space Green function,
the coincidence limit of which will be used in appendix B to verify the results of section 4.1.

Retarded propagator on the static patch worldline. As noted in the previous
section, the coordinate transformation x = tanh u brings us to a Schrödinger type problem
with Rosen-Morse potential. Let us write down the modes which are going into the left and
right horizon respectively:

φl,r(u, t) = e−iωt−iEu(cosh u)iωgl,r(u) , (3.26)
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where

gl(u) = 2F1

(
∆̄− iω,∆ + iω; 1− i(ω + E); e

u

2 sech u
)
,

gr(u) = 2F1

(
∆̄− iω,∆ + iω; 1− i(ω − E); e

−u

2 sech u
)
,

(3.27)

which are related by flipping the sign of u and E. Using the Wronskian method [49], we
can then write down the retarded propagator for −∞ < u < u′ <∞:

GR(u, u′, ω) = φl(u)φr(u′)
W (ϕl, ϕr)

. (3.28)

The Wronskian W (f, g) = fg′ − gf ′ is independent of u; in particular we can evaluate it
near the origin. Using the expansion

φl(u) = β + αu+O(u2) , φr(u) = β′ + α′u+O(u2) , (3.29)

we find the coincidence limit of the retarded propagator

lim
u→0

GR(u, 0, ω) = ββ′

βα′ − αβ′
. (3.30)

The expressions for α and β are3

β = 2F1

(
∆̄− iω,∆ + iω; 1− i(ω + E); 1

2

)
,

α = (∆̄− iω)(∆− iω)
2(1− i(ω + E)) 2F1

(
1 + ∆̄− iω, 1 + ∆ + iω; 2− i(ω + E); 1

2

)
− iβE ,

(3.31)

and α′, β′ are related to α, β by flipping the signs of E and α. The analytic structure of
the retarded propagator is shown in figure 6 for different values of the electric field, and
its poles correspond to quasinormal frequencies. With non-vanishing flux, all of them are
present, whereas at E = 0, (3.30) simplifies to [15, 48]

GR(0, 0, ω) =
Γ(1

2(∆− iω))Γ(1
2(∆̄− iω))

4Γ(1
2(1 + ∆− iω))Γ(1

2(1 + ∆̄− iω))
, (3.32)

in which caseGR has poles only at half of the quasinormal frequencies, namely ω∈−i(∆+2N).
The reason for the factorization GR =P (∆,ω)P (∆̄,ω) in (3.32) is the existence of an
SL(2,R)×SL(2,R) symmetry, due to the fact that dS2×S1 is conformal to AdS3 [15]. The
presence of flux on dS2 breaks this symmetry and the general expression (3.30) does not
seem to have this nice structure.4

3Here we should note that in higher dimensions, one instead imposes outgoing boundary conditions at
the horizon, which is now connected, and normalizability at the origin. Extending this terminology to d = 1,
we would have β(α) correspond to the (non)-normalizable mode. Constructing the retarded propagator
based on the outgoing mode at the horizon and normalizable one at the origin then leads to GR = β/α,
reminiscent of the holographic vev/source presciption [15]. However, in the case of d = 1, these boundary
conditions are not adequate because of the presence of both a left and right horizon [48].

4Similarly, the supersymmetric structure [15] found for the conformal scalar 2iν = 1 rests on the fact that
the 2 towers of quasinormal modes coincide. In general, requiring 2iη= 1 would impose either m= 0,E= 0
as before, imaginary flux in dS, or negative mass squared.
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(a) E = 0 (b) E = 0.1 (c) E = 0.5

Figure 6. A phase plot of the retarded static patch propagator GR at coincidence, see (3.30), as a
function of the frequency ω, evaluated at ∆ = 1

2 + i, for different values of the electric field E. All
poles are located on the lower half of the complex plane. The 2 towers of quasinormal modes (3.24)
are clearly visible. For E = 0, one alternatingly has poles and zeros at these frequencies. When
switching on the field, the zeros split up, and all quasinormal frequencies appear as poles of GR.

Coordinate space Green function. For generality and to double-check our results in
section 4.1 using the formal relation

∂

∂m2 logZ = −
∫
d2x
√
g G(x, x) , (3.33)

we will obtain in this section the coordinate space Green function at coincidence. The real
part of (3.33) is divergent, but its imaginary part is finite and should satisfy this consistency
relation, as we verify in appendix B. The calculation for pure de Sitter can be found in [50].

First, let us determine the Green function on the sphere, which satisfies[
(~∇− i ~A)2 −m2

]
G(X,Y ) = 1

√
g
δ(2)(X − Y ) . (3.34)

Considering X,Y as unit vectors in R3, one constructs the invariant distance

P ≡ δABXAY B , (3.35)

which is the cosine of the angle between X and Y . By symmetry, the Green function
depends only on P , and away from coincidence, (3.34) can be written as[

(1− P 2)∂2
P − 2P∂P −B2 1− P

1 + P
−m2

]
G(P ) = 0 . (3.36)

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
1
6
5

We are interested in the solution which is regular when X and Y are antipodal, corresponding
to P = −1. Defining z ≡ 1+P

2 , this solution is given by

G(z) = C zB 2F1
(
∆ +B, ∆̄ +B, 1 + 2B, z

)
. (3.37)

To fix the prefactor C, we need to reproduce the δ-function in (3.34). This is done by
mapping the logarithmically divergent short-distance behavior of G to that in flat space.
Using (15.3.10) of [51], in the z → 1 limit, we find

G(z→ 1)≈−C Γ(1+2B)
Γ(∆+B)Γ(∆̄+B)

(
2γ+ψ(∆+B)+ψ(∆̄+B)+log(1−z)

)
. (3.38)

In 2-dimensional flat-space, the coincident limit of the scalar Green function is [52]

Gflat(z) ≈ − 1
4π
(
2γ + logm2 + log(1− z)

)
. (3.39)

We should therefore choose

C = 1
4π

Γ(∆ +B)Γ(∆̄ +B)
Γ(1 + 2B) , (3.40)

so that
G(z) = 1

4π
Γ(∆ +B)Γ(∆̄ +B)

Γ(1 + 2B) zB2F1
(
∆ +B, ∆̄ +B, 1 + 2B, z

)
. (3.41)

We can now analytically continue from S2 to dS2 by rotating B → iE and replacing the
invariant distance on S2 by the invariant distance P = ηABX

AY B in dS2. In static patch
coordinates x = cos θ, it is given by

P = sin θ1 sin θ2 cosh (t1 − t2) + cos θ1 cos θ2 . (3.42)

In appendix B, we verify that (3.41) satisfies (3.33), providing an alternative derivation of
the results obtained by heat kernel regularization in section 4.1.

4 Schwinger pair production

In the presence of a background electric field, the vacuum is subject to Schwinger pair
production. This phenomenon is captured by the imaginary part of the partition function [16,
18, 19]. Here, making use of the character integrals from section 2, we evaluate the vacuum
persistence for the dS2 static patch by analytic continuation from S2. A similar method
was applied for AdS2 and H2 in [22]. We include the effect of the static patch thermal
background by retaining periodicity in Euclidean time, and make a comparison with the
non-thermal results of [23, 24]. Our setup is more closely related to the work of [25], who
found the current created in the dS2 planar patch in the global vacuum. In particular, the
semiclassical contributions due the screening and antiscreening instantons [26, 27] appear
with the same prefactor and relative sign in our result for the vacuum persistence as in the
current found in [25]. This is not the case for the non-thermal static patch results [23, 24].
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An interesting physical setup in which charged particles in a uniform electric field on dS2
appear comes from dimensionally reducing charged or rotating Nariai spacetimes [23, 24, 36].
We note in particular that the scalar mass region in which there is IR hyperconductivity [25]
(see figure 8) is excluded by the recently proposed FL bound [5, 37]. We will also apply the
character formalism as developed for AdS in [35] to understand pair creation around the
AdS2 black hole and clarify a result from [22]. In AdS, there is a threshold for pair creation,
unlike in dS2 where it happens for any non-zero value of the electric field.

4.1 Vacuum persistence for charged scalars

For the scalar partition function, upon rotating B → iE, corresponding to a real electric
field in dS2, we find that the imaginary part of the 1-loop partition function (2.14) is finite.
We can safely take ε→ 0, resulting in

Im[logZφ] =
∫ ∞
−∞

dt

2t
cos 2ηφt
sinh t (2E cos 2Et− coth t sin 2Et) . (4.1)

Note that we have extended the integral over the entire real axis, using the fact that the
integrand is even and regular at zero. The poles are located at t ∈ iπZ \ {0}. Summing
over the residues, we find

2π Im[logZφ] = Li2
(
−e2π(E−ηφ)

)
− Li2

(
−e−2π(E+ηφ)

)
+ 2πηφ Li1

(
−e2π(E−ηφ)

)
− 2πηφ Li1

(
−e−2π(E+ηφ)

)
,

(4.2)

which is odd in E. In particular, this means the imaginary part vanishes when the flux does.
Note also that the arguments of the polylogs in (4.2) are negative, meaning that the different
semiclassical instanton contributions carry an alternating sign, as in flat space. Alternatively,
one can start from the exact expression (2.14), replace B by iE, and use the relation

Lis(z) + (−1)sLis(z−1) = (2πi)s
Γ(s) ζ

(
1− s, 1

2 + log(−z)
2πi

)
(4.3)

between Hurwitz ζ-functions and polylogarithms to arrive at the same result (4.2). The
semiclassical interpretation of the Li1 terms will be discussed in section 4.3. The Li2 terms
also arise as surface corrections in Rindler space [53] and AdS2 [22].

The correct flat space limit is obtained by first reinstating the de Sitter length l by
m→ ml and E → El2 and then taking l→∞, such that

ηφ =
√
m2l2 + E2l4 − 1

4 ≈ El
2 + m2

2E . (4.4)

Taking this limit in (4.2), the polylogs with E + η̃φ in the exponent vanish and the Li1
contribution dominates in the remaining two terms because of the prefactor ηφ. Expanding
this dominating contribution, we find

Im[logZφ]→ El2
∞∑
k=1

(−1)k
k

e−πkm
2/E . (4.5)
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Identifying the Euclidean volume V = 4πl2, this is seen to equal the flat instanton sum [16]
for Schwinger pair production

Im[logZφ,flat] = EV

4π

∞∑
k=1

(−1)k
k

e−πkm
2/E , (4.6)

as obtained by summing the residues of (2.15).

4.2 Vacuum persistence for charged spinors

In the spinor case, we can similarly extract the imaginary part of the effective action. In
heat kernel regularization, the spinor character formula gave the final result (2.21) at 1-loop.
After rotating B → iE, the imaginary part becomes

Im[logZψ] =− 2 Im
[
ζ ′(−1, 1 + i(E + ηψ))− iηψ ζ ′(0, 1 + i(E + ηψ))

]
− 2 Im

[
ζ ′(−1, 1 + i(E − ηψ)) + iηψ ζ

′(0, 1 + i(E − ηψ))
]
,

(4.7)

where ηψ =
√
m2 + E2, which can again be written in terms of polylogs. Making use of the

relation (4.3) and the identity

Li2(z) = −Li2
(1
z

)
− π2

6 −
1
2 log2(−z) , (4.8)

we find

2π Im[logZψ] = Li2
(
e−2π(E+ηψ)

)
− Li2

(
e2π(E−ηψ)

)
+ 2πηψ Li1

(
e−2π(E+ηψ)

)
− 2πηψ Li1

(
e2π(E−ηψ)

)
.

(4.9)

The instanton contributions for spinor pair creation thus all come with the same sign, as in
flat space limit, which is obtained by taking l→∞ keeping E,m fixed, yielding

Im[logZψ,flat] = −EV4π

∞∑
k=1

1
k
e−πkm

2/E . (4.10)

4.3 Discussion and comparison to the non-thermal result

In this section, our aim is to obtain a better physical understanding of the results (4.2)
and (4.9) for the imaginary part of the 1-loop partition function in a background electric
field. We shall do so by looking at the flat space and semiclassical limits and by comparing to
other results in the literature. Of particular interest in this regard are the results of [23, 24],
which can in fact be written more concisely as

2π Im[logZ ′φ] = −2πE
[
Li1
(
−e−2π(E+ηφ)

)
+ Li1

(
−e2π(E−ηφ)

)]
+ Li2

(
−e−2π(E−ηφ)

)
− Li2

(
−e2π(E+ηφ)

)
,

(4.11)

and

2π Im[logZ ′ψ] = 2πE
[
Li1
(
e−2π(E+ηψ)

)
+ Li1

(
e2π(E−ηψ)

)]
+ Li2

(
−e−2π(E+ηψ)

)
− Li2

(
−e2π(E−ηψ)

)
,

(4.12)
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(a) Both (4.2) (blue) and (4.11) (purple) ap-
proach the flat space vacuum persistence (4.6)
(dashed) as l is increased, at E = 2.

(b) Im[logZ] as function of E, for l = 1, 2, 3
(magenta, purple, blue). Solid, dotted and dashed
lines are (4.2), (4.11) and (4.6).

Figure 7. Both the thermal (4.2) and non-thermal (4.11) vacuum persistence have the correct flat
space limit (4.6). The approach is slower in the thermal case. In both graphs, the mass m = 1 is
kept fixed. E is the electric field and the de Sitter length is denoted by l.

for the scalar and spinor respectively. The derivation in [23, 24] was based on a similar
heat kernel calculation after Wick rotation from the static patch, but without making the
Euclidean time ϕ compact. Therefore, (4.11) and (4.12) pertain to the non-persistence of
the static patch vacuum. Our sphere results (4.2) and (4.9) on the other hand capture
the physics of the global vacuum as seen by a static patch observer. In our calculation,
ϕ was indeed made compact and this periodicity in imaginary time encodes the de Sitter
temperature. From the static patch point of view, the global vacuum is contains a thermal
background of particles. The relation between the results is in fact similar to how Minkowski
vacuum results are obtained by thermalizing Rindler ones [54]. We will argue this further
by comparing to [25], who calculated the current observed in the dS2 planar patch in the
global vacuum. Let us first make a few other observations.

First note that when written in the form (4.11) and (4.12), it is clear that these reduce
to the correct flat space limit, just as our results did. This is visualized for the scalar in
figure 7. Further, the expressions for Im[logZ] are all odd in E. This means that the
Li1 terms come with a different relative sign depending on whether the prefactor is η, as
in (4.2) and (4.9), or E, as in (4.11) and (4.12), which will be relevant when discussing the
semiclassical limit. Another important distinction is that when expanding the polylogs in
our spinor result (4.9), all terms come with the same sign, as in [22]. In (4.12) however,
they come with alternating sign. In figure 8 and 9, one can see the behavior of the rate
of Schwinger pair production. The relative sign difference between the leading Li1 terms
and the Li2 corrections in our scalar result (4.2), compared to (4.11), leads to an increased
non-persistence of the vacuum at low mass and small fields, where one intuitively expects
the effect of the thermal background to be most pronounced. This non-monotonicity seems
to be the same phenomenon as the IR hyperconductivity peak found by [25] in the planar
patch setup for η2 < 0. In the spinor case, the difference between (4.9) and (4.12) is less
noticeable and both are in fact monotonic. In all cases, the thermal result is larger than
the non-thermal one, as one would expect.
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(a) non-thermal result (4.11) (b) thermal result (4.2)

Figure 8. The vacuum non-persistence Im[logZ], as a function of the electric field E, at fixed mass
m = 0.1, 0.3, 0.5 and 1, from magenta to blue (top to bottom). The non-thermal results are always
monotonic. The thermal enhancement is most clear at small field strength and for small masses it
leads to the IR hyperconductivity noted in [25].

(a) More pairs are created as E increases. Rang-
ing from magenta to blue, m = 0.05, 0.3, 0.6
and 1.

(b) Less pairs are created as m increases. Rang-
ing from magenta to blue, E = 0.05, 0.4, 0.75
and 1.5.

Figure 9. The non-persistence of the vacuum in the spinor case, as function of electric field E and
mass m. The solid lines are (4.9). The dashed ones are (4.12). The non-thermal result is always
closer to the flat space one. Note that unlike the scalar case, both spinor results are monotonic.
Moreover, the imaginary part blows up as the mass goes to zero. For the scalar, this limit is finite.

A transmission coefficient calculation of the non-persistence of the vacuum due to scalar
pair creation, along the lines of [19], would start from an integral

W = 1
2

∫ eE

−eE
dω log

(
1 + |T |2

)
(4.13)

over the level crossing region. Taking T to be the transmission coefficient (3.22) gives
precisely (4.11) [23]. A similar calculation was performed for the spinor in [24]. This is
equivalent to a Bogoliubov coefficient type calculation in the static patch vacuum, which
indeed does not take into account the thermal background. As demonstrated in [23, 24] this
is equivalent to taking the Euclidean time non-compact in the ζ-function approach. The
non-persistence of the vacuum thus comes from integrating ∝ log

(
1 + |T |2

)
, and one should

keep in mind that the actual pair production rate responsible for the observed current is
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given instead by the first instanton term ∝ |T |2 alone [18, 55]. For the spinor, the vacuum
persistence is determined by log

(
1− |T |2

)
instead, which explains why in figure 9, unlike

the scalar case, the result is not finite as m→ 0.
Let us now discuss the semiclassical limit. Starting from the worldline action of a

charged particle of mass m on the sphere with magnetic field B and solving the geodesic
equations after conveniently orienting the axes, one finds a family of solutions

θ(s) = θ0 , ϕ(s) = − B

m cos θ0
s+ ϕ0 . (4.14)

The geodesics are circles with radius θ0. That they always fit on the sphere seems to
be a statement without much content, but can be appreciated when noting that in flat
space, at high temperature and small field strength, it is possible that the circular geodesics
do not fit on the cylinder; instead one finds lens-shaped instantons [56] consisting of two
less-than-semicircular arcs. Extremizing over θ0 leads to the action

S± = 2π
(√

m2 +B2 ±B
)

= 2π(η ±B) , (4.15)

for the (anti)screening instanton [26, 27]. These reproduce the leading terms in the series
expansion of the Li1 in the 1-loop Im[logZ] as given by (4.2) and (4.9):

Im[logZ] ∝ η
(
e−S− − e−S+

)
+ corrections . (4.16)

The instantons come with prefactor η, as also derived in the semiclassical regime by [26, 57].
This is to be contrasted with the non-thermal results (4.11) and (4.12) where the prefactor
is E. In the semiclassical limit, the leading contributions to the vacuum non-persistence
and the current are the same. In particular, we can compare (4.16) to the scalar current

J = η
sinh 2πE
sinh 2πη (4.17)

for a local inertial observer in the planar patch in the global vacuum [25]. It equals the
current seen by an observer on the static patch wordline, taking into account that the global
vacuum appears thermal to such an observer. The leading semiclassical terms in (4.16)
and (4.17) indeed take the same form. Notably, the thermal vacuum non-persistence, just
like the current, has a non-zero first derivative5 as function of the electric field at E = 0.
The non-thermal result instead has vanishing derivative, as can be seen in figure 8.

4.4 Revisiting AdS2 pair production via the character integral

Our discussion so far has been limited to dS, but in fact it was originally noted by [44] in
the context of AdS that the character encodes both the continuous spectrum eigenfunctions
appearing in the heat kernel and the discrete spectrum of quasinormal modes. In [35], the
Euclidean partition function on the Poincaré disk in general dimensions was interpreted
in terms of a quasicanonical thermal partition function in Rindler-AdS, analogous to the

5One might imagine that an already present thermal density of particles is set in motion when turning
on the field, but it turns out that such a picture is not sufficient to explain the low E behavior [25].
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thermal static patch interpretation of the dS results by [6] on which the previous sections
were based. Here, we generalize the derivation in [35] to include a background electric field
E in AdS2. This arises naturally in the near-horizon limit of extremal Kerr black holes [40].

As before, we start from the Euclidean result. In particular, we start from the H2 density
of states for a charged scalar in a background field and rotate B → iE to obtain [22, 58]

ρ(λ) = V

2πλ
sinh 2πλ

cosh 2πλ+ cosh 2πE , (4.18)

where V is the regularized volume of H2. The 1-loop partition function can be written as

logZ = −
∫ ∞

0

dτ

2τ e
− ε

2
4τ

∫ ∞
−∞

dλρ(λ)e−τ(λ2+η̃2
φ) , (4.19)

where η̃2
φ = m2 +1/4−E2. Similar to the static patch story from before, the thermal nature

of the AdS2 black hole [44] is taken into account here because the calculation of (4.18)
relied on finding suitably normalized modes on the Poincaré disk [58, 59], for which the
Euclidean time of the black hole is an angular coordinate.

Inspired by section 5 of [35], we define the combination

W (t) = − e−t/2

1− e−t
(1 + e−t

1− e−t cosEt+ 2E sinEt
)
, (4.20)

to represent the density of states (4.18), with 0 < δ < ε, as

ρ(λ) = V

4π

(∫
R+iδ

+
∫
R−iδ

)
dt

2πW (t)e−iλt . (4.21)

Plugging this back in (4.19), we find the regularized expression

logZ = − V4π

∫
R+iδ

dt√
t2 + ε2

e−η̃φ
√
t2+ε2W (t) . (4.22)

Formally taking ε→ 0, we thus obtain the character integral

logZ = V

2π

∫ ∞
0

dt

t

(1+e−t
1−e−t cosEt+2E sinEt

)
χAdS(t) , χAdS(t)≡ e

−( 1
2 +η̃φ)t

1−e−t . (4.23)

Following [35], this can be evaluated exactly in heat kernel regularization to give

logZ = − 1
ε2
− 1

2ζ
′(−1,∆ + iE)− 1

2ζ
′(−1,∆− iE) + η̃φ

2 ζ
′(0,∆ + iE)

+ η̃φ
2 ζ
′(0,∆− iE)−

η̃2
φ

2 +
(

1
24 + E − E2

2 +
η̃2
φ

2

)
logM ,

(4.24)

where M ≡ 2e−γ/ε as before.
Note that for E below the threshold

√
m2 + 1/4, η̃φ is real and (4.23) takes the exact

same form as the real part of the dS character integral (2.12), with χdS replaced by χAdS.
However, for E above the threshold, the character integral becomes complex. One finds

Im[logZ] = V |η̃φ|
4π

(
Li1
(
−e−2π(E+|η̃φ|)

)
+ Li1

(
−e−2π(E−|η̃φ|)

))
+ V

8π2

(
Li2
(
−e−2π(E+|η̃φ|)

)
− Li2

(
−e−2π(E−|η̃φ|)

))
,

(4.25)
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in agreement with the result obtained by ζ-function regularization in appendix A of [22],
which differs from their main result.6 Indeed, in their main result, the vacuum persistence
is discontinuous at threshold, whereas (4.25) vanishes when η̃φ = 0, which was seen as an
indication that BPS particles are not emitted in this vacuum [22]. This is also the main
difference with dS, which has no threshold, as can be understood by the fact that the
gravitational field helps pull particles out of the vacuum, while it acts as a potential well in
AdS. Even if we consider η̃φ = 0 in the scalar case in dS, pair production does not vanish
unless also E = 0.

Since the uniform electric field gives a constant acceleration a to test particles, the
existence of a threshold in AdS is related to the fact that one needs a minimum a as
compared to the AdS length in order for the Unruh temperature to be well-defined [60]. It
is also worth noting that χAdS contains half of the SO(1, 2) principal series character, since
only the ∆-mode is dynamical. Combining with its shadow ∆̄, we would get the entire
SO(1, 2) character. In that case, the imaginary parts in the partition function cancel out
against each other, suggesting a more stable setup.

Similarly, to find the partition function for a spinor in a background field in AdS2, we
start by rotating B → iE in the H2 density of states [22, 58]:

ρ(λ) = V

π
λ

sinh 2πλ
cosh 2πλ− cosh 2πE . (4.26)

The 1-loop partition function can be written as

logZ =
∫ ∞

0

dτ

2τ e
− ε

2
4τ

∫ ∞
−∞

dλρ(λ)e−τ(λ2+η̃2
ψ) , (4.27)

where η̃2
ψ = m2 − E2. Similar to before, we define the combination

W (t) = − csch t

2 cos(Et)− 2E cosh t

2 sin(Et) , (4.28)

to get the integral representation for the density of states

ρ(λ) = V

2π

(∫
R+iδ

+
∫
R−iδ

)
dt

2πW (t)e−iλt , (4.29)

with 0 < δ < ε. This leads to the fully regularized result

logZ = V

2π

∫
R+iδ

dt√
t2 + ε2

e−η̃ψ
√
t2+ε2W (t) . (4.30)

Formally taking ε→ 0, we arrive at the spinor character integral

logZ = −V
π

∫ ∞
0

dt

(
csch t

2 cos(Et) + 2E cosh t

2 sin(Et)
)
χAdS(t) , χAdS(t) ≡ e−( 1

2 +η̃ψ)t

1− e−t .

(4.31)
6This result is not derived through ζ-function regularization but by rotating (a, b)→ eiπ(a, b) parameters

of the Bessel type integral (3.21) in [22]. It should be noted that if one rotates (a, b)→ (eiπa, 1
2 (eiπ + e−iπ)b)

instead, one arrives at the ζ-function regularized result (4.25) by a shortcut.
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Using heat kernel regularization, this partition function can be evaluated exactly to give

logZ = 1
ε2

+ 1
2ζ
′(−1,1+η̃ψ+iE)+ 1

2ζ
′(−1,1+η̃ψ−iE)− η̃ψ2 ζ ′(0,1+η̃ψ+iE)

− η̃ψ2 ζ ′(0,1+η̃ψ−iE)−iE4 log η̃ψ+iE
η̃ψ−iE

+
η̃2
ψ

2 +
(

1
12−

E2

2 −
η̃2
ψ

2

)
logM .

(4.32)

The partition function becomes complex above the threshold E > m, and the imaginary
part is given by

Im[logZ] = −V |η̃ψ|2π

(
Li1
(
e−2π(E+|η̃ψ |)

)
+ Li1

(
e−2π(E−|η̃ψ |)

))
− V

4π2

(
Li2
(
e−2π(E+|η̃ψ |)

)
+ Li2

(
e−2π(E−|η̃ψ |)

))
,

(4.33)

again in agreement with the ζ-function regularized result in appendix A of [22].

4.5 Dimensional reduction from Nariai spacetimes

In this final and more speculative section, we discuss how our results relate to higher
dimensional setups and recently proposed constraints on EFT in dS. Charged particles in
dS2 can arise from scalars or spinors in a charged Nariai spacetime, as in [23, 24]. This
spacetime is dS2 × S2, with metric and field strength

ds2 = −
(

1− r2

l2

)
dt2 +

(
1− r2

l2

)−1

dr2 + r2
cdΩ2 , F = g2Q

4πr2
c

dr ∧ dt . (4.34)

The 4D U(1)-coupling g is kept explicit and the radius rc of the S2 is determined by the
charge Q, see [5, 37]. The electric field on dS2 is indeed constant. After dimensional
reduction, the 2D coupling e satisfies g2 = 4πr2

ce
2. A charged scalar of mass m in 4D gives

rise to a KK tower of states with 2D masses

m2
2 = m2 + n(n+ 1)

r2
c

. (4.35)

Based on the Swampland-style demand that Nariai solutions should evaporate smoothly
to empty de Sitter space, it has been proposed that one should require [5]

m4 ≥ 2g2V = 48πg2

Gl24
, (4.36)

where in the last step the vacuum energy V was rewritten in terms of the 4D Newton
constant G and de Sitter length l4. The proposal (4.36) is known as the FL bound. Moreover,
in de Sitter, one has the following bound on the U(1) coupling [61]

g2 ≥ 3G
16πl24

. (4.37)

Substituting this back in (4.36), one finds the bound (2.31) from [37], namely

m2 ≥ 3
l24

= 1
l2
, (4.38)
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where l is the 2D de Sitter length. This means that η > 0 always, and in particular one
never reaches the IR hyperconductivity region noted in section 4.3 as well as [25], and [62],
where it was used to derive constraints on magnetogenesis in the early universe. Similarly,
the parameter range where energy and entropy are non-monotonic (see figure 2) is excluded.
In a certain sense, (4.38) corresponds to the lowest energy that can be measured in de
Sitter. Modes with a smaller effective mass are frozen by Hubble friction [37].

A similar analysis can be done for the rotating Nariai spacetime. As noted in [36], the
radial equation for a scalar in this background reduces to that of a charged scalar in dS2
in a constant electric field, where charge and field strength are determined by the angular
momentum quantum number on S2 and the rotational parameter of the Nariai spacetime.
Schwinger pair production then acts to reduce the angular momentum of the spacetime.

Because of symmetry reasons, the higher-dimensional application of our results is
basically restricted to Nariai-like spacetimes. In the dS4 static patch, having an electric
field strength would break de Sitter isometries. Moreover, on the Euclidean side, since
π2(S4) = 0, there are no nontrivial 2-cycles to wrap flux on. To keep the symmetry intact,
one could consider a 4-form proportional to the volume form, since π4(S4) = Z. This 4-form
field strength couples to 2-branes, for which the semiclassical analysis was done in [27].

5 Conclusion

In this work, we explored various aspects of static patch physics in a uniform electric field.
To do so, we derived a character integral representation of the 1-loop partition function for
charged scalars (2.12) and spinors (2.19) in the presence of the background U(1) field on
S2, and found the exact results (2.14) and (2.21) in terms of Hurwitz ζ-functions. As in [6],
the sphere partition function had a quasicanonical interpretation in the dS2 static patch.
The character was obtained both directly as a trace over boundary states and as a sum over
quasinormal modes. The isometry group is still SO(1, 2), but the generators are shifted by
the flux, which also seems to break the extended SL(2,R)× SL(2,R) symmetry [15], as a
consequence of which the retarded propagator (3.30) no longer factorizes.

An electric field leaves the vacuum subject to pair creation, and we calculated the
scalar (4.2) and spinor (4.9) vacuum persistence for the dS2 static patch by analytic
continuation from S2. Keeping Euclidean time periodic, we included the effect of the static
patch temperature, which enhances the pair creation rate. This is the main difference
compared to [23, 24]. Further arguments came from comparing our results to the current
J created in the dS2 planar patch in the global vacuum [25], which is thermal to a
static patch observer. The leading semiclassical contributions (4.16) due the (anti)screening
instantons [26, 27] indeed appear with the same prefactor and relative sign in J , in contrast to
the non-thermal results. Similarly, we find the IR hyperconductity seen in [25]. Considering
dimensional reduction from charged or rotating Nariai black holes [36], the parameter range
relevant for hyperconductivity is excluded by the FL bound [5, 37]. Finally, applying the
character formalism to the AdS2 black hole, we obtained the vacuum persistence (4.25) and
clarified the assumption on the vacuum implicit in [22]. Unlike in dS2, there is a threshold
for pair creation in AdS2.
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Below, we suggest some generalizations of our work and list a few ideas for future
research:

• It would be worthwhile to understand if there is a reason why the thermal and
background field contributions appear quite clearly separated in the character for-
mulas (2.12) and (2.19). Likewise, it is unclear to us how the thermally modified
transmission coefficients of [23, 24] enter the story.

• A possible extension is to include the backreaction of the pair creation, both on the
electric field and the metric, along the lines of [63], by applying a version of the
character formalism to Jackiw-Teitelboim gravity.

• A surprising feature was the non-monotonicity of the scalar entanglement entropy, see
figure 2, in the region disallowed by the FL bound [5]. It would be good to understand
whether the bound is related to general properties of entanglement entropy. Such a
connection was noted for the weak gravity conjecture in [64].

• In the spirit of Schwinger’s original work [16], it would be good to flesh out the
connection to the worldline formalism, keeping in mind a possible generalization to
strings coupled to a top-form in 2+1 dimensions.

• One could moreover imagine defining a Nariai character by summing over (4.35).
A similar idea relates the character of conformal fields on the hyperbolic cylinder
to characters on the sphere [65, 66]. The relation between partition functions in
black hole backgrounds and quasinormal modes is in fact quite general [67]. Further
developing a character formalism in this context would allow for a more elegant
definition for the regularized density of states and avoid imposing a brick wall [68].

• Given the physical relevance of the imaginary part of the partition function, it
would be good to understand the role played by the Polchinski phases of [6]. Another
gravitational analog consists of coupling 2D quantum gravity with positive cosmological
constant to conformal matter with large and positive central charge. Complex saddles
besides dS2 will generically make the Euclidean path integral complex valued [69].
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A Spherical modes

A.1 Scalar modes

In this appendix, we review the derivation of the scalar spectrum on S2 with a background
flux. In what follows, we will take the flux B to be fixed and set l = 1, restoring it when
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needed by dimensional analysis. We will also work primarily in the northern coordinate
chart UN , although the work can be modified easily to obtain entirely parallel results
in the southern coordinate chart US (recall that 2B ∈ Z in order to have smooth gauge
transformations between the northern and southern coordinate charts, see (2.3)). Let us
consider the spectrum of the magnetic Laplace operator on S2, following [7]. The action for
a charged scalar field in the background produced by the Wu-Yang potential is

SE =
∫
d2x
√
g φ∗

[
−(~∇− i ~A)2 +m2

]
φ , (A.1)

where A is given by (2.3). To compute the 1-loop partition function of this charged scalar, we
must first determine the spectrum of the differential operator D2 ≡ −(~∇− i ~A)2. Expanding
the operator, we see that

D2φ = −∇2φ+ iAµ∂µφ+A2φ+ i
√
g
∂µ(√gAµφ)

= −∇2φ+ 2iAϕ∂ϕφ+A2φ ,

(A.2)

where ∇2 is the Laplace operator on S2:

∇2 = 1
sin θ∂θ sin θ∂θ + 1

sin2 θ
∂2
ϕ . (A.3)

Thus, we find

D2φ=−
(

1
sinθ∂θ sinθ∂θ+ 1

sin2 θ
∂2
ϕ−

i2B(1−cosθ)
sin2 θ

∂ϕ−
B2(1−cosθ)2

sin2 θ

)
φ=λφ. (A.4)

We now review how the spectrum of this operator was obtained by Wu and Yang [7] by
constructing an so(3) algebra.

Working in the northern coordinate chart, consider the operators

Lz = −i∂ϕ −B ,

L± = e±iϕ
(
±∂θ + i cot θ∂ϕ −B

1− cos θ
sin θ

)
.

(A.5)

The quadratic Casimir of this algebra is given by

L2 = L2
z + 1

2(L+L− + L−L+)

= D2 +B2 ,
(A.6)

with eigenvalues `(`+ 1), where ` can be a non-negative integer or half-integer. By direct
computation, it can be verified that these operators satisfy the usual so(3) commutation
relations

[Lz, L±] = ±L± , [L+, L−] = 2Lz , [L2, Lz] = [L2, L±] = 0 . (A.7)
From the usual analysis, we find a degeneracy of 2`+1 corresponding to the different possible
eigenvalues m of Lz. Looking at the form of Lz in (A.5), we see that the ϕ-dependence of
the scalar eigenfunctions YB,`,m takes the form7

YB,`,m(θ, ϕ) = ΘB,`,m(θ)ei(m+B)ϕ . (A.8)
7We follow the notation of [7], in which these eigenfunctions were referred to as monopole harmonics.
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In order for the eigenfunctions to be single-valued, there is the additional constraint that
m+B must be an integer, which therefore implies that `+N/2 must also be an integer.
Combining this with (A.6), we may write ` as8

` = n+ |B| , n = 0, 1, 2, . . . . (A.9)

Thus, from (A.6), the eigenvalues of D2 are given by

λB,n = `(`+ 1)−B2 = (n+ |B|)(n+ |B|+ 1)−B2 , (A.10)

with degeneracy
D3
n+B = 2`+ 1 = 2(n+ |B|) + 1 . (A.11)

A.2 Spinor modes

Inspired by the Wu-Yang solution for the scalar case, we can try to perform a similar
procedure in the spinor case. Consider a Dirac spinor on S2 in the Wu-Yang background:

SE =
∫
d2x
√
g ψ̄[( /∇− i /A) +m]ψ . (A.12)

Introducing a zweibein eaµ,

e0
µ = (1, 0) , e1

µ = (0, sin θ) , (A.13)

and spin connection ω ab
µ ,

ω ab
µ = Γabµ + eaν∂µe

b
ν , (A.14)

the covariant derivative is given by

∇µψ =
(
∂µ + 1

4ω
ab
µ σab

)
ψ , (A.15)

where σab ≡ 1
2 [γa, γb]. In two dimensions, we can take the gamma matrices to be γ0 =

σx, γ
1 = σy. The relevant non-vanishing Christoffel symbols are

Γ01
ϕ = −Γ10

ϕ = − cos θ . (A.16)

Putting these pieces together, we find

∇θ = ∂θ , ∇ϕ = ∂ϕ −
iσz
2 cos θ . (A.17)

We are interested in the spectrum of the differential operator /D ≡ −i( /∇− i /A), which
takes the explicit form

/D = −iγae µ
a (∇µ − iAµ)

= −iσx
(
∂θ + 1

2 cot θ
)
− σy

(
i

sin θ∂ϕ +B
1− cos θ

sin θ

)
.

(A.18)

8Here we also used the fact that 2B is an integer to obtain the more general result `±B ∈ Z. Alternatively,
one can analyze the angular momentum operators in the southern coordinate chart.
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For future use, we also calculate the square of the operator /D to find

/D
2 =

(
− 1

sin θ∂θ sin θ∂θ −
1

sin2 θ
∂2
φ + iσz cos θ

sin2 θ
∂ϕ + 1

4 sin2 θ
+ 1

4

)
+ 1

sin2 θ

(
i2B(1− cos θ)∂ϕ +Bσz cos θ(1− cos θ) +B2(1− cos θ)2

)
−Bσz .

(A.19)

As before, we construct an su(2) algebra, which in the northern coordinate chart, takes the
form [70, 71]

Jz = −i∂ϕ −B ,

J± = e±iϕ
(
± ∂θ + i cot θ∂ϕ + σz

2 sin θ −B
1− cos θ

sin θ

)
.

(A.20)

Direct computation shows that these operators satisfy the usual commutation relations

[Jz, J±] = ±J± , [J+, J−] = 2Jz . (A.21)

Furthermore, it can also be shown that /D commutes with the above operators:

[ /D, Jz] = [ /D, J+] = [ /D, J−] = 0 . (A.22)

The quadratic Casimir J2 is given by

J2 = J2
z + 1

2(J+J− + J−J+)

= /D
2 +B2 − 1

4 ,
(A.23)

with eigenvalues j(j + 1) for j a non-negative integer or half-integer. Again, from the usual
analysis, there is a degeneracy of 2j + 1 corresponding to eigenvalues m of Jz. When Jz
acts on eigenspinors, denoted ΥB,j,m, we have

JzΥB,j,m = (−i∂ϕ −B)ΥN,j,m = mΥN,j,m . (A.24)

Thus, the ϕ dependence of ΥB,j,m takes the form

ΥB,j,m(θ, ϕ) = ΞB,j,m(θ)ei(m+B)ϕ . (A.25)

In order to furnish a spin- 1
2 SU(2) representation, there is the additional constraint that

m+B must be a half-integer, which therefore implies that j+B must also be a half-integer.
Combining this with (A.23), we may represent j as

j = n+ |B| − 1
2 , n = 0, 1, 2, . . . . (A.26)

From (A.23), the eigenvalues λ2
B,n of /D2 therefore satisfy

λ2
B,n = j(j + 1)−B2 + 1

4 = n(n+ 2|B|) , (A.27)
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with degeneracy
D3
n+B− 1

2 ,
1
2

= 2j + 1 = 2(n+ |B|) . (A.28)

The eigenvalues of /D are therefore

λN,n = ±
√
n(n+ 2|B|) , (A.29)

with degeneracy (A.28).
The eigenspinors9 ΥB,n,m of /D2 can be constructed explicitly by first noting that (A.19)

does not mix the spinor components, so we can individually solve for the upper and lower
components. We consider the case B > 0 in the following. Note that if ΥB,n,m(θ, ϕ) is an
eigenspinor with B > 0,

/DΥB,n,m(θ, ϕ) = λB,nΥB,n,m(θ, ϕ) , (A.30)

then σxΥ−B,n,m(θ,−ϕ) (equivalently σxΥ−B,n,−m(θ, ϕ)) is the eigenspinor corresponding
to B < 0. To see this, note that multiplying (A.18) on the left and right with σx and taking
ϕ→ −ϕ effectively takes B → −B. Therefore,(

σx /Dσx
)
σxΥ−B,n,m(θ,−ϕ) = λB,nσxΥ−B,n,m(θ,−ϕ) , (A.31)

so the B < 0 solutions can be obtained from the B > 0 ones.
Focusing on the θ-dependent piece ΞB,n,m(θ), for the upper component ψ(θ), we find

the independent solutions

ψ±B,n,m(θ) = (1−cosθ)±
1
4 (−1+2m+2B)(1+cosθ)±

1
4 (−1−2m+2B)

×2F1

(1
2∓

(
n+ 1

2

)
,
1
2±

(
n+2B− 1

2

)
;1±

(
m+B− 1

2

)
; sin2 θ

2

)
.

(A.32)

Regularity on θ ∈ [0, π] requires m+B + 1/2 ∈ Z. For 2m+ 2B + 1 > 0, ψ+ is regular. For
more negative values of m (which must still satisfy |m| ≤ j = n+ |B| − 1

2), the solution ψ−
is the regular one. The same can be done for the lower component φ(θ), with the result

φ±B,n,m(θ) = (1−cosθ)±
1
4 (1+2m+2B)(1+cosθ)±

1
4 (1−2m+2B)

×2F1

(1
2∓

(
n− 1

2

)
,
1
2±

(
n+2B+ 1

2

)
; 1±

(
m+B+ 1

2

)
; sin2 θ

2

)
.

(A.33)

These modes have eigenvalues λB,n.
We can now combine the above modes to obtain the eigenspinors of /D. For

2m+ 2B + 1 > 0 the regular eigenmodes are

Ξ±B,n,m =
(
ψ+
B,n,m,±

i
√
n(n+ 2B)

1 + 2m+ 2B φ+
B,n,m

)T
, (A.34)

with eigenvalues ±
√
n(n+ 2B). For 2m+ 2B + 1 ≤ 0, the regular eigenmodes are

Ξ±B,n,m =
(
± i
√
n(n+ 2B)

1− 2m− 2B ψ−B,n,m, φ
−
B,n,m

)T
, (A.35)

9We are slightly changing notation from ΥB,j,m → ΥB,n,m for simplicity.
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also with eigenvalues ±
√
n(n+ 2B). In particular, note that there are 2B zeromodes of /D

corresponding to n = 0:

ΞN,0,m(θ) =
(
(1− cos θ)

1
4 (−1+2m+2B)(1 + cos θ)

1
4 (−1−2m+2B), 0

)T
. (A.36)

B Im[logZφ] from the Green function

In this appendix, we verify the imaginary part of the consistency relation (3.33), providing
an alternative to the heat kernel derivation of Im[logZφ] in section 4.1. Using the coincident
limit of the Green function in (3.41),

G(z → 1) ≈ − 1
4π
(
2γ + ψ(∆ + iE) + ψ(∆̄ + iE) + log(1− z)

)
, (B.1)

we want to verify the consistency relation

Im[logZφ] = V

4π Im
[∫ m2

dm̄2
(
ψ(∆ + iE) + ψ(∆̄ + iE)

)]
. (B.2)

Converting the integral over m̄2 to an integral over ∆ gives the result

Im[logZφ] = V

2π Im
[
iη
(

log Γ(∆̄ + iE)− log Γ(∆ + iE)
)

+ ψ(−2)(∆̄ + iE) + ψ(−2)(∆ + iE)
]
.

(B.3)

Now using the relations [72]

ζ ′(0, a) = log Γ(a)− 1
2 log 2π ,

ψ(−2)(z) = (1− z)z
2 + z

2 log 2π − ζ ′(−1) + ζ ′(−1, z) ,
(B.4)

and dropping the real terms, we find

Im[logZφ] = V

2π Im
[
iη
(
ζ ′(0, (∆̄ + iE)− ζ ′(0, (∆ + iE)

)
+ ζ ′(−1, ∆̄ + iE) + ζ ′(−1,∆ + iE)

]
,

(B.5)

which precisely agrees with the imaginary part of the exact one-loop path integral (2.14),
which can also be written in the form (4.2).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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