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1 Introduction

Quantum gravity can be formulated as a consistent quantum field theory for the metric if a
fixed point for the flow of (generalized) couplings exists. If this fixed point is approached in
the extreme ultraviolet, the quantum field theory is complete in the sense that it can be
extrapolated to arbitrary short distances [1]. In short, one defines the microscopic theory
by such a fixed point. The relevant parameters for small deviations from the fixed point
correspond to the free parameters of the model, reflected by “renormalizable couplings”.
Their number is typically finite, such that the model is predictive. The fixed point can
be either a free theory — this is the case for asymptotic freedom. In contrast, the case of
non-vanishing interactions at the fixed point is called asymptotic safety [1–3]. See refs. [4–16]
for reviews. For asymptotic freedom the model is perturbatively renormalizable, while the
case of asymptotic safety corresponds to a non-perturbatively renormalizable theory unless
all dimensionless couplings at the fixed point are small.

For pure higher derivative gravity, based on terms quadratic in the curvature tensor
Rµν and the curvature scalar R,

S =
∫
d4x
√
g

[
−
(
C

2 + D

3

)
R2 +DRµνR

µν
]
. (1.1)
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Stelle has shown perturbative renormalizability for the couplings C−1 and D−1 [17]. (In
addition, the coefficient of a term linear in the curvature scalar and a cosmological constant
are renormalizable couplings.) The perturbative renormalization flow for the couplings C−1

and D−1 has been computed by Fradkin and Tseytlin [18–20], and reads

∂tC
−1 = 5

288π2C
−2 + 5

16π2D
−2 + 5

16π2C
−1D−1 , (1.2)

∂tD
−1 = − 133

160π2D
−2 . (1.3)

These equations show a fixed point with asymptotic freedom,

SFT : C−1
∗ = 0 , D−1

∗ = 0 , (1.4)

to which we refer as the SFT-fixed point.
Quantum corrections will lead to a quantum effective action Γ which involves additional

terms. In particular, a term linear in the curvature scalar is needed for any realistic theory
of gravity. Expanding up to fourth order in derivatives (and omitting the Gauss-Bonnet
topological invariant) a diffeomorphism invariant action for pure gravity takes the form

Γ =
∫
d4x
√
g

[
V −

M2
p

2 R−
(
C

2 + D

3

)
R2 +DRµνR

µν

]
, (1.5)

where the (reduced) Planck mass Mp and the cosmological constant V are additional
relevant parameters beyond C−1 and D−1. At the fixed point the role of V and M2

p is
negligible if these couplings are finite. Flowing away from the fixed point, however, C and D
become finite. In this case M2

p is no longer negligible. For both signs of M2
p and arbitrary V

the effective action (1.5) leads to tachyons and/or ghosts, such that Minkowski space is no
longer a stable approximate solution of the field equations for V �M4

p . As a consequence,
the effective action (1.5) seems not to be compatible with observation. A priori, it is not
known if this is a shortcoming of the approximation to the effective action (truncation) or a
basic flaw of quantum gravity based on the SFT-fixed point. Indeed, ghosts and tachyons
can be artifacts of insufficient truncations [21, 22].

There has been recently an intense discussion of perturbative quantum gravity based
on the SFT-fixed point, dubbed “agravity” [23, 24]. See also refs. [25–27]. The conclusions
are severely limited, however, by the simple fact that the couplings C−1 and D−1 flow
outside the perturbative domain as the renormalization scale is lowered. For a judgement
of the fate of higher derivative gravity it seems compulsory to understand the flow of
couplings in the non-perturbative domain. Only this can give an answer to the question
of stability for the effective action. Non-perturbative flow equations based on functional
renormalization [2, 28, 29] seem the appropriate tool for such an investigation.

A simple “Einstein-Hilbert truncation” of the flowing effective action or average action
Γk omits the quartic terms ∼ C, D in eq. (1.5). One finds a fixed point in the flow of the
dimensionless couplings w = M2

p/2k2 and u = V/k4, often called Reuter fixed point and
named here R-fixed point. The R-fixed point is associated to asymptotic safety and the
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gravitational interactions do not vanish at the fixed point. Its existence corresponds to non-
perturbative renormalizability of quantum gravity as a quantum field theory for the metric.
The R-fixed point remains present for large classes of extended truncations [30–73]. It is
also present if matter couples to gravity [74–96], as for the minimal standard model coupled
to gravity. The non-perturbative character of the fixed point implies that the number of
relevant parameters is no longer determined by the canonical dimension of couplings. This
leads to an enhanced predictivity, as demonstrated by the successful prediction of the mass
of the Higgs boson [97]. It is well possible that other parameters of the standard model
may become predictable [98–117].

In the present paper we ask what is the relation between the SFT- and R-fixed points.
We will use a truncation for which both fixed points are found. This opens the terrain
for many interesting questions. Is the SFT-fixed point viable for a definition of quantum
gravity? Is there a critical trajectory from the SFT-fixed point to the R-fixed point? What
are the implications for the predictivity of quantum gravity coupled to matter? The present
paper will not yet fully answer all these questions. It focusses on the derivation of the
relevant flow equations for higher derivative gravity and provides for partial answers to
these questions within the given truncation.

The minimum truncation needed for these questions takes for the effective average
action the from (1.5), with four running couplings C, D, M2

p and V depending on the
renormalization scale k. Deriving these flow equations within functional renormalization
is a technical challenge. There has been previous work for reproducing the perturbative
β-functions for C and D [18–20, 118–123], circumventing the technical issues by a rather
special field-dependent gauge [55] or using directly expansions in small C−1 and D−1 [30, 36].
We aim here for an understanding of the full non-perturbative flow equations for arbitrary
values of the couplings C, D, M2

p and V . This is needed in order to see both the SFT-
and R-fixed points. The use of the gauge invariant flow equation [124–126] constitutes an
important advantage, since the contributions from the physical fluctuations in the metric
can be separated from the universal “measure contribution” of the gauge fluctuations. Still,
a major technical issue is related to mode mixing. For particular classes of metrics, as
Einstein spaces, the transverse-traceless (TT) fluctuations (t-fluctuations) cannot mix with
the physical scalar degree in the metric (σ-fluctuations) due to symmetry. Deriving flow
equations for Einstein spaces permits a rather straightforward application of known heat
kernel expansions. One can, however, only obtain a flow equation for the linear combination
D+ 6C in this way. The required flow equations for C and D separately require geometries
beyond Einstein spaces for which the t- and σ-modes mix.

We display the more technical parts in various appendices and concentrate in the main
part on summaries of results and a discussion of crucial features for the derivation of the
flow equations. In section 2 we present the setup, the characteristic features of the flow
equations and the fixed points. Section 3 summarizes the heat kernel method and the flow
contributions from matter fluctuations. In section 4 we exhibit our central result on the
flow contributions from the metric fluctuations. Section 5 discusses asymptotic safety for
the R-fixed point. In section 6 we address the infrared region and conclusions are presented
in section 7.
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2 Summary: setup, flow equations and fixed point structure

In this section, we summarize our setup, the resulting flow equations and the corresponding
fixed points or scaling solutions. The degrees of freedom are the metric and scalar fields. For
the effective action we choose a truncation with five coupling functions U(ρ), F (ρ), C(ρ),
D(ρ) and E(ρ), where ρ is an invariant formed from the scalar fields without derivatives. The
function U(ρ) constitutes the effective potential for scalar fields, F (ρ) is a field-dependent
effective squared Planck mass, and C(ρ), D(ρ), E(ρ) are coupling functions multiplying
the gravitational invariants involving four derivatives of the metric. For a setting without
a scalar field background one simply omits the dependence of U , F , C, D and E on ρ.
Besides the metric and scalar fields we also include the fluctuations of fermions and gauge
bosons. For the matter fields (scalars, fermions, gauge bosons) we do not compute the flow
of derivative terms (kinetic terms), or interaction terms as Yukawa couplings.

2.1 Effective action for gravity

Our ansatz for the truncated effective average action consists of a gravity part and a matter
part

Γk = Γgravity
k + Γmatter

k . (2.1)

For the gravity part, we consider the following truncated effective action,

Γgravity
k =

∫
d4x
√
g

[
U(ρ)− F (ρ)

2 R− C(ρ)
2 R2 + D(ρ)

2 CµνρσC
µνρσ + L̃GB

]
+ Γgf + Γgh ,

(2.2)
where R is the curvature scalar, Cµνρσ is the Weyl tensor whose squared form is given by
CµνρσC

µνρσ = RµνρσR
µνρσ−2RµνRµν+R2/3. For the computation of the universal measure

contribution to the gauge invariant flow equation we use the equivalent physical gauge
fixing for which Γgf and Γgh are the gauge fixing and the ghost action for diffeomorphisms.
These are given in appendix A, eqs. (A.5) and (A.6). The last term in the square brackets
in eq. (2.2) is the Gauss-Bonnet term which reads

L̃GB = E(ρ)
(
R2 − 4RµνRµν +RµνρσR

µνρσ
)

= E(ρ)G4 . (2.3)

For constant E this is a topological invariant, while for a dynamical scalar field it contributes
to the field equations. The effective action (2.2) contains the most general diffeomorphisms
invariant terms for the metric with up to four derivatives. In appendix B.1 we present the
same action in terms of different linear combinations of invariants.

The coefficients U(ρ), F (ρ), C(ρ), D(ρ) and E(ρ) are functions of real singlet-fields ϕ,
ρ = ϕ2, N -component real fields φa, ρ = φaφa/2, or complex scalar fields ϕa, ρ = ϕ†aϕa.
One can expand these coefficient functions into polynomials of ρ:

U(ρ) = V +m2ρ+ λ

2ρ
2 + · · · , (2.4)

F (ρ) = M2
p + ξρ+ · · · , (2.5)

C(ρ) = C0 + C1ρ+ · · · , (2.6)
D(ρ) = D0 +D1ρ+ · · · , (2.7)
E(ρ) = E0 + E1ρ+ · · · . (2.8)
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Here V is the cosmological constant, m2 is the scalar mass parameter and λ is the quartic
scalar coupling. In the gravitational sector M2

p is the Planck mass squared for ρ = 0 and ξ
is the non-minimal coupling between the scalar field and the curvature scalar. The latter
plays a crucial role for the realization of Higgs inflation [127–131].

The matter part Γmatter
k consists of canonical kinetic terms for all matter fields. We

also include gauge and Yukawa couplings, but set the effects of interactions and masses to
zero in many parts of this work. We consider NS scalar bosons, NV vector bosons and NF

Weyl fermions. The explicit form of the action for the matter part is given in section 3.

2.2 Flow equations

The coupling functions U , F , C, D, E depend on the renormalization scale k. Their k-
dependence is determined by a truncation of the exact functional flow equation [28, 29, 132–
135]. The result of our computation can be written in the form

∂tΓk =
[
NSπ

(S)
k +NV

(
π

(V )
k − δ(V )

k

)
+NFπ

(F )
k

]
+ π

(t,σ)
k − δ(g)

k . (2.9)

Here the last two terms are contributions from metric fluctuations, where π(t,σ) denotes
contributions from the TT tensor (t-mode) and the physical scalar metric fluctuation
(σ-mode), while contributions from the gauge modes (the longitudinal modes in metric
fluctuations and the ghost fields) are included in δ(g). We employ dimensionless quantities

u = U

k4 , w = F

2k2 , ρ̃ = ρ

k2 . (2.10)

The flow equations at fixed ρ̃ read for ∂t = k∂k

∂tu = βU = 2ρ̃ ∂ρ̃u− 4u+ 1
32π2 (NS + 2NV − 2NF +MU ) , (2.11)

∂tw = βF = 2ρ̃ ∂ρ̃w − 2w − 1
96π2 (NS − 4NV +NF +MF ) , (2.12)

∂tC = βC = 2ρ̃ ∂ρ̃C −
1

576π2 (NS +MC) , (2.13)

∂tD = βD = 2ρ̃ ∂ρ̃D + 1
960π2 (NS + 12NV + 3NF +MD) , (2.14)

∂tE = βE = 2ρ̃ ∂ρ̃E −
1

5760π2

(
NS + 62NV + 11

2 NF +ME

)
. (2.15)

Here Mi denote the contributions from metric fluctuations. Their explicit form is displayed
in section 4.2.

The structure of the gravitational contributions to the flow equations can be understood
by writing them in the form

MU = 20
3 L

(t)
U (m̃2

t ) + 8
5L

(σ)
U (m̃2

σ)− 13
2 `

4
0(0) , (2.16)

MF = −125
6 L

(t)
F (m̃2

t ) + 193
84 L

(σ)
F (m̃2

σ)− 29
4 `

2
0(0) , (2.17)

MC = 20L(t)
C (m̃2

t ) + 9
2L

(σ)
C (m̃2

σ)− L(t−σ)
mix (m̃2

t , m̃
2
σ)− 29

2 `
0
0(0) , (2.18)

MD = 820L(t)
D (m̃2

t )−
51
2 L

(σ)
D (m̃2

σ)− 10L(t−σ)
mix (m̃2

t , m̃
2
σ) + 7

2`
0
0(0) , (2.19)

ME = 1660L(t)
E (m̃2

t )−
161
2 L

(σ)
E (m̃2

σ)− 30L(t−σ)
mix (m̃2

t , m̃
2
σ)− 23

2 `
0
0(0) . (2.20)
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The interpolating functions L(t)
i (m̃2

t ), L
(σ)
i (m̃2

σ) and L(t−σ)
mix (m̃2

t , m̃
2
σ) represent contributions

from the t-mode, the σ-mode and the t− σ mixing, respectively. They are functions of the
dimensionless mass terms for the t- and σ-modes

m̃2
t = D

w
− u

w
= d− v , m̃2

σ = 3C
w
− u

4w = 3c− v

4 , (2.21)

where

v = u

w
, c = C

w
, d = D

w
. (2.22)

The interpolating functions are linear combinations of the “threshold functions”, with
x = m̃2

t or m̃2
σ,

`2np (x) = 1
n!

1
(1 + x)p+1 , (2.23)

whose explicit form can be read off from section 4.2, eqs. (4.14)–(4.29). The explicit forms
of L(t)

i , L(σ)
i and Lt−σi are given in eqs. (4.14)–(4.32). The threshold functions can account

for the decoupling of heavy modes for which x� 1. The functions L(t)
i (m̃2

t ), L
(σ)
i (m̃2

σ) and
L

(t−σ)
mix (m̃2

t , m̃
2
σ) have poles at m̃2

t = −1 and m̃2
σ = −1. The validity of the flow equations is

restricted to m̃2
t > −1, while the issue for m̃2

σ is more complex.
For Einstein spaces, one has Rµν = (R/4)gµν such that CµνρσCµνρσ = RµνρσR

µνρσ −
R2/6 and G4 = RµνρσR

µνρσ. For these geometries one has only two independent invariants

−C2 R
2 + D

2 CµνρσC
µνρσ + EG4 = −1

2

(
C + D

6

)
R2 +

(
D

2 + E

)
RµνρσR

µνρσ . (2.24)

In turn, an evaluation of the flow equation on Einstein spaces, which is done in most work
in the literature, only yields flow equations for D + 6C and D + 2E. One finds that for
these linear combinations, the mixing terms L(t−σ)

mix (m̃2
t , m̃

2
σ) cancel out. A computation of

separate flow equations for C and D is not possible in this way. For their extraction more
general geometries have to be included, and the mixing term plays a role.

The coupling functions depend on two variables ρ̃ and k. We will restrict the discussion
here to the case where either the k-dependence or the ρ̃-dependence is neglected, such
that the coupling functions depend either on ρ̃ or on k. The k-independent functions u(ρ̃),
w(ρ̃) etc. define a “scaling solution”, that generalizes the notion of a fixed point for a finite
number of couplings. On the other hand, we may evaluate the flow with k at ρ̃ = 0, such
that the terms ∼ ρ̃ ∂ρ̃u etc. can be omitted in eqs. (2.11)–(2.15). In this case, which we
discuss in the following, one is left with the β-functions for five couplings. Fixed points
correspond to zeros of these β-functions. We emphasize that the flow with k at ρ̃ = 0
can be directly mapped to the ρ̃-dependence of the scaling solution. One simply replaces
∂t by −2ρ̃ ∂ρ̃. Thus the flow away from fixed points at ρ̃ = 0 translates directly to the
ρ̃-dependence of the scaling solution. Keeping this connection in mind, we omit in the
following the term ∼ ρ̃ ∂ρ̃ etc. in the flow equations. Then the coupling E does not appear
in the flow equations for the other couplings, as appropriate for a topological invariant.

– 6 –
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2.3 Asymptotic freedom

The flow equations (2.11)–(2.15) admit the SFT-fixed point

C−1
∗ = 0 , D−1

∗ = 0 . (2.25)

Since w remains finite at the fixed point, this also implies

c−1
∗ = 0 , d−1

∗ = 0 . (2.26)

Finite values of w and v play no role precisely at the fixed point since their relative
contribution to m̃2

t and m̃2
σ vanishes. Close to the SFT-fixed point we can evaluate the

flow equations in the limit w → 0, u→ 0 or m̃2
t →∞, m̃2

σ → ±∞. In this limit, the beta
functions for the higher derivative couplings in eqs. (2.18)–(2.20) read

∂tC = − 1
576π2NS −

5
288π2 −

5
16π2

(
C2

D2 + C

D

)
, (2.27)

∂tD = 1
960π2 (NS + 12NV + 3NF ) + 133

160π2 , (2.28)

∂tE = − 1
5760π2

(
NS + 62NV + 11

2 NF

)
− 49

180π2 . (2.29)

These results agree with the perturbative computation [123] in higher derivative gravity.
They are universal, i.e. independent of regularization and gauge parameter choice. One
infers the flow equation for the perturbative coupling D−1

∂tD
−1 = − 1

960π2 (798 +NS + 12NV + 3NF )D−2 . (2.30)

For vanishing matter effects (NS = NV = NF = 0), eq. (1.3) is reproduced. For arbitrary
numbers of matter particles this is of the asymptotically free form with positive D−1

increasing as k is lowered. There is unavoidably a range where D−1 becomes large and the
perturbative result is no longer valid.

For the flow equation for C−1 one has

∂tC
−1 = 1

576π2 (10 +NS)C−2 + 5
16π2D

−2 + 5
16π2C

−1D−1 . (2.31)

Setting NS = 0 yields eq. (1.2). For C, D ≥ 0 all terms are positive, driving C−1 towards
smaller values as k-decreases while C increases according to eq. (2.27). In the range of
negative C−1 the ratio

ω = 3C
2D (2.32)

has two fixed points according to the flow equation

∂tω = − 1
16π2D

[10 +NS

24 + 1098 +NS + 12NV + 3NF

60 ω + 10
3 ω

2
]
. (2.33)
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Both fixed points occur for negative ω and therefore negative C for positive D. For pure
gravity the numerical values are

ω
(IR)
∗ = −5.467 , ω

(UV)
∗ = −0.023 . (2.34)

At the fixed point the ratio ω is not determined since the r.h.s. of eq. (2.33) vanishes
∼ D−1 for arbitrary values of ω. For the flow trajectories away from the fixed point ω
increases with decreasing k for all trajectories with “initial values” ω > ω

(UV)
∗ close to the

fixed point. For initial values ω < ω
(UV)
∗ the trajectories are attracted towards ω(IR)

∗ . We
conclude that the fixed points (2.34) concern the behavior of trajectories away from the
fixed point, but do not fix the ratio C/D at the fixed point. Starting close to the fixed point
with C < 0, D > 0 seems to be rather natural since in this case the Euclidean action (2.1)
is bounded from below. We conclude that both C−1 and D−1 are independent (marginally)
relevant parameters. For the Gauss-Bonnet coupling one has at the fixed point

θ∗ = −E∗
D∗

= 0.3274 . (2.35)

These values agree with that found in ref. [123].
At the fixed point the ratios M2

p/k
2 and V/k4 take finite non-zero values, given for

pure gravity by

u∗ = MU

128π2 , w∗ = − MF

192π2 , v∗ = −3MU

2MF
. (2.36)

At the fixed point one finds

MU = 93
20 , MF = −1471

60 − 40
3 ω . (2.37)

Thus w∗ and v∗ depend on ω and therefore on the particular trajectory away from the fixed
point. For ω = ωUV

∗ one finds the numerical values

(SFT, UV) : u∗ = 0.0069 , w∗ = 0.0127 , v∗ = 0.544 , (2.38)

where for ω = ω
(IR)
∗ one obtains

(SFT, IR) : u∗ = 0.0069 , w∗ = −0.0257 , v∗ = −0.269 . (2.39)

Both u and w correspond to relevant parameters, with critical exponents 4 and 2 following
from eqs. (2.11) and (2.12) for MU and MF not depending on u and w.

Taking things together the SFT-fixed point has a free undetermined parameter ω. For
pure gravity it has four relevant or marginal couplings, with critical exponents given by

θ1 = 4 , θ2 = 2 , θ3 = 0 , θ4 = 0 . (2.40)

The Gaussian fixed point characterizes asymptotic freedom of higher derivative gravity [18–
20, 118–123].

Finally, we mention the limit of the Weyl invariance which is realized for U → 0, F → 0
and C → 0 in the action (2.2). For that limit in the pure gravity system, one has

∂tu= 2ρ̃∂ρ̃u−4u+ 167
640π2 , ∂tw= 2ρ̃∂ρ̃w−2w+ 131

504π2 , ∂tC =− 5
288π2 . (2.41)

Therefore, finite values of u, w and C are induced by quantum effects and the Weyl
invariance is not conserved in our current setting.
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2.4 Asymptotic safety

Solving βU = βF = βC = βD = 0 simultaneously, we find a further non-trivial fixed point

(R) : u∗ = 0.000281 , w∗ = 0.0218 , C∗ = 0.204 , D∗ = −0.0132 . (2.42)

For this fixed point the dimensionless ratios read

v∗ = 0.0129 , c∗ = 9.324 , d∗ = −0.60479 , ω∗ = −23.1 , (2.43)

resulting in

m̃2
t∗ = −0.618 , m̃2

σ∗ = 28.0 . (2.44)

The critical exponents are given as

θ1 = 3.1 , θ2 = 2.4 , θ3 = 10.9 , θ4 = −88.1 . (2.45)

Hence, there are three relevant directions and one irrelevant one. This result agrees with the
cases of higher derivative truncations in maximally symmetric spaces, e.g. [53], in Einstein
spaces [31], in an arbitrary space within a strong gravity expansion [55] and in a flat space
within the vertex expansion scheme [42].

We will argue in section 5 that this fixed point is the extension of the R-fixed point for
one truncation. The huge absolute values of the critical exponents θ3 and θ4 are presumably
artifacts of the truncation. Similar high values are observed in a truncation which omits
the term ∼ D [48, 49]. Including higher order curvature invariants ∼ Rn the high value
of θ3 is reduced to a quantity of the order one, and further critical exponents become
negative, corresponding to irrelevant parameters [50–54]. The small negative value of D∗
is not necessarily a cause of worry either. Taking the four-derivative truncation at face
value it would imply a tachyon in the t-sector and therefore an instability. The derivative
expansion yields, however, only a Taylor expansion of the inverse graviton propagator for
small momenta. In the momentum range of the possible instability higher order terms can
cure this issue. Furthermore, extended truncations could shift D∗ to positive values.

2.5 Interpolating functions

For the flow away from the fixed points and for the question of a possible critical trajectory
from the SFT- to the R-fixed point we need some understanding of the interpolating
functions. They depend on the couplings c, d and v, or equivalently m̃2

t , m̃2
σ and v. The

functions L(t)
i arise from the t-fluctuations and depend dominantly on the corresponding

mass term m̃2
t , while L

(σ)
i are due to the σ-fluctuations and depend dominantly on m̃2

σ.
We plot in figure 1 the interpolating functions L(t)

D (m̃2
t ), L

(σ)
D (m̃2

σ), L(t)
C (m̃2

t ) and L(σ)
C (m̃2

σ).
These functions are rather smooth until they reach the poles for m̃2

t → −1 or m̃2
σ → −1.

For a plot of L(t)
i (m̃2

t ) we need to fix the two other parameters that we take as ω and v.
We show two sets, one for the values of v and ω at the SFT-fixed point with ω = ω

(UV)
∗ ,

and the other for the R-fixed point. The same procedure is used for L(σ)
i (m̃2

σ). The mixing
contribution Lt−σmix (m̃2

t , m̃
2
σ) is displayed in figure 2. The curves are shown with v taken from
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the SFT- or R-fixed point, and ω = 0.5 for both curves. Figures for the other interpolating
functions can be found in section 4.

We have chosen normalizations for the interpolating functions such that their overall
size is of the order one, except for L(t−σ)

mix for the R-parameter set. This allows for a
judgement of the size of the different contributions from the prefactors in eqs. (2.16)–(2.20).
In particular, for the asymptotically free SFT-fixed point the t-fluctuations dominate, and
the t− σ- mixing gives only a small contribution of around 15 percent. In this region an
omission of the t− σ- mixing contributions, which are technically the hardest part, does
only lead to rather minor errors. For pure gravity (NS = NV = NF = 0) and at ρ̃ = 0 one
obtains at the SFT-fixed point for fixed constant m̃2

σ/m̃
2
t = 3C/D,

βC =− 1
576π2

(
20L(t)

C (m̃2
t )+ 9

2L
(σ)
C (m̃2

t )−L
(t−σ)
mix (m̃2

t , m̃
2
t )−

29
2 `

0
0(0)

)∣∣∣∣∣
m̃2
t→∞

=
[
− 5

144π2−
5C2

16π2D2−
35C

108π2D

]
+
[
− 1

128π2−
5D

15552π2C

]
+
[ 5C

432π2D
+ 5D

15552π2C

]
+ 29

1152π2

=− 5
288π2−

5
16π2

(
C2

D2 + C

D

)
, (2.46)

βD = 1
960π2

(
820L(t)

D (m̃2
t )−

51
2 L

(σ)
D (m̃2

t )−10L(t−σ)
mix (m̃2

t , m̃
2
t )+ 7

2`
0
0(0)

)∣∣∣∣∣
m̃2
t→∞

=
[ 41

48π2 + 5C
72π2D

]
+
[
− 17

640π2 + 5D
2592π2C

]
+
[
− 5C

72π2D
− 5D

2592π2C

]
+ 7

1920π2 = 133
160π2 . (2.47)

Here the first, second and third square bracket are contributions from the t and σ modes
and their mixing, respectively, while the last terms are the measure contributions. The flow
of D and C is dominated by the t-fluctuations.

The coupling D decreases until the negative contributions to βD from the mixing
and σ-fluctuations get large enough to compensate the positive contribution from the
t-fluctuations. In our truncation this happens for negative d and negative m̃2

t . For the
R-fixed point m̃2

t is indeed negative, cf. eq. (2.42). At the R-fixed point the interpolating
functions remain of the order one,

L
(t)
U (m̃2

t )
∣∣∣
(R)

= 0.243 , L
(σ)
U (m̃2

σ)
∣∣∣
(R)

= 1.241 ,

L
(t)
F (m̃2

t )
∣∣∣
(R)

= 0.548 , L
(σ)
F (m̃2

σ)
∣∣∣
(R)

= 1.350 ,

L
(t)
C (m̃2

t )
∣∣∣
(R)

= 3.638 , L
(σ)
C (m̃2

σ)
∣∣∣
(R)

= 1.037 ,

L
(t)
D (m̃2

t )
∣∣∣
(R)

= 1.194 , L
(σ)
D (m̃2

σ)
∣∣∣
(R)

= 0.916 ,

L
(t)
E (m̃2

t )
∣∣∣
(R)

= 1.386 , L
(σ)
E (m̃2

σ)
∣∣∣
(R)

= 0.920 , (2.48)

with the exception of the mixing contribution,

L
(t−σ)
mix (m̃2

t )|(R) = 97.579 . (2.49)
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Figure 1. Behavior of L(t)
i (m̃2

t ) and L(σ)
i (m̃2

σ) as functions of the dimensionless masses m̃2
t and

m̃2
σ. For ω and v we display two cases: (R) v = 0.0128638, ω = −23.1264 and (SFT) v = 0.544229,

ω = −0.0228639.
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-5
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10

15

20
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30

Figure 2. Behavior of L(t−σ)
mix (m̃2

t ) as functions of the dimensionless mass m̃2
t . We use the values of

v = 0.0129 in (R): (2.42) and v = 0.544 (SFT): (2.38) and fix ω = 1/2.

A fixed point with finite D can only occur for negative D since the decrease of D with
decreasing k has to be stopped. The rather large value (2.49), together with a rather large
negative m̃2

t , may cast same doubts on the robustness of the R-fixed point with respect to
extended truncations.
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2.6 Gravity contributions to the flow of the effective potential for scalars

The flow equations (2.11)–(2.15) are valid for arbitrary constant scalar fields, or arbitrary
constant ρ̃. In particular, eq. (2.11) describes the flow of the scalar potential. In principle,
NS , NV and NF depend on ρ̃, reflecting the flow-contributions from matter loops [84]. We
focus here on the gravitational contributions encoded in MU (ρ̃). The central quantity is
the gravity induced scalar anomalous dimension A. For A > 0 the quartic scalar couplings
become irrelevant parameters. Together with the assumption that the flow of couplings
below the Planck scale does not deviate much from the one of the standard model this leads
to the successful prediction of the mass of the Higgs boson [97], or more precisely for the
mass ratio between top quark and Higgs boson [11, 108]. For A > 2 also the scalar mass
terms become irrelevant couplings, driving all scalar masses rapidly to zero. This is the basis
for a possible solution of the gauge hierarchy problem by the running of couplings [136, 137].

The metric-fluctuation induced scalar anomalous dimension is given by the derivative
of MU with respect to u for ρ̃→ 0,

A = 1
32π2

∂MU

∂u

∣∣∣∣
ρ̃→0

= 1
48π2M̃2

p

[
20(1 + 3

2d)
(1 + m̃2

t )2 +
9
20(1 + 5c)
(1 + m̃2

σ)2

] ∣∣∣∣
ρ̃→0

. (2.50)

Here the first and second term correspond to contributions from the t-mode (graviton) and σ-
mode in the metric, respectively. In our previous papers [83, 84] within the Einstein-Hilbert
truncation (C → 0, D → 0 and E → 0), we have found

AEH = 1
48π2M̃2

p

[ 20
(1− v0)2 + 1

(1− v0/4)2

]
. (2.51)

The dominant graviton (the t-mode) contribution agrees with eq. (2.50) for D → 0, while
the part of the scalar mode has a difference of a factor 9/20 for C → 0. This difference
arises from the different regularization scheme for the propagator of the scalar mode.

At the SFT-fixed point the gravity induced scalar anomalous dimension vanishes
according to

(SFT) : A = 1
48π2w

(15
d

+ 2
c

)
→ 0 . (2.52)

On the other hand, for the R-fixed point one finds

(R) : A = 0.618 . (2.53)

This is positive and below two. Adding contributions from matter fluctuations can change
the value of A. In particular, a decrease of the fixed point value for w leads to an increase
of A. Our investigation gives further support to the prediction for the mass of the Higgs
boson, while the question of the gauge hierarchy will depend on the precise matter content.

3 Flow generator and heat kernel method

We compute the flow equations (2.11)–(2.15) by the heat kernel method. For this purpose
we consider arbitrary geometries close to flat space. Geometries beyond Einstein spaces
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are needed for the extraction of the gravitational contributions to the individual coupling
functions for the higher derivative terms in the gravitational effective action. The evaluation
of the heat kernels for the differential operators needed in this context is technically new
terrain and will be described in the next section. In this section we introduce the method
and present the flow-contributions of matter fluctuations that can be obtained by more
standard techniques.

We want to evaluate the flow generator

ζ = ∂tΓk =
∑
i

ζi , (3.1)

as a general functional of the (“background”)-metric field. The sum
∑
i is over fluctuation

contributions of degrees of freedom that do not mix. For our application the metric is closed
to flat space, but not restricted otherwise. For the heat kernel method ζi is represented as
a trace over suitable differential operators, ζi = trW (z = ∆i) where ∆i is an appropriate
Laplacian acting on the degree of freedom i. The flow generator can be expanded as

ζi = 1
2tr (i)W (z) = 1

2(4π)2

∫
x

√
g
[
Q2[W ]c(i)

0 +Q1[W ]c(i)
2 +Q0[W ]c(i)

4 + · · ·
]
. (3.2)

Here tr (i) acts on the space for the degree of freedom i, and the coefficients c(i)
0 , c(i)

2 and
c

(i)
4 are given by

c
(i)
0 = b

(i)
0 , c

(i)
2 = b

(i)
2 R , c

(i)
4 = b

(i)
4 R2 + b̂

(i)
4 RµνR

µν + b̃
(i)
4 RµνρσR

µνρσ , (3.3)

where the values of the heat kernel coefficients b(i)n depend on the degrees of freedom of a
field on which the Laplacian acts. The coefficients of (1, −1

2R, −
1
2R

2, 1
2CµνρσC

µνρσ, G4)
yield (∂tU, ∂tF, ∂tC, ∂tD, ∂tE) at fixed ρ. Switching to dimensionless couplings yields the
terms −4u and −2w, and the change to the dimensionless scalar invariant ρ̃ induces the
terms ∼ 2ρ̃∂ρ̃ in the flow equations (2.11)–(2.15).

The detailed steps of these calculations are displayed in the appendices A–E. In the
main text we summarize the most important points. For the evaluation of eq. (3.2) the
explicit heat kernel coefficients are summarized in appendix C. The threshold functions Qn
are given by

Qn[W ] = 1
Γ(n)

∫ ∞
0

dz zn−1W (z) for n ≥ 1 , Q−n[W ] = (−1)n∂
nW

∂zn

∣∣∣∣∣
z=0

for n ≥ 0 .

(3.4)

The contributions to the flow generator take typically the form

Wp,ε(z) = ∂tRk(z)
(ak2z1+2ε + bz2+2ε + ck4z2ε +Rk(z))p+1 , (3.5)

where a, b, c are dimensionless couplings and Rk constitutes the infrared cutoff. The
quantity ε depends on the normalization of the fields. For contributions from the t-mode
and matter modes, one has ε = 0, while ε = 1 is used for the σ-mode contributions. For the

– 13 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

cutoff function Rk(z) we employ a generalization of the Litim cutoff [138] such that z in the
denominator of W (z) is replaced by Pk(z) = z+Rk(z) = z+ (k2− z)θ(k2− z). This yields

Qn[p; ε;a, b, c]≡Qn[Wp,ε]

= (1+2ε)(n+2+2ε)
n+1+2ε a−p

(
1+2 (1+ε)(n+1+2ε)

(1+2ε)(n+2+2ε)
b

a
+2 ε (n+2+2ε) (n+1+2ε)

(n+2ε)(1+2ε)(n+2+2ε)
c

a

)

×
[
2k2n−4p−4pε`2np (b/a+c/a)

]
(n≥ 0) , (3.6)

where we neglected the anomalous dimensions, i.e. ∂ta = ∂tb = ∂tc = 0. The full expressions
for Qn[W ] with the anomalous dimensions can be found in eq. (C.9) in appendix C. For
more details on the heat kernel technique we refer to refs. [7, 84]. Our general setting
will become more explicit once we evaluate next the individual contributions from the
fluctuations of free and massless scalar fields, fermions and gauge bosons.

3.1 Scalar bosons

We start by evaluating contributions from a scalar field whose effective action is given by
(ρ = ϕ2)

Γ(S)
k =

∫
x

√
g

[1
2(∂µϕ)2 + U(ρ)

]
. (3.7)

The second functional derivative with respect to ϕ yields

Γ(S,2)
k = √g

(
∆S +m2

ϕ(ϕ)
)
, (3.8)

where ∆S = −D2 is the Laplacian acting on a spin-0 scalar field and we define the mass
term,

m2
ϕ(ϕ) = ∂2U

∂ϕ2 . (3.9)

In order to compute the flow-contributions, an appropriate IR cutoff function Rk(∆S)
is added so that the Laplacian ∆S in eq. (3.8) is replaced to Pk = ∆S +Rk(∆S). The flow
equation for the scalar contribution reads

∂tΓk = π
(S)
k = 1

2tr (0)W
(S)(∆S) , (3.10)

where the flow kernel is

W (S)(∆S) = ∂tRk(∆S)
∆S +Rk(∆S) +m2

ϕ

= ∂tRk(∆S)
Pk(∆S) +m2

ϕ

. (3.11)

Using the heat kernel expansion (3.2) with the corresponding heat kernel coefficients to ∆S

(see table 1 in section C.3), one obtains

π
(S)
k = 1

16π2

∫
x

√
g
[
k4`40

(
m̃2
ϕ

)
+ 1

6k
2`20

(
m̃2
ϕ

)
R+ 1

180

(5
2R

2−RµνRµν+RµνρσRµνρσ
)
`00

(
m̃2
ϕ

)]
,

(3.12)

where m̃2
ϕ = m2

ϕ/k
2. For the Litim cutoff the threshold functions are given by eq. (2.23).

For NS massless scalars (m2
ϕ = 0) this yields in eqs. (2.11)–(2.15) the contributions ∼ NS .
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3.2 Gauge bosons

We employ the effective action for a gauge theory as

Γ(V )
k = 1

4

∫
x

√
g F aµνF

aµν + Γ(V )
gf + Γ(V )

gh , (3.13)

where F aµν is the field strength of the gauge field Aaµ. Here, Γ(V )
gf and Γ(V )

gh are the actions of
the gauge fixing and ghost fields (ca, c̄a) associated with the gauge field Aaµ and are given
respectively by

Γ(V )
gf = 1

2αV

∑
a

∫
d4x
√
g
(
(DµA

µ)a
)2
, Γ(V )

gh =
∫

d4x
√
g c̄a ∂µ(Dµc)a , (3.14)

with αV the gauge fixing parameter.
The Hessian of Aaµ, i.e. the second-order functional derivative of eq. (3.13) with respect

to Aaµ, is computed as

(
Γ(V,2)
k

)µν
= √g

[
gµνD2 −

(
1− 1

αV

)
DµDν

]
. (3.15)

In the Landau gauge αV → 0, the flow equation for eq. (3.13) reads

∂tΓk = ζ
(V )
k = π

(V )
k − δ(V )

k = 1
2tr (1)W

(V )(z)− 1
2tr (0)W

(V )(z) . (3.16)

For vanishing gauge couplings the r.h.s. of eq. (3.16) becomes the sum of contributions from
individual gauge bosons. For a single gauge boson the flow kernel is given by

W (V )(∆L1) = ∂tRk(∆L1)
∆L1 +Rk(∆L1) = ∂tRk(∆L1)

Pk(∆L1) , (3.17)

where the regulator Rk(z) replaces the Lichnerowicz Laplacian z = ∆L1 (defined in
eq. (C.27)) to Pk(z) = z + Rk(z). The use of the Litim cutoff and the heat kernel
expansion yields the contribution from the physical mode in Aaµ as

π
(V )
k = 1

2tr (1)W
(V )(∆L1)

= 1
16π2

∫
x

√
g

[
3k2`40(0)− 1

2`
2
0(0)k2R+ 1

120
(
−15R2+58RµνRµν−8RµνρσRµνρσ

)
`00(0)

]
.

(3.18)

The contribution of the gauge mode and ghost yields for the “physical” Landau gauge the
universal measure contribution,

δ
(V )
k = 1

2tr (0)W
(V )(∆L1)

= 1
16π2

∫
x

√
g

[
k4`40(0) + 1

6k
2`20(0)R+ 1

180

(5
2R

2 −RµνRµν +RµνρσR
µνρσ

)
`00(0)

]
.

(3.19)
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The two terms sum up to

ζ
(V )
k =π

(V )
k −δ

(V )
k

= 1
16π2

∫
x

√
g

[
2k4`40(0)− 2

3k
2`20(0)R+ 1

180
(
−25R2+88RµνRµν−13RµνρσRµνρσ

)
`00(0)

]
.

(3.20)

For NV gauge bosons this yields in eqs. (2.11)–(2.15) the contributions ∼ NV .

3.3 Weyl fermions

We next consider the contributions from Weyl fermions to the flow of the gravitational
interactions. Spinor fields in curved spacetime involve the vierbein fields emµ . The covariant
derivative Dµ involves the spin connection constructed from emµ . With /D = γµDµ and
e = det(emµ ) the effective action with a Yukawa coupling to a scalar field ϕ reads

Γ(F )
k =

∫
x

√
e
[
ψ̄i /Dψ + yϕψ̄γ5ψ

]
. (3.21)

One obtains the Hessian as

Γ(F,2)
k =

−→
δ

δψ̄
Γ(F )
k

←−
δ

δψ
=
√
e
[
i /D + yϕγ5

]
. (3.22)

The squared covariant derivative becomes − /D2 = −D2 + R/4 = ∆L 1
2
, which is the

Lichnerowicz Laplacian acting on a spinor field. Thus, we regulate z = ∆L 1
2
by employing

the regular Rk(z) to obtain the flow generator

π
(F )
k = 1

2tr ( 1
2 )W

(F )(∆L 1
2
) = 1

2tr ( 1
2 )

∂tRk(∆L 1
2
)

∆L 1
2

+Rk(∆L 1
2
) = 1

2tr ( 1
2 )

∂tRk(∆L 1
2
)

Pk(∆L 1
2
) . (3.23)

From the heat kernel technique, one finds

π
(F )
k =− 1

16π2

∫
x

√
g

[
2k4`40

(
m2
ψ

)
− 1

6k
2`20

(
m2
ψ

)
R+ 1

720
(
5R2−8RµνRµν−7RµνρσRµνρσ

)
`00

(
m2
ψ

)]
,

(3.24)

with m2
ψ = y2ρ/k2. The terms ∼ NF in eqs. (2.11)–(2.15) account for the contributions

form NF massless Weyl fermions (m2
ψ = 0).

4 Flow generators from metric fluctuations

This section summarizes the main technical achievement of this work, namely the compu-
tation of the metric fluctuations to the functional flow of all coupling functions of higher
derivative gravity in fourth order. To this end, we use the heat kernel method again. The
two-point function (Hessian) of the ghost fields can be written in terms of the form in
the so-called non-minimal operator D1 = ∆V δ

µ
ν −DµDν −Rµν for which we use the heat

kernel coefficients obtained in refs. [139–141]. On the other hand, the Hessian for the metric
field becomes complicated and cannot be simplified to be in such a non-minimal operator.
Therefore, we use the off-diagonal heat kernel expansion introduced in ref. [33] to evaluate
the heat kernel coefficients for e.g. tr [e−s∆RµνDµDν ] appearing in the flow kernel for metric
fluctuations.
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4.1 Physical metric decomposition and gauge invariant flow

Our starting point for the derivation of the flow equations is to employ the “physical
decomposition” [124–126] of the metric fluctuations.

gµν = ḡµν + hµν , hµν = fµν + aµν , aµν = Dµaν +Dνaµ , (4.1)

with ḡµν the argument of the effective action (often referred to as “background field”).
Hereafter we omit the bar on the background field. The physical metric fluctuation fµν
satisfies the transverse condition, i.e. Dµfµν = 0. The “gauge fluctuations” aµν denote the
directions in field space generated by infinitesimal gauge transformations (diffeomorphisms).
In a physical gauge they decouple from the physical fluctuations.

In second order in fµν the expansion of the effective action (2.2) yields

Γ(ff) = 1
4

∫
x

√
g fµν

[
(D̃f )µνρτ − U (Tµνρτ − Iµνρτ ) +

(
M(R,∆T )

) ρτ

µν

]
fρτ , (4.2)

where the covariant derivative operator acting on the physical metric fluctuations f is
given by

(D̃f )µνρτ =
[
F

2 ∆T +D∆2
T

]
Tµν

ρτ − 3
[
F

2 ∆T + 8
3C∆2

T + 1
9D∆2

T

]
Iµν

ρτ . (4.3)

The “interaction piece” M(R̄, ∆̄T ) is a tensor depending on curvature tensors and the
covariant derivatives. With

Tµν
ρτ = Eµν

ρτ − Iµνρτ , Eµν
ρτ = 1

2(δρµδτν + δτµδ
ρ
ν) , Iµν

ρτ = 1
4gµνg

ρτ , (4.4)

one sees that T is orthogonal to I, namely TµνρτIρτ αβ = 0. The part ∼ T is the kinetic part
of the inverse graviton propagator. The flow equation for the system (with the physical
gauge fixing action (A.5) for α→ 0 and β = −1) takes the form

∂tΓk = ζk = π
(f)
k − δ

(g)
k , (4.5)

where π(f)
k is contributions from the physical modes fµν , whereas δ(g)

k contains contributions
from the gauge modes aµν and the ghost fields.

4.2 Physical metric fluctuations

The physical metric fluctuations fµν can be further decomposed as

fµν = tµν + Ŝµνσ . (4.6)

Here tµν is the TT tensor, i.e. satisfies Dµtµν = 0 and gµνtµν = 0, and σ is the scalar
physical fluctuation of the metric defined by

σ = gµνfµν . (4.7)

The tensor Ŝµν obeys

Ŝµν = (gµν∆S +DµDν −Rµν)(3∆S −R)−1, (4.8)
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such that DµŜµν = 0 and gµν Ŝµν = 1. With σŜµνtµν = −σ(3∆S − R)−1Rµνtµν one has,
in a general spacetime, mixing effects between tµν and σ. Only in an Einstein spacetime,
Rµν = (R/4)gµν , the TT tensor mode (t-mode) decouples from the scalar mode (σ-mode).

The Hessian for the physical metric fluctuations takes the following structure:

(
Γ(2)

(ff)

) ρσ

µν
= 1

2

[
K(t)(Pt)µνρτ +

(
M(t)(R,∆T )

) ρσ

µν
− 8

3
(
K(σ) + M(σ)(R,∆S)

)
Iµν

ρτ

+
(
M(tσ)(R,∆T )

)
µν
gρσ + gµν

(
M(σt)(R,∆T )

)ρσ]
, (4.9)

where ∆T = −D2 is the Laplacian acting on tensor fields. The kinetic parts are defined by

K(t) = F

2 ∆T +D∆2
T − U , K(σ) = F

2 ∆S + 3C∆2
S −

U

4 . (4.10)

They correspond to the inverse propagators of the t-mode and σ-mode. The interaction
parts M are lengthy. Their explicit forms are shown in appendix B: see eqs. (B.20)–(B.24).
The last terms involve the mixing between the t- and σ-mode. This vanishes for Einstein
spaces due to the different transformation of these modes under rotation symmetry.

For the particular case of flat spacetime we can perform a Fourier transformation. The
propagators of the graviton and σ-mode are given respectively by

Gg(q2) = 1
F
2 q

2+Dq4−U
= D−1

q2(q2+M2
t )−U/D

∼ 1
q2−

1
q2+M2

t

(U→ 0) , (4.11)

Gσ(q2) = 1
F
2 q

2+3Cq4−U
= (3C)−1

q2(q2+M2
σ)−U/(3C) ∼

1
q2−

1
q2+M2

σ

(U→ 0) , (4.12)

with M2
t = F/(2D) and M2

σ = F/(6C). The last terms are taken for U → 0, where we
observe the usual ghost for the t-mode of fourth-order gravity. We also note the negative
sign of the kinetic term for the σ-mode in eq. (4.9). Functional renormalization deals with
these well known problematic feature by introducing an infrared cutoff.

For the two-point functions, we employ the regulator such that ∆i is replaced by Pk(∆i)
in the kinetic terms K(t) and K(σ) in eq. (4.10). The contribution to the flow generator
from the physical metric fluctuations reads

π
(f)
k = 1

2tr (2)
∂tRk

Γ(2)
k +Rk

∣∣∣∣
ff

= 1
2tr (2)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
tt

+ 1
2tr (0)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
σσ

+Jgrav0,k = π
(t)
k +π

(σ)
k +Jgrav0,k . (4.13)

Due to the regulator functions for the t-mode and σ-mode the Laplacians (∆T and ∆S) are
replaced to Pk(∆i) = ∆i +Rk(∆i). The last term in eq. (4.13) arises from the regulated
Jacobian which accounts in the functional integral for the decomposition of the metric
fluctuations into physical modes and gauge modes. Computations are given in appendix E.
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Here, we list the explicit forms of contributions from the t- and σ-modes to the beta
functions (2.11)–(2.15): one obtains from π

(t)
k

M
(t)
U = 20

3 (3d+2)`40(m̃2
t )

≡ 20
3 L

(t)
U (m̃2

t ) , (4.14)

M
(t)
F =−

[5
2(4d+3)`20(m̃2

t )+ 40
3 (3d+2)`41(m̃2

t )+ 15
2 (2c+d)(5+8d)`61(m̃2

t )
]

≡−125
6 L

(t)
F (m̃2

t ) , (4.15)

M
(t)
C =−770

9 (d+1)`00(m̃2
t )+ 410

9 (4d+3)`21(m̃2
t )+ 40

27(3d+2)(3c+7d)`41(m̃2
t )

+ 1120
9 (3d+2)`42(m̃2

t )+ 80
3 (8d+5)(9c+5d)`62(m̃2

t )

+432(5d+3)
(
2c2+2cd+d2

)
`82(m̃2

t )

≡ 20L(t)
C (m̃2

t ) , (4.16)

M
(t−σ)
C = 5d+3

50(1+m̃2
σ)`

8
1(m̃2

t )+ d(12d+7)
15(1+m̃2

σ)`
10
1 (m̃2

t )−
400(7d+4)(d−6c)2

21(1+m̃2
σ) `12

1 (m̃2
t ) , (4.17)

M
(t)
D = 1030

9 (d+1)`00(m̃2
t )+ 500

9 (4d+3)`21(m̃2
t )+ 200

27 (3d+2)(6c−13d)`41(m̃2
t )

+ 2800
9 (3d+2)`42(m̃2

t )+ 1600
3 d(8d+5)`62(m̃2

t )+4080d2(5d+3)`82(m̃2
t )

≡ 820L(t)
D (m̃2

t ) , (4.18)

M
(t−σ)
D = 5d+3

5(1+m̃2
σ)`

8
1(m̃2

t )+ 2d(12d+7)`10
1 (m̃2

t )
3(1+m̃2

σ) − 4000(7d+4)(d−6c)2

21(1+m̃2
σ) `12

1 (m̃2
t ) , (4.19)

M
(t)
E = 430

3 (d+1)`00(m̃2
t )+ 500

3 (4d+3)`21(m̃2
t )+ 200

9 (3d+2)(6c+5d)`41(m̃2
t )

+ 1600
3 (3d+2)`42(m̃2

t )+400d(8d+5)`62(m̃2
t )+6480d2(5d+3)`82(m̃2

t )

≡ 1660L(t)
E (m̃2

t ) , (4.20)

M
(t−σ)
E = 3(5d+3)

5(1+m̃2
σ)`

8
1(m̃2

t )+ 2d(12d+7)
1+m̃2

σ

`10
1 (m̃2

t )−
4000(7d+4)(d−6c)2

7(1+m̃2
σ) `12

1 (m̃2
t )

−360(d+1) N
χE

`00(m̃2
t ) , (4.21)

and from π
(σ)
k + Jgrav0,k,

M
(σ)
U = 3

10(24+80c−5v)`40(m̃2
σ)

≡ 8
5L

(σ)
U (m̃2

σ) , (4.22)

M
(σ)
F = 1

12(144c−10v+45)`20(m̃2
σ)− v

20(120c−7v+35)`61(m̃2
σ)+ 1

7(126c−7v+36)`81(m̃2
σ)

+ 27c
7 (224c−12v+63)`10

1 (m̃2
σ)− 5

3`
2
0(0)

≡ 193
84 L

(σ)
F (m̃2

σ) , (4.23)
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M
(σ)
C = (12c−v+4)`00(m̃2

σ)− 7
20v(80c−5v+24)`41(m̃2

σ)+ 11
15(120c−7v+35)`61(m̃2

σ)

− 8
63(183c−10d)(126c−7v+36)`81(m̃2

σ)+ 20
21(21c−d)(126c−7v+36)`81(m̃2

σ)

+ 5
63v

2(126c−7v+36)`82(m̃2
σ)− 2

7v(224c−12v+63)`10
2 (m̃2

σ)

+ 25
36(288c−15v+80)`12

2 (m̃2
σ)− 40

3 cv(288c−15v+80)`12
2 (m̃2

σ)

+ 80
3 c(1080c−55v+297)`14

2 (m̃2
σ)+ 60480

11 c2(220c−11v+60)`16
2 (m̃2

σ)

≡ 9
2L

(σ)
C (m̃2

σ) , (4.24)

M
(σ−t)
C = (126c−7v+36)

210(1+m̃2
t )

`81(m̃2
σ)+ (126c−7v+36)

210(1+m̃2
t )

`81(m̃2
σ)+ 3d(224c−12v+63)

140(1+m̃2
t )

`10
1 (m̃2

σ)

− 25(d−6c)2(288c−15v+80)
9(1+m̃2

t )
`12
1 (m̃2

σ)− 17
18`

0
0(0) , (4.25)

M
(σ)
D = (12c−v+4)`00(m̃2

σ)+ 5
4v(−80c+5v−24)`41(m̃2

σ)+ 13
3 (120c−7v+35)`61(m̃2

σ)

− 20
63(183c−10d)(126c−7v+36)`81(m̃2

σ)+ 5
14v(224c−12v+63)`10

2 (m̃2
σ)

+ 25
36(288c−15v+80)`12

2 (m̃2
σ)+ 5

63v
2(126c−7v+36)`82(m̃2

σ)

+ 50
3 cv(288c−15v+80)`12

2 (m̃2
σ)+ 80

3 c(1080c−55v+297)`14
2 (m̃2

σ)

+ 60480
11 c2(220c−11v+60)`16

2 (m̃2
σ)

≡−51
2 L

(σ)
D (m̃2

σ) , (4.26)

M
(σ−t)
D = (126c−7v+36)

21(1+m̃2
t )

`81(m̃2
σ)+ 3d(224c−12v+63)

14(1+m̃2
t )

`10
1 (m̃2

σ)

− 250(d−6c)2(288c−15v+80)
9(1+m̃2

t )
`12
1 (m̃2

σ)− 341
18 `

0
0(0) , (4.27)

M
(σ)
E = (12c−v+4)`00(m̃2

σ)+ 15
4 v(−80c+5v−24)`41(m̃2

σ)+13(120c−7v+35)`61(m̃2
σ)

− 20
21(183c−10d)(126c−7v+36)`81(m̃2

σ)+ 15
14v(224c−12v+63)`10

2 (m̃2
σ)

+ 25
12(288c−15v+80)`12

2 (m̃2
σ)+ 5

21v
2(126c−7v+36)`82(m̃2

σ)

+50cv(288c−15v+80)`12
2 (m̃2

σ)+80c(1080c−55v+297)`14
2 (m̃2

σ)

+ 181440
11 c2(220c−11v+60)`16

2 (m̃2
σ)

≡L(σ)
E (m̃2

σ) , (4.28)

M
(σ−t)
E = (126c−7v+36)

7(1+m̃2
t )

`81(m̃2
σ)+ 9d(224c−12v+63)

14(1+m̃2
t )

`10
1 (m̃2

σ)

− 250(d−6c)2(288c−15v+80)
3(1+m̃2

t )
`12
1 (m̃2

σ)− 317
6 `00(0) . (4.29)

– 20 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

We also define the interpolating functions for the mixing effects as

M
(t−σ)
C +M

(σ−t)
C = −Lt−σmix (m̃2

t , m̃
2
σ) , (4.30)

M
(t−σ)
D +M

(σ−t)
D = −10Lt−σmix (m̃2

t , m̃
2
σ) , (4.31)

M
(t−σ)
E +M

(σ−t)
E = −30Lt−σmix (m̃2

t , m̃
2
σ) . (4.32)

In eq. (4.20), the Euler characteristic and the number of Killing vectors and conformal ones
are denoted by χE and N , respectively. For geometries with a topology of Euclidean flat
space they are given by χE = 1, N = d(d+ 1)/2.

The expressions (1 + m̃2
t )−1 and (1 + m̃2

σ)−1, with m̃2
t = d − v, m̃2

σ = 3c − v/4 as in
eq. (2.21), correspond to the regularized propagators of the t- and σ-modes, multiplied
with Dk4 and 3Ck4, respectively. For the particular Litim-type regulator employed here
the combination Pk(∆i) is effectively replaced by k2. By virtue of the gauge invariant
formulation, or equivalent physical gauge fixing, the contribution of the different physical
modes is well visible and separated from the sector of the gauge modes. Despite the
somewhat lengthy expressions the structure of the contributions to the flow generator is
well visible. The terms involving both factors of (1 + m̃2

t )−1 and (1 + m̃2
σ)−1 are due to the

mixing of the t- and σ-modes for geometries that do not exhibit rotation symmetry.
The contributions from the t − σ-mixing correspond to L(t−σ)

mix in eqs. (2.18)–(2.20),
which can be read off directly from the explicit expressions in eqs. (4.16)–(4.20) and (4.24)–
(4.29). The remaining parts in these equations define the interpolating functions L(i)

C ,
L

(i)
D , L(i)

E that we show for particular values of the couplings in figure 1. Similarly,
eqs. (4.14), (4.15), (4.22), (4.23) define the interpolating functions L(i)

U and L(i)
F in eqs. (2.16)

and (2.17). We show these interpolating functions in figure 3 for the same parameter sets
as for figure 1. The flow generator for the effective scalar potential ∼MU is particularly
simple and has a simple expression in terms of one loop diagrams in figure 4. It can
be equivalently evaluated in flat space, with propagators taken for constant scalar fields.
For the other expressions the t- and σ-propagators in figure 4 have to be evaluated in a
curved background, and there is propagator mixing in the absence of rotation symmetry.
A perturbative computation would expand the propagators in deviations from flat space,
introducing external legs for metric fluctuations in figure 4. The increasing number of
legs needed for the flow of higher derivative couplings is directly related to the increasing
complexity of the expressions in eqs. (4.14)–(4.29). A Taylor expansion of the functional
flow equation in the number of external fluctuation fields produces the vertex expansion for
the flow equations, which has been investigated extensively for quantum gravity [38–47].
In comparison to this work the gauge invariant flow equation has additional contributions
from the field dependence of the infrared regulator and requires a particular physical gauge
fixing. A more detailed discussion of these issues can be found in refs. [142, 143].

4.3 Measure contribution

The measure contribution includes the spin-1 gauge modes aµ in the metric fluctuations
(aµν = Dµaν + Dνaµ) and the ghost modes Cµ, C̄µ, as well as the Jacobian arising from
the decomposition (4.1). The gauge invariant formulation tells us that there is a simple
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Figure 3. Behavior of L(t)
i (m̃2

t ) and L(σ)
i (m̃2

σ) as functions of the dimensionless masses m̃2
t and

m̃2
σ. For ω and v we display two cases: (R) v = 0.0128638, ω = −23.1264 and (SFT) v = 0.544229,

ω = −0.0228639.

+

∂tRk ∂tRk

P−1
k P−1

k

t σ

Figure 4. One loop diagram for the gravitational contribution to the flow of the effective potential.

relation [125, 126] between the metric fluctuations δ(g)
k and the ghost ones ε(g)k such that

δ
(g)
k = 2ε(g)k . Thanks to these relations, the total measure contribution takes the simple form

η
(g)
k = −δ(g)

k = −1
2Tr(1)

∂tPk(D1)
Pk(D1) , (4.33)

with the differential operator acting on a vector field,

(D1)µ ν = ∆V δ
µ
ν −DµDν −Rµν . (4.34)

Here ∆V = −D2 is the Laplacian acting on vector fields. In eq. (4.33), we employ a
regulator which replaces D1 by Pk. More explicit calculations using the heat kernel method
are presented in appendix E.2. Here we show only the result:

δ
(g)
k = 1

16π2

∫
x

√
g

[13
4 k

4`40(0)+ 29
24k

2`20(0)R+
( 23

144R
2+ 67

360RµνR
µν− 11

180RµνρσR
µνρσ

)
`00(0)

]
.

(4.35)
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As an important advantage of the gauge invariant formulation the gauge sector decouples
from the physical sector. As a consequence, this measure contribution is universal in the
sense that it does not depend on the couplings in the physical sector. The expression (4.35)
does not involve the coupling function u, w, c, d.

5 R-fixed point and critical exponents

The fixed points of the flow equations (2.11)–(2.15) obtain by setting the terms ∼ ∂t and
∼ ρ̃∂ρ̃ to zero. For pure gravity, with NS = NF = NV = 0, the fixed point conditions are

MC = MD = 0 , u = MU

128π2 , w = − MF

192π2 , v = −3MU

2MF
. (5.1)

These are four non-linear equations for the four couplings u, v, c and d that we have solved
numerically. The numerical investigation finds several fixed points. Part of them are outside
the validity of our truncation, occurring for example at m̃2

t < −1. We have selected the
R-fixed point (2.42). We will next argue that this fixed point corresponds to the fixed
point of asymptotic safety found earlier for other truncations of the effective average action.
For this purpose we compute these truncations in our setting for the gauge invariant flow
equation and the particular infrared regulator employed in this paper. This allows for
comparison with earlier results, and shows how the R-fixed point depends on the truncation.

5.1 Einstein-Hilbert truncation

We first show the result of the Einstein-Hilbert truncation (C = D = E = 0) in our scheme
without matter effects NS = NV = NF = 0. Solving βU = βF = 0, we find a non-trivial
fixed point

u∗ = 0.0061 , w∗ = 0.022 , v∗ = 0.279 , m̃2
t∗ = −0.28 , m̃2

σ∗ = −0.070 , (5.2)

at which the critical exponents read

θ1,2 = 2.63± 1.39i . (5.3)

These values are in a range found for the R-fixed point within earlier truncations. The
value for w∗ is similar to eq. (2.42), while u∗ is substantially larger. This is due to the
difference of the values for m̃2

t and m̃2
σ between eqs. (2.42) and (5.2). For the values in

eq. (5.2) the β-function for D remains positive, “destabilizing” the fixed point (5.2) once
the higher derivative terms are included. As we have argued before, substantially more
negative values for m̃2

t are needed in order to find a fixed point for D. This is the main
reason for the shift in the fixed point values between eqs. (2.42) and (5.2). The fixed point
w∗ in eq. (5.2) corresponds to the dimensionless Newton constant gN∗ = 1/(16πw∗) = 0.92.

Let us finally look at the flow equation for E evaluated for the fixed point (5.2). Since
the Gauss-Bonnet term is topological, its coefficient E does not contribute to any beta
functions, whereas the beta function of E depends on other couplings. It takes into account
the number of (normal and conformal) Killing vectors, and therefore monitors topological
features of the background geometry. We find a vanishing βE for NG = 3.1χE , but we will
not impose βE = 0 for the search of fixed points.
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5.2 R2 truncation

Next, we analyze the R2 truncation for pure gravity. The earlier works on that truncation
have been done in the Einstein spacetime Rµν = (R/4)gµν [31, 32, 81] or the maximally
symmetric spacetime Rµνρσ = (R/12)(gµρgνσ − gµσgνρ) [49, 52–54]. In the present work,
we do not assume such a special spacetime background. We first consider the R2 truncation
defined by setting D = E = 0 and then solving βU = βF = βC = 0. We find a fixed point for

u∗ = 0.00018 , w∗ = 0.0095 , C∗ = −0.00292 , v∗ = 0.0187 , c∗ = −0.307 ,
m̃2
t∗ = −0.0187 , m̃2

σ∗ = −0.93 , (5.4)

at which we have the critical exponents

θ1,2 = 2.48± 0.342i , θ3 = 306.6 . (5.5)

The critical exponents for F and U are close to those of the Einstein-Hilbert truncation,
whereas the R2 coupling has a huge value of the critical exponent. Such a situation has
been actually seen in the previous works and indicates the insufficiency of the truncation.
By improving the truncation, i.e. including higher order operators such as R3, R4, etc., the
critical exponents converge to reasonable values [53, 54].

As an alternative R2-truncation, we can look at the flow of the linear combination
C̃ = C + D/6, setting C = C̃ for the flow generators. This corresponds to the previous
investigations for Einstein spaces. For this procedure we find a fixed point at

u∗ = 0.00098 , w∗ = 0.011 , C∗ = −0.00342 , v∗ = 0.0859 , c∗ = −0.300 . (5.6)

This fixed point value gives the critical exponents

θ1,2 = 2.47± 0.709i , θ3 = 188.4 . (5.7)

Comparison with eq. (5.4) demonstrates that the fixed point values depend substantially on
the choice of the precise truncation, while the first two critical exponents are more robust.
The extraction of the flow of C is ambiguous and needs a specification of assumptions on
the ratio D/C.

5.3 Vanishing cosmological constant

Another interesting approximation or truncation neglects the scalar potential or cosmological
constant. A numerical search for simultaneous zeros of the beta functions βF , βC , βD for
u = v = 0 and NS = NV = NF = 0 shows three fixed points

FP1 : w∗= 0.0198 , C∗= 0.174 , D∗=−0.012 , c∗= 8.82 , d∗=−0.605 ,
m̃2
t∗=−0.605 , m̃2

σ∗= 26.4 , (5.8)
FP2 : w∗= 0.0033 , C∗=−0.00101 , D∗=−0.00242 , c∗=−0.304 , d∗=−0.724 ,

m̃2
t∗=−0.725 , m̃2

σ∗=−0.911 , (5.9)
FP3 : w∗= 0.0033 , C∗= 0.00085 , D∗=−0.0022 , c∗= 0.259 , d∗=−0.674 ,

m̃2
t∗=−0.674 , m̃2

σ∗= 0.778 . (5.10)
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Figure 5. The behavior of the beta function of D as a function of D. For the other couplings we
use the values at the R-fixed point in eq. (2.42). The blue point is just its fixed point value of D∗.

For these fixed points the critical exponents are found as

FP1 : θ1 = 2.10 , θ2 = 9.51 , θ3 = −87.8 , (5.11)
FP2 : θ1 = 2.33 , θ2 = 357.0 , θ3 = −1700.2 , (5.12)
FP3 : θ1 = 1.89 , θ2 = −20.3 , θ3 = −588.7 . (5.13)

The fixed point FP1 is close to the R-fixed point in eq. (2.42), while the critical exponents
are sensitive to the omission of u.

5.4 Full system

For a numerical search of the fixed points for the full system, we look for solutions
βU = βF = βC = βD = 0. This yields the R-fixed point in eq. (2.42). While m̃2

t takes
substantial negative values as necessary for a stop of the flow of D, there is no sign of a
problematic behavior. This is exemplified by the flow of D for which we show the behavior
of βD = MD/960π2 as a function of D in figure 5. For all couplings except for D, we use
the fixed point value (2.42). The location of the fixed point value D∗ is shown by a fat
blue dot. While the vicinity of the pole at m̃2

t = −1 yields the needed substantial negative
contributions to βD, the effect is not dramatic. In the current setup we have found no other
fixed point with m̃2

t > −1. The fixed points FP2 and FP3 in the truncation for u = 0 may
therefore be considered as artifacts due to the truncation.

6 Infrared region

The coupling w corresponds to a relevant parameter, both at the SFT- and R-fixed points.
Away from the fixed points w typically increases and one enters the infrared region of large
w. In this region the Einstein-Hilbert action becomes a very good approximation. We will
discuss this issue by investigating the scaling solution in the region of large ρ̃. Equivalently,
the infrared region can be discussed at ρ = 0 for the k-dependence of the coupling constants.
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The scaling solution for large ρ̃ is characterized by w ∼ ρ̃, i.e.

w = 1
2ξ∞ρ̃+ w∞ , ξ∞ > 0 , (6.1)

with constant ξ∞ and w∞. If for ρ̃→∞ the coupling functions u, C, D remain finite or
increase only slowly with ρ̃, the leading behavior in the infrared region is given by

v = 0 , c = 0 , d = 0 . (6.2)

In this limit the gravitational contributions to the flow generators simplify considerably
since m̃2

t and m̃2
σ vanish. One finds (with M (m)

D the measure contribution)

M
(t)
D = 5270

9 , M
(σ)
D = −19589

2268 , M
(m)
D = 7

2 , (6.3)

such that MD and βD take constant values

MD = 1316389
2268 ≈ 580.4 , β̃D = 2AD = 1316389

2177280π2 ≈ 0.061 . (6.4)

Here β̃i obtains from βi by omitting the term ∼ ρ̃∂ρ̃. Similarly, one obtains

M
(t)
C = 1574

9 , M
(σ)
C = 12487

2268 , M
(m)
C = −29

2 ,

MC = 376249
2268 ≈ 165.9 , β̃C = −2AC = − 376249

1306368π2 ≈ −0.029 , (6.5)

and

MF = −361
14 ≈ 25.8 , MU = 301

60 ≈ 5.02 ,

β̃F + 2w = 2w∞ = 361
1344π2 ≈ 0.027 , β̃U + 4u = 4u∞ = 301

1920π2 ≈ 0.016 . (6.6)

The scaling solution exists for a constant value of u = u∞, such that v = u/w ∼ ρ̃−1

vanishes indeed for ρ̃→∞. The coupling C increases logarithmically,

C(ρ̃) = C̄ +AC ln ρ̃ , (6.7)

with constant C̄ adjusted such that the asymptotic behavior (6.7) for large ρ̃ matches the
behavior at the SFT-fixed point for ρ̃→ 0. This increase is rather slow, according to the
value AC ≈ 0.015 from eq. (6.5). Similarly, the coupling function D(ρ̃) for the squared
Weyl tensor decreases logarithmically (AD ≈ 0.031 > 0)

D(ρ̃) = D̄ −AD ln ρ̃ . (6.8)

For ρ̃→∞ both c and d vanish ∼ ln ρ̃/ρ̃.
With F = ξ∞ϕ

2 + 2w∞k2 the effective Planck mass depends on the scalar field ϕ.
For the cosmology of this type of models it becomes dynamical. For typical solutions ϕ
and F diverge for infinitely increasing time [144, 145]. The observed Planck mass can be
associated with the present value of the scalar field, M2 = F (t0) = ξ∞ϕ

2(t0). If we choose
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the renormalization scale k such that u∞k4 coincides roughly with the present dark energy
density, u∞k4 ≈ (2 · 10−3 eV)4, the increasing scalar field has reached today a large value
ϕ2(t0)/k2 = ρ̃(t0) ≈ 1060. This large value is connected to the huge age of the universe in
Planck units. The infrared limit for ρ̃→∞ becomes a very good approximation.

For processes involving finite length scales the associated non-zero momenta typically
act as an additional infrared cutoff, replacing effectively in the logarithms of eqs. (6.7)
and (6.8), ln ρ̃→ ln(ϕ2/(k2 + q2)), resulting in

D = D̄′ +AD ln
(
k2 + q2

M2

)
. (6.9)

The corrections of higher derivative gravity to Einstein’s gravity are suppressed by
DCµνρσC

µνρσ/M2R or CR/M2. Associating R ∼ q2, CµνρσCµνρσ ∼ q4, and usingM2/q2 ∼
wk2/q2, the suppression factor Dq2/M2 ≈ (D/w)(q2/k2) = dq2/k2 ≈ 10−30Dq2/k2 is tiny
for all momenta sufficiently below the Planck mass. Modifications of the ghost pole for the
graviton propagator in higher derivative gravity due to the logarithmic running of D in
eq. (6.9) have been discussed in ref. [11]. Instead of a ghost pole on the real axis for q2

there is a pair of poles in the complex plane. It is not clear if this is compatible with an
acceptable graviton propagator.

Leaving the issue of the graviton propagator open, a model of quantum gravity based
on a scaling solution with a flow in ρ̃ from the SFT-fixed point for ρ̃→ 0 to the infrared
limit for ρ̃→∞ seems acceptable. This would realize “fundamental scale invariance” [146].
The observable gravitational interactions on length scales smaller than the present horizon
would agree with the predictions of Einstein gravity if the matter sector is also characterized
by a scaling solution, with all particle masses proportional to the scalar field ϕ and ϕ-
independent dimensionless couplings. Observable mass ratios are then time independent
despite a cosmological time evolution of ϕ. On cosmological scales the scaling solution with
u = u∞, w ∼ ρ̃ gives rise to dynamical dark energy [144]. By a Weyl scaling to the Einstein
frame the effective Planck mass and particle masses become constants and all dependence
on the renormalization scale k is eliminated [146].

7 Conclusions

Within functional renormalization we have computed the flow of higher derivative gravity
with up to four derivatives of the metric. We have coped with this technical challenge by
use of the gauge invariant flow equation (or equivalent physical gauge fixing). This has
permitted us a decomposition into fluctuation modes for which the individual contributions
can be separated, helping for a qualitative understanding of different effects.

In the double limit C−1 → 0, D−1 → 0 we recover the perturbative β-functions and
the associated asymptotic freedom at the SFT-fixed point. According to the perturbative
β-functions the coupling D−1 increases as the renormalization scale k is lowered and runs
outside the perturbative domain. The non-perturbative character of the functional flow
equation allows us to follow the flow of D−1 and C−1 in the non-perturbative domain where
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D and C are no longer large. We find that for D > 0 nothing stops the decrease of D with
decreasing k. As a consequence, D reaches zero at some k0.

For negative D the sign of the β-function for D can change. The zero of βD at D < 0
permits an additional fixed point with small finite D∗ < 0. This fixed point lies outside the
perturbative domain of higher derivative gravity. At the fixed point also C, the dimensionless
effective Planck mass w and the dimensionless effective cosmological constant u take fixed
values. This additional R-fixed point can be associated with asymptotic safety. It is possible
to formulate a consistent quantum field theory for gravity based on the R-fixed point.

The negative value of D, as well as the effective mass term m̃2
t being not very far from

the breakdown of the truncation at m̃2
t = −1, may cast same doubts on the reliability of

our truncation. An extended truncation would be much welcome for a test of robustness.
On the other hand, investigations of the momentum dependence of the graviton propagator
by different functional renormalization approaches [42, 47] suggest that the R-fixed point
persists for an arbitrary momentum dependence of the inverse graviton propagator beyond
the terms in fourth order in momentum included in the present paper. It is an interesting
question if a critical flow trajectory connects the SFT- and R-fixed points.

The existence of the R-fixed point seems not mandatory for a consistent quantum field
theory of metric gravity. The microscopic theory may be defined as well at the SFT-fixed
point and be characterized by asymptotic freedom. The trajectories away from the SFT-
fixed point may join directly the “infrared region” for which an effective theory of gravity
based on the Einstein-Hilbert action becomes a very good approximation.

It is possible that the effective action for quantum gravity is described by a scaling
solution for which the functions u, w, D and C depend on the dimensionless scalar invariant
ρ̃, without explicit dependence on k. In this case, the limit ρ̃→∞ defines an infrared fixed
point, and flow trajectories could connect directly the SFT- and infrared fixed points. The
behavior of this scaling solution for large ρ̃ is given by

w = 1
2ξ∞ρ̃+ w∞ , u = u∞ , (7.1)

with constant ξ∞ and u∞. While C and D depend logarithmically on ρ̃ for large ρ̃

C = C̄ +AC ln ρ̃ , D = D̄ −AD ln ρ̃ , (7.2)

the ratios d = D/w, c = C/w vanish ∼ ln ρ̃/ρ̃. These ratios are the relevant quantities to
measure the deviations from an effective action based on the Einstein-Hilbert truncation.

We may replace for the logarithmic flow of C and D the renormalization scale k2 by
k2 + q2, with q2 a typical squared momentum q2 or corresponding covariant (negative)
Laplacian ∆ = −D2. Taking ρ̃ = ϕ2/k2 with ϕ a scalar singlet field, the gravitational
effective action according to the scaling solution is given for q2 � ϕ2 and k2 � ϕ2 by

Γ =
∫
x

√
g

[
u∞k

4−
(
ξ∞
2 ϕ2+w∞k2

)
R− 1

2R
(
C̄+AC ln ϕ2

∆+k2

)
R

+ 1
2Cµνρσ

(
D̄−AD ln ϕ2

∆+k2

)
Cµνρσ

]
. (7.3)
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Together with a suitable kinetic term for ϕ, and particle masses ∼ ϕ as appropriate for the
quantum scale symmetry at an IR-fixed point, this effective action seems compatible with
observation. The scale k is the only overall scale and we may choose it as k ≈ 2 · 10−3 eV.
The present effective value of the Planck mass is ∼ ξ1/2

∞ ϕ. It is dynamical and reaches for
present cosmology the value 2 · 1018 GeV, such that k2/ϕ2 ≈ 10−60 explains the weakness
of gravity. The scalar field ϕ can be associated with the cosmon, providing for dynamical
dark energy.
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Note added. After submitting our paper on arXiv, a recent paper [147] has computed
the heat kernel coefficients for a more general non-minimal forth-order derivative operator,
D4 + Ω̂abcDaDbDc + D̂abDaDb + HaDa + P̂ . Because gravitational systems with higher
derivative operators could contain such a type of derivative in the two-point functions, those
results may make computations simple and then may be quite useful for investigations of
asymptotically safe gravity and its extended systems.

A Setup

Our main tool in this work is the functional renormalization group [28, 29, 133, 135]. A
central object is the scale-dependent 1PI effective action (or effective average action) Γk.
For k → 0, one obtains the full 1PI effective action Γk=0 = Γ. The scale change of Γk is
described by the following functional differential equation [28]:

∂tΓk = 1
2Tr

[(
Γ(2)
k +Rk

)−1
∂tRk

]
. (A.1)

Here, Rk is a regulator which suppress low momentum modes with |p| < k such that
high momentum modes with |p| > k are integrated out, ∂t = k∂k is the dimensionless
scale derivative, and Γ(2)

k is the Hessian, i.e. the full two-point function defined by the
second-order functional derivative with respect to field variables. Tr denotes the functional
trace acting on all internal spaces of fields such as momenta (eigenvalues of the covariant
derivative), flavor and color. See refs. [148–159] on the derivation and technical aspects of
the flow equation (A.1) and its applications to various systems.

Although the flow equation (A.1) is exact, namely it is derived without any approxima-
tions, one needs to make approximations to solve eq. (A.1) even for a simple system. In
general, the effective average action Γk includes an infinite number of effective operators
generated by quantum effects. Therefore, approximations can be made by restricting an
infinite-dimensional theory space into a finite subspace.
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In this appendix, we explain our setups and techniques to derive the flow generators
or beta functions for the coupling functions in a derivative expansion for quantum gravity
in fourth order in derivatives. Firstly, we give the specific form of the effective average
action for the gravitational system in order to investigate the asymptotic freedom and
asymptotic safety scenarios for quantum gravity. Secondly, properties of the decomposed
metric fluctuation field are summarized. Thirdly, we list useful identities for the covariant
derivatives acting on various spin fields which are used to evaluate the trace for spacetime
indices in the flow equation (A.1). Finally, we show the expanded projectors into polynomials
of curvature invariants. The decomposition of the metric fluctuation field is realized by
acting appropriate projectors on the metric fluctuation field. Those involve generally an
infinite number of the covariant derivatives and curvature operators. For our purpose in
this work, it is convenient to expand the projectors in polynomials of curvature invariants
up to its squared forms.

A.1 Effective average action

The starting point to derive the flow equations for the gravitational system is to split the
metric field gµν into a background field ḡµν and a fluctuation fields hµν :

gµν = ḡµν + hµν . (A.2)

Hereafter, quantities, variables and operators contracted by the background field are
presented by a bar on them.

The effective average action as a truncated system reads

Γk = Γmatter
k + Γgravity

k + Γgf + Γgh . (A.3)

Here the action for the gravity part is parametrized with

Γgravity
k =

∫
d4x
√
g

[
U(ρ)− F (ρ)

2 R+ C(ρ)
2 R2 + D(ρ)

2 RµνR
µν + E(ρ)RµνρσRµνρσ

]
=
∫
d4x
√
g

[
U(ρ)− F (ρ)

2 R− C(ρ)
2 R2 + D(ρ)

2 CµνρσC
µνρσ + E(ρ)G4

]
, (A.4)

where the Gauss-Bonnet term G4 = R2 − 4RµνRµν + RµνρσR
µνρσ is topological in four

dimensional space, and CµνρσC
µνρσ = G4 + 2RµνRµν − 2/3R2 = R2

µνρσ − 2R2
µν + 1/3R2

is the squared Weyl tensor. The gauge and ghost actions for diffeomorphisms are given
respectively by

Γgf = 1
2α

∫
d4x

√
ḡ ḡµνΣµΣν , (A.5)

Γgh = −
∫
d4x

√
ḡ C̄µ

[
ḡµνD̄2 + 1− β

2 D̄µD̄ν + R̄µν
]
Cν , (A.6)

where Cµ and C̄µ are the ghost and anti-ghost fields and the gauge fixing function obeys

Σµ = D̄νhνµ −
β + 1

4 D̄µh , (A.7)
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with h = ḡµνhµν the trace mode of the metric fluctuation. The constants α and β are the
gauge fixing parameters. In this work, we use the physical gauge fixing β = −1 and α→ 0
for which the gauge fixing action (A.5) deals with the path integral for the gauge field on
the gauge orbit satisfying D̄νhνµ = 0. The physical gauge fixing acts only on the gauge
modes which are generated by the action of a gauge transformation on the background
metric ḡµν . For the matter part, we give the action for free NS-scalars, NF -Weyl fermions,
NV -gauge bosons,

Γmatter
k =

∫
x

√
ḡ

[1
2(∂µϕ)2+m2ϕ2

]
+ 1

4

∫
x

√
ḡ F aµνF

aµν+Γ(V )
gf +Γ(V )

gh +
∫
x

√
ē
[
ψ̄i /̄Dψ+yϕψ̄γ5ψ

]
,

(A.8)

where
√
e denotes the determinant of vierbein eµa. The gauge fixing and the ghost action

for the gauge symmetries read

Γ(V )
gf = 1

2αV

∫
d4x

√
ḡ (D̄µA

µ)2 , Γ(V )
gh =

∫
d4x

√
ḡ c̄ ∂µD̄

µc , (A.9)

where αV is the (dimensionless) gauge fixing parameter for the additional gauge symmetries
in the matter sector beyond diffeomorphisms.

A.2 Physical metric decomposition

In general, the fluctuating metric hµν is a second rank symmetric tensor, namely it has
10 degrees of freedom in four dimensional spacetime. This tensor can be decomposed
into physical and gauge degrees of freedom. In this work, we employ the physical metric
decomposition [124] which is given by

hµν = fµν + aµν , aµν = D̄µaν + D̄νaν , (A.10)

where fµν is the physical metric satisfying the transverse condition, i.e. D̄µfµν = 0, and aµ
is the spin-1 vector gauge mode. Thus the physical metric fµν has 6 degrees of freedom,
while there are 4 degrees of freedom in the gauge mode aµ, corresponding to infinitesimal
diffeomorphism transformations.

We introduce the trace mode (the physical spin-0 scalar mode), σ := ḡµνfµν , and split
the physical metric fluctuations,

fµν = Tµν
ρτfρσ + Iµν

ρτfρσ = bµν + 1
4 ḡµνσ . (A.11)

The two parts read

Tµν
ρτfρτ = (Eµνρτ − Iµνρτ )fρτ = fµν −

1
4gµνσ =: bµν , Iµν

ρτfρτ = 1
4gµνσ , (A.12)

where we have introduced the unit matrix acting on symmetric tensors and the projection
tensors,

Eµν
ρτ = 1

2(δρµδτν + δτµδ
ρ
ν) , Tµν

ρτ = Eµν
ρτ − Iµνρτ , Iµν

ρτ = 1
4gµνg

ρτ . (A.13)
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The projection tensors satisfy the conditions as the orthogonal basis,

Tµν
αβTαβ

ρτ = Tµν
ρτ , Iµν

αβIαβ
ρτ = Iµν

ρτ , Tµν
ρτIρτ

αβ = 0 . (A.14)

Using these projections, one can define the projection operators Pa and Pf on the gauge
and physical modes,

(Pah)µν =
(
D̄1
)
µν

α
(
D̄−1

1

)
α

β(−D̄γ)Eγβρσhρσ = D̄µaν + D̄νaν = aµν , (A.15)

(Pfh)µν = (E − Pa)µνρσhρσ = fµν , (A.16)

where(
D̄1
)
µν

α = D̄µδ
α
ν + D̄νδ

α
µ ,

(
D̄−1

1

)
µ

ν =
(
δνµ∆̄V − D̄µD̄

ν − R̄µν
)−1

. (A.17)

These projectors satisfy

(Pf )µναβ(Pf )αβρσ = (Pf )µνρσ , (Pa)µναβ(Pa)αβρσ = (Pa)µνρσ , (Pa)µναβ(Pf )αβρσ = 0 ,
(A.18)

and, at the lowest order,

trPa = 4 , trPf = 6 . (A.19)

In eq. (A.17) and the following we denote the Laplacian ∆̄ = −D̄µD̄µ acting on scalars,
vectors or tensors by ∆̄S , ∆̄V and ∆̄T , respectively.

The physical metric fluctuations and the gauge modes are further decomposed into
irreducible representations of the Lorentz group,

fµν = tµν + Ŝµνσ = tµν + P̂µν(N−1σ) , aµν = D̄µκν + D̄νκµ + D̄µD̄νu , (A.20)

where tµν is the transverse-traceless (TT) tensor and κµ a transverse vector D̄µκµ = 0,
while σ(= ḡµνfµν) is the spin-0 scalar field defined above. The projector on the physical
fluctuations is defined by

Ŝµν =
(
ḡµν∆̄S + D̄µD̄ν − R̄µν

)
N−1 = P̂µνN−1 , N = 3

(
∆̄S −

R̄

3

)
. (A.21)

This operator satisfies tr Ŝ = ḡµν Ŝµν = 1. The decomposition (A.12) can be written as

fµν = bµν + 1
4 ḡµνσ = tµν + s̃µνσ + 1

4 ḡµνσ , (A.22)

where s̃µν satisfies the traceless condition, i.e. ḡµν s̃µν = 0 and is explicitly given by

s̃µνσ =
[(
D̄µD̄ν −

1
4 ḡµνD̄

2
)
−
(
R̄µν −

1
4 ḡµνR̄

)]
N−1σ

=:
(
D̃µν − R̃µν

)
N−1σ =: p̃µνN−1σ . (A.23)
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We will later need further identities for the physical scalar metric fluctuation σ, as

Ŝµνσ =
(
s̃µν + 1

4 ḡµν
)
σ =

(
p̃µν + ḡµν

4 N
)
N−1σ . (A.24)

For an expansion linear in the curvature tensor one has

D̃µνσ = 1
4
(
ḡµν + 4D̄µD̄µ(∆̄S)−1

)
∆̄Sσ

= 1
4
(
P̃µν + 3D̄µ(∆̄V )−1D̄ν

)
∆̄Sσ − D̄µ(∆̄V )−2D̄αR̄

α
ν∆̄Sσ +O(R̄2) , (A.25)

and

D̃µνD̃µνσ = 1
4
(
∆̄S

)
Nσ + R̄µνD̃µνσ , (A.26)

where we define the transverse projector,

P̃µν = ḡµν + D̄µ(∆̄V )−1D̄ν . (A.27)

The projection operators which project out tµν and Ŝµνσ from hµν are

(Pt)µνρσ =
(
Eµν

αβ − Ŝµν ḡαβ
)

(Pf )αβρσ =
(
Eµν

αβ − Iµναβ − s̃µν ḡαβ
)

(Pf )αβρσ , (A.28)

(Pσ)µνρσ = Ŝµν ḡ
αβ(Pf )αβρσ , (A.29)

where

trPt = (Pt)µνµν = 5 , trPσ = (Pσ)µνµν = 1 . (A.30)

Under infinitesimal diffeomorphism transformations for the metric fluctuations, the TT
tensor tµν and the physical spin-0 scalar field σ are invariant, whereas the transverse vector
field κµ and the gauge spin-0 scalar field u are not. Here explicitly the transformations of
the infinitesimal diffeomorphisms metric fluctuations are given by

hµν → hµν + D̄µξν + D̄νξµ , (A.31)

where the gauge parameters ξµ are decomposed as ξµ = ξ⊥µ + D̄µξ with D̄µξ⊥µ = 0 and
D̄µD̄µξ = D̄µξµ. The physical metric fluctuations are invariant under the transforma-
tion (A.31), i.e., tµν → tµν and σ → σ, whereas the gauge modes are transformed as
κµ → κµ + ξ⊥µ and u→ u+ 2ξ. Hence, the physical metric fluctuations are gauge invariant.

A.3 Identities for covariant derivatives

We summarize some identities for covariant derivative which are needed to evaluate the flow
generators. We start with the commutator of two covariant derivatives acting on arbitrary
tensor φα1α2...αn ,

[D̄µ, D̄ν ]φα1α2...αn =
n∑
i=1

R̄µναi
βφα1...αi−1βαi+1...αn . (A.32)
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From this, one obtains

[D̄µ, ∆̄]φ = R̄µ
νD̄νφ , (A.33)

[D̄µ, ∆̄]φρ = R̄µ
νD̄νφρ − 2R̄νµλρD̄νφλ − (D̄νR̄

ν
µ
λ
ρ)φλ , (A.34)

[D̄µ, ∆̄]φρσ = R̄µ
νD̄νφρσ − 4R̄νµλ(ρD̄

νφσ)λ − (D̄νR̄
ν
µ
λ

(ρ)φσ)λ , (A.35)

where A(µBν) = (AµBν−BνAµ)/2. In this work we assume covariantly constant background
curvature and drop the term D̄νR̄

ν
µ
λ
ρ.

From the identity

[∆̄, D̄µD̄ν ]φ =
(
D̄µ[∆̄, D̄ν ] + [∆̄, D̄µ]D̄ν

)
φ

=
(
−δαµ R̄νβ − R̄µαδβν + 2R̄αµβν

)
D̄αD̄βφ =: −Φµν

αβD̄αD̄βφ , (A.36)

one obtains

[∆̄, Ŝµν ]σ = −Φµν
αβD̄αD̄βN−1σ , (A.37)

[∆̄2, Ŝµν ]σ = Φµν
αβΦαβ

ρσD̄ρD̄σN−1σ − 2Φµν
αβD̄αD̄β∆̄N−1σ , (A.38)

[R̄αβD̄αD̄β , Ŝµν ]σ = R̄αβ
(
ḡµνΦαβ

ρσ + δρµR̄ανβ
σ + R̄αµβ

σδρν − 2δραR̄µβνσ
)
D̄ρD̄σN−1σ .

(A.39)

The tensor Φµν
αβ satisfies

ḡµνΦµν
αβ = R̄αβ + R̄βα − 2R̄αβ = 0 . (A.40)

Then, one can define useful Laplacians, called “Lichnerowicz Laplacians” [160] acting on a
spin-2 tensor field,

∆̄L2hµν ≡ (∆̄L2)µνρσhρσ = −D̄2Eµν
ρσ hρσ + R̄µ

ρδσνhρσ + R̄ν
ρδσµhρσ − 2R̄µρνσhρσ

=
(
∆̄TEµν

ρσ − Φµν
ρσ
)
hρσ , (A.41)

which obeys

∆̄L2(D̄µD̄νφ) = D̄µD̄ν∆̄Sφ , ∆̄L2ḡµνφ = ḡµν∆̄Sφ , (A.42)

while in a general background one has

∆̄L2(R̄µνσ) = R̄µν∆̄Sσ − Φµν
ρσR̄ρσ , (A.43)

and then

∆̄L2(Ŝµνσ) = Ŝµν∆̄Sσ + Φµν
ρσR̄ρσN−1σ . (A.44)

Now we see that∫
x

√
ḡ σŜµν∆̄T Ŝµνσ =

∫
x

√
ḡ σ

(
Ŝµν Ŝµν∆̄S − ŜµνΦµν

αβD̄αD̄βN−1
)
σ

=
∫
x

√
ḡ σ

(
Ŝµν Ŝµν∆̄S − ŜµνR̄µανβD̄αD̄βN−1

)
σ , (A.45)

where we have used D̄µŜµν = 0.
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A.4 Expansion of projectors

To calculate the traces in the flow generators, we expand the projectors into polynomials of
curvature operators. In this work, we calculate contributions up to the quadratic order of
the curvature invariants, i.e. R̄2, R̄µνR̄µν and R̄µνρσR̄µνρσ. As one can see from eq. (B.20)
and (B.21), the interaction parts involve at least one curvature scalar. Therefore, it is
enough to have the linear order of curvature operators.

We start by expanding the inverse of D̄1 defined in eq. (A.17):(
D̄−1

1

)
µ

νξν

=
[

1
∆̄V

δνµ+ 1
2

1
∆̄V

D̄µD̄
ν 1

∆̄V

+ 1
∆̄2
V

R̄µ
ν+ 1

∆̄3
V

R̄µαD̄
αD̄ν+ 1

2
1

∆̄4
V

R̄αβD̄αD̄βD̄µD̄
ν

]
ξν+O(R̄2)

=
[

1
∆̄V

δνµ+ 1
2

1
∆̄V

D̄νD̄µ
1

∆̄V

+ 1
2∆̄2

V

R̄µ
ν+ 1

∆̄3
V

R̄µαD̄
αD̄ν+ 1

2
1

∆̄4
V

R̄αβD̄αD̄βD̄µD̄
ν

]
ξν+O(R̄2) .

(A.46)

Then, from eqs. (A.15) and (A.16), one has

(Pa)µνρσ =−1
2

(
D̄µ

1
∆̄V

D̄ρδσν +D̄µ
1

∆̄V

D̄σδρν+D̄ν
1

∆̄V

D̄ρδσµ+D̄ν
1

∆̄V

D̄σδρµ

)
− 1

2

(
D̄µ

1
∆̄V

D̄ρD̄ν
1

∆̄V

D̄σ+D̄µ
1

∆̄V

D̄σD̄ν
1

∆̄V

D̄ρ
)

+
(
D̄µδ

α
ν +D̄νδ

α
µ

)( 1
2∆̄2

V

R̄α
β+ 1

∆̄3
V

R̄ατ D̄
τ D̄β+ 1

2
1

∆̄4
V

R̄τκD̄τ D̄κD̄αD̄
β
)

(−D̄γ)Eγβρσ

+O(R̄2)

=:
(
P (0)
a

)
µν

ρσ+
(
P (1)
a

)
µν

ρσ+O(R̄2) , (A.47)

(Pf )µνρσ =Eµν
ρσ−(Pa)µνρσ =:Eµνρσ−

(
P (0)
a

)
µν

ρσ−
(
P (1)
a

)
µν

ρσ+O(R2)

=:
(
P

(0)
f

)
µν

ρσ+
(
P

(1)
f

)
µν

ρσ+O(R̄2) , (A.48)

where superscripts, (0) and (1), on the projectors denote the order of curvature operators,
and we have defined P (0)

f = E − P (0)
a and P (1)

f = −P (1)
a . Here and hereafter, it is supposed

that all projectors act on hρσ, i.e., indices ρ and σ are contracted and thus those are not
open-indices. In particular, the projector P (0)

f reads
(
P

(0)
f

)
µν

ρσ = 1
2
(
P̃µ

ρP̃ν
σ + P̃µ

σP̃ν
ρ
)
, (A.49)

(
P

(1)
f

)
µν

ρσ = −
(
D̄µδ

α
ν + D̄νδ

α
µ

)( 1
2∆̄2

V

R̄α
β + 1

∆̄3
V

R̄ατ D̄
τ D̄β + 1

2
1

∆̄4
V

R̄τκD̄τ D̄κD̄αD̄
β

)
× (−D̄γ)Eγβρσ , (A.50)

where P̃µν is defined in eq. (A.27). The physical scalar projector is expanded as

Ŝµν = 1
3 P̃µν −

1
3D̄µ(∆̄V )−2D̄αR̄

α
ν −

1
3R̄µν

1
∆̄S

+ 1
9 P̃µνR̄

1
∆̄S

+O(R̄2) , (A.51)
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from which the projector for σ given in eq. (A.29), reads

(Pσ)µνρσ = Ŝµν ḡ
αβ(Pf )αβρσ =

(
s̃µν ḡ

αβ + Iµν
αβ
)

(Pf )αβρσ

= 1
3 P̃µνP̃

ρσ +
(
−1

3D̄µ(∆̄V )−2D̄αR̄
α
ν −

1
3R̄µν

1
∆̄S

+ 1
9R̄P̃µν

1
∆̄S

)
P̃ ρσ

− 2
3 P̃µνD̄

α

(
1

2∆̄2
V

R̄α
β + 1

∆̄3
V

R̄ατ D̄
τ D̄β + 1

2
1

∆̄4
V

R̄τκD̄τ D̄κD̄αD̄
β

)
(−D̄γ)Eγβρσ

+O(R̄2) . (A.52)

Thus one has the traceless-transverse projector so that

(Pt)µνρσ =
(
Eµν

αβ − Iµναβ − s̃µν ḡαβ
)

(Pf )αβρσ =:
(
P

(0)
t

)
µν

ρσ +
(
P

(1)
t

)
µν

ρσ +O(R̄2) ,

(A.53)

where(
P

(0)
t

)
µν

ρσ = 1
2
(
P̃µ

ρP̃ν
σ+ P̃µ

σP̃ν
ρ
)
− 1

3 P̃µνP̃
ρσ , (A.54)(

P
(1)
t

)
µν

ρσ =−
[(
D̄µδ

α
ν +D̄νδ

α
µ

)
+ 2

3 P̃µνD̄
α
]
R̄τκ

×
(

1
2∆̄2

V

ḡακδ
β
τ + 1

∆̄3
V

ḡακD̄τ D̄
β+ 1

2
1

∆̄4
V

D̄τ D̄κD̄αD̄
β

)
(−D̄γ)Eγβρσ

+D̄µ(∆̄V )−2D̄αR̄
α
ν

(1
3 P̃

ρσ
)

+R̄µν

(1
3 P̃

ρσ
) 1

∆̄S

−R̄
(1

3 P̃µν
)(1

3 P̃
ρσ
) 1

∆̄S

.

(A.55)

We should note here that although the lowest order projectors P (0)
f and P

(0)
t have no

apparent dependence on curvatures, commutators between the covariant derivatives and
Laplacians could yield terms with curvatures.

B Inverse two-point functions

To derive the beta functions using the flow equation (A.1), we need the inverse two-point
functions which are second functional derivatives with respect to metric fluctuation fields.
We first summarize the relations between the three couplings in the higher derivative
operators for different bases. Using the fact that the Gauss-Bonnet term is topological we
will only need the second functional derivative for the squared Ricci scalar curvature and
the squared Ricci tensor. For these invariants we will list the explicit forms of Hessians for
the physical metric fluctuations fµν and the decomposed ones tµν , σ, aµν .

B.1 Basis of gravitational interactions

For the higher derivative operators, one can write different bases. As given in eq. (2.2), one
of the bases for the higher derivative terms is the Weyl basis which reads

SHD =
∫
x

√
g

[
−C2 R

2 + D

2 CµνρσC
µνρσ + EG4

]
. (B.1)
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On the other hand, the calculations of the beta functions using the heat kernel method
yield results in the basis spanned by R2, R2

µν and R2
µνρσ rather than the operator basis in

eq. (B.1). Therefore, one recasts (B.1) as

SHD =
∫
x

√
g

[C
2R

2 + D2 RµνR
µν + ERµνρσRµνρσ

]
. (B.2)

In order to obtain the loop contributions for the squared Weyl tensor and the Gauss-Bonnet
term (2.3), we compare between the actions (B.1) and (B.2) and the read the relations
between these coupling constants such that

C = −C + D

3 + 2E , D = −2D − 8E , E = D

2 + E , (B.3)

or equivalently

C = −C − 1
3D −

2
3E , D = 1

2D + 4E , E = −D4 − E . (B.4)

Once the beta function for C, D and E are computed, we can obtain the beta functions for
C, D and E using these relations.

Let us consider the variations for the effective action (A.4). The term E(ρ)RµνρσRµνρσ

is written in term of the Gauss-Bonnet term such that∫
x

√
gE(ρ)RµνρσRµνρσ

=
∫
x

√
gE(ρ)

[
4RµνRµν−R2+G4

]
=
∫
x

√
gE(ρ)

[
4RµνRµν−R2

]
+
∫
x

√
gE(ρ)∂µJ µGB

=
∫
x

√
gE(ρ)

[
4RµνRµν−R2

]
−
∫
x

√
g (∂µE(ρ))J µGB+(total derivative term) , (B.5)

where we used the fact that the Gauss-Bonnet term is topological, i.e. this term can be
written as a total derivative. The second term on the right-hand side does not contribute
to the Hessians for a constant E(ρ). The effective action (A.4) is written as

Γgrav
k =

∫
x

√
g

[
U(ρ)− F (ρ)

2 R+ 1
2 (C(ρ)− 2E(ρ))R2 + 1

2 (D(ρ) + 8E(ρ))RµνRµν
]

+ (total derivative term)

=
∫
x

√
g

[
U(ρ)− F (ρ)

2 R− 1
2

(
C(ρ) + 2

3D(ρ)
)
R2 +D(ρ)RµνRµν

]
+ (total derivative term) ,

=
∫
x

√
g

[
U(ρ)− F (ρ)

2 R− C(ρ)
2 R2 + D(ρ)

2 CµνρσC
µνρσ

]
+ (total derivative term) ,

(B.6)

where we used the relations (B.3) in the second equality, and the squared Weyl tensor is
given as

1
2CµνρσC

µνρσ = RµνR
µν − 1

3R
2 + 1

2G4 . (B.7)

– 37 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

Therefore, we do not have to calculate the variation for RµρνσRµρνσ. It is sufficient to
evaluate variations for the effect action,

Γgrav
k '

∫
x

√
g

[
U(ρ)− F (ρ)

2 R− H(ρ)
2 R2 +D(ρ)RµνRµν

]
, (B.8)

where we define

H(ρ) = C(ρ) + 2
3D(ρ) . (B.9)

B.2 Variations

We list the second variations for the effective action in terms of the physical metric
fluctuations fµν around a general background ḡµν , i.e. for the action (B.8) we show

Γgrav,(2)
k,(ff) =

∫
x

[
U (√g)(2) −

F

2 (√gR)(2) −
H

2
(√

gR2
)

(2)
+D

(√
gR2

µν

)
(2)

] ∣∣∣∣
ff

=: Γ(U)
(ff) + Γ(R)

(ff) + Γ(R2)
(ff) + Γ(R2

µν)
(ff) . (B.10)

The second variations for each part are computed as

Γ(U)
(ff) = 1

4U
∫
x

√
ḡ
[
−fµνEµνρτfρτ+ 1

2σ
2
]

= 1
4U
∫
x

√
ḡ
[
−tµνEµνρτ tρτ+σ

{1
6 +
(1

3−Ŝ
µν Ŝµν

)}
σ−σŜρτ tρτ−tµν Ŝµνσ

]
, (B.11)

Γ(R)
(ff) = 1

4
F

2

∫
x

√
ḡ

[
fµν

{(
∆̄T +R̄

)
Eµν

ρτ−2R̄µρδτν−2R̄µρντ
}
fρτ−σ

(
∆̄S+ R̄

2

)
σ+2σR̄ρτfρτ

]
= 1

4
F

2

∫
x

√
ḡ

[
tµν
{(

∆̄T +R̄
)
Eµν

ρτ−2R̄µρδτν−2R̄µρντ
}
tρτ−σ

{
2
3∆̄S+

(1
3−Ŝ

µν Ŝµν

)
∆̄S

+
(1

2−Ŝ
µν Ŝµν

)
R̄+2Ŝµν

(
R̄µ

ρδτν Ŝρτ−R̄µν
)

+2ŜµνR̄µρντ
(
Ŝρτ−D̄ρD̄τN−1

)}
σ

+σ
(
Ŝρτ ∆̄T +R̄Ŝρτ+R̄ρτ−2ŜµνR̄µρδτν−2ŜµνR̄µρντ

)
tρτ

+tµν
(

∆̄T Ŝµν+R̄Ŝµν+R̄µν−2R̄µρδτν Ŝρτ−2R̄µρντ Ŝρτ
)
σ

]
, (B.12)

Γ(R2)
(ff) = 1

4H
∫
x

√
ḡ

[
fµν

{(
R̄∆̄T + R̄2

2

)
Eµν

ρτ−2R̄R̄µρδτν−2R̄µνR̄ρτ−2R̄R̄µρντ
}
fρτ

−2σ
(

∆̄2
S+ R̄

2 ∆̄S+ R̄2

8

)
σ+4σR̄ρτ

(
∆̄T + R̄

2

)
fρτ

]

= 1
4H
∫
x

√
ḡ

[
tµν
{(

R̄∆̄T + R̄2

2

)
Eµν

ρτ−2R̄R̄µρδτν−2R̄µνR̄ρτ−2R̄R̄µρντ
}
tρτ

−σ
{

2∆̄2
S+ 1

2 R̄∆̄S+
(1

2−Ŝ
µν Ŝµν

)
R̄∆̄S+

(1
2−Ŝ

µν Ŝµν

)
R̄2

2 +2R̄Ŝµν
(
R̄µ

ρδτν Ŝρτ−R̄µν
)

+2R̄ŜµνR̄µρντ
(
Sρτ−D̄ρD̄τN−1)+2ŜµνR̄µν

(
R̄ρτ Ŝρτ−2∆̄S

)}
σ

+σ
{(

Ŝρτ R̄+2R̄ρτ
)

∆̄T +
(
Ŝρτ R̄+2R̄ρτ

)
R̄

2

− 2ŜµνR̄R̄µρδτν−2ŜµνR̄R̄µρντ−2ŜµνR̄µνR̄ρτ
}
tρτ
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+tµν
{

∆̄T

(
ŜµνR̄+2R̄µν

)
+ R̄

2

(
ŜµνR̄+2R̄µν

)
− 2R̄R̄µρδτν Ŝρτ−2R̄R̄µρντ Ŝρτ−2R̄µνR̄ρτ Ŝρτ

}
σ

]
, (B.13)

Γ(R2
µν )

(ff) = 1
4D
∫
x

√
ḡ

[
fµν
{(

∆̄2
T +2R̄αβD̄βD̄α−R̄αβR̄αβ

)
Eµν

ρτ−4∆̄T R̄µ
ρ
ν
τ+4R̄µανβR̄αρβτ

+2R̄µρR̄ντ−2R̄µαR̄ατδρν+4R̄ρµταR̄να+4δρµR̄νατ βR̄αβ
}
fρτ

+σ
(

∆̄2
S−R̄αβD̄βD̄α+ 1

2 R̄
αβR̄αβ

)
σ+σ

(
−4R̄αβR̄αρβτ

)
fρτ

]

= 1
4D
∫
x

√
ḡ

[
tµν
{(

∆̄2
T +2R̄αβD̄βD̄α−R̄αβR̄αβ

)
Eµν

ρτ−4∆̄T R̄µ
ρ
ν
τ+4R̄µανβR̄αρβτ

+2R̄µρR̄ντ−2R̄µαR̄ατδρν+4R̄ναR̄ρµτα+4R̄αβR̄νατ βδρµ
}
tρτ

+σ
{

4
3∆̄2

S−
(1

3−Ŝ
µν Ŝµν

)
∆̄2
S−2

(1
2−Ŝ

µν Ŝµν

)
R̄αβD̄βD̄α+

(1
2−Ŝ

µν Ŝµν

)
R̄αβR̄αβ

+Ŝµν
(

2Φµνρτ
(
Ŝρτ+R̄ρτN−1

)
∆̄S+ΦµναβΦαβρτ Ŝρτ−ΦµναβΦαβρτ R̄ρτN−1

+2ΦµναβΦαβρτ R̄ρτN−1
)

−2ŜµνR̄αβ
(
δρµR̄ανβ

σ+R̄αµβσδρν−2δραR̄µβνσ
)
D̄ρD̄σN−1−4ŜµνR̄µρντ

×
(
Ŝρτ ∆̄S+Φρταβ

(
Ŝαβ+R̄αβN−1

))
+Ŝµν(4R̄µανβR̄αρβτ+2R̄µρR̄ντ−2R̄µαR̄ατδρν+4R̄ρµταR̄να+4δρµR̄νατ βR̄αβ

)
Ŝρτ

}
σ

+σ
(
Ŝρτ

(
∆̄2
T +2R̄αβD̄αD̄β

)
−4Ŝµν∆̄T R̄µ

ρ
ν
τ−Ŝρτ R̄αβR̄αβ−2R̄αβR̄αρβτ

+Ŝµν
(

4R̄µανβR̄αρβτ+2R̄µρR̄ντ−2R̄µαR̄ατδρν+4R̄ναR̄ρµτα+4R̄αβR̄νατ βδρµ
))

tρτ

+tµν
((

∆̄2
T +2R̄αβD̄αD̄β

)
Ŝµν−4∆̄T R̄µ

ρ
ν
τ Ŝρτ−R̄αβR̄αβŜµν−2R̄αβR̄µανβ

+
(

4R̄µανβR̄αρβτ+2R̄µρR̄ντ−2R̄µαR̄ατδρν+4R̄ναR̄ρµτα+4R̄αβR̄νατ βδρµ
)
Ŝρτ

)
σ

]
,

(B.14)
where the tensor Φµν

ρσ is defined in eq. (A.36).

B.3 Hessians

B.3.1 Metric fluctuations
The Hessians Γ(2)

k for the action (B.8) is defined by

Γ(2)
k = 1

2

∫
x

√
ḡ
(
tµν σ aγ ϕ

) (
Γ(2)

grav

)

tρσ

σ

aδ

ϕ

 . (B.15)
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For the physical metric decomposition (4.1), it has a simple the structure,

Γ(2)
grav = 1

2



(
Γ(2)

(tt)

) ρσ

µν

(
Γ(2)

(tσ)

) ρσ

µν
0

(
Γ(2)

(tϕ)

)
µν(

Γ(2)
(σt)

)ρσ (
Γ(2)

(σσ)

)
0

(
Γ(2)

(σϕ)

)
0 0

(
Γ(2)

(aa)

) δ

γ

(
Γ(2)

(aϕ)

)
γ(

Γ(2)
(ϕt)

)ρσ (
Γ(2)

(ϕσ)

) (
Γ(2)

(ϕa)

)δ
Γ(2)

(ϕϕ)


. (B.16)

The two-point functions of the physical metric fluctuation read

tµν
(
Γ(2)
tt

)
µν

ρσtρσ −
2
3σ
(
Γ(2)
σσ

)
σ + tµν

(
Γ(2)
tσ

)
µν
σ + σ

(
Γ(2)
σt

)ρσ
tρσ

= tµν
[
K(t)Eµν

ρσ +
(
M(t)(R̄, ∆̄T )

) ρσ

µν

]
tρσ −

2
3σ
[
K(σ) + M(σ)(R̄, ∆̄S)

]
σ

+ tµν
(
M(tσ)(R̄, ∆̄S)

)
µν
σ + σ

(
M(σt)(R̄, ∆̄T )

)ρσ
tρσ . (B.17)

Here the regulated kinetic terms for the t-mode and the physical scalar σ-mode read,
respectively,

K(t) = F

2 ∆̄T +D∆̄2
T − U , (B.18)

K(σ) = F

2 ∆̄S + 3C∆̄2
S −

U

4 . (B.19)

The interacting parts, denoted by M are computed up to the squared order of curvature
operators. For the t-mode we find

(
M(t)(R̄,∆̄T )

) ρσ

µν

=
[
F

2 R̄+HR̄∆̄T +2DR̄αβD̄αD̄β+H

2 R̄
2−DR̄αβR̄αβ

]
(Pt)µνρσ

−2X
[
(Pt)µναβ

(
R̄α

γδδβ

)
(Pt) ρσ

γδ

]
−2
[
X+2D∆̄T

][
(Pt)µναβR̄αγβδ(Pt) ρσ

γδ

]
−2H

[
(Pt)µναβ

(
R̄αβR̄

γδ
)

(Pt) ρσ
γδ

]
+D

[
(Pt)µναβ

(
4R̄τακβR̄τγκδ+2R̄αγR̄βδ−2R̄ατ R̄τδδγβ

+4R̄βτ R̄αγτ δ+4R̄τκR̄βτ δκδγα
)
(Pt) ρσ

γδ

]
, (B.20)
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while for the σ-mode one finds

2
3M(σ)(R̄,∆̄S)

=
[(
F

2 ∆̄S+D∆̄2
S−U

)
+F

2 R̄+HR̄∆̄S+2DR̄αβD̄αD̄β

](1
3−Ŝ

µν Ŝµν

)
+ 1

6
[
X R̄+2DR̄αβD̄αD̄β

]
+ 2

3H
[
R̄−6ŜµνR̄µν

]
∆̄S−

1
3H

[1
4R̄

2−6ŜµνR̄µνR̄ρτ Ŝρτ
]

+2X Ŝµν
(
R̄µ

ρδτν Ŝρτ−R̄µν
)

+2
[
X+2D∆̄S

]
ŜµνR̄µ

ρ
ν
τ
(
Ŝρτ−D̄ρD̄τN−1

)
−D

[1
6R̄

αβR̄αβ+4R̄αβδρµR̄νατ β
(
Ŝρτ−D̄ρD̄τN−1

)
+4ŜµνR̄ραR̄µαντ

(
Ŝρτ+D̄ρD̄τN−1

)
+Ŝµν

(
2Φµν

ρτ D̄ρD̄τ ∆̄SN−1+Φµν
αβΦαβ

ρτ D̄ρD̄τN−1
)

+Ŝµν(4R̄µανβR̄αρβτ+2R̄µρR̄ντ−2R̄µαR̄ατδρν
)
Ŝρτ

]
. (B.21)

In eqs. (B.20) and (B.21) we have defined the shorthand

X = F

2 +
(
C + 2

3D
)
R̄ = F

2 +HR̄ , (B.22)

and N is given by eq. (A.21). The off-diagonal parts read

(
M(σt)(R̄, ∆̄T )

)ρσ
=
[
U

3∆̄S

− 2
3
F

2 + 2H∆̄S −
5
3D∆̄S

]
R̄ρσ , (B.23)(

M(tσ)(R̄, ∆̄S)
)
µν

=
(
M(σt)(R̄, ∆̄T )

)
µν
. (B.24)

In this work we employ the physical gauge fixing β = −1 and α→ 0. For this choice,
the gauge fixing action (A.5) with (A.7) takes the form,

Γgf = 1
2α

∫
d4x

√
ḡ (D̄νhνµ)(D̄ρhρ

µ) =: 1
α

Γ̃gf , (B.25)

so that the Hessian for the physical mode fµν does not involve the gauge parameter α. The
Hessian for the gauge mode is given by

(
Γ(2)

(aa)

) δ

γ
=
(
Γgrav,(2)

(aa)

) δ

γ
+ 1
α

(
Γ̃(2)

gf

) δ

γ
. (B.26)

The propagator appearing in the flow equation involves the inverse of the (regulated)
Hessian. The Landau gauge α → 0 decouples the gauge mode in the propagator matrix.
For α→ 0 we do not have to specify the explicit form of Γgravity,(2)

aa . Then the Hessian for
the spin-1 gauge mode aµ takes a simple form

α
(
Γ(2)

(aa)

) ν

µ
→
(
Γ̃(2)

gf

) ν

µ
=
(
δαµ∆̄V −D̄µD̄

α−R̄µα
)(
δνα∆̄V −D̄αD̄

ν−R̄αν
)

=
(
D̄1
) α

µ

(
D̄1
) ν

α
.

(B.27)
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The remaining Hessian for the physical modes is given by

Γ(2)
phys =



(
Γ(2)

(tt)

) ρσ

µν

(
Γ(2)

(tσ)

)
µν

(
Γ(2)

(tϕ)

)
µν(

Γ(2)
(σt)

)ρσ
Γ(2)

(σσ) Γ(2)
(σϕ)(

Γ(2)
(ϕt)

)ρσ
Γ(2)

(ϕσ) Γ(2)
(ϕϕ)


. (B.28)

In the limit of constant scalar fields considered in the present work the mixing terms between
ϕ and metric fluctuations (tµν and σ) vanish. The Hessian (B.28) becomes block-diagonal,
with a separate two-point function for the scalar ϕ given by

Γ(2)
(ϕϕ) = Zϕ∆̄S +m2 . (B.29)

Here we define the effective derivative dependent scalar mass term

m2 = m2
ϕ −

ξ̃ϕ
2 R̄+ γϕ

2 R̄2 + δϕ
2 R̄

2
µν + εϕR̄

2
µνρσ , (B.30)

with

m2
ϕ = ∂2U

∂ϕ2 , ξ̃ϕ = ∂2F

∂ϕ2 , γϕ = ∂2C
∂ϕ2 , δϕ = ∂2D

∂ϕ2 , εϕ = ∂2E
∂ϕ2 . (B.31)

B.3.2 Ghost

We next consider the Hessians for the ghost fields. From the ghost action (A.6) with β = −1,
one finds(

Γ(2)
gh,C̄C

) ν

µ
= δνµ∆̄V −

1− β
2 D̄µD̄

ν − R̄µν
β=−1−−−−→ δνµ∆̄V − D̄µD̄

ν − R̄µν =
(
D̄1
) ν

µ
.

(B.32)

This differential operator is the same as the gauge modes in the metric, see eq. (B.27).

B.3.3 Jacobian

Finally we evaluate Jacobians arising from the physical metric decompositions (A.10). To
this end, we first compute the product of two metric fluctuations,

〈h(1)
µν , h

(2)µν〉

:=
∫
x

√
ḡ h(1)

µνE
µν
ρσh

(2)ρσ

=
∫
x

√
ḡ

[ (
f (1)
µν + D̄µa

(1)
ν + D̄νa

(1)
µ

) (
f (2)µν + D̄µa(2)ν + D̄νa(2)µ

) ]
=
∫
x

√
ḡ

[
f (1)
µν f

(2)µν + 2a(1)
µ

(
ḡµν∆̄V − D̄µD̄ν − R̄µν

)
a(2)
ν

]
=
∫
x

√
ḡ

[
t(1)
µν t

(2)µν + σ(1)Ŝµν Ŝ
µνσ(2) + t(1)

µν Ŝ
µνσ(2) + σ(1)Ŝµνt

(2)µν + 2a(1)
µ

(
D̄1
)µν

a(2)
ν

]

=
∫
x

√
ḡ

[ (
t
(1)
µν σ(1)

)( Eµνρσ −R̄µνN−1

−N−1R̄ρσ ŜαβŜαβ

)(
t(2)ρσ

σ(2)

)
+ 2a(1)

µ

(
D̄1
)µν

a(2)
ν

]
, (B.33)

– 42 –



J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

where
(
D̄1
)µν

= ḡµν∆̄V − D̄µD̄ν − R̄µν , and we have used tµν Ŝµνσ = −tµνR̄µνN−1σ since
D̄µt

µν = 0 and ḡµνtµν = 0. Note that in an Einstein spacetime, R̄µν = ḡµνR̄/4, the mixing
terms vanish.

In order to obtain the Jacobian arising from the metric decomposition, we consider the
Gaussian path integral for the metric fluctuation

1 =
∫
Dhµν exp

(
−1

2〈hµν , h
µν〉
)

= Jgrav

∫
DtµνDσDaµ exp

[
− 1

2

∫
x

√
ḡ

{(
tµν σ

)( Eµν(t)ρσ −R̄µνN−1

−N−1R̄ρσ ŜαβŜαβ

)(
tρσ

σ

)

+ 2aµ
(
D̄1
)µν

aν

}]

= Jgrav
[
det (1)

(
D̄1
)]−1/2

[
det (2)

(
Eµν(t)ρσ −R̄µνN−1

−N−1R̄ρσ ŜαβŜαβ

)]−1/2

, (B.34)

where E(t) is the identical matrix (A.13) acting on the space satisfying the TT condition.
One finds the Jacobian arising from the decomposition of the metric fluctuation,

Jgrav =
[
det (1)

(
D̄1
)]1/2 [

det (2)

(
Eµν(t)ρσ −R̄µνN−1

−N−1R̄ρσ ŜαβŜαβ

)]1/2

= Jgrav1 · Jgrav2 . (B.35)

The differential operator has already appeared in the Hessians for the gauge modes (B.27)
in the metric and the ghost field (B.32). The Jacobian for spin 1 mode can be eliminated
by the redefinitions of the vector fluctuation

ãµ = (D̄1)1/2aµ . (B.36)

In the basis ãµ, the Jacobian does not arise, while its Hessian has to be appropriately
modified. In this work, we do not use this redefined field (B.36). In section E.1.5, we
evaluate the flow contributions from the regulated Jacobian explicitly.

C Heat kernel method

C.1 Basics of heat kernel method

We summarize the heat kernel techniques and coefficients in order to evaluate the flow
generators. The flow generator for a spin-i mode takes the following form:

ζ = 1
2tr (i)W

(
∆̄i

)
=
∫ ∞
−∞

dsW̃ (s)tr (i)
[
e−s∆̄i

]
= 1

2(4π)2

∫
x

√
ḡ
[
b
(i)
0 Q2[W ]+b(i)2 R̄Q1[W ]+

(
b
(i)
4 R̄2+b̂(i)4 R̄µνR̄

µν+b̃(i)4 R̄µνρσR̄
µνρσ

)
Q0[W ]

]
= 1

2(4π)2

∫
x

√
ḡ

[
b
(i)
0 Q2[W ]+b(i)2 R̄Q1[W ]+

(
b
(i)
4 R̄2+b̂(i)4 CµνρσC

µνρσ+b̃(i)4 G4

)
Q0[W ]

]
,

(C.1)
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where the heat kernel trace is expanded as

tr (i)
[
e−s∆̄i

]
= 1

(4πs)2

∫
x

√
ḡ
[
b
(i)
0 + b

(i)
2 sR̄+ s2

(
b
(i)
4 R̄2 + b̂

(i)
4 R̄µνR̄

µν + b̃
(i)
4 R̄µνρσR̄

µνρσ
)]

= 1
(4πs)2

∫
x

√
ḡ

[
b
(i)
0 + b

(i)
2 sR̄+ s2

(
b
(i)
4 R̄2 + b̂

(i)
4 CµνρσC

µνρσ + b̃
(i)
4 G4

)]
.

(C.2)

Note that tr (i) denotes

tr (0)[O] = tr [O] , tr (1)[Oµν ] = tr (0)[Oµν ḡµν ] , tr (2)[Oρσµν ] = tr (0)[OρσµνEµνρσ] . (C.3)

The threshold functions Qn[W ] are given by

Qn[W ] =
∫ ∞

0
ds s−nW̃ (s) , (C.4)

for which the Mellin transformation yields

Qn[W ] = 1
Γ(n)

∫ ∞
0

dz zn−1W (z) for n ≥ 1 , Q−n[W ] = (−1)n∂
nW

∂zn

∣∣∣∣∣
z=0

for n ≥ 0 .

(C.5)

In particular, when the flow kernel takes the form, (∆̄i)mW (∆̄i), the threshold function
reads

Qn[zmW ] = Γ(n+m)
Γ(n) Qn+m[W ] , n+m > 0 . (C.6)

The flow kernel in this work takes typically the form,

Wp,ε(z) = ∂tRk(z)
(APk(z)1+2ε +BPk(z)2+2ε + CPk(z)2ε)p+1 , (C.7)

with k-dependent constants A, B and C. Here Pk is the regulated momentum, i.e. Pk =
z+Rk(z) and the regulator function in the numerator of eq. (C.7) is introduced such that ∆̄i

is replaced to Pk, namely one gives Rk = A
(
Pk(z)1+2ε − z1+2ε)+B

(
Pk(z)2+2ε − z2+2ε)+

C
(
Pk(z)2ε − z2ε) for which the derivative with respect to t yields

∂tRk(z) = (∂tA)
(
P 1+2ε
k − z1+2ε

)
+ (∂tB)

(
P 2+2ε
k − z2+2ε

)
+ (∂tC)

(
P 2ε
k − z2ε

)
+
(
(1 + 2ε)AP 2ε

k + (2 + 2ε)BP 1+2ε
k + 2εCP 2ε−1

k

)
∂tRk . (C.8)
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Let us now calculate the threshold functions (C.5). To this end, we employ the Litim-type
cutoff function [138], i.e. Rk(z) = (k2 − z)θ(k2 − z). Thus, for n ≥ 1, one finds

Qn[Wp,ε]

= 1
Γ(n)

∫ ∞
0

dz zn−1 ∂tRk(z)
(APk(z)1+2ε+BPk(z)2+2ε+CPk(z)2ε)p+1

= 2
nΓ(n)

k4+2n−4pε

(Ak2+Bk4+C)p+1

(
(1+2ε)Ak−2+2(1+ε)B+2εk−4C+ (1+2ε)k−2∂tA

2(n+1+2ε) + (1+ε)∂tB
n+2+2ε + εk−4∂tC

n+2ε

)
= 2
nΓ(n)

k2n−4p−4pε

(a+b+c)p+1

(
(1+2ε)a+2(1+ε)b+2εc+ (1+2ε)(∂ta+2a)

2(n+1+2ε) + (1+ε)∂tb
n+2+2ε + ε(∂tc+4c)

n+2ε

)

= (1+2ε)(n+2+2ε)
n+1+2ε a−p

(
1+2 (1+ε)(n+1+2ε)

(1+2ε)(n+2+2ε)
b

a
+2 ε(n+2+2ε)(n+1+2ε)

(n+2ε)(1+2ε)(n+2+2ε)
c

a

)

×
(

1− ηn
2(n+2+2ε)

)[
2k2n−4p−4pε`2np (b/a+c/a)

]
(C.9)

where a = Ak−2, B = b and c = Ck−4. Here the anomalous dimension is defined as

ηn = −∂ta
a
−
∂t
(
1 + 2 1+ε

1+2ε
n+1+2ε
n+2+2ε

b
a + 2 ε

1+2ε
n+1+2ε
n+2ε

c
a

)
1 + 2 1+ε

1+2ε
n+1+2ε
n+2+2ε

b
a + 2 ε

1+2ε
n+1+2ε
n+2ε

c
a

. (C.10)

We define the dimensionless threshold function as

`2np (x) = 1
n!

1
(1 + x)p+1 , (C.11)

where nΓ(n) = Γ(n+ 1) = n! is used. Note that the threshold functions for p ≥ 1 can be
obtained from `d0 so that

`dp(x) = (−1)p 1
p!
∂p

∂xp
`d0(x) . (C.12)

For n = 0, one has

Q0[Wp,ε]

= lim
z→0

Wp,ε(z)

= k4−4εp

(Ak2+Bk4+C)p+1

(
(2+4ε)Ak−2+(4+4ε)B+4εCk−4+(∂tA)k−2+(∂tB)+(∂tC)k−4

)
= k−4p−4εp

(a+b+c)p+1

(
(2+4ε)a+(4+4ε)b+4εc+(2a+∂ta)+(∂tb)+(4c+∂tc)

)
= 2(1+ε)a−p

(
1+ b

a
+ c

a

)(
1− η0

4(1+ε)

) 2k−4p−4εp

(1+b/a+c/a)p+1 , (C.13)

with the anomalous dimension of field

η0 = −∂ta
a
−
∂t
(
1 + b

a + c
a

)
1 + b

a + c
a

. (C.14)

Indeed, this result agrees with setting n = 0 for eq. (C.9).
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C.2 Projected heat kernel

We specify the heat kernel expansion (C.2) for each spin mode, We start with the symmetric
spin-2-mode case:

tr (2)
[
e−s∆̄T

]
= tr (2)

[
e−s∆̄TE

]
= 1

(4πs)2

∫
x

√
ḡ
[
b
(2)
0 +b(2)

2 sR̄+s2
(
b
(2)
4 R̄2+b̂(2)

4 R̄µνR̄
µν+b̃(2)

4 R̄µνρσR̄
µνρσ

)]
,

(C.15)

with the heat kernel coefficients,

b
(2)
0 = 10 , b

(2)
2 = 5

3 , b
(2)
4 = 5

36 , b̂
(2)
4 = − 1

18 , b̃
(2)
4 = −4

9 . (C.16)

Let us now consider the case where the projection operator Pa given in eq. (A.15) is
inserted, namely, tr (2L)

[
e−s∆̄T

]
= tr (2)

[
e−s∆̄TPa

]
. Here, the evaluation of the heat kernel

coefficients is performed as follows:

tr (2)
[
e−s∆̄TPa

]
= tr (2)

[
e−s∆̄T

{(
D̄1
)
µν

α
(
D̄−1

1

)
α

β(−D̄γ)Eγβρσ
}]

= tr (2)
[
e−s∆̄T

]
+ tr (1)

[[
(−D̄γ), e−s∆V

]{(
D̄1
)
γβ

α
(
D̄−1

1

)
α

β
}]

= tr (2)
[
e−s∆̄T

]
+ tr (1)

[
e−s∆̄V

{
−s[−D̄γ , ∆̄V ] + s2

2 [[−D̄γ , ∆̄V ], ∆̄V ] +O(s3)
}

×
{(

D̄1
)
γβ

α
(
D̄−1

1

)
α

β
}]

= 1
(4πs)2

∫
x

√
ḡ
[
b

(2L)
0 + b

(2L)
2 s R̄+ s2

(
b

(2L)
4 R̄2 + b̂

(2L)
4 R̄µνR̄

µν + b̃
(2L)
4 R̄µνρσR̄

µνρσ
)]

.

(C.17)

Once obtaining the heat kernel coefficients b(2L)
i , we obtain the heat kernel expansion for

the physical 2T-mode from

tr (2T)
[
e−s∆̄T

]
= tr (2)

[
e−s∆̄TPf

]
= tr (2)

[
e−s∆̄T

]
− tr (2)

[
e−s∆̄TPa

]
= 1

(4πs)2

∫
x

√
ḡ
[
b

(2T)
0 + b

(2T)
2 s R̄+ s2

(
b

(2T)
4 R̄2 + b̂

(2T)
4 R̄µνR̄

µν + b̃
(2T)
4 R̄µνρσR̄

µνρσ
)]

.

(C.18)
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Here the first term corresponds to eq. (C.15) and the second to eq. (C.17). In the same
manner, we can evaluate the heat kernel expansion for the spin 0 and TT cases,

tr (0)
[
e−s∆̄S

]
= tr (2)

[
e−s∆̄TPσ

]
= 1

(4πs)2

∫
x

√
ḡ
[
b

(0)
0 +b(0)

2 sR̄+s2
(
b

(0)
4 R̄2+b̂(0)

4 R̄µνR̄
µν+b̃0

4R̄µνρσR̄
µνρσ

)]
,

(C.19)

tr (2TT)
[
e−s∆̄T

]
= tr (2)

[
e−s∆̄TPt

]
= tr (2)

[
e−s∆̄T (Pf−Pσ)

]
= tr (2T)

[
e−s∆̄T

]
−tr (0)

[
e−s∆̄S

]
= 1

(4πs)2

∫
x

√
ḡ
[
b

(2TT)
0 +b(2TT)

2 sR̄

+ s2
(
b

(2TT)
4 R̄2+b̂(2TT)

4 R̄µνR̄
µν+b̃(2TT)

4 R̄µνρσR̄
µνρσ

)]
.

(C.20)

In the next subsection, we exhibit the heat kernel coefficients b(2TT)
i and b(0)

i . Using them,
one can obtain also b(2T)

i and b(2L)
i .

C.3 Heat kernel coefficients

C.3.1 Coefficients for each mode in metric fluctuations

The heat kernel coefficients for the Laplacian ∆̄T acting on the TT tensor in a general
background spacetime was computed in ref. [33], and result in

b
(2TT)
0 = 5 , b

(2TT)
2 = −5

6 , b
(2TT)
4 = −137

216 + N

2χE
, b̂

(2TT)
4 = − 17

108 −
2N
χE

,

b̃
(2TT)
4 = 5

18 + N

2χE
, (C21-I)

where the superscript (2TT) stands for the TT spin-2 field, χE is the Euler characteristic
associated to zero modes involved in the metric decompositions, and N is the sum of the
number of Killing vectors and conformal ones. In the Weyl bases (C.1) and (C.2) this yields

b
(2TT)
4 = −385

648 , b̂
(2TT)
4 = 103

216 , b̃
(2TT)
4 = − 43

216 + N

2χE
, (C21-II)

For the Laplacian ∆̄S acting on spin-0 scalar field, heat kernel coefficients are well-known as

b
(0)
0 = 1 , b

(0)
2 = 1

6 , b
(0)
4 = 1

72 , b̂
(0)
4 = − 1

180 , b̃
(0)
4 = 1

180 , (C22-I)

implying for the Weyl bases

b
(0)
4 = 1

72 , b̂
(0)
4 = 1

120 , b̃
(0)
4 = − 1

360 . (C22-II)

Next, we give a formula in order to evaluate the flow contribution from the (spin-1)
measure modes, i.e., aµ, Cµ, C̄µ and the Jacobian. As we have derived in the last section,
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the measure mode in the physical gauge fixing (β = −1, α→ 0) takes the following uniform
differential operator: (

D̄1
) ν

µ
= δνµ∆̄V − D̄µD̄

ν − R̄µν . (C.23)

For differential operators taking the typical form
(
D̄1
) ν

µ
= δνµ∆̄V + aD̄µD̄

ν − R̄µν with a
constant a, the heat kernel coefficients have been evaluated [139–141] so that

b
(1M)
0 = 4−6a+3a2

(1−a)2
a=−1= 13

4 , b
(1M)
2 = 10−13a+6a2

6(1−a)2
a=−1= 29

24 ,

b
(1M)
4 = 8−10a+5a2

36(1−a)2
a=−1= 23

144 , b̂
(1M)
4 = 43−26a−2a2

90(1−a)2
a=−1= 67

360 , b̃
(1M)
4 =− 11

180 . (C24-I)

Again, we can translate to the Weyl basis

b
(1M)
4 = 13− 12a+ 4a2

36(1− a)2
a=−1= 29

144 , b̂
(1M)
4 = 7 + 6a+ 8a2

60(1− a)2
a=−1= − 7

240 ,

b̃
(1M)
4 = −−32 + 4a+ 13a2

180(1− a)2
a=−1= − 23

720 . (C24-II)

C.3.2 Heat kernel coefficients for Lichnerowicz Laplacians

For free matter fields (vector, Weyl spinor and scalar), it is convenient to define the following
Laplacians, called the “Lichnerowicz Laplacians” [160],

∆̄L0S = −D̄2 S = ∆̄S S , (C.25)

∆̄L 1
2
ψ =

(
−D̄2 + R̄

4

)
ψ = −D̄2ψ , (C.26)

∆̄L1Vµ = −D̄2 Vµ + R̄µ
νVν = ∆̄V Vµ + R̄µ

νVν . (C.27)

These Laplacians in an Einstein spacetime obey

∆̄L1D̄µS = D̄µ∆̄L0S , D̄µ∆̄L1V
µ = ∆̄L0D̄µV

µ . (C.28)

The heat kernel coefficients for the Lichnerowicz Laplacians are summarized in table 1.

C.4 Off-diagonal heat kernel expansion

The Hessians include the following operator:

O =
n∑
k

Mα1···α2kD̄(α1 · · · D̄α2k) , (C.29)

for which the off-diagonal heat kernel method [33] is used to evaluate the flow generator,

tr i[W (∆̄i)O] =
∫ ∞

0
ds W̃ (s)tr i

[
e−s∆̄i

n∑
k

Mα1···α2kD̄(α1 · · · D̄α2k)

]

=
∫
x

√
ḡ

∫ ∞
0

ds W̃ (s)tr i

[
n∑
k

Mα1···α2kHα1···α2k

]
. (C.30)
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Vector (i = 1) T-vector (i = 1T) Weyl spinor (i = 1
2) Scalar (i = 0)

(Aµ) (AT
µ ) (ψ) (a, σ, ϕ)

∆̄Li −δµν D̄2 + R̄µν −δµν D̄2 + R̄µν −D̄2 + R̄
4 −D̄2

b
(i)
0 4 3 2 1

b
(i)
2 (R) −1

3 −1
2 −1

6
1
6

180b(i)4 (R2) −20 −45
2

5
4

5
2

180b̂(i)4 (R2
µν) 86 87 −2 −1

180b̃(i)4 (R2
µνρσ) −11 −12 −7

4 1

180b(i)4 (R2) 5 5
2 0 5

2

180b̂(i)4 (C2) 21 39
2 −9

2
3
2

180b̃(i)4 (E) −32 −63
2

11
4 −1

2

Table 1. Heat kernel coefficients for the Lichnerowicz Laplacians ∆̄Li acting on individual matter
fields in a general four dimensional constant background. The abbreviation “T” denotes “transverse”.

Here we have

Hα1...α2n = 1
(4πs)2

{
(−2s)−n

(
ḡα1α2 · · · ḡα(2n−1)α2n+

((2n)!
2nn! −1

)
perm.

)(
1+ 1

6sR̄
)

+1
6(−2s)−(n−1)

(
ḡα1α2 · · · ḡα2n−3α2n−2R̄α2n−1α2n+

( (2n)!
2n(n−1)!−1

)
perm.

)}
+O(R̄2) . (C.31)

The first two lowest order terms read

Hαβ = 1
(4πs)2

{
− 1

2s ḡαβ
(

1 + 1
6sR̄

)
+ 1

6R̄αβ
}
, (C.32)

Hαβµν = 1
(4πs)2

{ 1
4s2 (ḡαµḡβν + ḡαν ḡβµ + ḡαβ ḡµν)

(
1 + 1

6sR̄
)

− 1
12s

(
ḡαµR̄βν + ḡανR̄βµ + ḡβµR̄αν + ḡβνR̄αµ + ḡαβR̄µν + ḡµνR̄αβ

)}
. (C.33)

For instance, one can compute the flow generators as follows:

tr (0)
[
W (∆̄S)R̄µνD̄µD̄ν

]
=
∫
x

√
ḡ

∫ ∞
0

ds W̃ (s) 1
(4πs)2

{
− 1

2sR̄
(

1 + 1
6sR̄

)
+ 1

6R̄
αβR̄αβ

}
= 1

(4π)2

∫ ∞
0

ds W̃ (s)
{
− 1

2s3

∫
x

√
ḡR̄− 1

12s2

∫
x

√
ḡR̄2 + 1

6s2

∫
x

√
ḡR̄αβR̄αβ

}
= 1

(4π)2

{
−1

2Q3[W ]
∫
x

√
ḡR̄− 1

12Q2[W ]
∫
x

√
ḡR̄2 + 1

6Q2[W ]
∫
x

√
ḡR̄αβR̄αβ

}
. (C.34)
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One can see from this that the lowest order term is obtained by the replacement R̄µνD̄µD̄ν →
−(R̄∆̄S)/4 (equivalently R̄µν → ḡµνR̄/4 or −D̄µD̄ν → ḡµν∆̄S/4). Indeed, at the lowest
order, one has

−R̄4 tr (0)
[
∆̄SW (∆̄S)

] O(R̄)= − 1
4(4π)2

Γ(3)
Γ(2)Q3[W ]

∫
x

√
ḡR̄ = − 1

2(4π)2Q3[W ]
∫
x

√
ḡR̄ ,

(C.35)

where we have used eq. (C.6), and the values of the Gamma function, Γ(3) = 2 and Γ(2) = 1.
Using the off-diagonal heat kernel expansion for a curvature tensor Oµνρσ of order of

R̄2, e.g., R̄µνR̄ρσ, one can calculate

tr (0)
[
W (∆̄S)OµνρσP̃µνP̃ρσ

]O(R̄2)= 1
(4π)2Q2[W ]

∫
x

√
ḡ

{13
24 ḡµν ḡρσ+ 1

24(ḡµρḡνσ+ḡµσ ḡνρ)
}
Oµνρσ ,

(C.36)

where we have performed the following computations:

tr (0)
[
W (∆̄S)Oµνρσ ḡρσD̄µ(∆̄S)−1D̄ν

] O(R̄2)= −Q2[W ]
(4π)2

∫
x

√
ḡ

1
4 ḡµν ḡρσO

µνρσ , (C.37)

and

tr (0)
[
W (∆̄S)OµνρσD̄µ(∆̄S)−1D̄νD̄ρ(∆̄S)−1D̄σ

]
O(R̄2)= Q2[W ]

(4π)2

∫
x

√
ḡ

1
24(ḡµρḡνσ + ḡµσ ḡνρ + ḡµν ḡρσ)Oµνρσ . (C.38)

Using eq. (C.36), the flow generator with the TT projected operator is given by

tr (0)

[
W (∆̄T )Oµνρσ

(
P

(0)
t

)
µνρσ

]
O(R̄2)= tr (0)

[
W (∆̄T )Oµνρσ

{1
2
(
P̃µρP̃νσ + P̃µσP̃νρ

)
− 1

3 P̃µνP̃ρσ
}]

= 5
(4π)2Q2[W ]

∫
d4x

√
ḡ

{ 1
36 ḡµν ḡρσ + 1

18 ḡµρḡνσ + 1
18 ḡµσ ḡνρ

}
Oµνρσ . (C.39)

We have the projected curvature tensors by Pt and Pσ (or Ŝµν Ŝρσ) given in eq. (A.52)
and eq. (A.53). Here we show explicit forms of tensor products up to of order of R2 which
appear in the flow generators. The Hessian for the TT metric fluctuation involves the
following terms:

tr (0)
[
e−s∆̄T (Pt)ρσ

µνδσν R̄µ
ρ
] O(R̄2)= tr (0)

{
e−s∆̄T

[(
P

(0)
t

)
µν

ρσ +
(
P

(1)
t

)
µν

ρσ
]
δσν R̄µ

ρ
}

= 1
(4π)2

∫
x

√
ḡ

[ 5
4sR̄−

5
108R̄

2 + 25
54R̄µνR̄

µν
]
, (C.40)

tr (0)
[
e−s∆̄T (Pt)ρσ

µνR̄µ
ρ
ν
σ
] O(R̄2)= tr (0)

{
e−s∆̄T

[(
P

(0)
t

)
µν

ρσ +
(
P

(1)
t

)
µν

ρσ
]
R̄µ

ρ
ν
σ
}

= 1
(4π)2

∫
x

√
ḡ

[
− 5

12sR̄−
5

108R̄
2 + 25

54R̄µνR̄
µν
]
. (C.41)
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We have also the following tensor products of order of R̄2:

tr (0)
[
e−s∆̄T R̄ρσ (Pt)ρσ

µνR̄µν
] O(R̄2)= tr (0)

[
e−s∆̄T R̄ρσ

(
P

(0)
t

)
ρσ

µνR̄µν

]
= 1

(4π)2

∫
x

√
ḡ

[
− 5

36R̄
2 + 5

9R̄µνR̄
µν
]
, (C.42)

tr (0)
[
e−s∆̄T R̄αµβν (Pt)ρσ

µνRαρβσ
] O(R̄2)= tr (0)

[
e−s∆̄T R̄αµβν

(
P

(0)
t

)
ρσ

µνRαρβσ
]

= 1
(4π)2

∫
x

√
ḡ

[
− 5

36R̄µνR̄
µν + 5

12R̄µνρσR̄
µνρσ

]
,

(C.43)

tr (0)
[
e−s∆̄T R̄µ

ρ (Pt)ρσ
µνR̄ν

σ
] O(R̄2)= tr (0)

[
e−s∆̄T R̄µ

ρ
(
P

(0)
t

)
ρσ

µνR̄ν
σ
]

= 1
(4π)2

∫
x

√
ḡ

[ 5
18R̄

2 + 5
36R̄µνR̄

µν
]
, (C.44)

tr (0)
[
e−s∆̄T R̄µα (Pt)ρσ

µνR̄ασδρν

] O(R̄2)= tr (0)

[
e−s∆̄T R̄µα

(
P

(0)
t

)
ρσ

µνR̄ασδρν

]
= 1

(4π)2

∫
x

√
ḡ

[5
4R̄µνR̄

µν
]
, (C.45)

tr (0)
[
e−s∆̄T (Pt)ρσ

µνR̄ν
αR̄µ

ρ
α
σ
] O(R̄2)= tr (0)

[
e−s∆̄T

(
P

(0)
t

)
ρσ

µνR̄ν
αR̄µ

ρ
α
σ
]

= 1
(4π)2

∫
x

√
ḡ

[
− 5

12R̄µνR̄
µν
]
, (C.46)

tr (0)
[
e−s∆̄T R̄αβ (Pt)ρσ

µνR̄να
σ
βδ
ρ
µ

] O(R̄2)= tr (0)

[
e−s∆̄T R̄αβ

(
P

(0)
t

)
ρσ

µνR̄να
σ
βδ
ρ
µ

]
= 1

(4π)2

∫
x

√
ḡ

[5
4R̄µνR̄

µν
]
. (C.47)

In the Hessian for the spin-0 mode, we have

Ŝµν Ŝµν =N−1
[

1
3N

2−R̄µνD̄µD̄ν−
R̄2

3 +R̄µνR̄µν

]
N−1

= 1
3−

1
9∆̄S

R̄µνD̄µD̄ν
1

∆̄S

+ 1
9∆̄2

S

R̄µνR̄µν−
2

27∆̄3
S

R̄R̄µνD̄µD̄ν−
1

27∆̄2
S

R̄2 ,

(C.48)

ŜµνR̄µν = 1
3 P̃

µνR̄µν−
1

3∆̄S

R̄µνR̄µν+ 1
9∆̄S

P̃µνR̄µνR̄ , (C.49)

ŜµνR̄µ
ρδσν Ŝρσ = 1

3 P̃
µν
(
R̄µ

ρδσν

) 1
3 P̃ρσ−

2
3∆̄S

R̄µν
(
R̄µ

ρδσν

) 1
3 P̃ρσ+ 2

9∆̄S

P̃µνR̄
(
R̄µ

ρδσν

) 1
3 P̃ρσ .

(C.50)

These terms involve inverse Laplacians (∆̄S)−n (n > 0). These inverse Laplacians cause an
IR divergence (corresponding to zero eigenvalue of ∆̄S) when performing the integration
for z ∼ ∆̄S within the flow equations. To avoid it, we will employ a field redefinition for σ
as given in eq. (E.4).
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In the flow kernel of σ, we calculate the following tensor-product terms of order of R̄2:

tr (0)
[
e−s∆̄S ŜµνR̄µν Ŝ

ρσR̄ρσ
] O(R̄2)= tr (0)

[
e−s∆̄S

(1
3 P̃

µνR̄µν

)(1
3 P̃

ρσR̄ρσ

)]
= 1

(4π)2

∫
x

√
ḡ

[ 13
216R̄

2 + 1
108R̄µνR̄

µν
]
, (C.51)

tr (0)
[
e−s∆̄S ŜµνR̄αµδ

τ
ν R̄

αρŜρσ
] O(R̄2)= tr (0)

[
e−s∆̄S

(1
3 P̃

µνR̄αµ

)
δσν

(1
3 P̃ρσR̄

αρ
)]

= 1
(4π)2

∫
x

√
ḡ

[ 1
12R̄µνR̄

µν
]
, (C.52)

tr (0)
[
e−s∆̄S ŜµνR̄µ

αR̄αν
] O(R̄2)= tr (0)

[
e−s∆̄S

(1
3 P̃

µνR̄µ
αR̄αν

)]
= 1

(4π)2

∫
x

√
ḡ

[1
4R̄µνR̄

µν
]
, (C.53)

tr (0)
[
e−s∆̄S ŜµνΦµν

ρσR̄ρσ
] O(R̄2)= tr (0)

[
e−s∆̄S

(1
3 P̃

µνΦµν
ρσR̄ρσ

)]
= 0 , (C.54)

tr (0)
[
e−s∆̄S ŜµνδσνΦµρ

αβR̄αβŜρσ
] O(R̄2)= tr (0)

[
e−s∆̄S

(1
3 P̃

µνΦµρ
αβ
)
δσν

(1
3 P̃ρσR̄αβ

)]
= 0 .

(C.55)

D Summary of matter contributions

We briefly summarize the matter contributions. For massless NS-scalars, NV -vector bosons
and NF -Weyl fermions (corresponding to ND = NF /2 Dirac fermions), one finds

∂t

∫
x

√
ḡ

(
U − F

2 R̄+ C2 R̄
2 + D2 R̄µνR̄

µν + ER̄µνρσR̄µνρσ
)

= NSπ
(S)
k +NV

(
π

(V )
k − δ(V )

k

)
+NFπ

(F )
k

= 1
16π2

∫
x

√
ḡ

[
(NS + 2NV − 2NF ) k4`40(0) + 1

6 (NS − 4NV +NF ) k2`20(0) R̄

+ 1
360

{(
5NS − 50NV −

5NF

2

)
R̄2 + (−2NS + 176NV + 4NF ) R̄2

µν

+
(

2NS − 26NV + 7NF

2

)
R̄2
µνρσ

}
`00(0)

]
. (D.1)

Projecting it on each curvature operator and using the definition of the threshold func-
tions (2.23), one obtains

∂tU
∣∣
matter = k4

32π2 (NS + 2NV − 2NF ) , (D.2)

∂tF
∣∣
matter = − k2

48π2 (NS − 4NV +NF ) , (D.3)

∂tC
∣∣
matter = 1

2880π2

(
5NS − 50NV −

5NF
2

)
, (D.4)

∂tD
∣∣
matter = 1

2880π2 (−2NS + 176NV + 4NF ) , (D.5)

∂tE
∣∣
matter = 1

5760π2

(
2NS − 26NV + 7NF

2

)
. (D.6)
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For U and F , their matter dependence agrees with ref. [74] and our last paper [84]. With
the relations (B.4) among coupling constants, one infers the beta functions for R2, the
squared Weyl tensor and the Gauss-Bonnet term,

∂tC
∣∣
matter = − 1

576π2NS , (D.7)

∂tD
∣∣
matter = 1

960π2 (NS + 12NV + 3NF ) , (D.8)

∂tE
∣∣
matter = − 1

5760π2

(
NS + 62NV + 11

2 NF

)
. (D.9)

For the higher derivative terms, we obtain the same result in ref. [161].

E Contributions from metric fluctuations

For the gravitational system (A.4) with eqs. (A.5) and (A.6), the flow equation with the
metric decomposition (A.10) reads

∂tΓk = 1
2tr (2)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
ff

+ 1
2tr (1)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
aa

+ Jgrav1,k − tr (1)
∂tRk

Γ(2)
k +Rk

∣∣∣∣
C̄C

. (E.1)

Here, the first term on the right-hand side is the contribution from the physical metric
fluctuations, while the remaining terms are the measure contributions coming from the
measure modes of metric fluctuations with the Jacobian and the ghost fields. As one will
see in appendix E.2, the measure contribution takes a simple form

ηg := −1
2tr (1)

∂tPk
(
D̄1
)

Pk
(
D̄1
) ∣∣∣∣

measure
= 1

2tr (1)
∂tRk

Γ(2)
k +Rk

∣∣∣∣
aa

+ Jgrav1,k − tr (1)
∂tRk

Γ(2)
k +Rk

∣∣∣∣
C̄C

,

(E.2)

with the differential operator D̄1 defined in eq. (A.17). Below, we evaluate the different
contributions to eq. (E.1).

E.1 Physical metric contribution

We evaluate the physical metric contribution in eq. (E.1), whose flow generator reads

π
(f)
k := 1

2tr (2)
∂tRk

Γ(2)
k +Rk

∣∣∣∣
ff

= 1
2tr (2)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
tt

+ 1
2tr (2)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
σσ

+ Jgrav0,k

= π
(t)
k + π

(σ)
k + Jgrav0,k . (E.3)

The explicit form of Jgrav0,k is presented in eq. (E.32). The Hessian for the TT mode, Γ(2)
k |tt

is given in eq. (B.17).
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E.1.1 Full propagator and cutoff function

As we will see later, the second term in eq. (B.19) causes an IR divergence due to ∆̄−1
S in

the denominator of Ŝµν Ŝµν . To avoid this divergence, we adopt a redefinition

σ =
(
∆̄S

)ε
σ̂ , (E.4)

with ε a positive parameter. In the truncation which we employ in this work, the choice
ε = 1 is enough to remove the IR divergence.

We now employ the regulator functions for the TT mode and the physical scalar mode
such that Laplacians in eqs. (B.18) and (B.19) are replaced to Pk(∆̄i) = ∆̄i +Rk(∆̄i),

∂tR(t)
k = ∂tF

2
(
Pk − ∆̄T

)
+ ∂tD

(
P 2
k − ∆̄2

T

)
+
(
F

2 + 2DPk
)
∂tRk ,

∂tR(σ)
k = ∂tF

2
(
P 1+2ε
k − (∆̄S)1+2ε

)
+ 3∂tC

(
P 2+2ε
k − (∆̄S)2+2ε

)
− ∂tU

4
(
P 2ε
k − (∆̄S)2ε

)
+
(
F

2 (1 + 2ε) + 3(2 + 2ε)CPk −
U

4 (2ε)P−1
k

)
P 2ε
k ∂tRk . (E.5)

E.1.2 Expansion of flow generator

Let us here calculate the propagator, i.e. the inverse of eq. (B.17). One finds the propagators
for each field,

1
2
(
Γ(2)
k +Rk

)−1
∣∣∣∣
tt

= 1
P(t)
− 1

P(t)
M(t)

1
P(t)

+ 1
P(t)

M(t)
1

P(t)
M(t)

1
P(t)

+ 1
P(t)

M(tσ)
1

P(σ)
M(σt)

1
P(t)

+ · · · , (E.6)

1
2
(
Γ(2)
k +Rk

)−1
∣∣∣∣
σσ

= 1
P(σ)

− 1
P(σ)

M(σ)
1

P(σ)
+ 1

P(σ)
M(σ)

1
P(σ)

M(σ)
1

P(σ)

+ 1
P(σ)

M(σt)
1

P(t)
M(tσ)

1
P(σ)

+ · · · . (E.7)

Then the flow generator (E.3) is evaluated so that

π
(f)
k = π

(t)
k + π

(σ)
k + Jgrav,k = 1

2tr (2)
∂tRk

Γ(2)
k +Rk

∣∣∣∣
tt

+ 1
2tr (0)

∂tRk
Γ(2)
k +Rk

∣∣∣∣
σσ

+ Jgrav,k . (E.8)

Here the flow generators for the TT mode and the spin 0 physical scalar mode are given,
respectively, by

π
(t)
k = 1

2tr (2)
∂tR(t)

k

P(t)

∣∣∣∣
tt

− 1
2tr (2)

[
∂tR(t)

k · P
−1
(t) ·M(t) · P−1

(t)

] ∣∣∣∣
tt

+ 1
2tr (2)

[
∂tR(t)

k · P
−1
(t) ·M(t) · P−1

(t) ·M(t) · P−1
(t)

] ∣∣∣∣
tt

+ 1
2tr (2)

[
∂tR(t)

k · P
−1
(t) ·M(tσ) · P−1

(σ) ·M(σt) · P−1
(t)

] ∣∣∣∣
tt

=: T (1)
t + T (2)

t + T (3)
t + T (4)

t , (E.9)
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π
(σ)
k = 1

2tr (0)
∂tR(σ)

k

P(σ)

∣∣∣∣
σσ

− 1
2tr (0)

[
∂tR(σ)

k · P
−1
(σ) ·M(σ) · P−1

(σ)

] ∣∣∣∣
σσ

+ 1
2tr (0)

[
∂tR(σ)

k · P
−1
(σ) ·M(σ) · P−1

(σ) ·M(σ) · P−1
(σ)

] ∣∣∣∣
σσ

+ 1
2tr (0)

[
∂tR(σ)

k · P
−1
(σ) ·M(σt) · P−1

(t) ·M(tσ) · P−1
(σ)

] ∣∣∣∣
σσ

=: T (1)
σ + T (2)

σ + T (3)
σ + T (4)

σ . (E.10)

E.1.3 Transverse-traceless mode
The each contribution from the TT mode is calculated as follows: the lowest order term is
simply evaluated by using only the heat kernel technique such that

T (1)
t = 1

2tr (2)
∂tR(t)

k

P(t)

∣∣∣∣
tt

=: 1
2tr (2)Wt,0(∆̄T )

= 1
2

1
16π2

∫
x

√
ḡ

[
5Q2[Wt,0]− 5

6R̄Q1[Wt,0]

+
{(
−137

216 + N

2χE

)
R̄2+

(
− 17

108−
2N
χE

)
R̄µνR̄

µν+
(

5
18 + N

2χE

)
R̄µνρσR̄

µνρσ
}
Q0[Wt,0]

]
.

(E.11)

Here we define the flow kernel of the TT mode, (with ε = 0 in eq. (C.7))

Wt,p(∆̄T ) = ∂tR(t)
k(

F
2 Pk +DP 2

k − U
)p+1 . (E.12)

In the next order, we need to calculate the tensor products between the projection
operator and the curvature tensors. One has

T (2)
t =−1

2tr (2)
[
∂tR(t)

k ·P
−1
(t) ·M(t) ·P−1

(t)

] ∣∣∣∣
tt

=−1
2tr

[
Wt,1(∆̄T )

{
F

2 R̄+HR̄∆̄T +2DR̄αβD̄αD̄β+H

2 R̄
2−DR̄αβR̄αβ

}
(Pt)µν

µν
]

− 1
2tr

[
Wt,1(∆̄T )

{
−2F2

(
δσν R̄µ

ρ+R̄µρνσ
)
−4D∆̄T R̄µ

ρ
ν
σ

−2HR̄
(
δσν R̄µ

ρ+R̄µρνσ
)
−2HR̄µνR̄ρσ

+D
(
4R̄αµβνR̄αρβσ+2R̄µρR̄νσ−2R̄µαR̄ασδρν+4R̄ναR̄µρασ+4R̄αβR̄νασβδρµ

)}
(Pt)ρσ

µν

]

=−1
2

1
16π2

∫
x

√
ḡ

[{
(10C+5D)Q3[Wt,1]+ 10

3 wk
2Q2[Wt,1]

}
R̄

+
{( 5

18C+ 35
54D

)
Q2[Wt,1]− 35

54wk
2Q1[Wt,1]

}
R̄2

+
{(
−10

9 C−
115
27 D

)
Q2[Wt,1]− 50

27wk
2Q1[Wt,1]

}
R̄µνR̄

µν+
{5

3DQ2[Wt,1]
}
R̄µνρσR̄

µνρσ

]
.

(E.13)
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The next-to-next order reads

T (3)
t = 1

2tr (2)
[
∂tR(t)

k · P
−1
(t) ·M(t) · P−1

(t) ·M(t) · P−1
(t)

] ∣∣∣∣
tt

= 1
2tr

[
Wt,2(∆̄T )

{[
F

2 R̄+HR̄∆̄T +D
(
2R̄αβD̄αD̄β

)]
Eµν

ρσ

− F

2 2δσν R̄µρ − 2
[
F

2 + 2D∆̄T

]
R̄µ

ρ
ν
σ
}

×
{[
F

2 R̄+HR̄∆̄T +D
(
2R̄αβD̄αD̄β

)]
Eρσ

γδ

− F

2 2δδρR̄σγ − 2
[
F

2 + 2D∆̄T

]
R̄ρ

γ
σ
δ
}

(Pt)γδ
µν

]

= 1
2

1
16π2

∫
x

√
ḡ

[{(
30C2 + 30CD − 5

3D
2
)
Q4[Wt,2]

+ wk2
(40

3 C + 80
9 D

)
Q3[Wt,2] + 5

3(wk2)2Q2[Wt,2]
}
R̄2

+
{

10D2Q4[Wt,2]− 160
9 wk2DQ3[Wt,2] + 10

9 (wk2)2Q2[Wt,2]
}
R̄µνR̄

µν

+
{

40D2Q4[Wt,2] + 40
3 wk

2DQ3[Wt,2] + 5
3(wk2)2Q2[Wt,2]

}
R̄µνρσR̄

µνρσ

]
.

(E.14)

The mixing term is given by

T (4)
t = 1

2tr (2)
[
∂tR(t)

k ·P
−1
(t) ·M(tσ) ·P−1

(σ) ·M(σt) ·P−1
(t)

] ∣∣∣∣
tt

= 1
2

(
−3

2

)
tr (0)

[
Wtσt[∆̄S ]∆̄S

{
R̄ρσ

(
U

3∆̄S

− 2
3
F

2 +2H∆̄S−
5
3D∆̄S

)}

×
{(

U

3∆̄S

− 2
3
F

2 +2H∆̄S−
5
3D∆̄S

)
R̄αβ

}
∆̄S (Pt)αβ µνĒµνρσ

]

= 1
2

1
16π2

∫
x

√
ḡ

[{(
400C2− 400

3 CD+ 100
9 D2

)
Q6[Wσtσ]

− 80
9 (6C−D)wk2Q5[Wσtσ]+ 10

9
(
2(wk2)2+(6C−D)uk4

)
Q4[Wσtσ]

− 20
27(wk2)(uk4)Q3[Wσtσ]+ 5

54(uk4)2Q2[Wσtσ]
}(

R̄2

4 −R̄
µνR̄µν

)]
,

(E.15)

where the flow kernel is defined as

Wtσt(∆̄S) = ∂tR(t)
k(

[F2 Pk + 3CP 2
k −

U
4 ](Pk)2ε

) (
F
2 Pk +DP 2

k − U
)2 . (E.16)
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E.1.4 Physical spin-0 mode
Let us evaluate the contribution from the spin-0 physical scalar mode. To this end, we
define the flow kernel as

Wσ,p,ε(∆̄S) = ∂tR(σ)
k([

F
2 Pk + 3CP 2

k −
U
4

]
P 2ε
k

)p+1 . (E.17)

P 2ε
k in the denominator of eq. (E.17) comes from the redefinition of σ as given in eq. (E.4).

In order to remove divergences arising from 1/∆̄S in the Hessian Γ(2)
(σσ), setting ε = 1 is

sufficient in the current truncation.
The lowest order term reads

T (1)
σ = 1

2tr (0)
∂tR(σ)

k

P(σ)

∣∣∣∣
σσ

=: 1
2tr (0)Wσ,0,1(∆̄S)

= 1
2

1
16π2

∫
x

√
ḡ

[
Q2[Wσ,0,1] + R̄

6 Q1[Wσ,0,1]

+
( 1

72R̄
2 − 1

180R̄µνR̄
µν + 1

180R̄µνρσR̄
µνρσ

)
Q0[Wσ,0,1]

]
. (E.18)

We next calculate the next order contributions for which we need to use the formulae (C.40)–
(C.47).

T (2)
σ =−1

2tr (0)
[
∂tR(σ)

k ·P
−1
(σ) ·M(σ) ·P−1

(σ)

] ∣∣∣∣
σσ

(E.19)

=−1
2

3
2tr

[
Wσ,1,1(∆̄S)∆̄2

S

{[(
F

2 ∆̄S+D∆̄2
S−U
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+ F

2 R̄+HR̄∆̄S+2DR̄αβD̄αD̄β

]
×
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3−Ŝ
µν Ŝµν

)}]
− 1

2
3
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S

{
1
6
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X R̄+2DR̄αβD̄αD̄β

]
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3H
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∆̄S

}]

− 1
2

3
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S
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= 1
2

1
16π2

∫
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√
ḡ
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1
4wk
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}
R̄

+
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36wk
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12CQ4[Wσ,1,1]− 5
36DQ4[Wσ,1,1]+ 1

72uk
4Q2[Wσ,1,1]

}
R̄2

+
{13
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2Q3[Wσ,1,1]− 61

6 CQ4[Wσ,1,1]+ 5
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}
R̄µνR̄
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]
.
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The next-to-next order contribution reads

T (3)
σ = 1

2tr (0)
[
∂tR(σ)

k · P
−1
(σ) ·M(σ) · P−1

(σ) ·M(σ) · P−1
(σ)

] ∣∣∣∣
σσ

= 1
2

(3
2

)2
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Wσ,2,1(∆̄S)∆̄4

S
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F

2 ∆̄S +D∆̄2
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3 − Ŝ
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)

+H

[1
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F
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2 − Ŝ

µν Ŝµν

)
+ 2X Ŝµν
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ρδτν Ŝρτ − R̄µν
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X + 2D∆̄S

]
ŜµνR̄µ

ρ
ν
τ
(
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= 1
2

1
16π2

∫
x

√
ḡ

[{
wk2

(
5
36wk

2Q6[Wσ,2,1] + 20CQ7[Wσ,2,1]− uk4

9 Q5[Wσ,2,1]
)

+ 840C2Q8[Wσ,2,1] + uk4
(
uk4

144Q4[Wσ,2,1]− 20
3 CQ6[Wσ,2,1]

)}
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+
{
wk2

(
5
18wk

2Q6[Wσ,2,1] + 40CQ7[Wσ,2,1] + uk4

9 Q5[Wσ,2,1]
)

+ 1680C2Q8[Wσ,2,1] + uk4
(
uk4

72 Q4[Wσ,2,1] + 20
3 CQ6[Wσ,2,1]

)}
R̄µνR̄

µν

]
.

(E.20)

Finally we evaluate the mixing effect which reads

T (4)
σ = 1

2tr (0)
[
∂tR(σ)

k ·P
−1
(σ) ·M(σt) ·P−1

(t) ·M(tσ) ·P−1
(σ)

] ∣∣∣∣
σσ

= 1
2

(
−3

2

)
tr (0)

[
Wσtσ[∆̄S ]∆̄S
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U

3∆̄S
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3
F
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5
3D∆̄S

)
R̄ρσ

}
(Pt)ρσ

αβ

×
{
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(
U

3∆̄S

− 2
3
F

2 +2H∆̄S−
5
3D∆̄S

)}
∆̄S

]

= 1
2

1
16π2

∫
x

√
ḡ

[{(
400C2− 400

3 CD+ 100
9 D2

)
Q6[Wσtσ]

− 80
9 (6C−D)wk2Q5[Wσtσ]+ 10

9
(
2(wk2)2+(6C−D)uk4

)
Q4[Wσtσ]

− 20
27(wk2)(uk4)Q3[Wσtσ]+ 5

54(uk4)2Q2[Wσtσ]
}(

R̄2

4 −R̄
µνR̄µν

)]
,

(E.21)

where the flow kernel is given by

Wσtσ[∆̄S ] = ∂tR(σ)
k(

F
2 Pk +DP 2

k − U
) (

[F2 Pk + 3CP 2
k −

U
4 ](Pk)2ε

)2 . (E.22)
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E.1.5 Jacobian

We have seen in section B.3.3 that the decomposition of the physical metric fluctuation (B.35)
and the field redefinition (E.4) with ε = 1 yield the Jacobian as

Jgrav2 =
[
det (2)

(
Eµν(t)ρσ −R̄µνN−1∆̄S

−∆̄SN−1R̄ρσ ∆̄SŜ
αβŜαβ∆̄S

)]1/2

=:
[
det (2)

(
Γ(2)

Jac

)]1/2
. (E.23)

Here the (2, 2)-component and the off-diagonal parts are

∆̄SŜ
αβŜαβ∆̄S '

1
3

(
∆̄2
S −

1
3R̄

µνD̄µD̄ν −
1
9R̄

2 + 1
3R̄

µνR̄µν + 2
9R̄R̄

µν−D̄µD̄ν

∆̄S

)

=: 1
3(∆̄2

S +MJac0) , (E.24)

−R̄ρσN−1∆̄S ' −
1
3R̄ρσ. (E.25)

One can write the Jacobian (E.23) by using auxiliary fields as

[
det (2)

(
Γ(2)

Jac

)]1/2
=
[
det (2)

(
Γ(2)

Jac

)] [
det (2)

(
Γ(2)

Jac

)]−1/2

=
∫
Dχ̄DχDθ exp

[
−
∫
x

√
ḡ χ̄T

(
Γ(2)

Jac

)
χ− 1

2

∫
x

√
ḡ θT

(
Γ(2)

Jac

)
θ

]
,

(E.26)

where χ̄, χ are Grassmannian variables, while θ is an ordinary real variable. These field can
be decomposed into the TT mode and a scalar mode, i.e. χT = (χTT

µν , χ) and θT = (θTT
µν , θ).

We insert regulators for these fields as∫
x

√
ḡχ̄
(
Γ(2)

Jac

)
χ+ 1

2

∫
x

√
ḡθ
(
Γ(2)

Jac

)
θ→

∫
x

√
ḡχ̄
(
Γ(2)

Jac+RJac
k

)
χ+ 1

2

∫
x

√
ḡθ
(
Γ(2)

Jac+RJac
k

)
θ.

(E.27)

Here RJac
k replaces the squared Laplacian in eq. (E.24) to Pk(∆̄S). More specifically, we give

RJac
k =

(
(RJac2

k )µνρσ 0
0 1

3R
Jac0
k

)
=

−1
2E

µν
(t)ρσ 0

0 1
3

(
P 2
k − ∆̄2

S

) . (E.28)

Then, the Jacobian (E.23) as a flow generator reads

Jgrav2,k = −tr (2)
∂tRJac

k

Γ(2)
Jac +RJac

k

+ 1
2tr (2)

∂tRJac
k

Γ(2)
Jac +RJac

k

= −1
2tr (2)

∂tRJac
k

Γ(2)
Jac +RJac

k

. (E.29)

We evaluate the inverse matrix

(
Γ(2)

Jac +RJac
k

)−1
=
(1

2E
µν
(t)ρσ −1

3R̄
µν

−1
3R̄ρσ

1
3(P 2

k +MJac0)

)−1

. (E.30)
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As in eq. (E.28), the regulator matrix RJac
k has only a finite term in the (2,2)-component

(i.e. scalar-mode component), so that it is enough to take the same component in the inverse
matrix, i.e. up to the squared curvature operators, one has

tr (2)
∂tRJac

k

Γ(2)
Jac+RJac

k

= tr (0)
∂tRJac0

k

P 2
k +MJac0

+tr (0)

[
1

1
3P

2
k

[
(−1

3R̄ρσ)(2Pt)ρσµν(−1
3R̄

µν)
] 1

1
3P

2
k

1
3∂tR

Jac0
k

]
= tr (0)

∂tRJac0
k

P 2
k +MJac0

+ 2
3tr (0)

∂tRJac0
k

P 4
k

[
R̄ρσ(Pt)ρσµνR̄µν

]
, (E.31)

where the product between the off-diagonal parts and the unity matrix in the (1, 1)-
component has to be understood as that between the off-diagonal parts and the TT-mode
projector.

Then, the flow equation from these contributions reads

Jgrav0,k = −1
2tr (0)

∂tRJac0
k (∆̄S)

P 2
k +MJac0

− 1
3tr (0)

∂tRJac0
k (∆̄S)
P 4
k

(R̄µν(Pt)µνρσR̄ρσ)

= −1
2

1
16π2

∫
x

√
ḡ
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Q2[WJac,0] + 1

6 {Q1[WJac,0]−Q3[WJac,1]} R̄

+ 1
216 {3Q0[WJac,0]− 4Q2[WJac,1] + 6Q4[WJac,2]} R̄2

+ 1
540 {−3Q0[WJac,0]− 50Q2[WJac,1] + 30Q4[WJac,2]} R̄µνR̄µν

+ 1
180Q0[WJac,0]R̄µνρσR̄µνρσ

]

− 1
16π2

∫
x

√
ḡ

5
27Q2[WJac,1]

(
R̄µνR̄

µν − R̄2

4

)
, (E.32)

where the flow kernel of the Jacobian is

WJac,p[∆̄S ] = ∂tRJac
k (∆̄S)

(P 2
k )p+1 . (E.33)

E.2 Measure contribution

Let us first evaluate the measure contribution without decomposing into the transverse
spin-1 vector mode and spin-0 scalar mode, i.e.,

ηg = δ
(g)
k − ε

(g)
k = 1

2tr(1)
∂tRk

Γ(2)
k +Rk

∣∣∣∣∣
aa

+ Jgrav1,k − tr(1)
∂tRk

Γ(2)
k +Rk

∣∣∣∣∣
C̄C

. (E.34)

The contribution from the spin-1 metric fluctuation (first term on the right-hand side) has
the squared differential operator, (D̄1)2, as given in eq. (B.27), so that one finds

δ
(g)
k

∣∣
a

= 1
2tr(1)

∂tRk
Γ(2)
k +Rk

∣∣∣∣∣
aa

+ Jgrav1,k = 1
2tr(1)

∂tRk
D̄1 +Rk

, (E.35)

where the regularized Jacobian arising from the decomposition (B.35) is evaluated as

Jgrav1,k = 1
2tr(1)

∂tRk
D̄1 +Rk

. (E.36)
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The spin-1 ghost contribution are given by the same form,

ε
(g)
k = tr(1)

∂tRk
Γ(2)
k +Rk

∣∣∣∣∣
C̄C

= tr(1)
∂tRk
D̄1 +Rk

. (E.37)

Thus, we see the relation ε(g)k = 2δ(g)
k , so that the measure contribution takes a simple

form,

ηg = −δ(g)
k = −1

2tr(1)
∂tRk
D̄1 +Rk

. (E.38)

Let us choose the regulator such that the differential operator D̄1 is replaced by k2. Using
the heat kernel method with the coefficients (C24-I) or (C24-II), one can evaluate the
measure contribution,

ηg =−1
2tr (1)

∂tPk
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)
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) =:−1
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(E.39)

We note a difference between the present result and ref. [84] where we have considered
the Einstein-Hilbert truncation in the maximally symmetric spacetime and have derived
the beta functions of U and F . In ref. [84] we have decomposed the gauge mode aµ and the
ghost field Cµ into the transverse modes and the scalar modes such that Vµ = V T

µ + D̄µV

where V T
µ 3 {κµ, CT

µ , C̄
T
µ }, V 3 {u,C, C̄}, and D̄µV T

µ = 0. For these decompositions, the
differential operator (C.23) acts on these fields as

V µ
(
D̄1
)
µ

νVν = V Tµ
(

∆̄V −
R̄

4

)
V T
µ + V

[
2∆̄S

(
∆̄S −

R̄

4

)]
V , (E.40)

where we have used R̄µν = (R̄/4)ḡµν . The differential operator ∆̄S in the Hessian for the
spin-0 field is subtracted by the Jacobians arising from the field decomposition and the
overall factor 2 in the spin-0 measure mode does not contribute in the flow generators.
In ref. [84] we have individually regularized D̄1T = ∆̄V − R̄/4 and D̄0 = ∆̄S − R̄/4 and
obtained measure contributions to the flow generators of the spin-1 and spin-0 measure
modes, separately

η1 = −1
2tr (1)

∂tPk
(
D̄1T

)
Pk
(
D̄1T

) = − 1
16π2

∫
x

√
ḡ
[
3k4`40(0) + k2`20(0) R̄

]
, (E.41)

η0 = −1
2tr (0)

∂tPk
(
D̄0
)

Pk
(
D̄0
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∫
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[
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12k
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]
. (E.42)
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Thus, the total measure contribution was obtained in ref. [84] as

ηg = η1 + η0 = − 1
16π2

∫
x

√
ḡ

[
4k4`40(0) + 17

12k
2`20(0) R̄

]
. (E.43)

This result differs from eq. (E.39). This disagreement arises from an overall factor
2 in the measure contribution of the spin-0 mode: in the present work we regularize
the differential operator (C.23), which corresponds to regularizing 2D̄0 rather than D̄0 in
eq. (E.42). Hence, the result in this study can be reproduced by replacing k2 → k2/2 in
the spin-0 contribution η0 in eq. (E.42), namely,

η0 = − 1
16π2

∫
x

√
ḡ

(k2

2

)2

`40(0) + 5
12

(
k2

2

)
`20(0) R̄

 . (E.44)

Then, the contribution from the total measure mode (sum of eq. (E.41) and eq. (E.44)) is
modified to be

ηg = − 1
16π2

∫
x

√
ḡ

[13
4 k

4`40(0) + 29
24k

2`20(0) R̄
]
. (E.45)

This result agrees now with eq. (E.39). We conclude that the difference in results arises
from different regularization procedures. The regularization of the operator (C.23) seems
more universal and will be adopted here.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in General Relativity:
An Einstein Centenary Survey, S.W. Hawking and W. Israel eds., Cambridge University
Press, Cambridge, England, chapter 16 (1979) [INSPIRE].

[2] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998)
971 [hep-th/9605030] [INSPIRE].

[3] W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys. 102
(1999) 181 [hep-th/9907027] [INSPIRE].

[4] M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity, Living
Rev. Rel. 9 (2006) 5 [INSPIRE].

[5] M. Niedermaier, The Asymptotic safety scenario in quantum gravity: An Introduction, Class.
Quant. Grav. 24 (2007) R171 [gr-qc/0610018] [INSPIRE].

[6] R. Percacci, Asymptotic Safety, arXiv:0709.3851 [INSPIRE].

[7] A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity
with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414
[arXiv:0805.2909] [INSPIRE].

– 62 –

https://creativecommons.org/licenses/by/4.0/
http://inspirehep.net/record/159043
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1103/PhysRevD.57.971
https://arxiv.org/abs/hep-th/9605030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605030
https://doi.org/10.1143/PTP.102.181
https://doi.org/10.1143/PTP.102.181
https://arxiv.org/abs/hep-th/9907027
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9907027
https://doi.org/10.12942/lrr-2006-5
https://doi.org/10.12942/lrr-2006-5
https://inspirehep.net/search?p=find+J%20%22Living%20Rev.Rel.%2C9%2C5%22
https://doi.org/10.1088/0264-9381/24/18/R01
https://doi.org/10.1088/0264-9381/24/18/R01
https://arxiv.org/abs/gr-qc/0610018
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0610018
https://arxiv.org/abs/0709.3851
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0709.3851
https://doi.org/10.1016/j.aop.2008.08.008
https://arxiv.org/abs/0805.2909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.2909


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[8] M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012) 055022
[arXiv:1202.2274] [INSPIRE].

[9] R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety, vol. 3 of
100 Years of General Relativity, World Scientific (2017) [DOI] [INSPIRE].

[10] M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group:
The Road towards Asymptotic Safety, Cambridge University Press (2019) [DOI].

[11] C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE].

[12] J.M. Pawlowski and M. Reichert, Quantum Gravity: A Fluctuating Point of View, Front.
Phys. 8 (2021) 551848 [arXiv:2007.10353] [INSPIRE].

[13] A. Bonanno et al., Critical reflections on asymptotically safe gravity, Front. Phys. 8 (2020)
269 [arXiv:2004.06810] [INSPIRE].

[14] M. Reichert, Lecture notes: Functional Renormalisation Group and Asymptotically Safe
Quantum Gravity, PoS Modave2019 (2020) 005.

[15] A. Eichhorn, Status of the asymptotic safety paradigm for quantum gravity and matter,
Found. Phys. 48 (2018) 1407 [arXiv:1709.03696] [INSPIRE].

[16] A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron.
Space Sci. 5 (2019) 47 [arXiv:1810.07615] [INSPIRE].

[17] K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977)
953 [INSPIRE].

[18] E.S. Fradkin and G.A. Vilkovisky, Conformal Invariance and Asymptotic Freedom in
Quantum Gravity, Phys. Lett. B 77 (1978) 262 [INSPIRE].

[19] E.S. Fradkin and A.A. Tseytlin, Renormalizable Asymptotically Free Quantum Theory of
Gravity, Phys. Lett. B 104 (1981) 377 [INSPIRE].

[20] E.S. Fradkin and A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity,
Nucl. Phys. B 201 (1982) 469 [INSPIRE].

[21] J.F. Donoghue and G. Menezes, Unitarity, stability and loops of unstable ghosts, Phys. Rev.
D 100 (2019) 105006 [arXiv:1908.02416] [INSPIRE].

[22] A. Platania and C. Wetterich, Non-perturbative unitarity and fictitious ghosts in quantum
gravity, Phys. Lett. B 811 (2020) 135911 [arXiv:2009.06637] [INSPIRE].

[23] A. Salvio and A. Strumia, Agravity, JHEP 06 (2014) 080 [arXiv:1403.4226] [INSPIRE].

[24] A. Salvio and A. Strumia, Agravity up to infinite energy, Eur. Phys. J. C 78 (2018) 124
[arXiv:1705.03896] [INSPIRE].

[25] M.M. Anber and J.F. Donoghue, On the running of the gravitational constant, Phys. Rev. D
85 (2012) 104016 [arXiv:1111.2875] [INSPIRE].

[26] B. Holdom and J. Ren, Quadratic gravity: from weak to strong, Int. J. Mod. Phys. D 25
(2016) 1643004 [arXiv:1605.05006] [INSPIRE].

[27] A. Salvio, Quadratic Gravity, Front. in Phys. 6 (2018) 77 [arXiv:1804.09944] [INSPIRE].

[28] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993) 90
[arXiv:1710.05815] [INSPIRE].

– 63 –

https://doi.org/10.1088/1367-2630/14/5/055022
https://arxiv.org/abs/1202.2274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.2274
https://doi.org/10.1142/10369
https://inspirehep.net/search?p=find+doi%20%2210.1142%2F10369%22
https://doi.org/10.1017/9781316227596
https://arxiv.org/abs/1901.04741
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04741
https://doi.org/10.3389/fphy.2020.551848
https://doi.org/10.3389/fphy.2020.551848
https://arxiv.org/abs/2007.10353
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.10353
https://doi.org/10.3389/fphy.2020.00269
https://doi.org/10.3389/fphy.2020.00269
https://arxiv.org/abs/2004.06810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.06810
https://doi.org/10.22323/1.384.0005
https://doi.org/10.1007/s10701-018-0196-6
https://arxiv.org/abs/1709.03696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.03696
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.3389/fspas.2018.00047
https://arxiv.org/abs/1810.07615
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.07615
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C953%22
https://doi.org/10.1016/0370-2693(78)90702-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB77%2C262%22
https://doi.org/10.1016/0370-2693(81)90702-4
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB104%2C377%22
https://doi.org/10.1016/0550-3213(82)90444-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB201%2C469%22
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1103/PhysRevD.100.105006
https://arxiv.org/abs/1908.02416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.02416
https://doi.org/10.1016/j.physletb.2020.135911
https://arxiv.org/abs/2009.06637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.06637
https://doi.org/10.1007/JHEP06(2014)080
https://arxiv.org/abs/1403.4226
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.4226
https://doi.org/10.1140/epjc/s10052-018-5588-4
https://arxiv.org/abs/1705.03896
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.03896
https://doi.org/10.1103/PhysRevD.85.104016
https://doi.org/10.1103/PhysRevD.85.104016
https://arxiv.org/abs/1111.2875
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.2875
https://doi.org/10.1142/S0218271816430045
https://doi.org/10.1142/S0218271816430045
https://arxiv.org/abs/1605.05006
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.05006
https://doi.org/10.3389/fphy.2018.00077
https://arxiv.org/abs/1804.09944
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.09944
https://doi.org/10.1016/0370-2693(93)90726-X
https://arxiv.org/abs/1710.05815
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.05815


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[29] M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution
equations, Nucl. Phys. B 417 (1994) 181 [INSPIRE].

[30] A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett. 97
(2006) 221301 [hep-th/0607128] [INSPIRE].

[31] D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative gravity,
Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

[32] D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in
asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

[33] D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The Universal RG Machine, JHEP
06 (2011) 079 [arXiv:1012.3081] [INSPIRE].

[34] E. Manrique, M. Reuter and F. Saueressig, Matter Induced Bimetric Actions for Gravity,
Annals Phys. 326 (2011) 440 [arXiv:1003.5129] [INSPIRE].

[35] E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in
Quantum Einstein Gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

[36] K. Groh, S. Rechenberger, F. Saueressig and O. Zanusso, Higher Derivative Gravity from the
Universal Renormalization Group Machine, PoS EPS-HEP2011 (2011) 124
[arXiv:1111.1743] [INSPIRE].

[37] I. Donkin and J.M. Pawlowski, The phase diagram of quantum gravity from
diffeomorphism-invariant RG-flows, arXiv:1203.4207 [INSPIRE].

[38] N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared
completion of quantum gravity, Phys. Lett. B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].

[39] N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global Flows in Quantum
Gravity, Phys. Rev. D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].

[40] N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local Quantum
Gravity, Phys. Rev. D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].

[41] N. Christiansen, Four-Derivative Quantum Gravity Beyond Perturbation Theory,
arXiv:1612.06223 [INSPIRE].

[42] T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically
safe quantum gravity, Eur. Phys. J. C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].

[43] N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity
with matter, Phys. Rev. D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].

[44] N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of
quantum gravity, Phys. Rev. D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].

[45] A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum
gravity, SciPost Phys. 5 (2018) 031 [arXiv:1804.00012] [INSPIRE].

[46] A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is
quantum gravity?, Phys. Lett. B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].

[47] A. Bonanno, T. Denz, J.M. Pawlowski and M. Reichert, Reconstructing the graviton, SciPost
Phys. 12 (2022) 001 [arXiv:2102.02217] [INSPIRE].

[48] O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher derivative
truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].

– 64 –

https://doi.org/10.1016/0550-3213(94)90543-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB417%2C181%22
https://doi.org/10.1103/PhysRevLett.97.221301
https://doi.org/10.1103/PhysRevLett.97.221301
https://arxiv.org/abs/hep-th/0607128
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0607128
https://doi.org/10.1142/S0217732309031521
https://arxiv.org/abs/0901.2984
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.2984
https://doi.org/10.1016/j.nuclphysb.2009.08.023
https://arxiv.org/abs/0902.4630
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.4630
https://doi.org/10.1007/JHEP06(2011)079
https://doi.org/10.1007/JHEP06(2011)079
https://arxiv.org/abs/1012.3081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.3081
https://doi.org/10.1016/j.aop.2010.11.003
https://arxiv.org/abs/1003.5129
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.5129
https://doi.org/10.1016/j.aop.2010.11.006
https://arxiv.org/abs/1006.0099
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.0099
https://doi.org/10.22323/1.134.0124
https://arxiv.org/abs/1111.1743
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.1743
https://arxiv.org/abs/1203.4207
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.4207
https://doi.org/10.1016/j.physletb.2013.11.025
https://arxiv.org/abs/1209.4038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.4038
https://doi.org/10.1103/PhysRevD.93.044036
https://arxiv.org/abs/1403.1232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.1232
https://doi.org/10.1103/PhysRevD.92.121501
https://arxiv.org/abs/1506.07016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.07016
https://arxiv.org/abs/1612.06223
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.06223
https://doi.org/10.1140/epjc/s10052-018-5806-0
https://arxiv.org/abs/1612.07315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.07315
https://doi.org/10.1103/PhysRevD.97.106012
https://arxiv.org/abs/1710.04669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.04669
https://doi.org/10.1103/PhysRevD.97.046007
https://arxiv.org/abs/1711.09259
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09259
https://doi.org/10.21468/SciPostPhys.5.4.031
https://arxiv.org/abs/1804.00012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00012
https://doi.org/10.1016/j.physletb.2019.01.071
https://arxiv.org/abs/1810.02828
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02828
https://doi.org/10.21468/SciPostPhys.12.1.001
https://doi.org/10.21468/SciPostPhys.12.1.001
https://arxiv.org/abs/2102.02217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02217
https://doi.org/10.1103/PhysRevD.66.025026
https://arxiv.org/abs/hep-th/0205062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0205062


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[49] G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and
field parametrization dependence in the f(R) truncation, Phys. Rev. D 98 (2018) 026027
[arXiv:1805.09656] [INSPIRE].

[50] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic
safety, arXiv:1301.4191 [INSPIRE].

[51] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic
safety of quantum gravity, Phys. Rev. D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].

[52] K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of
quantum gravity beyond Ricci scalars, Phys. Rev. D 97 (2018) 086006 [arXiv:1801.00162]
[INSPIRE].

[53] K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity,
Phys. Rev. D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].

[54] Y. Kluth and D.F. Litim, Fixed Points of Quantum Gravity and the Dimensionality of the
UV Critical Surface, arXiv:2008.09181 [INSPIRE].

[55] K. Falls, N. Ohta and R. Percacci, Towards the determination of the dimension of the critical
surface in asymptotically safe gravity, Phys. Lett. B 810 (2020) 135773 [arXiv:2004.04126]
[INSPIRE].

[56] A. Codello, G. D’Odorico and C. Pagani, Consistent closure of renormalization group flow
equations in quantum gravity, Phys. Rev. D 89 (2014) 081701 [arXiv:1304.4777] [INSPIRE].

[57] M. Demmel, F. Saueressig and O. Zanusso, RG flows of Quantum Einstein Gravity in the
linear-geometric approximation, Annals Phys. 359 (2015) 141 [arXiv:1412.7207] [INSPIRE].

[58] J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes:
Asymptotically safe and sound, Phys. Rev. D 95 (2017) 086013 [arXiv:1609.04813]
[INSPIRE].

[59] H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is
Asymptotically Safe, Phys. Rev. Lett. 116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].

[60] G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: Towards phenomenological
tests of unimodular asymptotic safety, JHEP 09 (2019) 100 [arXiv:1907.11173] [INSPIRE].

[61] L. Bosma, B. Knorr and F. Saueressig, Resolving Spacetime Singularities within Asymptotic
Safety, Phys. Rev. Lett. 123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].

[62] B. Knorr, C. Ripken and F. Saueressig, Form Factors in Asymptotic Safety: conceptual ideas
and computational toolbox, Class. Quant. Grav. 36 (2019) 234001 [arXiv:1907.02903]
[INSPIRE].

[63] B. Knorr, The derivative expansion in asymptotically safe quantum gravity: general setup and
quartic order, SciPost Phys. Core 4 (2021) 020 [arXiv:2104.11336] [INSPIRE].

[64] B. Knorr and M. Schiffer, Non-Perturbative Propagators in Quantum Gravity, Universe 7
(2021) 216 [arXiv:2105.04566] [INSPIRE].

[65] G.P. de Brito and A.D. Pereira, Unimodular quantum gravity: Steps beyond perturbation
theory, JHEP 09 (2020) 196 [arXiv:2007.05589] [INSPIRE].

[66] G.P. de Brito, A.D. Pereira and A.F. Vieira, Exploring new corners of asymptotically safe
unimodular quantum gravity, Phys. Rev. D 103 (2021) 104023 [arXiv:2012.08904]
[INSPIRE].

– 65 –

https://doi.org/10.1103/PhysRevD.98.026027
https://arxiv.org/abs/1805.09656
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.09656
https://arxiv.org/abs/1301.4191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.4191
https://doi.org/10.1103/PhysRevD.93.104022
https://arxiv.org/abs/1410.4815
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.4815
https://doi.org/10.1103/PhysRevD.97.086006
https://arxiv.org/abs/1801.00162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.00162
https://doi.org/10.1103/PhysRevD.99.126015
https://arxiv.org/abs/1810.08550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08550
https://arxiv.org/abs/2008.09181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.09181
https://doi.org/10.1016/j.physletb.2020.135773
https://arxiv.org/abs/2004.04126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04126
https://doi.org/10.1103/PhysRevD.89.081701
https://arxiv.org/abs/1304.4777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4777
https://doi.org/10.1016/j.aop.2015.04.018
https://arxiv.org/abs/1412.7207
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7207
https://doi.org/10.1103/PhysRevD.95.086013
https://arxiv.org/abs/1609.04813
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.04813
https://doi.org/10.1103/PhysRevLett.116.211302
https://arxiv.org/abs/1601.01800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01800
https://doi.org/10.1007/JHEP09(2019)100
https://arxiv.org/abs/1907.11173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.11173
https://doi.org/10.1103/PhysRevLett.123.101301
https://arxiv.org/abs/1904.04845
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.04845
https://doi.org/10.1088/1361-6382/ab4a53
https://arxiv.org/abs/1907.02903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02903
https://doi.org/10.21468/SciPostPhysCore.4.3.020
https://arxiv.org/abs/2104.11336
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.11336
https://doi.org/10.3390/universe7070216
https://doi.org/10.3390/universe7070216
https://arxiv.org/abs/2105.04566
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.04566
https://doi.org/10.1007/JHEP09(2020)196
https://arxiv.org/abs/2007.05589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05589
https://doi.org/10.1103/PhysRevD.103.104023
https://arxiv.org/abs/2012.08904
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.08904


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[67] G.P. de Brito, O. Melichev, R. Percacci and A.D. Pereira, Can quantum fluctuations
differentiate between standard and unimodular gravity?, JHEP 12 (2021) 090
[arXiv:2105.13886] [INSPIRE].

[68] N. Ohta and R. Percacci, Higher Derivative Gravity and Asymptotic Safety in Diverse
Dimensions, Class. Quant. Grav. 31 (2014) 015024 [arXiv:1308.3398] [INSPIRE].

[69] N. Ohta and R. Percacci, Ultraviolet Fixed Points in Conformal Gravity and General
Quadratic Theories, Class. Quant. Grav. 33 (2016) 035001 [arXiv:1506.05526] [INSPIRE].

[70] J.A. Dietz and T.R. Morris, Asymptotic safety in the f(R) approximation, JHEP 01 (2013)
108 [arXiv:1211.0955] [INSPIRE].

[71] J.A. Dietz and T.R. Morris, Redundant operators in the exact renormalisation group and in
the f(R) approximation to asymptotic safety, JHEP 07 (2013) 064 [arXiv:1306.1223]
[INSPIRE].

[72] S. Gonzalez-Martin, T.R. Morris and Z.H. Slade, Asymptotic solutions in asymptotic safety,
Phys. Rev. D 95 (2017) 106010 [arXiv:1704.08873] [INSPIRE].

[73] A. Baldazzi and K. Falls, Essential Quantum Einstein Gravity, Universe 7 (2021) 294
[arXiv:2107.00671] [INSPIRE].

[74] P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum
gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

[75] P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system
of gravity and scalar matter, Phys. Rev. D 93 (2016) 044049 [Erratum ibid. 93 (2016)
129904] [arXiv:1512.01589] [INSPIRE].

[76] R. Percacci and G.P. Vacca, Search of scaling solutions in scalar-tensor gravity, Eur. Phys. J.
C 75 (2015) 188 [arXiv:1501.00888] [INSPIRE].

[77] K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with asymptotically
safe gravity, Class. Quant. Grav. 33 (2016) 125011 [arXiv:1510.03734] [INSPIRE].

[78] A. Eichhorn, A. Held and J.M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa model,
Phys. Rev. D 94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].

[79] J. Meibohm and J.M. Pawlowski, Chiral fermions in asymptotically safe quantum gravity,
Eur. Phys. J. C 76 (2016) 285 [arXiv:1601.04597] [INSPIRE].

[80] J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated
gravity-matter systems, JHEP 05 (2017) 093 [arXiv:1702.06539] [INSPIRE].

[81] Y. Hamada and M. Yamada, Asymptotic safety of higher derivative quantum gravity
non-minimally coupled with a matter system, JHEP 08 (2017) 070 [arXiv:1703.09033]
[INSPIRE].

[82] G.P. De Brito, Y. Hamada, A.D. Pereira and M. Yamada, On the impact of Majorana masses
in gravity-matter systems, JHEP 08 (2019) 142 [arXiv:1905.11114] [INSPIRE].

[83] J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in
asymptotically safe quantum gravity, Phys. Rev. D 99 (2019) 086010 [arXiv:1811.11706]
[INSPIRE].

[84] C. Wetterich and M. Yamada, Variable Planck mass from the gauge invariant flow equation,
Phys. Rev. D 100 (2019) 066017 [arXiv:1906.01721] [INSPIRE].

– 66 –

https://doi.org/10.1007/JHEP12(2021)090
https://arxiv.org/abs/2105.13886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.13886
https://doi.org/10.1088/0264-9381/31/1/015024
https://arxiv.org/abs/1308.3398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.3398
https://doi.org/10.1088/0264-9381/33/3/035001
https://arxiv.org/abs/1506.05526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.05526
https://doi.org/10.1007/JHEP01(2013)108
https://doi.org/10.1007/JHEP01(2013)108
https://arxiv.org/abs/1211.0955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.0955
https://doi.org/10.1007/JHEP07(2013)064
https://arxiv.org/abs/1306.1223
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.1223
https://doi.org/10.1103/PhysRevD.95.106010
https://arxiv.org/abs/1704.08873
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08873
https://doi.org/10.3390/universe7080294
https://arxiv.org/abs/2107.00671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.00671
https://doi.org/10.1103/PhysRevD.89.084035
https://arxiv.org/abs/1311.2898
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2898
https://doi.org/10.1103/PhysRevD.93.129904
https://arxiv.org/abs/1512.01589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.01589
https://doi.org/10.1140/epjc/s10052-015-3410-0
https://doi.org/10.1140/epjc/s10052-015-3410-0
https://arxiv.org/abs/1501.00888
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.00888
https://doi.org/10.1088/0264-9381/33/12/125011
https://arxiv.org/abs/1510.03734
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.03734
https://doi.org/10.1103/PhysRevD.94.104027
https://arxiv.org/abs/1604.02041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.02041
https://doi.org/10.1140/epjc/s10052-016-4132-7
https://arxiv.org/abs/1601.04597
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.04597
https://doi.org/10.1007/JHEP05(2017)093
https://arxiv.org/abs/1702.06539
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.06539
https://doi.org/10.1007/JHEP08(2017)070
https://arxiv.org/abs/1703.09033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.09033
https://doi.org/10.1007/JHEP08(2019)142
https://arxiv.org/abs/1905.11114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.11114
https://doi.org/10.1103/PhysRevD.99.086010
https://arxiv.org/abs/1811.11706
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11706
https://doi.org/10.1103/PhysRevD.100.066017
https://arxiv.org/abs/1906.01721
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.01721


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[85] C. Wetterich, Effective scalar potential in asymptotically safe quantum gravity, Universe 7
(2021) 45 [arXiv:1911.06100] [INSPIRE].

[86] A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity,
Phys. Rev. D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].

[87] N. Alkofer and F. Saueressig, Asymptotically safe f(R)-gravity coupled to matter I: the
polynomial case, Annals Phys. 396 (2018) 173 [arXiv:1802.00498] [INSPIRE].

[88] N. Alkofer, Asymptotically safe f(R)-gravity coupled to matter II: Global solutions, Phys.
Lett. B 789 (2019) 480 [arXiv:1809.06162] [INSPIRE].

[89] B. Bürger, J.M. Pawlowski, M. Reichert and B.-J. Schaefer, Curvature dependence of
quantum gravity with scalars, arXiv:1912.01624 [INSPIRE].

[90] Y. Hamada, J.M. Pawlowski and M. Yamada, Gravitational instantons and anomalous chiral
symmetry breaking, Phys. Rev. D 103 (2021) 106016 [arXiv:2009.08728] [INSPIRE].

[91] G.P. de Brito, A. Eichhorn and M. Schiffer, Light charged fermions in quantum gravity, Phys.
Lett. B 815 (2021) 136128 [arXiv:2010.00605] [INSPIRE].

[92] A. Eichhorn and M. Pauly, Safety in darkness: Higgs portal to simple Yukawa systems, Phys.
Lett. B 819 (2021) 136455 [arXiv:2005.03661] [INSPIRE].

[93] A. Eichhorn and M. Pauly, Constraining power of asymptotic safety for scalar fields, Phys.
Rev. D 103 (2021) 026006 [arXiv:2009.13543] [INSPIRE].

[94] A. Eichhorn, M. Pauly and S. Ray, Towards a Higgs mass determination in asymptotically
safe gravity with a dark portal, JHEP 10 (2021) 100 [arXiv:2107.07949] [INSPIRE].

[95] N. Ohta and M. Yamada, Higgs scalar potential coupled to gravity in the exponential
parametrization in arbitrary gauge, Phys. Rev. D 105 (2022) 026013 [arXiv:2110.08594]
[INSPIRE].

[96] C. Laporte, A.D. Pereira, F. Saueressig and J. Wang, Scalar-tensor theories within
Asymptotic Safety, JHEP 12 (2021) 001 [arXiv:2110.09566] [INSPIRE].

[97] M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass,
Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

[98] U. Harst and M. Reuter, QED coupled to QEG, JHEP 05 (2011) 119 [arXiv:1101.6007]
[INSPIRE].

[99] S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with
gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

[100] A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys. 13 (2011) 125012
[arXiv:1104.5366] [INSPIRE].

[101] A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety
scenario, Phys. Rev. D 86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].

[102] J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems,
Phys. Rev. D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

[103] P. Labus, R. Percacci and G.P. Vacca, Asymptotic safety in O(N) scalar models coupled to
gravity, Phys. Lett. B 753 (2016) 274 [arXiv:1505.05393] [INSPIRE].

[104] A. Eichhorn and S. Lippoldt, Quantum gravity and Standard-Model-like fermions, Phys. Lett.
B 767 (2017) 142 [arXiv:1611.05878] [INSPIRE].

– 67 –

https://doi.org/10.3390/universe7020045
https://doi.org/10.3390/universe7020045
https://arxiv.org/abs/1911.06100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06100
https://doi.org/10.1103/PhysRevD.99.086002
https://arxiv.org/abs/1812.08782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08782
https://doi.org/10.1016/j.aop.2018.07.017
https://arxiv.org/abs/1802.00498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.00498
https://doi.org/10.1016/j.physletb.2018.12.061
https://doi.org/10.1016/j.physletb.2018.12.061
https://arxiv.org/abs/1809.06162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06162
https://arxiv.org/abs/1912.01624
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01624
https://doi.org/10.1103/PhysRevD.103.106016
https://arxiv.org/abs/2009.08728
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.08728
https://doi.org/10.1016/j.physletb.2021.136128
https://doi.org/10.1016/j.physletb.2021.136128
https://arxiv.org/abs/2010.00605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00605
https://doi.org/10.1016/j.physletb.2021.136455
https://doi.org/10.1016/j.physletb.2021.136455
https://arxiv.org/abs/2005.03661
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.03661
https://doi.org/10.1103/PhysRevD.103.026006
https://doi.org/10.1103/PhysRevD.103.026006
https://arxiv.org/abs/2009.13543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.13543
https://doi.org/10.1007/JHEP10(2021)100
https://arxiv.org/abs/2107.07949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.07949
https://doi.org/10.1103/PhysRevD.105.026013
https://arxiv.org/abs/2110.08594
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.08594
https://doi.org/10.1007/JHEP12(2021)001
https://arxiv.org/abs/2110.09566
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.09566
https://doi.org/10.1016/j.physletb.2009.12.022
https://arxiv.org/abs/0912.0208
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.0208
https://doi.org/10.1007/JHEP05(2011)119
https://arxiv.org/abs/1101.6007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.6007
https://doi.org/10.1016/j.physletb.2012.02.002
https://arxiv.org/abs/1101.5552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.5552
https://doi.org/10.1088/1367-2630/13/12/125012
https://arxiv.org/abs/1104.5366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.5366
https://doi.org/10.1103/PhysRevD.86.105021
https://arxiv.org/abs/1204.0965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0965
https://doi.org/10.1103/PhysRevD.93.084035
https://arxiv.org/abs/1510.07018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07018
https://doi.org/10.1016/j.physletb.2015.12.022
https://arxiv.org/abs/1505.05393
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.05393
https://doi.org/10.1016/j.physletb.2017.01.064
https://doi.org/10.1016/j.physletb.2017.01.064
https://arxiv.org/abs/1611.05878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.05878


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[105] N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality
problem, Phys. Lett. B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].

[106] A. Eichhorn and F. Versteegen, Upper bound on the Abelian gauge coupling from asymptotic
safety, JHEP 01 (2018) 030 [arXiv:1709.07252] [INSPIRE].

[107] A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for
matter, Phys. Rev. D 96 (2017) 086025 [arXiv:1705.02342] [INSPIRE].

[108] A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett. B 777 (2018) 217
[arXiv:1707.01107] [INSPIRE].

[109] A. Eichhorn, A. Held and C. Wetterich, Quantum-gravity predictions for the fine-structure
constant, Phys. Lett. B 782 (2018) 198 [arXiv:1711.02949] [INSPIRE].

[110] A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten
the Planck-scale Higgs potential, Phys. Rev. D 97 (2018) 086004 [arXiv:1712.00319]
[INSPIRE].

[111] A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe
quantum gravity, Phys. Rev. Lett. 121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].

[112] A. Eichhorn, A. Held and C. Wetterich, Predictive power of grand unification from quantum
gravity, JHEP 08 (2020) 111 [arXiv:1909.07318] [INSPIRE].

[113] M. Reichert and J. Smirnov, Dark Matter meets Quantum Gravity, Phys. Rev. D 101 (2020)
063015 [arXiv:1911.00012] [INSPIRE].

[114] R. Alkofer, A. Eichhorn, A. Held, C.M. Nieto, R. Percacci and M. Schröfl, Quark masses and
mixings in minimally parameterized UV completions of the Standard Model, Annals Phys.
421 (2020) 168282 [arXiv:2003.08401] [INSPIRE].

[115] Y. Hamada, K. Tsumura and M. Yamada, Scalegenesis and fermionic dark matters in the
flatland scenario, Eur. Phys. J. C 80 (2020) 368 [arXiv:2002.03666] [INSPIRE].

[116] K. Kowalska and E.M. Sessolo, Minimal models for g-2 and dark matter confront asymptotic
safety, Phys. Rev. D 103 (2021) 115032 [arXiv:2012.15200] [INSPIRE].

[117] K. Kowalska, E.M. Sessolo and Y. Yamamoto, Flavor anomalies from asymptotically safe
gravity, Eur. Phys. J. C 81 (2021) 272 [arXiv:2007.03567] [INSPIRE].

[118] J. Julve and M. Tonin, Quantum Gravity with Higher Derivative Terms, Nuovo Cim. B 46
(1978) 137 [INSPIRE].

[119] I.G. Avramidi and A.O. Barvinsky, Asymptotic freedom in higher derivative quantum gravity,
Phys. Lett. B 159 (1985) 269 [INSPIRE].

[120] I.G. Avramidi, Covariant methods for the calculation of the effective action in quantum field
theory and investigation of higher derivative quantum gravity, other thesis, 1986
[hep-th/9510140] [INSPIRE].

[121] I. Antoniadis, P.O. Mazur and E. Mottola, Conformal symmetry and central charges in
four-dimensions, Nucl. Phys. B 388 (1992) 627 [hep-th/9205015] [INSPIRE].

[122] G. de Berredo-Peixoto and I.L. Shapiro, Conformal quantum gravity with the Gauss-Bonnet
term, Phys. Rev. D 70 (2004) 044024 [hep-th/0307030] [INSPIRE].

[123] G. de Berredo-Peixoto and I.L. Shapiro, Higher derivative quantum gravity with
Gauss-Bonnet term, Phys. Rev. D 71 (2005) 064005 [hep-th/0412249] [INSPIRE].

– 68 –

https://doi.org/10.1016/j.physletb.2017.04.047
https://arxiv.org/abs/1702.07724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07724
https://doi.org/10.1007/JHEP01(2018)030
https://arxiv.org/abs/1709.07252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.07252
https://doi.org/10.1103/PhysRevD.96.086025
https://arxiv.org/abs/1705.02342
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.02342
https://doi.org/10.1016/j.physletb.2017.12.040
https://arxiv.org/abs/1707.01107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.01107
https://doi.org/10.1016/j.physletb.2018.05.016
https://arxiv.org/abs/1711.02949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.02949
https://doi.org/10.1103/PhysRevD.97.086004
https://arxiv.org/abs/1712.00319
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.00319
https://doi.org/10.1103/PhysRevLett.121.151302
https://arxiv.org/abs/1803.04027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04027
https://doi.org/10.1007/JHEP08(2020)111
https://arxiv.org/abs/1909.07318
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.07318
https://doi.org/10.1103/PhysRevD.101.063015
https://doi.org/10.1103/PhysRevD.101.063015
https://arxiv.org/abs/1911.00012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.00012
https://doi.org/10.1016/j.aop.2020.168282
https://doi.org/10.1016/j.aop.2020.168282
https://arxiv.org/abs/2003.08401
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.08401
https://doi.org/10.1140/epjc/s10052-020-7929-3
https://arxiv.org/abs/2002.03666
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.03666
https://doi.org/10.1103/PhysRevD.103.115032
https://arxiv.org/abs/2012.15200
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.15200
https://doi.org/10.1140/epjc/s10052-021-09072-1
https://arxiv.org/abs/2007.03567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.03567
https://doi.org/10.1007/BF02748637
https://doi.org/10.1007/BF02748637
https://inspirehep.net/search?p=find+J%20%22Nuovo%20Cim.%2CB46%2C137%22
https://doi.org/10.1016/0370-2693(85)90248-5
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB159%2C269%22
https://arxiv.org/abs/hep-th/9510140
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9510140
https://doi.org/10.1016/0550-3213(92)90557-R
https://arxiv.org/abs/hep-th/9205015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9205015
https://doi.org/10.1103/PhysRevD.70.044024
https://arxiv.org/abs/hep-th/0307030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0307030
https://doi.org/10.1103/PhysRevD.71.064005
https://arxiv.org/abs/hep-th/0412249
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0412249


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[124] C. Wetterich, Quantum correlations for the metric, Phys. Rev. D 95 (2017) 123525
[arXiv:1603.06504] [INSPIRE].

[125] C. Wetterich, Gauge invariant flow equation, Nucl. Phys. B 931 (2018) 262
[arXiv:1607.02989] [INSPIRE].

[126] C. Wetterich, Gauge-invariant fields and flow equations for Yang-Mills theories, Nucl. Phys.
B 934 (2018) 265 [arXiv:1710.02494] [INSPIRE].

[127] F. Lucchin, S. Matarrese and M.D. Pollock, Inflation With a Nonminimally Coupled Scalar
Field, Phys. Lett. B 167 (1986) 163 [INSPIRE].

[128] T. Futamase and K.-i. Maeda, Chaotic Inflationary Scenario in Models Having Nonminimal
Coupling With Curvature, Phys. Rev. D 39 (1989) 399 [INSPIRE].

[129] D.S. Salopek, J.R. Bond and J.M. Bardeen, Designing Density Fluctuation Spectra in
Inflation, Phys. Rev. D 40 (1989) 1753 [INSPIRE].

[130] J.L. Cervantes-Cota and H. Dehnen, Induced gravity inflation in the standard model of
particle physics, Nucl. Phys. B 442 (1995) 391 [astro-ph/9505069] [INSPIRE].

[131] F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys.
Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].

[132] N. Tetradis and C. Wetterich, Scale dependence of the average potential around the maximum
in phi**4 theories, Nucl. Phys. B 383 (1992) 197 [INSPIRE].

[133] T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod. Phys.
A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].

[134] N. Tetradis and C. Wetterich, Critical exponents from effective average action, Nucl. Phys. B
422 (1994) 541 [hep-ph/9308214] [INSPIRE].

[135] U. Ellwanger, FLow equations for N point functions and bound states, Z. Phys. C 62 (1994)
503 [hep-ph/9308260] [INSPIRE].

[136] C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravity — the
resurgence mechanism, Phys. Lett. B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

[137] C. Wetterich, Gauge hierarchy due to strong interactions?, Phys. Lett. B 104 (1981) 269
[INSPIRE].

[138] D.F. Litim, Optimized renormalization group flows, Phys. Rev. D 64 (2001) 105007
[hep-th/0103195] [INSPIRE].

[139] R. Endo, Gauge Dependence of the Gravitational Conformal Anomaly for the Electromagnetic
Field, Prog. Theor. Phys. 71 (1984) 1366 [INSPIRE].

[140] V.P. Gusynin, Seeley-gilkey Coefficients for the Fourth Order Operators on a Riemannian
Manifold, Nucl. Phys. B 333 (1990) 296 [INSPIRE].

[141] V.P. Gusynin and V.V. Kornyak, Complete computation of DeWitt-Seeley-Gilkey coefficient
E4 for nonminimal operator on curved manifolds, Fund. Appl. Math. 5 (1999) 649
[math/9909145] [INSPIRE].

[142] C. Wetterich, Graviton fluctuations erase the cosmological constant, Phys. Lett. B 773 (2017)
6 [arXiv:1704.08040] [INSPIRE].

[143] C. Wetterich, Infrared limit of quantum gravity, Phys. Rev. D 98 (2018) 026028
[arXiv:1802.05947] [INSPIRE].

– 69 –

https://doi.org/10.1103/PhysRevD.95.123525
https://arxiv.org/abs/1603.06504
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.06504
https://doi.org/10.1016/j.nuclphysb.2018.04.020
https://arxiv.org/abs/1607.02989
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.02989
https://doi.org/10.1016/j.nuclphysb.2018.07.002
https://doi.org/10.1016/j.nuclphysb.2018.07.002
https://arxiv.org/abs/1710.02494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.02494
https://doi.org/10.1016/0370-2693(86)90592-7
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB167%2C163%22
https://doi.org/10.1103/PhysRevD.39.399
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD39%2C399%22
https://doi.org/10.1103/PhysRevD.40.1753
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD40%2C1753%22
https://doi.org/10.1016/0550-3213(95)00128-X
https://arxiv.org/abs/astro-ph/9505069
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9505069
https://doi.org/10.1016/j.physletb.2007.11.072
https://doi.org/10.1016/j.physletb.2007.11.072
https://arxiv.org/abs/0710.3755
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0710.3755
https://doi.org/10.1016/0550-3213(92)90676-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB383%2C197%22
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1142/S0217751X94000972
https://arxiv.org/abs/hep-ph/9308265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308265
https://doi.org/10.1016/0550-3213(94)90446-4
https://doi.org/10.1016/0550-3213(94)90446-4
https://arxiv.org/abs/hep-ph/9308214
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308214
https://doi.org/10.1007/BF01555911
https://doi.org/10.1007/BF01555911
https://arxiv.org/abs/hep-ph/9308260
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308260
https://doi.org/10.1016/j.physletb.2017.04.049
https://arxiv.org/abs/1612.03069
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.03069
https://doi.org/10.1016/0370-2693(81)90124-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB104%2C269%22
https://doi.org/10.1103/PhysRevD.64.105007
https://arxiv.org/abs/hep-th/0103195
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0103195
https://doi.org/10.1143/PTP.71.1366
https://inspirehep.net/search?p=find+J%20%22Prog.Theor.Phys.%2C71%2C1366%22
https://doi.org/10.1016/0550-3213(90)90233-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB333%2C296%22
https://arxiv.org/abs/math/9909145
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F9909145
https://doi.org/10.1016/j.physletb.2017.08.002
https://doi.org/10.1016/j.physletb.2017.08.002
https://arxiv.org/abs/1704.08040
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08040
https://doi.org/10.1103/PhysRevD.98.026028
https://arxiv.org/abs/1802.05947
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.05947


J
H
E
P
0
3
(
2
0
2
2
)
1
3
0

[144] C. Wetterich, Cosmology and the Fate of Dilatation Symmetry, Nucl. Phys. B 302 (1988) 668
[arXiv:1711.03844] [INSPIRE].

[145] C. Wetterich, Inflation, quintessence, and the origin of mass, Nucl. Phys. B 897 (2015) 111
[arXiv:1408.0156] [INSPIRE].

[146] C. Wetterich, Fundamental scale invariance, Nucl. Phys. B 964 (2021) 115326
[arXiv:2007.08805] [INSPIRE].

[147] A.O. Barvinsky and W. Wachowski, The heat kernel expansion for higher order minimal and
non-minimal operators, arXiv:2112.03062 [INSPIRE].

[148] T.R. Morris, Elements of the continuous renormalization group, Prog. Theor. Phys. Suppl.
131 (1998) 395 [hep-th/9802039] [INSPIRE].

[149] J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum
field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].

[150] K. Aoki, Introduction to the nonperturbative renormalization group and its recent applications,
Int. J. Mod. Phys. B 14 (2000) 1249 [INSPIRE].

[151] C. Bagnuls and C. Bervillier, Exact renormalization group equations. An Introductory review,
Phys. Rept. 348 (2001) 91 [hep-th/0002034] [INSPIRE].

[152] J. Polonyi, Lectures on the functional renormalization group method, Central Eur. J. Phys. 1
(2003) 1 [hep-th/0110026] [INSPIRE].

[153] J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007)
2831 [hep-th/0512261] [INSPIRE].

[154] H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes
Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].

[155] B. Delamotte, An Introduction to the nonperturbative renormalization group, Lect. Notes
Phys. 852 (2012) 49 [cond-mat/0702365] [INSPIRE].

[156] O.J. Rosten, Fundamentals of the Exact Renormalization Group, Phys. Rept. 511 (2012) 177
[arXiv:1003.1366] [INSPIRE].

[157] P. Kopietz, L. Bartosch and F. Schütz, Introduction to the functional renormalization group,
Lect. Notes Phys. 798 (2010) 1 [INSPIRE].

[158] J. Braun, Fermion Interactions and Universal Behavior in Strongly Interacting Theories, J.
Phys. G 39 (2012) 033001 [arXiv:1108.4449] [INSPIRE].

[159] N. Dupuis et al., The nonperturbative functional renormalization group and its applications,
Phys. Rept. 910 (2021) 1 [arXiv:2006.04853] [INSPIRE].

[160] A. Lichnerowicz, Propagateurs, commutateurs et anticommutateurs en rélativité générale,
[INSPIRE].

[161] J.F. Donoghue and B.K. El-Menoufi, Nonlocal quantum effects in cosmology: Quantum
memory, nonlocal FLRW equations, and singularity avoidance, Phys. Rev. D 89 (2014)
104062 [arXiv:1402.3252] [INSPIRE].

– 70 –

https://doi.org/10.1016/0550-3213(88)90193-9
https://arxiv.org/abs/1711.03844
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.03844
https://doi.org/10.1016/j.nuclphysb.2015.05.019
https://arxiv.org/abs/1408.0156
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.0156
https://doi.org/10.1016/j.nuclphysb.2021.115326
https://arxiv.org/abs/2007.08805
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.08805
https://arxiv.org/abs/2112.03062
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.03062
https://doi.org/10.1143/PTPS.131.395
https://doi.org/10.1143/PTPS.131.395
https://arxiv.org/abs/hep-th/9802039
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9802039
https://doi.org/10.1016/S0370-1573(01)00098-9
https://arxiv.org/abs/hep-ph/0005122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0005122
https://doi.org/10.1016/S0217-9792(00)00092-3
https://inspirehep.net/search?p=find+J%20%22Int.J.Mod.Phys.%2CB14%2C1249%22
https://doi.org/10.1016/S0370-1573(00)00137-X
https://arxiv.org/abs/hep-th/0002034
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0002034
https://doi.org/10.2478/BF02475552
https://doi.org/10.2478/BF02475552
https://arxiv.org/abs/hep-th/0110026
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110026
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1016/j.aop.2007.01.007
https://arxiv.org/abs/hep-th/0512261
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0512261
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1007/978-3-642-27320-9_6
https://arxiv.org/abs/hep-ph/0611146
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0611146
https://doi.org/10.1007/978-3-642-27320-9_2
https://doi.org/10.1007/978-3-642-27320-9_2
https://arxiv.org/abs/cond-mat/0702365
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0702365
https://doi.org/10.1016/j.physrep.2011.12.003
https://arxiv.org/abs/1003.1366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1003.1366
https://doi.org/10.1007/978-3-642-05094-7
https://inspirehep.net/search?p=find+doi%20%2210.1007%2F978-3-642-05094-7%22
https://doi.org/10.1088/0954-3899/39/3/033001
https://doi.org/10.1088/0954-3899/39/3/033001
https://arxiv.org/abs/1108.4449
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.4449
https://doi.org/10.1016/j.physrep.2021.01.001
https://arxiv.org/abs/2006.04853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04853
https://inspirehep.net/search?p=find+J%20%22Gen.Rel.Grav.%2C50%2C145%22
https://doi.org/10.1103/PhysRevD.89.104062
https://doi.org/10.1103/PhysRevD.89.104062
https://arxiv.org/abs/1402.3252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.3252

	Introduction
	Summary: setup, flow equations and fixed point structure
	Effective action for gravity
	Flow equations
	Asymptotic freedom
	Asymptotic safety
	Interpolating functions
	Gravity contributions to the flow of the effective potential for scalars

	Flow generator and heat kernel method
	Scalar bosons
	Gauge bosons
	Weyl fermions

	Flow generators from metric fluctuations
	Physical metric decomposition and gauge invariant flow
	Physical metric fluctuations
	Measure contribution

	R-fixed point and critical exponents
	Einstein-Hilbert truncation
	R**(2) truncation
	Vanishing cosmological constant
	Full system

	Infrared region
	Conclusions
	Setup
	Effective average action
	Physical metric decomposition
	Identities for covariant derivatives
	Expansion of projectors

	Inverse two-point functions
	Basis of gravitational interactions
	Variations
	Hessians
	Metric fluctuations
	Ghost
	Jacobian


	Heat kernel method
	Basics of heat kernel method
	Projected heat kernel
	Heat kernel coefficients
	Coefficients for each mode in metric fluctuations
	Heat kernel coefficients for Lichnerowicz Laplacians

	Off-diagonal heat kernel expansion

	Summary of matter contributions
	Contributions from metric fluctuations
	Physical metric contribution
	Full propagator and cutoff function
	Expansion of flow generator
	Transverse-traceless mode
	Physical spin-0 mode
	Jacobian

	Measure contribution


