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1 Introduction

Understanding the origins of flavour in both the quark and lepton sectors, i.e., of the
patterns of quark masses and mixing, of charged-lepton and neutrino masses and of neutrino
mixing and CP violation in the quark and lepton sectors, is one of the most challenging
fundamental problems in contemporary particle physics [1]. Although this problem arose
more than 20 years ago, all efforts to find a satisfactory solution have essentially failed. A
universal, elegant, natural and viable theory of flavour is still lacking. Constructing such
a theory would be a major achievement and a breakthrough in particle physics.

The unsatisfactory status of the flavour problem together with the remarkable progress
made in the studies of neutrino oscillations (see, e.g., [2]), which began 23 years ago with the
discovery of oscillations of atmospheric νµ and ν̄µ by the SuperKamiokande experiment [3]
and led to the determination of the pattern of 3-neutrino mixing consisting of two large
and one small mixing angles, stimulated renewed attempts to seek new approaches to the
lepton as well as to the quark flavour problems. A step forward in this direction was made
in 2017 in ref. [4], where the idea of using modular invariance as a flavour symmetry was
put forward. The first phenomenologically viable lepton flavour models based on modular
symmetry appeared in the first half of 2018 [5–7] and, since then, the modular-invariance
approach to the flavour problem has been and continues to be intensively investigated and
developed with encouraging results.
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In the modular-invariance approach, the elements of the Yukawa coupling and fermion
mass matrices in the Lagrangian are expressed in terms of modular forms of a certain
level N and a limited number of coupling constants. The modular forms are functions
of a single complex scalar field τ — the modulus. Both the modulus τ and the modu-
lar forms have specific transformation properties under the action of the modular group
Γ ≡ SL(2,Z). The matter fields are assumed to transform in representations of an in-
homogeneous (homogeneous) finite modular group Γ(′)

N , while the modular forms furnish
irreducible representations of the same group. For N ≤ 5, the finite modular groups ΓN are
isomorphic to the permutation groups S3, A4, S4 and A5 (see, e.g., [8]) and the groups Γ′N
are isomorphic to their double covers. These groups are quite extensively used in flavour
model building (see, e.g., [9–13]). The modular symmetry described by the finite modular
group Γ(′)

N plays the role of a flavour symmetry and the theory is assumed to be invariant
under the whole modular group Γ.

A very appealing feature of this approach is that the vacuum expectation value (VEV)
of the modulus τ can be the only source of flavour symmetry breaking, such that flavons
are not needed.1 Another appealing feature of the discussed framework is that the VEV
of τ can also be the only source of breaking of CP symmetry [14].

There is no VEV of τ which preserves the full modular symmetry. However, as pointed
out in [15] and exploited in [16–18], there exist three values in the modular group funda-
mental domain, which do not break the modular symmetry completely. These so-called
“fixed points” are τsym = i, ω, i∞, with ω ≡ exp(2πi/3) = −1/2 +

√
3/2 i (the ‘left cusp’),

and, for theories based on ΓN invariance, preserve ZS2 , ZST3 , and ZTN residual symmetries,
respectively.2 After the flavour symmetry is fully or partially broken, the modular forms
and thus the elements of the Yukawa coupling and fermion mass matrices get fixed. Cor-
respondingly, the fermion mass matrices exhibit a certain symmetry-constrained flavour
structure.

The approach to the flavour problem based on modular invariance has been widely
explored so far primarily in the framework of supersymmetric (SUSY) theories. Within
the framework of rigid (N = 1) SUSY, modular invariance is assumed to be a property of
the superpotential, whose holomorphicity restricts the number of allowed terms. Following
a bottom-up approach, phenomenologically viable and “minimal” lepton flavour models
based on modular symmetry, which do not include flavons, have been constructed first
using the groups Γ4 ' S4 [6] and Γ3 ' A4 [7]. A “non-minimal” model with flavons based
on Γ2 ' S3 has been proposed in [5]. After these studies, the interest in the approach grew
significantly and a large variety of models has been constructed and extensively studied.
This includes:3

i) lepton flavour models based on the groups Γ4 ' S4 [15, 21–23], Γ5 ' A5 [17, 24],
Γ3 ' A4 [16, 23, 25–27], Γ2 ' S3 [28] and Γ7 ' PSL(2,Z7) [29],

1The first modular-invariant “minimal” lepton flavour model without flavons was constructed in [6].
2In the case of the double cover groups Γ′N , these residual symmetries are augmented by ZR

2 [19].
3A rather complete list of the articles on modular-invariant models of lepton and/or quark flavour, which

appeared by March of 2021, can be found in [20]. We cite here only a representative sample.
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ii) models of quark flavour [30] and of quark-lepton unification [31–36],

iii) models with multiple moduli, considered first phenomenologically in [15, 16] and fur-
ther studied, e.g., in [37–39],

iv) models in which the formalism of the interplay of modular and generalised CP (gCP)
symmetries, developed and applied first to the lepton flavour problem in [14], is ex-
plored [18, 40–43].

Also the formalism of the double cover finite modular groups Γ′N , to which top-down
constructions typically lead (see, e.g., [44, 45] and references therein), has been developed
and viable flavour models have been constructed for the cases of Γ′3 ' T ′ [46], Γ′4 '
S′4 [19, 47] and Γ′5 ' A′5 [48, 49]. Recently, the framework has been further generalised
to arbitrary finite modular groups (i.e., those not described by series Γ(′)

N ) in ref. [50]. It
is hoped that the results obtained in the bottom-up modular-invariant approach to the
lepton and quark flavour problems will eventually connect with top-down results (see,
e.g., [51–61]), based on UV-complete theories.

In practically all phenomenologically viable lepton and/or quark flavour models based
on modular invariance, the VEV of the modulus is treated as a free parameter which is
determined by confronting model predictions with experimental data. Its value is critical
for phenomenological viability and can vary significantly, depending on the model. For
instance, viable Γ4 ' S4 lepton flavour models consistent with the available data on lepton
masses and mixing have been obtained in [15] for values of τ relatively close to the symmet-
ric point τsym = i, very close to the boundary of the fundamental domain, at Re τ ' ±0.5,
as well as for τ ' ±0.143 + 1.523 i and τ ' ±0.179 + 1.397 i. In [41], where modular
A4 lepton and quark flavour models have been considered, the authors find viable models
for different values of τ close to τsym = i, and values of τ close to the imaginary axis
(Re τ = 0) with rather large Im τ ' 2.67. In [62], viable lepton flavour models with A4
modular symmetry have been presented for values of τ close to each of the three symmetric
points, τsym = i, ω, i∞. It should be clear from this discussion that determining the VEV
of τ from first principles and not from fits to the data could be used as a powerful selection
criteria for the proposed flavour models.

An additional unique feature of the modular approach to the flavour problem, as
shown recently in ref. [20], is that one can obtain fermion (charged-lepton and quark)
mass hierarchies from the properties of the modular forms — without fine-tuned constants
— provided the VEV of the modulus τ takes a value close to the one of the symmetric
points τsym = ω (the left cusp) or τsym = i∞.4 In practically all modular-invariant flavour
models without flavons considered before the appearance of [20], the charged-lepton and
quark mass hierarchies were successfully reproduced with the help of severe fine-tuning of
the limited number of coupling constants present in the Yukawa couplings. In the viable
fine-tuning-free model constructed in [20], data requires τ to have a value near the cusp

4Given the exponential dependence of modular forms on Im τ , “∞” effectively means a number suffi-
ciently bigger than one, e.g., a number ∼ (2− 3).
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τsym = ω, selecting a best-fit point with

τ ' − 0.496 + 0.877 i . (1.1)

The viable region for τ actually corresponds to a small ring around the cusp, of radius
|u| ' 0.007, with u ≡ (τ −ω)/(τ −ω2). The smallness of this quantity is at the basis of the
mechanism giving rise to fermion mass hierarchies in this context. The question to address
is whether such data-driven values of τ can be naturally justified by a dynamical principle,
e.g., from a top-down perspective.

Attempts to determine the value of τ on the basis of dynamical considerations were
made in, e.g., [22, 40, 58]. In [22], the authors consider lepton flavour models with Γ3 '
A4 modular symmetry arising from the breaking of Γ4 ' S4 symmetry by anomalies.
Fitting the available data on charged-lepton masses, neutrino mixing angles and neutrino
mass-squared differences, they determine the values of the modulus for which the models
are phenomenologically viable. They further attempt to obtain these values within the
supergravity framework, constructing relatively simple superpotentials. The latter are
assumed to be generated non-perturbatively by hidden sector dynamics and involve singlet
modular forms of weights 4 or 6. Only the linear combination of potentials, each involving
one of the two singlet modular forms is shown to have absolute minima at some of the
requisite CP-nonconserving values of τ . However, this combination effectively contains
one additional complex parameter which violates CP symmetry explicitly. In a follow-
up study [40], the possibility of spontaneously breaking the CP symmetry in theories of
flavour based on Γ3 ' A4, Γ2 ' S3 and Γ4 ' S4 was analysed. Superpotentials analogous
to those used in [22] were constructed, leading, however, to CP-invariant potentials for
the modulus τ . The authors of [40] have found these potentials to have absolute minima
at different CP-conserving values of τ , related by the T transformation (τ T−→ τ + 1).
The same result was found in [40] to hold also in theories with global supersymmetry
and essentially the same superpotentials. In [58] the authors have considered three-form
fluxes in Type IIB string theory and derived the preferred values of τ by investigating the
possible configurations of flux compactifications on a T 6/(Z2 ×Z ′2) orbifold (exploring the
so-called “string landscape”). The number of stable vacua depends on a certain positive
integer Nmax

flux and reads 312, 2918 and 2886221, for Nmax
flux = 10, 100 and 1000, respectively.

These vacua correspond to stabilised values of the modulus τ in the fundamental domain
of the modular group. The most probable of these are found to lie on the border of
the fundamental domain Re τ = −1/2, on the imaginary axis Re τ = 0, and on the arc,
τ = exp(iα) with, e.g., cosα = − 1/4. All these values are CP-conserving [14]. Actually,
the so-derived stabilising values of τ are shown to cluster at the CP-conserving symmetry
point τ = ω.5

The possibility of spontaneous breaking of the CP symmetry by the modulus VEV
was investigated in [63] in a supergravity framework in which the dilaton is also present.
The authors showed that if the dilaton is stabilised by non-perturbative corrections to the
Kahler potential, by varying the four parameters present in the relevant effective potential

5See also [53], where τ is found to be stabilised at the CP-conserving right cusp, τ = exp(iπ/3).
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it is possible to find minima of the potential at CP-violating VEVs of the modulus τ inside
the fundamental domain of the modular group close to the symmetric point τ = i.

In the present article we address the problem of modulus stabilisation by analysing
known and relatively simple supergravity-motivated modular- and CP-invariant potentials
for the modulus τ . In section 2 we describe the framework we employ, giving some details
on how modular symmetry can act as a flavour symmetry (section 2.1). We introduce the
modular- and CP-invariant potentials for τ in section 2.2 and derive in section 2.3 their
q- (and u-) expansions which prove useful for the analyses of the potentials. We present
the main results of our study in section 3, including the found novel global CP-breaking
minima of the considered potentials. Section 4 contains a summary of our results. Some
technical details are given in appendices A to C.

2 Framework

2.1 Modular symmetry as a flavour symmetry

The modular approach to flavour is based on invariance under the action of the modular
group Γ ≡ SL(2,Z). While in this section we summarise the defining features of this
(bottom-up) framework, the reader is referred to [19, 20] for a more detailed description.

The modular group is generated by three elements S, T and R obeying (ST )3 = R2 =
1, S2 = R and RT = TR. A generic element γ of this group acts on the modulus chiral
superfield τ as a fractional linear transformation,

γ =
(
a b

c d

)
∈ Γ : τ → γτ = aτ + b

cτ + d
. (2.1)

Its action on matter superfields instead reads [4, 64, 65]

γ ∈ Γ : ψi → (cτ + d)−k ρij(γ)ψj , (2.2)

where k is the modular weight of ψ and ρ is a unitary representation of Γ. Modular
symmetry plays the role of a discrete flavour symmetry when ρ(γ) = 1 for γ ≡ 1 (modN).
In this case ρ is effectively a (unitary) representation of the finite quotient group Γ′N '
SL(2,ZN ) characterised by the integer level N ≥ 2. For N ≤ 5, Γ′2,3,4,5 are isomorphic
to the double covers S′3, A′4, S′4, A′5 of the well-known permutation groups S3, A4, S4, A5,
with S′3 ≡ S3. If the R generator acts trivially on fields, one is instead dealing with the
inhomogeneous finite modular group ΓN , a quotient of Γ ' PSL(2,Z) ' SL(2,Z)/ZR2 . For
small N , the latter finite groups are isomorphic to the already quoted permutation groups
Γ2,3,4,5 ' S3, A4, S4, A5.

Modular symmetry may determine the structure of fermion mass matrices, as it severely
constrains the form of the superpotential W (τ, ψ), thanks also to its holomorphicity. To
ensure the modular transformation properties of W , Yukawa couplings and fermion mass
terms must generically depend on τ and transform in a way similar to fields — they are
multiplets Y (τ) of modular forms of level N , characterised by their own integer weights
kY > 0 and representations of the flavour symmetry group Γ(′)

N . Since the number of
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available independent modular forms is finite (and small for small kY ), only a limited
set may contribute to W . Thus, the number of superpotential parameters is restricted,
and mass and coupling matrices are determined once the lowest (scalar) component of the
modulus τ acquires a VEV. This setup can be remarkably predictive.6

The breakdown of modular symmetry is parameterised by the VEV of the modulus
(Im τ > 0).7 This VEV can always be restricted to the fundamental domain D of the
modular group, defined by the union

D ≡
{
τ ∈ H : −1

2 ≤ Re τ < 1
2 , |τ | > 1

}
∪
{
τ ∈ H : −1

2 < Re τ ≤ 0, |τ | = 1
}
, (2.3)

see also figure 1. Any choice of the VEV of the modulus in the upper-half plane can
be related to a single τ ∈ D via a modular transformation, and it is therefore physically
equivalent to it (see also section 4 of [15]). Instead, two elements in the fundamental domain
cannot be related by a modular transformation and are thus physically inequivalent. By
convention, the right half of the boundary of D — including the right half of the unit arc
— is excluded from the above definition, since it is equivalent to the left half.8

Even though there is no value of τ which preserves the full modular symmetry, as
we have already noted, specific residual symmetries remain at certain symmetric points
τ = τsym. There are only three (inequivalent) symmetric points [15]:9

• τsym = i, invariant under S, preserving ZS4 (note that S2 = R);

• τsym = i∞, invariant under T , preserving ZTN × ZR2 ; and

• τsym = ω = exp(2πi/3) (the “left cusp”), invariant under ST , preserving ZST3 × ZR2 .

In models where τ deviates slightly from one of these values τsym, fermion mass hierarchies
may be generated as powers of the small deviation |τ−τsym| (or as powers of |q| = e−2π Im τ

in the case τsym = i∞) [20].10 Finally, these symmetric values preserve the CP symmetry
of a CP- and modular-invariant theory [14, 19]. In such a theory, the ZCP

2 symmetry is
preserved for Re τ = 0 or for τ lying on the border of D, but is broken for other generic
values of the modulus.

2.2 Scalar potential

While in bottom-up approaches the VEV of τ is scanned over the fundamental domain
in a fit to the data, it is clearly desirable to have a dynamical reason for its specific,

6One needs to control the form of the (joint) Kähler potential of the modulus and matter fields
K(τ, ψ) [66], typically taken to have a minimal form in a bottom-up approach. This problem is the subject
of ongoing research (see, e.g., [44, 67]).

7Flavon fields are not required in this approach, and we do not consider them here.
8Any point on the right boundary Re τ = 1/2 can be obtained from a point with the same Im τ on the

left boundary Re τ = − 1/2 by a T -transformation, while any point on the right half of the arc with given
Re τ > 0 and Im τ can be obtained by an S-transformation from the point on the left half of the arc with
the same Im τ .

9The R generator is unbroken for any value of τ and a ZR
2 symmetry is always preserved [19].

10The residual symmetries are at play at the level of the whole action, and corrections to the Kähler are
not expected to qualitatively affect the hierarchies in the fermion mass spectrum.
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−1 −1/2 0 1/2 1
Re τ

0

1/2

1

3/2

2

√
3/2

Im
 τ

i
e2πi/3

i∞

D

Figure 1. The fundamental domain D of the modular group Γ and its three symmetric points
τsym = i∞, i, ω. The value of τ can be restricted to D by a suitable modular transformation.
(figure from ref. [19].)

phenomenologically viable value(s). This is the issue we address here. In this work we
analyse a known class of simple modular-invariant potentials which are functions of τ alone.
Since we are concerned only with the contribution involving the modulus, these turn out
to be simplified models, which nevertheless are explicit examples of N = 1 supergravity
models.11 We thus focus on the simple Kähler potential [69],

K(τ, τ) = −Λ2
K log(2 Im τ) , (2.4)

where ΛK is a scale (mass dimension one).
We discuss next the form of simple superpotentials W (τ), following refs. [68, 69].

Keeping in mind the single-modulus case, the relevant N = 1 supergravity action depends
on the Kähler-invariant function

G(τ, τ) = κ2K(τ, τ) + log
∣∣∣κ3W (τ)

∣∣∣2 , (2.5)

where κ2 = 8π/M2
P , MP being the Planck mass. Given the choice of eq. (2.4) for the Käh-

ler potential, modular invariance of G implies that the superpotential W carries modular
weight −n, where n = κ2Λ2

K . We consider integer values of n, in line with [68, 69]. The
superpotential can then be parameterised in terms of the Dedekind η function (see ap-

11A fully realistic string compactification is expected to involve other moduli, as well as gauge bosons
and matter fields [68]. Therefore, the investigated potentials correspond to a subsector of the full theory. In
particular, we do not identify their minimum values with the cosmological constant, as the latter receives
contributions from other subsectors as well.
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pendix A) and a modular-invariant function H, as

W (τ) = Λ3
W

H(τ)
η(τ)2n , (2.6)

where ΛW is a mass scale so that H(τ) is dimensionless. The most general H (without
singularities in the fundamental domain) can be cast in the following form [69]:

H(τ) = (j(τ)− 1728)m/2 j(τ)n/3 P (j(τ)) , (2.7)

making use of the Klein j function, which is invariant under the action of the modular
group SL(2,Z) (see appendix A). Here, m and n are non-negative integers and P is a
polynomial in j(τ).

The scalar potential in N = 1 supergravity is given by (see, e.g., [70])

V = eκ
2K
(
Ki j̄DiWD j̄W

∗ − 3κ2|W |2
)
, (2.8)

where Di ≡ ∂i + κ2(∂iK), Ki j̄ is the inverse of the Kähler metric Ki j̄ ≡ ∂i ∂ j̄K, and ∂i
(∂ j̄) is the derivative with respect to the corresponding field (its conjugate). In our setup,
the only field is the modulus τ , and the scalar potential follows from the explicit forms of
K(τ, τ) and W (τ) given above,

V (τ, τ) = Λ4
V

(2 Im τ)n|η(τ)|4n

[∣∣∣∣iH ′(τ) + n

2πH(τ)Ĝ2(τ, τ)
∣∣∣∣2 (2 Im τ)2

n
− 3|H(τ)|2

]
, (2.9)

where we have defined ΛV =
(
κ2Λ6

W

)1/4 as the mass scale of the potential, and Ĝ2 is the
non-holomorphic Eisenstein function of weight 2 (see, e.g., [69]). It is given by

Ĝ2(τ, τ) = G2(τ)− π

Im τ
, (2.10)

where G2 is its holomorphic counterpart (see appendix A). G2 can be related to the
Dedekind function via

η′(τ)
η(τ) = i

4πG2(τ) . (2.11)

It is not difficult to show that the potential V (τ, τ̄) is modular-invariant. We briefly discuss
its global SUSY limit and its minima in this limit in appendix B.

We are interested in the simple cases investigated in refs. [68, 69], for which n = 3
corresponds to the number of compactified complex dimensions.12 With this choice, the
scalar potential reads:

V (τ, τ) = Λ4
V

8(Im τ)3|η|12

[
4
3

∣∣∣∣iH ′ + 3
2πHĜ2

∣∣∣∣2 (Im τ)2 − 3|H|2
]
. (2.12)

12The compactification of 6 dimensions may bring about three moduli τi (i = 1, 2, 3), corresponding to
the radii of three two-tori. For simple potentials symmetric under the exchange of the τi, the preferred
minimum is found to occur at τ1 = τ2 = τ3 = τ [69]. This result gives support to studying the case of only
one modulus, as is done here.
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In what follows, we analyse the global minima of this potential. We consider the form of
H(τ) given in eq. (2.7) for different values of m and n. Following again [69] (see also [68]),
we take the simplest choice P(j) = 1, which nevertheless yields non-trivial results. In
this case, the potential V can be shown to be CP-symmetric, i.e., to be invariant under
a reflection with respect to the imaginary axis [14], τ → −τ . This follows from the fact
that under the reflection τ → −τ , the functions H, η, j and Ĝ2 are transformed to their
conjugates (while H ′ → −H ′∗, η′ → −η′∗). This ZCP

2 symmetry is present for a more
general choice of P(j), provided the polynomial coefficients are real or share a common
complex phase.

Despite the modular- and CP- invariance of V , the vacuum, which breaks the modular
symmetry for any value of the modulus τ , may also spontaneously break the CP symmetry.
Extrema not lying at CP-conserving points make up an inequivalent (degenerate) pair, at
some τ and −τ . In ref. [69], it was conjectured that all extrema of V would lie at CP-
conserving values of τ , i.e., either on the boundary of the fundamental domain D or on the
imaginary axis. Therein, the cases (m,n) = (0, 0), (1, 1), (0, 3) were explicitly examined.
The global minima of the corresponding potentials were indeed found to lie at τ ' 1.2 i
(imaginary axis), τ ' ±0.24 + 0.97 i (equivalent minima on the unit arc) and τ = i,
respectively. While we have verified these particular results, we have further found that
potentials with n = 0 but m > 0 do allow for CP-breaking global minima. Moreover,
these minima are found to be located in the vicinity of the left cusp τ = ω, at values of
|τ − ω| favoured by the mechanism put forward in [20] to explain fermion (charged-lepton
and quark) mass hierarchies, as we will see in the following sections.

2.3 q- and u-expansions

As a first step in the analysis of the potential given in eq. (2.12), we express the functions
j (and therefore H, H ′) and Ĝ2 in terms of the Dedekind η and its derivatives. Rewriting
the latter is immediate via eq. (2.11), while the former can be expressed as

j =
[

72
π2η6

(
η′

η3

)′ ]3

, (2.13)

see appendix A. For a broad numerical analysis, it then suffices to know the q-expansion
of η, i.e., its expansion in powers of q = e2πiτ , up to a certain order. This expansion has
the well-known form

η = q1/24
∞∑

n=−∞
(−1)nq

3n2−n
2 = q1/24

(
1− q − q2 + q5 + q7 − q12 − q15 +O(q22)

)
(2.14)

and converges rapidly within the fundamental domain, where |q| ≤ e−
√

3π ' 0.004.
A preliminary q-expansion analysis of the potential for different (m,n) with n 6= 0

reveals CP-conserving global minima on the imaginary axis and on the unit arc, as expected.
For (m, 0) withm 6= 0, it further reveals CP-breaking minima in the vicinity of the left cusp
τ = ω (paired with inequivalent minima in the vicinity of the right cusp −τ = ω + 1). To
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guarantee a robust numerical analysis as well as an analytical understanding of these CP-
breaking minima, we now develop the expansion of the potential in terms of a parameter
u ≡ (τ − ω)/(τ − ω2), which quantifies the deviation of τ from the left cusp.

This effort is also warranted in light of the results of ref. [20], where the same convenient
parameterisation of deviations from the left cusp was motivated and used. In particular,
stabilising τ in the vicinity of ω or at a point with large Im τ can provide a non-fine-tuned,
i.e., natural explanation of the three generation charged-lepton and quark mass hierarchies,
based on the smallness of |u| or |q|. In contrast, the stabilisation of τ in the vicinity of
i, even if possible, cannot offer an explanation of these mass hierarchies in terms of small
deviations from this symmetry point without severe fine-tuning [20] or some additional
non-minimal input [71]. Finally, it is known that the potential under analysis diverges for
large Im τ [69], leaving τ ' ω as the most interesting case to investigate.

We have seen that the potential can be fully expressed in terms of η and its derivatives.
To obtain its u-expansion, it is enough to determine the u-expansion of η. Using τ =
ω2(ω2 − u)/(1− u), one can write η as a function of u. It further proves useful to define13

η̃(u) = (1 − u)−1/2η(u), since symmetry dictates η̃ to be a power series in u3. Indeed, it
is easy to show using τ T−→ τ + 1 and τ S−→ −1/τ that under the modular transformation
γ = ST the variable u transforms as u ST−−→ ω2u. Taking further into account that η(Tτ) =
exp(iπ/12) η(τ) and η(Sτ) =

√
−iτ η(τ), one obtains η(STτ) =

√
−ω(τ + 1) η(τ). Thus,

we have

η̃(u) ST−−→ η̃(ω2u) =
√
−ω(τ + 1)√
1− ω2u

η(u) = 1√
1− u

η(u) = η̃(u) , (2.15)

meaning η̃(u) is invariant under γ = ST . Given the transformation property of u, it follows
that only powers of u3 survive in the u-expansion of η̃. Each coefficient in this expansion
is given by its own power series in q(ω) = −e−

√
3π, which can be determined by expressing

q in terms of u in the known q-expansion for η, eq. (2.14). One can prove analytically that
these coefficients are real up to a common phase. Numerically, we obtain

η̃(u) ' e−iπ/24
(
0.800579− 0.573569u3 − 0.780766u6 − 0.150007u9

)
+O(u12)

≡ e−iπ/24
(
η̃0 + η̃3u

3 + η̃6u
6 + η̃9u

9
)

+O(u12) ,
(2.16)

which is an expansion in powers of u3, as anticipated. As a final step, recall that η(u) =√
1− u η̃(u), so its u-expansion is trivially related to that of η̃. The u-expansions of other

modular forms are collected in appendix C.
Let us restate the relevance of these results. Knowing the u-expansion of η allows one

to implement the u-expansion of the potential V . The use of such an expansion allows for
a clear analysis of the shape of V and of its extrema in the vicinity of the left cusp τ = ω,
converging faster than the usual q-expansion. The corresponding results are shown in the
next section.

13Unless explicitly stated, we always take the principal branch of the roots appearing in our discussion.
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n = 0 n = 1 n = 2 n = 3
m = 0 0.000 + 1.235i 0.000 + 1.000i 0.000 + 1.000i 0.000 + 1.000i
m = 1 ∓0.484 + 0.884i −0.238 + 0.971i −0.190 + 0.982i −0.163 + 0.987i
m = 2 ∓0.492 + 0.875i −0.286 + 0.958i −0.239 + 0.971i −0.211 + 0.978i
m = 3 ∓0.495 + 0.872i −0.312 + 0.950i −0.267 + 0.964i −0.239 + 0.971i

Table 1. Values of the modulus τ at the global minima of the potential V (τ, τ̄), eq. (2.12), obtained
numerically for various m and n.

−1/2 0 1/2
Re τ

1/2

1

3/2

Im
τ

D
(0, 0)

(0, n)

(m, 0) (m, 0)∗
(m,n)

−0.51 −0.50 −0.49 −0.48 −0.47
Re τ

0.86

0.87

0.88

0.89

Im
τ

(1, 0)

(2, 0)

(3, 0)

Figure 2. Global minima of the potentials V (τ, τ̄), eq. (2.12), see text for details. Note that points
on the right half of the unit arc, which are CP-conjugates of the (m,n) minima, are excluded as
they lie outside the fundamental domain. The right panel shows the series (m, 0) in the vicinity of
the left cusp in more detail.

3 Results

3.1 Numerical analysis of minima for various m, n

As discussed in section 2.3, the q-expansions of η and its derivatives allow to compute the
potential V (τ, τ̄), eq. (2.12), to arbitrary precision at any point within the fundamental
domain (2.3).14 Making use of this fact, we find global minima of the potential numerically
for 0 ≤ m,n ≤ 3 (P(j) = 1), see table 1 and figure 2. As a cross-check, we note that for the
special cases of (m,n) = (0, 0), (1, 1), (0, 3) considered in ref. [69] our results are consistent
with the values reported therein. This numerical analysis suggests that the minima fall
into several classes depending on values of m and n:

(0, 0) is a single minimum at τ ' 1.2i on the imaginary axis, corresponding to the case
m = n = 0;

(0, n) is a single minimum at the symmetric point τ = i attained when m = 0, n 6= 0;
14In practice, we numerically implement a q-expansion for the potential V . We have checked that the

same, stable q-expansions are obtained independently of expressing H as a function of j or as a function of η.
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(m, 0) and (m, 0)∗ are a pair of degenerate minima for each m 6= 0 and n = 0: (m, 0) is
located in the vicinity of the left cusp τ = ω, approaching this symmetric point as m
increases, while (m, 0)∗ is its CP-conjugate;

(m, n) is a series of minima on the unit arc, corresponding to m 6= 0, n 6= 0; these minima
shift towards τ = ω (τ = i) along the arc as m (n) grows.

An important observation is that the minima belonging to classes (0, 0), (0, n), (m,n) lie
either on the boundary of the fundamental domain D or the imaginary axis, in line with
the conjecture of ref. [69]; these minima are CP-conserving. However, the (m, 0)(∗) minima
slightly depart from the left (right) cusp symmetric point and the boundary. This property
makes such minima an interesting possibility from the phenomenological viewpoint, as
they can naturally explain both CP violation [14] and hierarchical mass patterns [20] in an
economical way. Therefore, we now turn to a discussion of the (m, 0)(∗) minima and the
corresponding Vm,0 potentials.

3.2 CP-violating minima of Vm,0

Since the (m, 0)∗ minima are trivially related to the (m, 0) minima via CP reflection, we
concentrate here on the latter series only, i.e., we study the behaviour of Vm,0 in the vicinity
of the left cusp. The minima of interest deviate only slightly from the boundary; to make
sure these deviations are not a numerical artefact of our q-expansions, we re-expand the
potential in terms of u, as described in section 2.3.

Note that Vm,0 is a real-valued non-holomorphic function of u, therefore it expands in
powers of |u| rather than u itself, with coefficients possibly depending on the phase of u.
Denoting this phase as φ, i.e., u = |u|eiφ, φ ∈ [−π/3, 0] (see appendix C), we find:

Vm,0 = Λ4
V

1728m√
3 η̃12

0

{
−1− 2 |u|2 +

(
A2
m − 3

)
|u|4

}
+O(|u|6) , (3.1)

where
Am ≡

864 |η̃3|3

π6 η̃27
0

m+ 6 |η̃3|
η̃0
' 68.78m+ 4.30 (3.2)

and η̃i are coefficients of the u-expansion of η̃(u) defined in eq. (2.16) (in particular, η̃0 =
|η(ω)|).

Apart from the overall scale, the potential Vm,0 in eq. (3.1) depends on only one
parameter — m, which takes positive integer values. One can see from eq. (3.2) that the
quartic term coefficient (A2

m − 3) is positive for any m ≥ 1, so up to O(|u|6) the potential
has the well-known Mexican-hat profile, similar to the Higgs potential in the Standard
Model (see figure 4). This clearly indicates that the cusp τ = ω ↔ |u| = 0 is not the
minimum. Instead, this point is a local maximum, while the true minimum is attained at

|u|min ' (A2
m − 3)−1/2 ' A−1

m = 0.0145
m+ 0.0625 . (3.3)

Comparing this approximation with the minima obtained numerically from the q-expan-
sions for m ≤ 7, we find excellent agreement, as shown in figure 3.
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0.000

0.005

0.010

0.015

Figure 3. Deviation of the minimum of Vm,0(τ, τ̄) from the left cusp τ = ω measured by |u| =
|(τ − ω)/(τ − ω2)|. Values obtained numerically (black dots) match the analytical approximation
of eq. (3.3) (blue line).

Eq. (3.3) has an important phenomenological implication. In the vicinity of the left
cusp, fermion mass matrix entries in modular-invariant theories are proportional to powers
of the small parameter ε ∼ |u| [20]. With a suitable choice of fermion field representations
under the modular group, this leads to a hierarchical mass pattern of the form (1, ε, ε2)
for three generations of fermions. Hence eq. (3.3) describes possible values of the small
parameter responsible for the hierarchy of fermion masses. In particular, we see that
ε ∼ 0.01 for small m which is consistent with the observed mass hierarchy of charged
leptons and quarks.

A model in which hierarchical charged lepton masses and the observed lepton mixing
pattern of two large and one small angles are generated naturally without fine-tuning in
the vicinity of the left cusp was constructed in section 4.2 of ref. [20]. Statistical analysis
showed that this S′4 model is phenomenologically viable at 3σ confidence level for ε ∈
[0.0163, 0.0214], ε ' 2.8|u|, independently of the phase of u, with the best fit value of |u| '
0.00664. On the other hand, eq. (3.3) yields a series ε ' 0.0383, 0.0197, 0.0133, . . . for m =
1, 2, 3, . . . . Quite remarkably, choosing m = 2↔ ε ' 0.0197 one gets a value of ε within the
phenomenologically allowed range of the model.15 In the original construction the small
values of |u| and correspondingly of ε, for which the model is viable, are unexplained. Here
we find a natural explanation for these small values, which is general and does not rely on
the discussed specific model. In other words, the potential Vm,0 completes the non-fine-
tuned model presented in ref. [20] by providing a model-independent universal dynamical
origin of the smallness of the deviation of τ from its symmetric value.16

So far we have not discussed the phase of u at the minimum, φmin. It may seem from
eq. (3.1) that the potential is independent of φ, thus having a flat direction. However,
expanding Vm,0 to higher orders in |u| reveals a mild dependence on φ: up to an overall

15A more careful analysis of the chi-squared function shows that this value of ε lies in the 1.1σ range.
16Although this model was considered in the context of global SUSY, it can be trivially modified to fit

into the supergravity framework by shifting modular weights of the fields so that the superpotential carries
weight −3 rather than 0.

– 13 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
9

factor, we have

Vm,0 ∝ −1− 2 |u|2 +
(
A2
m − 3

)
|u|4 +

(
−4 + 2A2

m +B2
m cos 6φ

)
|u|6

+ 2AmB2
m cos 3φ |u|7 +

(
−5 + 3A2

m + 2B2
m cos 6φ

)
|u|8 +O(|u|9) ,

(3.4)

where

B2
m ≡

864 |η̃3|3

π6 η̃27
0

m

[
864 |η̃3|3

π6 η̃27
0

(m− 2) + 3
(
31 η̃2

3 − 10η̃0η̃6
)

η̃0|η̃3|

]
+ 6

(
7η̃2

3 − 2η̃0η̃6
)

η̃2
0

' 4730.60m2 − 2069.73m+ 33.26 .
(3.5)

Comparing the last expression with A2
m ' 4730.60m2 + 591.32m+ 18.48, we notice that

Bm ∼ Am ' |u|−1
min . (3.6)

This means that in the vicinity of the minimum:

• terms of order 6 and higher in |u| are indeed negligible compared to the quadratic
and quartic term, which further justifies the validity of approximation (3.1) for the
estimation of |u|min;

• the φ-dependent parts of O(|u|6) and O(|u|7) terms are comparable, so they are
equally important for the estimation of φmin;

• the φ-dependent part of O(|u|8) term is negligible compared to the corresponding
parts of the two previous terms.

We expect that the last condition holds also for higher-order terms, so that the φ-dependent
contribution to the potential is dominated by

B2
m cos 6φ |u|6 + 2AmB2

m cos 3φ |u|7 ∝ cos 6φ+ 2Am|u| cos 3φ ' cos 6φ+ 2 cos 3φ (3.7)

at |u| = |u|min. Expression (3.7) is minimised in the region of interest [−π/3, 0] at the
following unique value of φ:

φmin ' −
2π
9 , (3.8)

independently of m, in excellent agreement with the minima obtained numerically.
In the case m = 2 relevant for the non-fine-tuned model of ref. [20], one gets

umin '
0.0145

2 + 0.0625 e
−2πi/9 ↔ τmin ' −0.492 + 0.875i (3.9)

(cf. table 1), which is again consistent with the allowed range of τ reported in ref. [20].
While eq. (3.3) shows that the minimum deviates from the symmetric point, which

may be responsible for mass hierarchies, eq. (3.8) indicates that the minimum deviates
also from the boundary of the fundamental domain, providing an origin of CP breaking.
Indeed, φ=0 corresponds to the left vertical boundary, while φ=−π/3 corresponds to the
arc (see appendix C), so that the minimum lies in between. This can be seen in the left
panel of figure 4, which shows the potentials Vm,0, m = 1, 2, 3, in the vicinity of the cusp.
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Figure 4. Potentials Vm,0(τ, τ̄), m = 1, 2, 3, in the vicinity of the cusp (left panel) and their 1-
dimensional projections onto the curve φ = φmin (right panel), in units of Λ4

V (see text for details).
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To make the potential shapes clearly visible, we use the logarithmic scale log10
(V−Vmin
|Vmin|

)
,

where Vmin is the minimum value of the corresponding potential. As anticipated, the
potentials have a deep narrow “trench” around |u| = |u|min, while the dependence on
the phase φ is almost unnoticeable. To illustrate further the Mexican-hat shape of the
potentials, in the right panel we report their 1-dimensional profiles as one varies |u| while
keeping φ = φmin fixed (black dashed line in the left panel).

We have seen in this section that the Vm,0 potentials have special properties, which
are important from the phenomenological viewpoint. It may seem however that the choice

H(τ) = (j(τ)− 1728)m/2 , (3.10)

which leads to such potentials, is not distinguished within the more general class (2.7) from
the outset, and thus could be considered as a form of tuning: indeed, one could expect to
have generically a non-trivial polynomial P(j) as well as n 6= 0, which could change the
behaviour of V dramatically. We would like to point out that the series (3.10) does actually
play a special role in the full set of H(τ) given by eq. (2.7): in fact, eq. (3.10) describes a
subset of all possible H(τ) which vanish only at the symmetric point τ = i (which is itself
distinguished by modular symmetry).17 In view of this special property, we expect that
Vm,0 potentials should arise naturally in certain top-down completions without any need
for special tuning to avoid non-trivial P and non-zero n.

4 Summary and conclusions

In the present article we have investigated the problem of modulus stabilisation in theories
of flavour based on modular symmetry. The modulus τ — a complex scalar field — plays
a fundamental role in the modular-invariance approach to the lepton and quark flavour
problems. It has specific transformation properties under the action of the modular group
Γ ≡ SL(2,Z). The VEV of the modulus τ can be the only source of breaking of both
the modular symmetry and the flavour symmetry, described in the approach by a finite
inhomogeneous (homogeneous) modular group Γ(′)

N . Thus, flavons are not needed. For
N ≤ 5, the finite modular groups ΓN are isomorphic to the permutation groups S3, A4, S4
and A5, while Γ′N are isomorphic to their double covers. In the “minimal” models without
flavons, the VEV of τ can also be the only source of breaking of CP symmetry when it
does not lie on the imaginary axis Re τ = 0 or on the border of the fundamental domain D
of the modular group, where it has CP-conserving values. In the discussed approach to the
flavour problem, the elements of the Yukawa coupling and fermion mass matrices in the
Lagrangian are expressed in terms of modular forms of a certain level N and a limited num-
ber of coupling constants. The modular forms are functions of the modulus τ , have specific

17To prove this, note that P(j(τ)) factorises into monomials of the form (j(τ) − z), z ∈ C, and without
loss of generality z 6= 1728 (otherwise the monomial can be absorbed into (j(τ) − 1728)m/2 by redefining
m). These monomials vanish for some τ 6= i in the fundamental domain D, since j : D → C is a bijection
and j(i) = 1728 (see appendix A). Therefore, for H(τ) to vanish only at τ = i, P(j(t)) has to be trivial.
Finally, since j(ω) = 0, n has to be zero, as otherwise H(τ) vanishes at τ = ω.
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transformation properties under the action of the modular group SL(2,Z) and furnish irre-
ducible representations of the finite modular, i.e., flavour symmetry, group Γ(′)

N . The matter
fields are assumed also to transform in representations of Γ(′)

N . After the flavour symmetry
is (fully or partially) broken by the VEV of τ , the modular forms and thus the elements of
the Yukawa coupling and fermion mass matrices get fixed. Correspondingly, the fermion
mass matrices exhibit a certain symmetry-determined flavour structure which depends via
the modular forms used on the VEV. Thus, τ ’s VEV is critical for the phenomenological
viability of a given modular-invariant flavour model.

Although there is no VEV of τ which preserves the full modular symmetry, there
exist three values in the modular group fundamental domain, which break the modular
symmetry only partially [15]. Only one of these residual symmetry points is relevant for
our analysis, namely, τsym = ω ≡ exp(2πi/3) = −1/2 +

√
3/2 i (the “left cusp”), at which

the ZST3 symmetry is preserved. In models where τ deviates slightly from τsym = ω, charged
lepton (and possibly quark) mass hierarchies may arise naturally from the properties of
the modular forms as powers of the small deviation |τ − τsym| without the use of fine-tuned
constants [20].

Following a bottom-up approach, a large number of viable “minimal” lepton and quark
flavour models based on modular symmetry, which do not include flavons, has been con-
structed. In the overwhelming majority of these models the VEV of the modulus has been
determined by confronting model predictions with experimental data and can vary signifi-
cantly depending on the model. There have been a few attempts to determine the modulus
VEV from a dynamical principle (see section 1). The results of these attempts revealed,
in particular, that in the predominant number of cases the specific CP-invariant potentials
used for τ lead to CP-conserving VEVs of τ .

In the present study of modulus stabilisation we have considered relatively simple UV-
motivated modular- and CP-invariant potentials of the modulus, Vm,n(τ, τ) (eq. (2.12)),
m,n being non-negative integer numbers, proposed and analysed within the framework of
supergravity theories in ref. [69] and further studied in ref. [68]. They can be expressed
in terms of the Dedekind eta function, η(τ), and its derivatives. Using the well-known q-
expansion of η(τ) (eq. (2.14)), which allows to compute the potential Vm,n(τ, τ) to arbitrary
precision in any point of the fundamental domain, we have derived the absolute minima
of Vm,n for m,n = 0, 1, 2, 3 (table 1 and figure 2) and any m > 0 for n = 0 (section 3.2).
It was conjectured in ref. [69] that all extrema of Vm,n would correspond to CP-conserving
values of τ , i.e., would lie either on the boundary of the fundamental domain D or on the
imaginary axis. In [69] the cases (m,n) = (0, 0), (1, 1), (0, 3) were explicitly examined and
the global minima of the corresponding potentials were indeed found to lie at τ ' 1.2 i
(imaginary axis), τ ' ±0.24 + 0.97 i (equivalent minima on the unit arc) and τ = i,
respectively. While we have verified these results we showed also that i) the potentials
V0,n for n = 1, 2 have the same absolute minimum as V0,3, ii) the potentials Vm,n with
m,n = 1, 2, 3, have absolute minima at the unit arc, which shift towards τ = ω (τ = i)
along the arc asm (n) grows. Most importantly, we have further found that potentials with
n = 0 but given m > 0 do allow for a pair of degenerate (CP-conjugate) global minima at
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τmin and (−τmin), which break CP symmetry spontaneously. Moreover, τmin are found to
be located in the vicinity of the left cusp τ = ω (figure 4), at values of |τmin − ω| favoured
by the mechanism put forward in [20] to explain fermion (charged-lepton and quark) mass
hierarchies. As the found CP-breaking minima deviate only slightly from the fundamental
domain boundary, to make sure these deviations are not a numerical artefact of the used
q-expansions of η(τ), we re-expanded η(τ) and the potential Vm,0 in terms of the parameter
u = (τ − ω)/(τ − ω2) which quantifies the deviation of τ from the left cusp (section 2.3).
Expressed in terms of u this potential is shown to depend, apart from the overall scale,
on just one parameter — m, which takes positive integer values. We found that up to
O(|u|6) (with |u|6 giving negligible contribution), the potential Vm,0 has the well-known
Mexican-hat profile, similar to the Higgs potential in the Standard Model (eq. (3.1)), with
absolute minimum at |u|min ' 0.0145/(m + 0.0625) — in excellent agreement with the
minima obtained numerically from the q-expansions for m ≤ 7 (figure 3). Using further
the expansions up to O(|u|8) (with |u|8 being negligibly small) we have found also that
arg(umin) ' −2π/9 = −40◦ independently of m.

An S′4 lepton flavour model constructed in [20], in which the charged lepton mass
hierarchies are generated naturally for τ in the vicinity of the left cusp and the observed
lepton mixing is reproduced without fine-tuning, was found to be phenomenologically viable
at 3σ C.L. for ε ' 2.8|u| ∈ [0.0163, 0.0214]. It is quite remarkable that for m = 2, the
potential V2,0 has an absolute minimum at |u|min ' 0.00705 corresponding to ε ' 0.0197
lying in the ∼1σ allowed range of the model. Thus, the potential V2,0 completes this non-
fine-tuned lepton flavour model by providing a dynamical origin of the smallness of the
deviation of τ from its left cusp symmetric value.

We note finally that the results of our study of modulus stabilisation do not depend on
the choice of the finite modular group Γ(′)

N as a group of flavour symmetry, of the modular
weights of the matter fields and of the representations of Γ(′)

N assumed to be furnished by
the matter fields, which define a modular-invariant model of flavour. In this sense they
are universal. They have a direct impact on the phenomenology of the modular-invariant
models of flavour since they lay out preferred regions in the fundamental domain of the
modular group for stabilisation of the modulus. Our results may have also implications for
the problem of CP violation in supersymmetric extensions of the Standard Model.
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A Modular forms

The Dedekind eta function is a modular form of weight 1/2 defined as

η(τ) ≡ q1/24
∞∏
n=1

(1− qn) = q1/24 φ(q) , (A.1)

where q ≡ e2πiτ and φ(q) is known as the Euler function. The eta function admits the
expansions

η = q1/24
(
1− q − q2 + q5 + q7 − q12 − q15 +O(q22)

)
= q1/24

(
1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 +O(q7)

)−1
,

(A.2)

and satisfies η(Tτ) = η(τ + 1) = eiπ/12 η(τ) and η(Sτ) = η(−1/τ) =
√
−iτ η(τ).

The Eisenstein series of weight 2k is defined for integer k > 1 as

G2k(τ) =
∑

n1,n2∈Z
(n1,n2) 6=(0,0)

(n1 + n2τ)−2k , (A.3)

and converges to a holomorphic function in the upper-half plane: a modular form of weight
2k. While the series does not converge for k = 1, one can still define the G2(τ) function
via a specific prescription on the order of summation (see, e.g., [72], where it is denoted
G∗2). This function is related to G4 by the identity [69]

5
2πG4 = iG′2 + G2

2
2π . (A.4)

Using eq. (2.11), one can further show that G2 is not quite a modular form of weight 2,
since under a generic modular transformation γ ∈ SL(2,Z)

η′(τ)
η(τ)

γ−→ (cτ + d)2 η
′(τ)
η(τ) + 1

2 c(cτ + d) . (A.5)

Noting how Im τ transforms under the action of the modular group, it further follows that

1
4i Im τ

γ−→ |cτ + d|2

4i Im τ
= (cτ + d)2

4i Im τ
− 1

2 c(cτ + d) . (A.6)

One can then define Ĝ2 as given in eq. (2.10), which transforms as a weight 2 form, at the
cost of being non-holomorphic.

Finally, the Klein j function or j-invariant (sometimes called the absolute modular
invariant) is a modular form of zero weight. It can be defined in terms of the Dedekind eta
and G4 as

j(τ) ≡ 3653

π12
G4(τ)3

η(τ)24 . (A.7)
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Using eqs. (2.11) and (A.4), one can relate the j function to the Dedekind eta and its
derivatives, showing that

j =
(

72
π2

ηη′′ − 3η′2
η10

)3

=
[

72
π2η6

(
η′

η3

)′ ]3

, (A.8)

as given in eq. (2.13). This function j : D → C is a one-to-one map between points in the
fundamental domain and the whole complex plane. In particular, j(τ) takes real values
only for CP-conserving values of τ , i.e., when τ is on the border of D or when Re τ = 0. The
j function is not holomorphic at τ = i∞, where it diverges. At the remaining symmetric
points, one has j(ω) = 0 and j(i) = 1728 = 123. Thus, it admits as q-expansion the
Laurent series

j = 744 + 1
q

+ 196884 q + 21493760 q2 + 864299970 q3 +O(q4) . (A.9)

While here only the first terms in this well-known expansion are reported, in practice
many more powers of q were taken into account in our analyses, guaranteeing numerical
convergence and stability. It is further known that j has a triple zero at τ = ω, that
(j − 1728) has a double zero at τ = i and that the derivative j′ vanishes only at these
values of τ : j′(ω) = j′(i) = 0 (see, e.g., [73]).

B Rigid SUSY limit

In the limit of rigid N = 1 SUSY, one has MP → ∞ and κ → 0. Keeping the form of
K(τ, τ) given in eq. (2.4), one sees that the scalar potential of eq. (2.8) becomes

V = Kij̄∂iW∂j̄W
∗ . (B.1)

Note that, in this limit, n = κ2Λ2
K → 0. The superpotential of eq. (2.6) reduces to

W (τ) = Λ3
WH(τ) and we arrive at the simple result

V (τ, τ) = 4Λ6
W

Λ2
K

(Im τ)2 ∣∣H ′(τ)
∣∣2 . (B.2)

Taking H of the form given in eq. (2.7), with P(j) = 1, one finds that there is always a
value of τ ∈ D for which H ′(τ) = 0. Hence, global minima of this potential correspond to
the zeros of H ′. This function is given by

H ′ = j′ (j − 1728)m/2 jn/3
[
m

2
1

j − 1728 + n

3
1
j

]
. (B.3)

Apart from the trivial case m = n = 0, the zeros of H ′ — and correspondingly the
global minima of V — are located at CP-conserving values of τ , namely at τ = i, τ = ω,
or at points for which the factor in square brackets vanishes, which correspond to real
j ∈ [0, 1728] and values of τ on the arc. This result suggests that supergravity effects
are important for the presence of CP-violating minima in the discussed class of simple
superpotentials. More specifically, the presence of the term ∝ Ĝ2 and the term ∝ 3|H|2
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in the potential V in eqs. (2.9) and (2.12) seem to be crucial for the spontaneous breaking
of the CP symmetry. Let us further note that, in the case of a non-trivial P(j), this
polynomial can be engineered to produce minima at arbitrary points in the fundamental
domain.

C u-expansions

Recalling the definition of u given in section 2.3,

u ≡ τ − ω
τ − ω2 ⇔ τ = ω2 ω

2 − u
1− u , (C.1)

one finds
Re τ = − 1

2 −
√

3 Im u

|1− u|2 , Im τ =
√

3
2

1− |u|2
|1− u|2 , (C.2)

and conversely

Reu = Re τ + |τ |2 − 1/2
|τ − ω2|2

, Im u = −
√

3
2

1 + 2 Re τ
|τ − ω2|2

. (C.3)

Writing u = |u|eiφ, as in section 3.2, one can check that Reu > 0 and

φ = − arctan
(√

3
2

1 + 2 Re τ
Re τ + |τ |2 − 1/2

)
(C.4)

within the fundamental domain (excluding τ = ω, where u = 0 and φ is indeterminate).
By analysing this expression, it follows that the phase of u varies in the interval [−π/3, 0].
Namely, it reaches its highest value of φ = 0 at the left boundary of the fundamental
domain, Re τ = −1/2. Its lowest value corresponds to the maximum value of the argument
of the arctangent, attained at the arc |τ |2 = 1, for which φ = − arctan

√
3 = −π/3.

Following the procedure described in section 2.3, one can obtain the u-expansions of
modular forms, such as that of η =

√
1− u η̃, which can be extracted from eq. (2.16). For

j, G̃2 and G̃4, having defined G̃2 and G̃4 via

G2(u) ≡ 2π√
3

(
(1− u) + (1− u)2 G̃2

)
,

G4(u) ≡ (1− u)4 G̃4(u) ,
(C.5)

we find

j(u) ' −237698u3 − 1.17505× 107 u6 − 2.78879× 108 u9 +O(u12) ,

G̃2(u) ' 4.29865u2 + 14.7827u5 + 18.155977u8 +O(u11) ,

G̃4(u) ' 22.6272u+ 243.166u4 + 716.769u7 +O(u10) .

(C.6)

Note that, while both j and η̃ are invariant under γ = ST , one can check that G̃2
ST−−→ ω G̃2

and G̃4
ST−−→ ω2 G̃4. Recalling that u ST−−→ ω2 u and j(ω) = 0, the peculiar structure in

powers of u of eq. (C.6) follows.

– 21 –



J
H
E
P
0
3
(
2
0
2
2
)
1
4
9

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] F. Feruglio, Pieces of the Flavour Puzzle, Eur. Phys. J. C 75 (2015) 373
[arXiv:1503.04071] [INSPIRE].

[2] K. Nakamura and S.T. Petcov, Neutrino Masses, Mixing, and Oscillations, in Particle
Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001
[INSPIRE].

[3] Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos, Phys.
Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

[4] F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire . . .: Guido
Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi eds., World Scientific, Singapore (2019),
pg. 227 [arXiv:1706.08749] [INSPIRE].

[5] T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups,
Phys. Rev. D 98 (2018) 016004 [arXiv:1803.10391] [INSPIRE].

[6] J.T. Penedo and S.T. Petcov, Lepton Masses and Mixing from Modular S4 Symmetry, Nucl.
Phys. B 939 (2019) 292 [arXiv:1806.11040] [INSPIRE].

[7] J.C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost
Phys. 5 (2018) 042 [arXiv:1807.01125] [INSPIRE].

[8] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Finite Modular Groups and Lepton
Mixing, Nucl. Phys. B 858 (2012) 437 [arXiv:1112.1340] [INSPIRE].

[9] G. Altarelli and F. Feruglio, Discrete Flavor Symmetries and Models of Neutrino Mixing,
Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

[10] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Non-Abelian
Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1
[arXiv:1003.3552] [INSPIRE].

[11] S.F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, Neutrino Mass and Mixing:
from Theory to Experiment, New J. Phys. 16 (2014) 045018 [arXiv:1402.4271] [INSPIRE].

[12] M. Tanimoto, Neutrinos and flavor symmetries, AIP Conf. Proc. 1666 (2015) 120002
[INSPIRE].

[13] S.T. Petcov, Discrete Flavour Symmetries, Neutrino Mixing and Leptonic CP-violation, Eur.
Phys. J. C 78 (2018) 709 [arXiv:1711.10806] [INSPIRE].

[14] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Generalised CP Symmetry in
Modular-Invariant Models of Flavour, JHEP 07 (2019) 165 [arXiv:1905.11970] [INSPIRE].

[15] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S4 models of lepton
masses and mixing, JHEP 04 (2019) 005 [arXiv:1811.04933] [INSPIRE].

[16] P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular
A4 Invariance with Residual Symmetries, Phys. Lett. B 793 (2019) 247 [arXiv:1812.11289]
[INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjc/s10052-015-3576-5
https://arxiv.org/abs/1503.04071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1503.04071
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD98%2C030001%22
https://doi.org/10.1103/PhysRevLett.81.1562
https://doi.org/10.1103/PhysRevLett.81.1562
https://arxiv.org/abs/hep-ex/9807003
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ex%2F9807003
https://doi.org/10.1142/9789813238053_0012
https://arxiv.org/abs/1706.08749
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.08749
https://doi.org/10.1103/PhysRevD.98.016004
https://arxiv.org/abs/1803.10391
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.10391
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://arxiv.org/abs/1806.11040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.11040
https://doi.org/10.21468/SciPostPhys.5.5.042
https://doi.org/10.21468/SciPostPhys.5.5.042
https://arxiv.org/abs/1807.01125
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.01125
https://doi.org/10.1016/j.nuclphysb.2012.01.017
https://arxiv.org/abs/1112.1340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.1340
https://doi.org/10.1103/RevModPhys.82.2701
https://arxiv.org/abs/1002.0211
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1002.0211
https://doi.org/10.1143/PTPS.183.1
https://arxiv.org/abs/1003.3552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.3552
https://doi.org/10.1088/1367-2630/16/4/045018
https://arxiv.org/abs/1402.4271
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.4271
https://doi.org/10.1063/1.4915578
https://inspirehep.net/search?p=find+J%20%22AIP%20Conf.Proc.%2C1666%2C120002%22
https://doi.org/10.1140/epjc/s10052-018-6158-5
https://doi.org/10.1140/epjc/s10052-018-6158-5
https://arxiv.org/abs/1711.10806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.10806
https://doi.org/10.1007/JHEP07(2019)165
https://arxiv.org/abs/1905.11970
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.11970
https://doi.org/10.1007/JHEP04(2019)005
https://arxiv.org/abs/1811.04933
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.04933
https://doi.org/10.1016/j.physletb.2019.04.043
https://arxiv.org/abs/1812.11289
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11289


J
H
E
P
0
3
(
2
0
2
2
)
1
4
9

[17] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A5 symmetry for flavour
model building, JHEP 04 (2019) 174 [arXiv:1812.02158] [INSPIRE].

[18] H. Okada and M. Tanimoto, Spontaneous CP-violation by modulus τ in A4 model of lepton
flavors, JHEP 03 (2021) 010 [arXiv:2012.01688] [INSPIRE].

[19] P.P. Novichkov, J.T. Penedo and S.T. Petcov, Double cover of modular S4 for flavour model
building, Nucl. Phys. B 963 (2021) 115301 [arXiv:2006.03058] [INSPIRE].

[20] P.P. Novichkov, J.T. Penedo and S.T. Petcov, Fermion mass hierarchies, large lepton mixing
and residual modular symmetries, JHEP 04 (2021) 206 [arXiv:2102.07488] [INSPIRE].

[21] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, New A4 lepton flavor
model from S4 modular symmetry, JHEP 02 (2020) 097 [arXiv:1907.09141] [INSPIRE].

[22] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, A4 lepton flavor
model and modulus stabilization from S4 modular symmetry, Phys. Rev. D 100 (2019)
115045 [Erratum ibid. 101 (2020) 039904] [arXiv:1909.05139] [INSPIRE].

[23] G.-J. Ding, S.F. King, X.-G. Liu and J.-N. Lu, Modular S4 and A4 symmetries and their
fixed points: new predictive examples of lepton mixing, JHEP 12 (2019) 030
[arXiv:1910.03460] [INSPIRE].

[24] G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A5 modular symmetry,
Phys. Rev. D 100 (2019) 115005 [arXiv:1903.12588] [INSPIRE].

[25] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular
A4 invariance and neutrino mixing, JHEP 11 (2018) 196 [arXiv:1808.03012] [INSPIRE].

[26] G.-J. Ding, S.F. King and X.-G. Liu, Modular A4 symmetry models of neutrinos and charged
leptons, JHEP 09 (2019) 074 [arXiv:1907.11714] [INSPIRE].

[27] T. Kobayashi, T. Nomura and T. Shimomura, Type II seesaw models with modular A4
symmetry, Phys. Rev. D 102 (2020) 035019 [arXiv:1912.00637] [INSPIRE].

[28] H. Okada and Y. Orikasa, Modular S3 symmetric radiative seesaw model, Phys. Rev. D 100
(2019) 115037 [arXiv:1907.04716] [INSPIRE].

[29] G.-J. Ding, S.F. King, C.-C. Li and Y.-L. Zhou, Modular Invariant Models of Leptons at
Level 7, JHEP 08 (2020) 164 [arXiv:2004.12662] [INSPIRE].

[30] H. Okada and M. Tanimoto, CP violation of quarks in A4 modular invariance, Phys. Lett. B
791 (2019) 54 [arXiv:1812.09677] [INSPIRE].

[31] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, Finite
modular subgroups for fermion mass matrices and baryon/lepton number violation, Phys.
Lett. B 794 (2019) 114 [arXiv:1812.11072] [INSPIRE].

[32] H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A4 modular
invariance, Eur. Phys. J. C 81 (2021) 52 [arXiv:1905.13421] [INSPIRE].

[33] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular
S3-invariant flavor model in SU(5) grand unified theory, PTEP 2020 (2020) 053B05
[arXiv:1906.10341] [INSPIRE].

[34] J.-N. Lu, X.-G. Liu and G.-J. Ding, Modular symmetry origin of texture zeros and quark
lepton unification, Phys. Rev. D 101 (2020) 115020 [arXiv:1912.07573] [INSPIRE].

[35] H. Okada and M. Tanimoto, Quark and lepton flavors with common modulus τ in A4
modular symmetry, arXiv:2005.00775 [INSPIRE].

– 23 –

https://doi.org/10.1007/JHEP04(2019)174
https://arxiv.org/abs/1812.02158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.02158
https://doi.org/10.1007/JHEP03(2021)010
https://arxiv.org/abs/2012.01688
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.01688
https://doi.org/10.1016/j.nuclphysb.2020.115301
https://arxiv.org/abs/2006.03058
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03058
https://doi.org/10.1007/JHEP04(2021)206
https://arxiv.org/abs/2102.07488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.07488
https://doi.org/10.1007/JHEP02(2020)097
https://arxiv.org/abs/1907.09141
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.09141
https://doi.org/10.1103/PhysRevD.100.115045
https://doi.org/10.1103/PhysRevD.100.115045
https://arxiv.org/abs/1909.05139
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.05139
https://doi.org/10.1007/JHEP12(2019)030
https://arxiv.org/abs/1910.03460
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03460
https://doi.org/10.1103/PhysRevD.100.115005
https://arxiv.org/abs/1903.12588
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.12588
https://doi.org/10.1007/JHEP11(2018)196
https://arxiv.org/abs/1808.03012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.03012
https://doi.org/10.1007/JHEP09(2019)074
https://arxiv.org/abs/1907.11714
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.11714
https://doi.org/10.1103/PhysRevD.102.035019
https://arxiv.org/abs/1912.00637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.00637
https://doi.org/10.1103/PhysRevD.100.115037
https://doi.org/10.1103/PhysRevD.100.115037
https://arxiv.org/abs/1907.04716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.04716
https://doi.org/10.1007/JHEP08(2020)164
https://arxiv.org/abs/2004.12662
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.12662
https://doi.org/10.1016/j.physletb.2019.02.028
https://doi.org/10.1016/j.physletb.2019.02.028
https://arxiv.org/abs/1812.09677
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.09677
https://doi.org/10.1016/j.physletb.2019.05.034
https://doi.org/10.1016/j.physletb.2019.05.034
https://arxiv.org/abs/1812.11072
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11072
https://doi.org/10.1140/epjc/s10052-021-08845-y
https://arxiv.org/abs/1905.13421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.13421
https://doi.org/10.1093/ptep/ptaa055
https://arxiv.org/abs/1906.10341
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10341
https://doi.org/10.1103/PhysRevD.101.115020
https://arxiv.org/abs/1912.07573
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.07573
https://arxiv.org/abs/2005.00775
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.00775


J
H
E
P
0
3
(
2
0
2
2
)
1
4
9

[36] P. Chen, G.-J. Ding and S.F. King, SU(5) GUTs with A4 modular symmetry, JHEP 04
(2021) 239 [arXiv:2101.12724] [INSPIRE].

[37] I. de Medeiros Varzielas, S.F. King and Y.-L. Zhou, Multiple modular symmetries as the
origin of flavor, Phys. Rev. D 101 (2020) 055033 [arXiv:1906.02208] [INSPIRE].

[38] S.F. King and Y.-L. Zhou, Trimaximal TM1 mixing with two modular S4 groups, Phys. Rev.
D 101 (2020) 015001 [arXiv:1908.02770] [INSPIRE].

[39] G.-J. Ding, F. Feruglio and X.-G. Liu, Automorphic Forms and Fermion Masses, JHEP 01
(2021) 037 [arXiv:2010.07952] [INSPIRE].

[40] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T.H. Tatsuishi and H. Uchida, CP
violation in modular invariant flavor models, Phys. Rev. D 101 (2020) 055046
[arXiv:1910.11553] [INSPIRE].

[41] C.-Y. Yao, J.-N. Lu and G.-J. Ding, Modular Invariant A4 Models for Quarks and Leptons
with Generalized CP Symmetry, JHEP 05 (2021) 102 [arXiv:2012.13390] [INSPIRE].

[42] X. Wang and S. Zhou, Explicit Perturbations to the Stabilizer τ = i of Modular A′
5 Symmetry

and Leptonic CP-violation, JHEP 07 (2021) 093 [arXiv:2102.04358] [INSPIRE].

[43] G.-J. Ding, F. Feruglio and X.-G. Liu, CP symmetry and symplectic modular invariance,
SciPost Phys. 10 (2021) 133 [arXiv:2102.06716] [INSPIRE].

[44] H.P. Nilles, S. Ramos-Sánchez and P.K.S. Vaudrevange, Eclectic Flavor Groups, JHEP 02
(2020) 045 [arXiv:2001.01736] [INSPIRE].

[45] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, Modular symmetry by
orbifolding magnetized T 2 × T 2: realization of double cover of ΓN , JHEP 11 (2020) 101
[arXiv:2007.06188] [INSPIRE].

[46] X.-G. Liu and G.-J. Ding, Neutrino Masses and Mixing from Double Covering of Finite
Modular Groups, JHEP 08 (2019) 134 [arXiv:1907.01488] [INSPIRE].

[47] X.-G. Liu, C.-Y. Yao and G.-J. Ding, Modular invariant quark and lepton models in double
covering of S4 modular group, Phys. Rev. D 103 (2021) 056013 [arXiv:2006.10722]
[INSPIRE].

[48] X. Wang, B. Yu and S. Zhou, Double covering of the modular A5 group and lepton flavor
mixing in the minimal seesaw model, Phys. Rev. D 103 (2021) 076005 [arXiv:2010.10159]
[INSPIRE].

[49] C.-Y. Yao, X.-G. Liu and G.-J. Ding, Fermion masses and mixing from the double cover and
metaplectic cover of the A5 modular group, Phys. Rev. D 103 (2021) 095013
[arXiv:2011.03501] [INSPIRE].

[50] X.-G. Liu and G.-J. Ding, Modular flavor symmetry and vector-valued modular forms,
arXiv:2112.14761 [INSPIRE].

[51] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T.H. Tatsuishi, Modular symmetry
and non-Abelian discrete flavor symmetries in string compactification, Phys. Rev. D 97
(2018) 116002 [arXiv:1804.06644] [INSPIRE].

[52] T. Kobayashi and H. Otsuka, Classification of discrete modular symmetries in Type IIB flux
vacua, Phys. Rev. D 101 (2020) 106017 [arXiv:2001.07972] [INSPIRE].

– 24 –

https://doi.org/10.1007/JHEP04(2021)239
https://doi.org/10.1007/JHEP04(2021)239
https://arxiv.org/abs/2101.12724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.12724
https://doi.org/10.1103/PhysRevD.101.055033
https://arxiv.org/abs/1906.02208
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02208
https://doi.org/10.1103/PhysRevD.101.015001
https://doi.org/10.1103/PhysRevD.101.015001
https://arxiv.org/abs/1908.02770
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.02770
https://doi.org/10.1007/JHEP01(2021)037
https://doi.org/10.1007/JHEP01(2021)037
https://arxiv.org/abs/2010.07952
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.07952
https://doi.org/10.1103/PhysRevD.101.055046
https://arxiv.org/abs/1910.11553
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.11553
https://doi.org/10.1007/JHEP05(2021)102
https://arxiv.org/abs/2012.13390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.13390
https://doi.org/10.1007/JHEP07(2021)093
https://arxiv.org/abs/2102.04358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.04358
https://doi.org/10.21468/SciPostPhys.10.6.133
https://arxiv.org/abs/2102.06716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.06716
https://doi.org/10.1007/JHEP02(2020)045
https://doi.org/10.1007/JHEP02(2020)045
https://arxiv.org/abs/2001.01736
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.01736
https://doi.org/10.1007/JHEP11(2020)101
https://arxiv.org/abs/2007.06188
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.06188
https://doi.org/10.1007/JHEP08(2019)134
https://arxiv.org/abs/1907.01488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.01488
https://doi.org/10.1103/PhysRevD.103.056013
https://arxiv.org/abs/2006.10722
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.10722
https://doi.org/10.1103/PhysRevD.103.076005
https://arxiv.org/abs/2010.10159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.10159
https://doi.org/10.1103/PhysRevD.103.095013
https://arxiv.org/abs/2011.03501
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.03501
https://arxiv.org/abs/2112.14761
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.14761
https://doi.org/10.1103/PhysRevD.97.116002
https://doi.org/10.1103/PhysRevD.97.116002
https://arxiv.org/abs/1804.06644
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.06644
https://doi.org/10.1103/PhysRevD.101.106017
https://arxiv.org/abs/2001.07972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.07972


J
H
E
P
0
3
(
2
0
2
2
)
1
4
9

[53] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Loop Fayet-Iliopoulos terms in T 2/Z2
models: Instability and moduli stabilization, Phys. Rev. D 102 (2020) 045005
[arXiv:2003.03512] [INSPIRE].

[54] H. Ohki, S. Uemura and R. Watanabe, Modular flavor symmetry on a magnetized torus,
Phys. Rev. D 102 (2020) 085008 [arXiv:2003.04174] [INSPIRE].

[55] H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, Lessons from eclectic flavor
symmetries, Nucl. Phys. B 957 (2020) 115098 [arXiv:2004.05200] [INSPIRE].

[56] H.P. Nilles, S. Ramos–Sánchez and P.K.S. Vaudrevange, Eclectic flavor scheme from
ten-dimensional string theory – I. Basic results, Phys. Lett. B 808 (2020) 135615
[arXiv:2006.03059] [INSPIRE].

[57] K. Ishiguro, T. Kobayashi and H. Otsuka, Spontaneous CP-violation and symplectic modular
symmetry in Calabi-Yau compactifications, Nucl. Phys. B 973 (2021) 115598
[arXiv:2010.10782] [INSPIRE].

[58] K. Ishiguro, T. Kobayashi and H. Otsuka, Landscape of Modular Symmetric Flavor Models,
JHEP 03 (2021) 161 [arXiv:2011.09154] [INSPIRE].

[59] A. Baur, M. Kade, H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, Siegel modular
flavor group and CP from string theory, Phys. Lett. B 816 (2021) 136176
[arXiv:2012.09586] [INSPIRE].

[60] Y. Almumin, M.-C. Chen, V. Knapp-Pérez, S. Ramos-Sánchez, M. Ratz and S. Shukla,
Metaplectic Flavor Symmetries from Magnetized Tori, JHEP 05 (2021) 078
[arXiv:2102.11286] [INSPIRE].

[61] A. Baur, H.P. Nilles, S. Ramos-Sanchez, A. Trautner and P.K.S. Vaudrevange, Top-Down
Anatomy of Flavor Symmetry Breakdown, arXiv:2112.06940 [INSPIRE].

[62] H. Okada and M. Tanimoto, Modular invariant flavor model of A4 and hierarchical structures
at nearby fixed points, Phys. Rev. D 103 (2021) 015005 [arXiv:2009.14242] [INSPIRE].

[63] D. Bailin, G.V. Kraniotis and A. Love, CP violation by soft supersymmetry breaking terms in
orbifold compactifications, Phys. Lett. B 414 (1997) 269 [hep-th/9705244] [INSPIRE].

[64] S. Ferrara, D. Lüst, A.D. Shapere and S. Theisen, Modular Invariance in Supersymmetric
Field Theories, Phys. Lett. B 225 (1989) 363 [INSPIRE].

[65] S. Ferrara, .D. Lüst and S. Theisen, Target Space Modular Invariance and Low-Energy
Couplings in Orbifold Compactifications, Phys. Lett. B 233 (1989) 147 [INSPIRE].

[66] M.-C. Chen, S. Ramos-Sánchez and M. Ratz, A note on the predictions of models with
modular flavor symmetries, Phys. Lett. B 801 (2020) 135153 [arXiv:1909.06910] [INSPIRE].

[67] M.-C. Chen, V. Knapp-Perez, M. Ramos-Hamud, S. Ramos-Sanchez, M. Ratz and S. Shukla,
Quasi-eclectic modular flavor symmetries, Phys. Lett. B 824 (2022) 136843
[arXiv:2108.02240] [INSPIRE].

[68] E. Gonzalo, L.E. Ibáñez and A.M. Uranga, Modular symmetries and the swampland
conjectures, JHEP 05 (2019) 105 [arXiv:1812.06520] [INSPIRE].

[69] M. Cvetič, A. Font, L.E. Ibáñez, D. Lüst and F. Quevedo, Target space duality,
supersymmetry breaking and the stability of classical string vacua, Nucl. Phys. B 361 (1991)
194 [INSPIRE].

– 25 –

https://doi.org/10.1103/PhysRevD.102.045005
https://arxiv.org/abs/2003.03512
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.03512
https://doi.org/10.1103/PhysRevD.102.085008
https://arxiv.org/abs/2003.04174
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.04174
https://doi.org/10.1016/j.nuclphysb.2020.115098
https://arxiv.org/abs/2004.05200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.05200
https://doi.org/10.1016/j.physletb.2020.135615
https://arxiv.org/abs/2006.03059
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.03059
https://doi.org/10.1016/j.nuclphysb.2021.115598
https://arxiv.org/abs/2010.10782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.10782
https://doi.org/10.1007/JHEP03(2021)161
https://arxiv.org/abs/2011.09154
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.09154
https://doi.org/10.1016/j.physletb.2021.136176
https://arxiv.org/abs/2012.09586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.09586
https://doi.org/10.1007/JHEP05(2021)078
https://arxiv.org/abs/2102.11286
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.11286
https://arxiv.org/abs/2112.06940
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.06940
https://doi.org/10.1103/PhysRevD.103.015005
https://arxiv.org/abs/2009.14242
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.14242
https://doi.org/10.1016/S0370-2693(97)01179-9
https://arxiv.org/abs/hep-th/9705244
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9705244
https://doi.org/10.1016/0370-2693(89)90583-2
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB225%2C363%22
https://doi.org/10.1016/0370-2693(89)90631-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB233%2C147%22
https://doi.org/10.1016/j.physletb.2019.135153
https://arxiv.org/abs/1909.06910
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.06910
https://doi.org/10.1016/j.physletb.2021.136843
https://arxiv.org/abs/2108.02240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.02240
https://doi.org/10.1007/JHEP05(2019)105
https://arxiv.org/abs/1812.06520
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.06520
https://doi.org/10.1016/0550-3213(91)90622-5
https://doi.org/10.1016/0550-3213(91)90622-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB361%2C194%22


J
H
E
P
0
3
(
2
0
2
2
)
1
4
9

[70] L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction to string
phenomenology, Cambridge University Press, Cambridge U.K. (2012).

[71] F. Feruglio, V. Gherardi, A. Romanino and A. Titov, Modular invariant dynamics and
fermion mass hierarchies around τ = i, JHEP 05 (2021) 242 [arXiv:2101.08718] [INSPIRE].

[72] B. Schoeneberg, Elliptic Modular Functions: An Introduction, Grundlehren der
mathematischen Wissenschaften, Springer, Heidelberg Germany (1974).

[73] T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Graduate Texts in
Mathematics, Springer, New York U.S.A. (1990).

– 26 –

https://doi.org/10.1007/JHEP05(2021)242
https://arxiv.org/abs/2101.08718
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.08718

	Introduction
	Framework
	Modular symmetry as a flavour symmetry
	Scalar potential
	q- and u-expansions

	Results
	Numerical analysis of minima for various m, n
	CP-violating minima of Vm,0

	Summary and conclusions
	Modular forms
	Rigid SUSY limit
	u-expansions

