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1 Introduction

Form Factors (FFs) are fundamental quantities in Quantum Field Theory (QFT) that
exhibit traits of both scattering amplitudes and correlation functions. They describe the
amplitude of a state created by a local operator to decay into an n-point asymptotic state.
In the maximally supersymmetric Yang-Mills theory in four dimensions (N = 4 SYM
theory), they have been studied using modern on-shell methods (see, for instance, the
review [1]) as well as integrability at weak coupling [2] and strong coupling [3, 4].
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In N = 4 SYM theory, planar n-point form factors have a dual description in terms
of a certain type of periodic null polygonal Wilson loops Wn with n unique edges, which
we also refer to as wrapped polygons [3, 5–8]. Based on this duality, in [9, 10] we have
developed the form factor operator product expansion (FFOPE), used to compute FFs in
planar N = 4 SYM theory non-perturbatively. In this approach, a generic wrapped polygon
is broken into a sequence of pentagon transitions P [11–20]. The sequence ends with a form
factor transition F that encodes the information about the local operator,

Wn = 〈F|e−Hτn−2+iPσn−2+iJφn−2P . . .Pe−Hτ1+iPσ1+iJφ1P|0〉 . (1.1)

Here, H,P, J are the Gubser-Klebanov-Polyakov (GKP) flux-tube Hamiltonian, momentum
and angular momentum operators, respectively, and τi, σi, φi are the cross-ratios that
parametrize the polygon, with φn−2 = 0; see [9] for more details.

In this paper, we determine the FF transition of the chiral part of the stress-tensor
supermultiplet at any value of the ’t Hooft coupling. Together with the known spectrum of
the GKP excitations [21] and the pentagon transitions, this enables one to compute form
factors at finite ’t Hooft coupling as an expansion around the large-τi multi-collinear limit.

We determined the FF transition by solving a set of bootstrap axioms these objects
satisfy [9]. To uniquely fix the solution of the bootstrap axioms for the two-particle
transitions, we use the Born-level two-particle transitions that we constructed in [10] as well
as a fruitful interplay with the perturbative bootstrap [22, 23]. Interestingly, we find that the
FF transition for scalars is defined in terms of the so-called octagon kernel. This kernel has
previously occurred in the study of the origin of the six-gluon amplitude [24], as well as for
the octagon form factor [25–30]. The solutions for multi-particle GKP states are determined
from the two-particle ones via a simple factorized ansatz, up to a coupling-independent
matrix part that we explicitly construct for four particles.

This paper is structured as follows. In section 2, we review the set of axioms that the FF
transitions obey, as well as discuss some immediate consequences of them. Based on these
axioms, in section 3 we bootstrap the finite-coupling expressions for the FF transitions of
two particles. In section 4, we bootstrap the FF transitions for more than two particles. We
end in section 5 with conclusions and an outlook. Six appendices include some calculations
needed to demonstrate the validity of our claims.

2 Bootstrap axioms

The FF transitions are subject to a set axioms that follow from their definition in figure 1,
see [9] for further details. To set the ground for the FF transition bootstrap, we summarize
them here.

Watson. Reordering two adjacent excitations within a GKP eigenstate is equivalent to
acting on it with the S-matrix, which is known at any value of the ’t Hooft coupling
λ [31]. This property is inherited by the FF transition:

F... ajaj+1 ...(. . . , uj , uj+1, . . . ) = ±S(uj , uj+1)bj+1bj
ajaj+1F... bj+1bj ...(. . . , uj+1, uj , . . . ) ,

(2.1)
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Figure 1. The FF transition is defined as the amplitude of the two-sided wrapped polygon to
absorb a GKP state. It is normalized in such a way that the FF transition for the GKP vacuum is
equal to one.

where the indices bj , bj+1 run over all flux-tube excitations, and the minus sign
corresponds to the case where the two excitations are fermions, otherwise it is plus.

Singlet. The two-sided wrapped polygon preserves the U(1)φ × SU(4)R subgroup of the
superconformal symmetry. Here, U(1)φ parametrizes the rotations in the plane
transverse to the polygon, while SU(4)R is the R-symmetry group. This implies that

Fa1 ... an(u1, . . . , un) =Mb1
a1 . . .M

bn
an Fb1 ... bn(u1, . . . , un) , (2.2)

withM∈ U(1)φ × SU(4)R. As a result, FF transitions of charged states are equal to
zero.
The U(1)φ × SU(4)R singlet states are easy to classify. All of the single-particle states
are charged under at least one of the two symmetries. Therefore, the simplest singlet
states are two-particle ones, consisting of two conjugate scalars φφ̄, two conjugate
fermions ψψ̄, or two conjugate gluon bound states FnF−n. All singlet states with
more than two excitations are built from products of these elemental two-particle
ones.

Reflection. The two-sided wrapped polygon is invariant under spacetime reflections. As a
result, flipping the order of the GKP excitations and the signs of their momenta is a
symmetry of the FF transition:

Fa(u) = Fā(ū) . (2.3)

Here, we use the abbreviation a = {a1, . . . , an}, u = {u1, . . . , un}, ā = {an, . . . , a1}
and ū = {−un, . . . ,−u1}.

Crossing. Applying two mirror transformations to the first excitation results in it being
transferred to the last position:

Fa1a2...an(u2γ
1 , u2, . . . , un) = Fa2...ana1(u2, . . . , un, u1) . (2.4)

Note that this transformation involves an analytic continuation which crosses certain
cuts that shrink to zero in the perturbative regime. Its path depends on whether the
u1 excitation is a scalar, fermion or gluon; see [21] for details.
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Square limit. The FF transition has a factorization pole at the kinematical point in which
the momenta of the first and last excitations become equal,

lim
u1→un

Fa(u) = −iδanā1

µa1(u1)
Fa2 ... an−1(u2, . . . , un−1)

u1 − un − iε
(2.5)

±
−iδbnb̄1
µb1(u1)

Fb2 ... bn−1(u2, . . . , un−1)
un − u1 − iε

×

×
([
S12 S13 . . . S1n−1

]
· S1n ·

[
Sn−1n . . . S3n S2n

])
a

b ,

where Sij ≡ S(ui, uj) and the square measure µa(u) is known at any value of the
coupling [11–14]. Here, the plus sign corresponds to the case of a bosonic u1 excitation
and minus to the case of a fermionic u1 excitation. The first (second) term in this
equation originates from the part of the GKP wave function in which the leftmost
excitation is u1 (un) and the rightmost excitation is un (u1). The two terms are
related by the S-matrix prefactor, in accordance with the Watson axiom.

3 Two-particle form factor transitions

In this section, we bootstrap the two-particle FF transitions at finite coupling using the
axioms presented in the previous section as well as perturbative data.

3.1 Gluons and fermions

Let us consider the consequences of the square-limit axiom for the FF transitions of ψψ̄
and FnF−n first. Because the S-matrices for these excitations satisfy SFnF−m(u, u) = δnm
and SψAψ̄B (u, u) = −δBA , the two terms in (2.5) combine into a delta function:

lim
u→v

FψAψ̄B (u, v) = 2πδBA
µψ(u) δ(u− v) , lim

u→v
FFnF−n(u, v) = 2π

µFn(u) δ(u− v) . (3.1)

In [10] we have computed the transitions for ψψ̄ and F1F−1 at Born level and found
that they are given solely by their square-limit expressions. It is therefore natural to assume
that the transitions for ψψ̄ and FnF−n are supported only on their square limit. In other
words, these excitations cannot tell the difference between the wrapped two-sided polygon
and the square:

FψAψ̄B (u, v) = 2πδBA
µψ(u) δ(u− v) , FFnF−n(u, v) = 2π

µFn(u) δ(u− v) . (3.2)

It is easy to see that the transitions in (3.2) are consistent with the Watson and
reflection axioms.1 The remaining crossing axiom is a little delicate to check. The FF
transitions are distributions, that should be inserted under an integral over the rapidities.
The crossing analytic continuation, 2γ, should thus be understood as taking place inside
an integral. To be concrete, we can realize a delta function as the difference between two

1The measures are symmetric under reflection and crossing and are given in [11–14].
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poles, one above and one below the contour of integration. Its contribution to the integral
is invariant under any analytic continuation of the path, and under 2γ in particular.

Another supporting argument for the solution (3.2) comes from considering transitions
with more than two excitations. One of the celebrated manifestations of integrability is
the factorization of multi-particle fundamental quantities such as the S-matrix and the
pentagon transitions into products of the two-particle ones. Likewise, we also expect the FF
transitions to factorize. The square-limit axiom, however, contains a product of S-matrices
in one of the two terms in (2.5), but not in the other. If this product is not equal to ±1,
then this fact would be inconsistent with a factorized solution. The solution (3.2) forces
the gluons and fermions into pairs of conjugate states with the same rapidity. As explained
in section 4, this results in these pairs dropping out from the product of S-matrices in the
square limit of any other two excitations.2

Lastly, let us remark that the FF transition for the bound states Fn and F−n follow
from those of F1, F−1 and the factorized ansatz for multi-particle transitions via so-called
fusion, as we will elaborate on in section 4.

3.2 Scalars

Let us now turn to the scalars. An immediate consequence of the singlet axiom (2.2) is
that only the singlet SO(6) tensor structure is present3

Fφiφj (u, v) = Fφφ̄(u, v)× δij . (3.3)

Consider now the square-limit axiom. Because Sφφ̄(u, u) = −1, it takes the form

lim
u→v

Fφφ̄(u, v) = 2i
µφ(u)

1
u− v

, (3.4)

where the iε in the square-limit axiom leads to a principle-part prescription for the pole.
Hence, unlike for gluons and fermions, the scalar transition cannot be localized at equal
rapidities. Indeed, in [9, 10], we found that at Born level it is given by

Fφφ̄(u, v) = − 4
g2 (u− v − 2i) (u− v − i)

Γ (iu− iv)
Γ
(

1
2 + iu

)
Γ
(

1
2 − iv

) +O(g0) , (3.5)

where g2 = λ
16π2 . In this subsection, we construct a minimal solution to the bootstrap

axioms of Fφφ̄, following similar steps to those taken for the bootstrap of the scalar pentagon
transition in [12].

The Watson axiom (2.1) for Fφφ̄ takes the form

Fφφ̄(u, v) = Sφφ̄(u, v)Fφφ̄(v, u) , (3.6)

2For the full consistency of a factorized ansatz, the scalars should also drop out of the product of
S-matrices in (2.5). In section 4, we show that this is indeed the case.

3Note that in [9, 10] we do not write the flavor indexes, as the sum over them is already explicitly
performed in all the expressions.
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where Sφφ̄ is the S-matrix in the singlet channel, see [21] and appendix A for a review. This
relation can be rewritten as

Fφφ̄(u, v)2

Fφφ̄(v, u)2 = S2
φφ̄

(u, v) =
Sφφ̄(u, v)
Sφφ̄(v, u) , (3.7)

where in the last step we used the unitarity of the S-matrix, Sφφ̄(u, v)Sφφ̄(v, u) = 1. It can
be solved by

Fφφ̄(u, v)2 = z(u, v)Sφφ̄(u, v) = (u− v + 2i)(u− v + i)
(u− v − 2i)(u− v − i) z(u, v)Sφφ(u, v) , (3.8)

where z(u, v) = z(v, u) is a symmetric function and in the last step we have used the
relation (A.4) between the scalar S-matrices in the symmetric channel (Sφφ) and the singlet
channel (Sφφ̄).

Inserting this form of the FF transition into the crossing axiom (2.4) yields a crossing
relation for the symmetric function z(u, v):

z(u, v)
z(u2γ , v) = (u− v + 4i)(u− v + 3i)(u− v + 2i)

(u− v − 2i)(u− v − i)(u− v)
Sφφ(u2γ , v)
Sφφ(v, u) , (3.9)

where we used that for scalars the mirror analytic continuation is simply uγ = u+ i. Next,
we use crossing symmetry of the scalar S-matrix [12],

Sφφ(u2γ , v)Sφφ(u, v) = u− v
u− v + 2i , (3.10)

and unitarity of the S-matrix to find

z(u, v)
z(u2γ , v) = (u− v + 4i)(u− v + 3i)

(u− v − 2i)(u− v − i) . (3.11)

This can be solved via

z(u, v) = w(u, v)× 1
(u− v − 2i)(u− v − i)(u− v)(u− v + i)(u− v + 2i) , (3.12)

where
w(u, v) = w(u2γ , v) , w(u, v) = −w(v, u) . (3.13)

In terms of the function w(u, v), the square-limit axiom reads

lim
u→v

w(u, v) = 16
µφ(u)2

1
u− v

. (3.14)

At leading order in the coupling, we find w(u, v) by comparison with (3.5):

w(u, v) = 16
πg4

cosh(πu) cosh(πv)
sinh(π(u− v)) +O(g6) . (3.15)

Hence, a minimal finite-coupling solution for w(u, v) that is consistent with (3.13), (3.14),
and (3.15) is

wmin(u, v) = 16π
µφ(u)µφ(v)

1
sinh(π(u− v)) . (3.16)
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As we will see later, this ansatz (3.16) does not reproduce the next-to-leading order (NLO)
data, though. We can parametrize the mismatch using a crossing-invariant symmetric
Castillejo-Dalitz-Dyson (CDD) factor

w(u, v) = wmin(u, v)×G(u, v)2 . (3.17)

It is subject to the constraints

G(u, v)2 = G(v, u)2 , G(u, v) = 1 +O(g) , G(u2γ , v)2 = G(u, v)2 . (3.18)

In terms of the CCD factor G, the FF transition reads

Fφφ̄(u, v)2 =
Sφφ̄(u, v)

((u− v)2 + 4)((u− v)2 + 1)
16π

µφ(u)µφ(v)
G(u, v)2

(u− v) sinh(π(u− v)) , (3.19)

with the finite-coupling expressions for the measure and the S-matrix given in (A.7) and (A.5),
respectively. Combining the constraints G(u, v)2 = G(v, u)2 and G(u, v) = 1 +O(g), we see
that G(u, v) = G(v, u). We will later find that G(u2γ , v) = −G(u, v).4

3.3 Determining the scalar CDD factor with perturbative data

We now use perturbative data to find a finite-coupling expression for the CCD factor
G(u, v) = 1 +O(g2) that remained undetermined in the previous subsection. This perturba-
tive data originates from the remainder function of the three-point form factor, which has
been calculated up to two-loop order via unitarity [32] and was subsequently bootstrapped
up to eight-loop order [22, 23].

While the two-loop unitarity calculation [32] is naturally independent, the perturbative
bootstrap [22, 23] made significant use of the FFOPE data, which in turn depends on the
FF transitions and thus the function G that is to be determined in this subsection. Before
diving into the details of determining G, let us briefly explain this interplay between the
FFOPE and the perturbative bootstrap.

The NLO correction to G can be determined by requiring it to reproduce the e−2ττ0

contribution to the large-τ expansion of the two-loop remainder. As elaborated on in [9, 10],
the operator product expansion of the three-point form factor consists of terms proportional
to e−τE , with E being the energy of the corresponding GKP state, that is known at any
value of the coupling [21]. The loop corrections to E are the only source of polynomial
terms in τ , which means that the term proportional to e−2ττk is guaranteed to have at
least k powers of g2. Because of this, the `-loop correction to the e−2ττk term only receives
contributions from the FF transition up to N`−k−1LO. Thus, knowing G at NkLO fully
determines the e−2ττ `−k−1 corrections to the form factor at `-loop order. This data can
then be fed into the perturbative bootstrap to fully determine the remainder function at
(k + 1)-loop order, from which the Nk+1LO correction to G can be fixed. This sequence is
repeated to obtain the next order correction, and so on. This interplay between the FFOPE
and the perturbative bootstrap is summarized in figure 2.

4In contrast to the Watson relation, crossing does not commute with taking the weak-coupling limit.
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G at NkLO FFOPE−−−−−→ e−2ττ `−k−1 term
at ` loops

perturbative
bootstrap−−−−−−−→ (k + 1)-loop

remainder −→ G at Nk+1LO

Figure 2. Interplay between the FF transition bootstrap and the perturbative bootstrap.

To determine the function G(u, v), we first write an ansatz for it that is built from
Ψ(n)(1

2 ± iu) and Ψ(n)(1
2 ± iv) as well as products thereof, where Ψ(n)(z) = dn+1

dzn+1 log Γ(z)
is the polygamma function of order n. These functions are the building blocks occurring
in the loop corrections to the pentagon transitions, the measures, the energy and the
momentum of the scalar, and it is thus natural to expect them to occur also in the loop
corrections to the FF transitions. Moreover, we observe that when we assign weight n+ 1
to Ψ(n), only functions up to weight m occur at order gm for quantities that start at order
g0. We thus assume this property in the ansatz, since G(u, v) = 1 + O(g2). Next, we
impose G(u, v) = G(v, u) due to the Watson axiom, G(u, u) = 1 due to the square-limit
axiom and G(u, v) = G(−v,−u) due to the reflection axiom. Note that we cannot impose
crossing at the perturbative level, since the branch cut through which we are supposed to
analytically continue closes at weak coupling. The remaining coefficients in this ansatz can
be fixed by comparing the FFOPE prediction in terms of this ansatz with the data from
the perturbative bootstrap. This way, we found

log[G(u,v)] = π2g2

2 (t(u)−t(v))2

+π4g4

12 (t(u)−t(v))2
[
15 t(u)2+15 t(v)2+18 t(u)t(v)−16

]
(3.20)

+π6g6

45 (t(u)−t(v))2
[
165 t(u)4+165 t(v)4+240 t(u)3t(v)+240 t(u)t(v)3

+ 270 t(u)2t(v)2−300 t(u)2−300 t(v)2−360 t(u)t(v)+136
]
+O(g8) .

where we used the shorthand notation t(u) = tanh(πu). Note that the logarithm of G(u, v)
is a symmetric function of tanh(πu) and tanh(πu), with an explicit factor of (tanh(πu)−
tanh(πu))2 at every loop order. As such, it is not only satisfying the aforementioned
constraints but also G(u + 2i, v) = G(u, v).5 We assume that this property continues to
hold at any order in perturbation theory.

In fact, we can make a finite-coupling conjecture for G that reproduces (3.20) by
introducing building blocks quite similar to those occurring in the S-matrices, pentagon
transitions and measures.

Let us begin by reviewing the key building blocks occurring in the construction of the
aforementioned quantities, namely the Beisert-Eden-Staudacher (BES) kernel, the source
terms κn and κ̃n as well as the functions fi for i = 1, 2, 3, 4; see also appendix A. The BES
kernel can be written as [33]

Kij = 2j(−1)ij+j
∞∫
0

dt

t

Ji(2gt)Jj(2gt)
et − 1 , (3.21)

5This property looks like a perturbative counterpart of crossing, but we are not aware of a relation
between these analytic continuations.
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where Ji denotes a Bessel function. The functions f1,2,3,4, introduced in [31], are constructed
by contracting the source terms κ and κ̃,

κvn = −
∞∫
0

dt

t
Jn(2gt)cos(vt)et/2 − J0(2gt)

et − 1 , κ̃vn = −
∞∫
0

dt

t
Jn(2gt)sin(vt)et/2

et − 1 , (3.22)

with the BES kernel (3.21) in the following way:

f1(u, v) = 2 κ̃uQ 1
1 + K

κv , f2(u, v) = 2κuQ 1
1 + K

κ̃v ,

f3(u, v) = 2 κ̃uQ 1
1 + K

κ̃v , f4(u, v) = 2κuQ 1
1 + K

κv ,
(3.23)

where Qij = (−1)i+1 δij i. Note that at finite coupling the source terms κ and κ̃ are vectors
with infinitely many components, and K is an infinite matrix acting on them. At any loop
order at weak coupling, only finitely many of these components are non-vanishing, making
this representation particularly suitable for a weak-coupling analysis.

Next, we define the even and odd parts of the source terms κn and κ̃n (3.22):

κvn = κv+,n + κv−,n , κ̃vn = κ̃v+,n + κ̃v−,n , (3.24)

where the odd (even) part vanishes for even (odd) n. Since the weak-coupling expansion of
the source terms κv+,n and κ̃v−,n is periodic under v → v + 2i and can be expressed in terms
of tanh(vπ), κv+,n and κ̃v−,n are natural building blocks for G, while κv−,n and κ̃v+,n are not.
Moreover, the BES kernel (3.21) can be generalized to a tilted BES kernel by splitting it
into four blocks as [24]

K = K(π/4) , K(α) = 2 cos(α)
(

cos(α)K◦◦ sin(α)K◦•
sin(α)K•◦ cos(α)K••

)
. (3.25)

Here, K◦◦ is the overlap of odd Bessel functions with odd Bessel functions, K◦• is the
overlap of odd Bessel functions with even Bessel functions, etc. For α = π/4, one recovers
the original BES kernel. For α = 0, the kernel does not mix between even and odd parts
and is therefore the natural kernel to consider for our problem. It has previously occurred
for the origin of the hexagon [24] as well as the octagon [25–30], and is referred to as the
octagon kernel. Using it, we now define functions f5 and f6 in analogy to (3.23):6

f5(u, v) = 2κu+ Q
1

1 + K(0) κ
v
+ , f6(u, v) = 2 κ̃u−Q

1
1 + K(0) κ̃

v
− . (3.26)

These functions are symmetric in u and v and vanish for g = 0.
6One might also define

f7(u, v) = 2κu−Q 1
1 + K(0) κ

v
− , f8(u, v) = 2 κ̃u+ Q 1

1 + K(0) κ̃
v
+ .

As previously mentioned, they are not symmetric under u→ u+ 2i and v → v + 2i, and hence they do not
play a role for the FF transition under consideration. However, it is tempting to speculate that they could
occur in other quantities.
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We can use the functions f5 and f6 to build G(u, v) that matches (3.20) as well as the
weak-coupling data up to eight-loop order, while satisfying all the constraints imposed on it:

G(u, v) = exp [2f5(u, v)− f5(u, u)− f5(v, v)− 2f6(u, v) + f6(u, u) + f6(v, v)] . (3.27)

This solution is manifestly symmetric in u and v and equal to 1 for g = 0 and for u = v. To
fully prove its validity, in appendix C we show that it also has the right behaviour under
crossing, namely G(u2γ , v) = −G(u, v).

Inserting the various finite-coupling expressions into (3.19) and taking the square root,
we find the following expression for the scalar FF transition:

Fφφ̄(u, v) = − 4 Γ (i(u− v))
g2 (u− v − i) (u− v − 2i) Γ

(
1
2 + iu

)
Γ
(

1
2 − iv

)
× exp

 ∞∫
0

dt

t

J0(2gt)2 − et/2[J0(2gt)− 1]
(
e−itu + eitv

)
− 1

et − 1 (3.28)

− if1(u, v) + if2(u, v)− 1
2f3(u, u)− 1

2f3(v, v) + 1
2f4(u, u) + 1

2f4(v, v)

+ 2f5(u, v)− f5(u, u)− f5(v, v)− 2f6(u, v) + f6(u, u) + f6(v, v)

 ,
where the first line reproduces (3.5) at Born level and the second and third line stem from
the S-matrix (A.5) and the measure (A.7).

3.4 Strong coupling

The solution (3.27) matches highly non-trivial data up to eight loops. We now show that it
also agrees with the minimal solution to the bootstrap axioms at strong coupling.7

At strong coupling, the scalars are the lightest excitations. They describe the fluc-
tuations of the GKP string on the sphere, and their dynamics are governed by the O(6)
non-linear σ-model. This leads us to interpret the two-scalar FF transition at strong
coupling as a two-dimensional form factor of an operator in the O(6) σ-model (see [34] for
a similar identification of the pentagon transition):

〈Φ(0)|θ1, θ2〉i1i2 ≡ lim
g→∞

Fφiφj (u1, u2)
∣∣∣
ui= 2

π
θi
. (3.29)

Here, θi are the hyperbolic rapidities parametrizing the incoming scalars’ relativistic
dispersion relation. The scalar indices are mapped to the O(6) polarizations of the two
incoming scalar excitations.

Through (3.29), the bootstrap axioms of the FF transition are translated into defining
properties of the operator Φ. Firstly, the singlet axiom together with the relativistic
symmetry of the O(6) σ-model implies that

〈Φ(0)|θ1, θ2〉i1i2 = F(θ1 − θ2) δi1i2 , (3.30)
7We thank B. Basso for valuable discussions and for sharing his note on twist operators in the O(N)

σ-model.
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where F(θ) is the strong-coupling limit of Fφφ̄(u, v)
∣∣∣
u−v= 2

π
θ
. The crossing axiom (2.4) now

takes the form
F(θ + iπ) = F(−θ) . (3.31)

This implies that Φ(0) is a twist field which generates a conical defect angle of π around
the origin.8 Secondly, the form factor F(θ) has to satisfy the Watson equation

F(θ) = Ssinglet(θ)× F(−θ) , (3.32)

where the singlet S-matrix is given by [35]

Ssinglet(θ) =
Γ
(

3
2 − i

θ
2π

)
Γ
(

5
4 − i

θ
2π

)
Γ
(

3
4 + i θ2π

)
Γ
(
+i θ2π

)
Γ
(

3
2 + i θ2π

)
Γ
(

5
4 + i θ2π

)
Γ
(

3
4 − i

θ
2π

)
Γ
(
−i θ2π

) . (3.33)

It can also be obtained by taking the strong-coupling limit of Sφφ̄(u, v) from (A.5), with
θ = π

2 (u− v).
Lastly, the square-limit pole (3.4) takes the form

lim
θ→0

F(θ) = iπ

µ
× 1
θ
, (3.34)

where µ = g
√
π Γ(3/4)
Γ(1/4) is the strong-coupling limit of the scalar measure. Under cross-

ing (3.31), this square-limit pole maps into the standard kinematical pole of two-dimensional
relativistic form factors:

F(θ + iπ) ∼ 1
iθ
. (3.35)

Following [36, 37] we construct a minimal solution to (3.31)–(3.34) that is analytic
in the physical strip 0 < =m(θ) < 2π, except for the square-limit pole (3.34) and its
images under crossing (3.31). Note first that the scattering phase (3.33) has the integral
representation [36]

Ssinglet(θ) = − exp

−i ∞∫
0

dt

t
g(t) sin(t θπ )

 , g(t) = 2 e
−t/2 + e−t

et + 1 . (3.36)

Using this representation, the minimal solution to the twist field matrix elements takes the
form [37]

F(θ) =
iπ Γ

(
1
4

)
2g Γ

(
5
4

) × 1
sinh θ × exp

 ∞∫
0

dt

t
g(t)

sin2
(
t( θ

2π −
i
4)
)

sinh( t2)

 . (3.37)

Here, the first factor accounts for the residue of the square-limit pole, the factor of 1/ sinh θ
for the kinematical and square-limit poles, as well as the minus sign in the right-hand side

8This picture is also supported by the minimal area solution dual to the n-gluon form factor [3, 4].
In the collinear limit, the induced metric on the worldsheet approaches ds2 '

[
P (z)P̄ (z)

] 1
4 dz dz̄, with

P (z) = 1
z2

∏n−2
i=1 (z − zi). Due to the 1/z2 behavior near the origin, there is a conical deficit angle of π that

corresponds to the FF transition. Similarly, around the points zi there is a conical excess angle of π/2 that
corresponds to the n− 2 pentagon transitions in (1.1).
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of (3.36), and the last factor for producing the singlet S-matrix in (3.32) without introducing
any other singularity. By performing the integral explicitly, we arrive at

F(θ) =
iπ Γ

(
1
4

)
Γ
(

5
4

)
csch(θ)

2g Γ
(

3
4 −

iθ
2π

)
Γ
(
1− iθ

2π

)
Γ
(

5
4 + iθ

2π

)
Γ
(

3
2 + iθ

2π

) . (3.38)

By inserting this expression into (3.19), together with the strong-coupling expressions
for the S-matrix (3.33) and the measure µ, we find

lim
g→∞

G(u, v) = cosh
(
π
2 (u− v)

)
. (3.39)

In appendix D, we confirm that this is indeed the strong-coupling limit of our finite-coupling
ansatz (3.27). Hence, we are confident that this ansatz is correct and, in particular, that it
does not miss any non-perturbative contributions to the CDD factor G(u, v).

Using (3.39), it is easy to see that G(u2γ , v) = −G(u, v). It implies that the minimal
solution (with G(u, v) = 1) also acquires a minus sign under crossing and therefore was not
a true solution to crossing.

4 Multi-particle form factor transitions

As briefly discussed above, the multi-particle FF transitions are expected to factorize
into products of two-particle FF transitions. Here, we provide a factorized ansatz that is
consistent with all the axioms and test it against the perturbative data.

4.1 Scalars

Let us first consider transitions involving only scalars. According to the singlet axiom, the
scalars must form an SU(4)R singlet. Hence, it is only possible to have an even number
of them, 2n. As will soon become apparent, a single factorized term is not consistent with
both the Watson and the square-limit axioms. Instead, we are forced to consider a sum of
factorized terms. Each of them captures a subset of the square limits and is invariant under
a subset of Watson relations. Different terms in the sum are related to each other by Watson
equations (2.1) that do not leave them invariant. Concretely, the sum takes the form

Fφi1 ... φi2n (u1, . . . , u2n) = F(φφ̄)n(u1, . . . , u2n)×Πi1 ... i2n(u1, . . . , u2n)

+
∑
σ

F σ(φφ̄)n(u1, . . . , u2n)×Πσ
i1 ... i2n(u1, . . . , u2n) , (4.1)

where φi1 . . . φi2n are the 2n ordered scalars. Here, the terms are factorized into a dynamical
part, F(φφ̄)n , and a matrix part, Π, that encodes the SU(4)R structure and is independent of
the coupling. The sum in the second line goes over all inequivalent structures that are gen-
erated from F(φφ̄)n via Watson relations, and which can hence be labelled by permutations.9

9What exact permutations leave F(φφ̄)n invariant depends, of course, on F(φφ̄)n , which is constructed
below.
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For example, consider the permutation of the first two scalars, σ12. The corresponding term
in (4.1) is

F σ12
(φφ̄)n(u1, u2, . . . , u2n)×Πσ12

i1i2 ... i2n
(u1, u2, . . . , u2n)

≡
[
F(φφ̄)n(u2, u1, . . . , u2n)×Πj1j2 ... i2n(u2, u1, . . . , u2n)

]
× Sj2j1i1i2

(u2, u1)

=
[
F(φφ̄)n(u2, u1, . . . , u2n)Sφφ̄(u2, u1)

]
×
[
Πj1 j2 ... i2n(u2, u1, . . . , u2n)Rj2j1i1i2

(u2, u1)
]
,

(4.2)

where we factorized the S-matrix into its coupling-dependent (singlet) part and the R-matrix,

Sklij (u, v) = Sφφ̄(u, v)Rklij (u, v) . (4.3)

The explicit expressions for these factors are given in appendix A. Note that (4.2) is not
equivalent to just flipping the rapidities and indices in the first term of (4.1).

4.1.1 Dynamical part

We would like to construct an ansatz in which the dynamical parts of all the terms in the
sum in (4.1) factorize into products of two-particle scalar transitions, Fφφ̄(u, v) in (3.3).
To ensure the closure of such a factorized ansatz under the Watson relations, each term
in (4.1) has to contain either Fφφ̄(ui, uj) or 1/Fφφ̄(uj , ui) for each pair of excitations i < j.
Because Fφφ̄(u, v) = Sφφ̄(u, v)Fφφ̄(v, u) and Sφφ̄(u, v)Sφφ̄(v, u) = 1, when two neighbouring
excitation are swapped, these factors produce the dynamical part of the S-matrix appearing
in (4.2). It means that in total, each scalar appears in (2n− 1) two-particle factors, one for
each other scalar.

Next, we consider the square-limit axiom (2.5). It consists of two terms, one with
and the other without a product of S-matrices. This might naively contradict a factorized
ansatz. It turns out, however, that the product of S-matrices is trivial and the right-hand
side of the square-limit axiom does factorize. The reason for this simplification is that the
S-matrix between two scalars of the same rapidity is a permutation,

Sklij (v, v) = δliδ
k
j . (4.4)

As a result, the S-matrices in the second term in (2.5) cancel in pairs, see figure 3. We
conclude that, as for two scalars, the two terms in the square-limit axiom combine into a
principle-part prescription for the factorization pole, times the measure and the (2n− 2)-
particle FF transition.

Let us now use the Watson relation to move excitation ui to the first position, excitation
uj to the last, and then take the ui → uj square limit. To correctly reproduce the square-
limit pole, there must be a term in (4.1) with a factor of Fφφ̄(ui, uj) in the numerator. For
the rest of the FF transition to factor out, all other two-particle transitions involving ui and
uj must cancel. Hence, among the 2n− 1 two-particle transitions involving ui, n factors
are in the numerator and (n− 1) factors are in the denominator.

One immediate consequence of this is that a single factorized term cannot be permutation
invariant, as claimed above. Namely, because some of the transitions are in the numerator
of F(φφ̄)n and some are in the denominator, reordering the scalars using the Watson relation
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Figure 3. The scalar S-matrix at equal rapidities is a permutation (4.4). As a result, the S-
matrices in the second term in the square-limit axiom (2.5) cancel in pairs, S(ui, v)S(v, ui) = 11,
where u1 = un = v.

generically leads to a different function of the ordered scalars. This is the reason the
ansatz (4.1) involves a sum of factorized terms instead of a single one, which would have
required the two-particle transitions to be all together in the numerator or denominator.
This structure is more complicated than the one for the pentagon transition, for which a
single factorized term is consistent with all the axioms [11].10

Let us illustrate this construction for the case of the four-scalar FF transition. In this
case, there are three different factorized dynamical structures that are consistent with the
Watson and the square-limit axioms, see figure 4. Correspondingly, equation (4.1) becomes

Fφi1φi2φi3φ4(u1, u2, u3, u4) = F(φφ̄)2(u1, u2, u3, u4)×Πi1i2i3i4(u1, u2, u3, u4)

+ F σ34
(φφ̄)2(u1, u2, u3, u4)×Πσ34

i1i2i3i4
(u1, u2, u3, u4)

+ F σ23
(φφ̄)2(u1, u2, u3, u4)×Πσ23

i1i2i3i4
(u1, u2, u3, u4) ,

(4.5)

where
F(φφ̄)2(u1, u2, u3, u4) =

Fφφ̄(u1, u2)Fφφ̄(u2, u3)Fφφ̄(u3, u4)Fφφ̄(u1, u4)
Fφφ̄(u3, u1)Fφφ̄(u4, u2) . (4.6)

These three structures form a closed set under Watson relations. We see that the u1 → u4
square limit is captured by the terms in the first and last lines of (4.5). In this limit, the
factor Fφφ̄(u1, u4) produces the factorization pole times the scalar measure, while the rest
of the factors involving u1 and u4 cancel out. Similarly, the factorization pole involving u1
and u3 is reproduced by the second and third lines.

For the transition of 2n scalars we take the dynamical part of the first term in (4.1) to
be the ratio between the product of two-particle transitions of scalars that are separated by
an odd number of sites and the product of the ones between scalars that are separated by
an even number of sites

F(φφ̄)n(u1, . . . , u2n) =
2n∏
i<j

Fφφ̄(ui, uj)
1−(−1)i−j

2

Fφφ̄(uj , ui)
1+(−1)i−j

2

. (4.7)

This term is then multiplied by the matrix part and summed over the 1
2
(2n
n

)
permutations

that produce the inequivalent structures F σ(φφ̄)n , see (4.1).
10The reason is that for the pentagon transition, the square-limit axiom involves excitations in two different

groups, the ones on the top and the ones on the bottom of the pentagon. On the other hand, for the FF
transition a single group of excitations is subject to an analogous square-limit constraint.

– 14 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
8

Figure 4. The three dynamical structures entering the four-scalar FF transition, (4.5). Each of
them factorizes into six two-particle FF transitions. A blue line from ui to uj represents a factor of
Fφφ̄(ui, uj), while a red one represents a factor of 1/Fφφ̄(ui, uj). The first structure on the left is
invariant under crossing, while the other two are interchanged.

Lastly, we consider the crossing axiom. Let us focus on (4.7) first. The product of
the two-particle FF transition in the numerator of (4.7) is manifestly crossing symmetric.
This is because Fφφ̄(u2γ

1 , uj) = Fφφ̄(uj , u1) and two scalars that are separated an odd (even)
number of sites remain separated an odd (even) number of sites after crossing. Up to a
simple rational factor, the denominator is also crossing invariant:

Fφφ̄(uj ,u2γ
1 ) =Sφφ̄(uj ,u2γ

1 )Fφφ̄(u2γ
1 ,uj) =Sφφ̄(uj ,u2γ

1 )Fφφ̄(uj ,u1) (4.8)

=Sφφ̄(uj ,u2γ
1 )Sφφ̄(uj ,u1)Fφφ̄(u1,uj) = (u1−uj+3i)(u1−uj+4i)

(u1−uj−i)(u1−uj−2i) Fφφ̄(u1,uj) ,

where we used (A.4) and (3.10). The rational coupling-independent pre-factor on the
right-hand side of (4.8) can be absorbed in the crossing transformation of the matrix part,
which we turn to next. It is not to hard to see that crossing of any of the terms in (4.1) is
equivalent to a cyclic permutation and, hence, the sum is invariant.

4.1.2 Matrix part

The bootstrap axioms for the FF transition reduce to simplified constraints on the matrix
part. We list them here and solve them explicitly for the case of four scalars.

Watson. The dynamical part satisfies the Watson relation with the dynamical part of
the S-matrix, see (4.3) and (3.6). Hence, the matrix part should satisfy the same relation,
but with the R-matrix instead:

Πσii+1·σ̃
... ii+1 ...(. . . , ui, ui+1, . . .) = Πσ̃

... k+1k ...(. . . , ui+1, ui, . . .)×Rkk+1
ii+1 (ui+1, ui) . (4.9)

Using this relation, the matrix parts that correspond to terms with non-trivial permutations
in (4.1) can be expressed in terms of the matrix part that multiplies the unpermuted
dynamical part (4.7).

Reflection. The dynamical factor (4.7) is invariant under reflection (2.3). Hence, so is
the matrix part

Πi1 ... i2n(−u1, . . . ,−u2n) = Πi2n ... i1(u2n, . . . , u1) . (4.10)
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Crossing. The crossing transformation of the factorized dynamical part (4.7) translates
into the following crossing transformation of the corresponding matrix part

Πj1 ... j2n(u1 + 2i, . . . , u2n)
Πj2 ...j2nj1(u2, . . . , u2n, u1) =

n−1∏
i=1

(u1 − u2i+1 + 3i) (u1 − u2i+1 + 4i)
(u1 − u2i+1 − i) (u1 − u2i+1 − 2i) , (4.11)

where we used that u2γ = u+ 2i and (4.8).

Square limit. In the square limit, the matrix part must factorize as

Πi1 ... i2n(u, u2, . . . , u2n−1, u) = 1
2 δi1i2n ×Πi2 ... i2n−1(u2, . . . , u2n−1) , (4.12)

where the factor of 2 in the denominator stands for the two terms in (4.1) that reduce to
the same term after removing the first and last excitations.

Singlet. The matrix part Πi1...i2n projects 2n scalars into an SU(4)R singlet. It consists
of (2n− 1)!! tensors structures, which are factorized products of δij ’s. Each one of them is
multiplied by a function of the rapidities πI(u1, . . . , un), with I = 1, . . . , (2n− 1)!!. Namely,
we have

Πi1 ... i2n(u1, . . . , u2n) = π1(u1, . . . , un)
n∏
k=1

δkk+n + . . . . (4.13)

Four scalars

We now solve for the four-scalars matrix part explicitly, starting from (4.5). The first line
of (4.5), with the three singlet tensor structures inserted, reads

F(φφ̄)2(u1,u2,u3,u4)Πi1i2i3i4(u1,u2,u3,u4) =
Fφφ̄(u1,u2)Fφφ̄(u2,u3)Fφφ̄(u3,u4)Fφφ̄(u1,u4)

Fφφ̄(u3,u1)Fφφ̄(u4,u2)
×(π1 δi1i4δi2i3 +π2 δi1i3δi2i4 +π3 δi1i2δi3i4) .

(4.14)
In general, the Watson constraint (4.9) mixes the Π’s of the three different dynamical

structures in (4.5). Among all possible permutations of the four scalars, which are generated
by multiple uses of the Watson relation, it is sufficient to consider the ones that take Π
in (4.5) back to itself. The rest can then be used to generate the two other matrix parts
in (4.5) from Π. The permutations that preserve Π are cyclic permutations, reflection, as
well as any combination of these.

The crossing constraint (4.11) now takes the form

π1(u1 + 2i, u2, u3, u4) = (u1 − u3 − i) (u1 − u3 − 2i)
(u1 − u3 + 3i) (u1 − u3 + 4i) π3(u2, u3, u4, u1) ,

π3(u1 + 2i, u2, u3, u4) = (u1 − u3 − i) (u1 − u3 − 2i)
(u1 − u3 + 3i) (u1 − u3 + 4i) π1(u2, u3, u4, u1) ,

π2(u1 + 2i, u2, u3, u4) = (u1 − u3 − i) (u1 − u3 − 2i)
(u1 − u3 + 3i) (u1 − u3 + 4i) π2(u2, u3, u4, u1) .

(4.15)

The square-limit condition (4.12) reads

π1|u1=u4
= 1

2 , π2|u1=u4
= π3|u1=u4

= 0 , (4.16)
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and the reflection symmetry of Π (4.10) simply becomes a symmetry of the π’s

πi(−u4,−u3,−u2,−u1) = πi(u1, u2, u3, u4) . (4.17)

These constraints are easily seen to be satisfied by the following solution:

π2(u1, u2, u3, u4) = (u1 − u4) (u1 − u2 − 2i) (u2 − u3 − 2i) (u3 − u4 − 2i)
4 (u1 − u3 + i) (u1 − u3 + 2i) (u2 − u4 + i) (u2 − u4 + 2i) ,

π1(u1, u2, u3, u4) = −
π2(u2, u1, u4, u3)−

2∑
i=1

r(i)(u2, u1) r(i)(u4, u3)π2(u1, u2, u3, u4)

i (u1 − u2 + u3 − u4) r(2)(u2, u1) r(2)(u4, u3)
,

π3(u1, u2, u3, u4) = (u1 − u3 − 3i) (u1 − u3 − 4i)
(u1 − u3 + i) (u1 − u3 + 2i) π1(u2, u3, u4, u1 − 2i) , (4.18)

where the rational functions r(i=1,2,3)(u, v) represent the coefficients of the three tensor
structures of the R-matrix and are given in (A.3).

In subsection 4.4, we will verify that this solution is in agreement with the perturbative
data. We leave the generalization of this solution to matrix parts with more than four
scalars to future work.

4.2 Gluons and fermions

For gluons and fermions, a factorized ansatz means that they only appear in singlet pairs
of two conjugate excitations with the same momenta, (3.2). Such a gluon-gluon or fermion
anti-fermion pair behaves as an effective single-particle excitation that is an SU(4)R×U(1)φ
singlet. Hence, constructing a factorized ansatz involving gluons and fermions is trivial. We
simply divide them into pairs and take products of two-particle transitions for all the pairs.
To cover all the different multi-square limits, we have to sum over all possible divisions.
We consider the ordering of the excitations in which the square limits of the gluons and
fermions can be taken directly. Other orderings can be obtained using the Watson equation.

For example, the four-particle FF transitions involving only gluons and fermions are

FFψAψ̄BF̄ (u, u′, v′, v) = δBA FFF̄ (u, v)Fψψ̄(u′, v′) , (4.19)
FFFF̄ F̄ (u, u′, v′, v) = FFF̄ (u, v)FFF̄ (u′, v′) + SFF (u, u′)FFF̄ (u, v′)FFF̄ (u′, v) ,

FψAψBψ̄C ψ̄D(u, u′, v′, v) = δDA δ
C
B Fψψ̄(u, v)Fψψ̄(u′, v′)− SCDAB (u, u′)Fψψ̄(u, v′)Fψψ̄(u′, v) ,

where F ≡ F1 and F̄ ≡ F−1. Note that in the mixed transitions given in the first line there
is a unique square-limit pairing in which each type of excitation decouples in pairs. In
these cases, we have chosen one of the four orderings where this limit can be taken directly,
without reordering of the excitations (FψAψ̄BF̄ ). The other orderings of this type (such as
ψAFF̄ ψ̄

B) give the same answer because the S-matrices that result from the permutations
cancel each other. In the last two lines, transitions involve four excitations of the same
type. In these cases, there are two different possible pairings of conjugate excitations and,
correspondingly, two terms in the FF transition, which are related by the Watson equation.

Such a factorized ansatz is consistent with the square-limit axiom because, as in the
scalar case, the product of S-matrices in the second term of (2.5) is trivial. The reason for
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Figure 5. The square limit axiom (2.5) for fermions is consistent with factorization because the
product of S-matrices in the second term becomes trivial when evaluated on a factorized ansatz.
To see this, we note that two conjugate fermions of equal rapidity scatter trivially with a scalar
(b) and with another pair of conjugate fermions (a). Here, the dashed directed lines represent the
contraction of the SU(4)R index, the solid arrow represents the flow of U(1)φ charge in 1

2 units and
the black dots represents the R-matrices in (F.2) and (F.4).

this is, however, somewhat different and applies only to our factorized ansatz. Consider first
the case in which the u1 and un excitations in (2.5) are two conjugate gluons or gluon bound
states. Because these are abelian excitations, their scattering with any other excitation
χ ∈ {Fm, ψA, ψ̄A, φi} is a phase instead of a matrix. As a result of unitarity and charge
conjugation symmetry, the terms in the product of S-matrices in (2.5) cancel in pairs,

SχFm(v, u)SF−mχ̄(u, v) = SχFm(v, u)SFmχ(u, v) = 1 , SFmF−m(u, u) = 1 , (4.20)

where u = u1 = un in (2.5). The same cancellation also applies for the square limit of
χ with χ̄, in which v = u1 = un. Hence, for any state the gluon and gluon-bound-state
S-matrices in (2.5) cancel in pairs.

Now consider the case in which the u1 and un excitations in (2.5) are two conjugate
fermions. Because the square-limit axiom is consistent with the Watson relation, it is
sufficient to consider any particular ordering of the excitations. To show that the product of
S-matrices in the second term in (2.5) is trivial for any state, it is therefore enough to show
that we can freely pass the u1 or un fermionic excitation through a single scalar or through
another pair of conjugate fermions with the same rapidity. The S-matrices factorize into
a dynamical and the R-matrix parts, see (F.1), (F.4). The dynamical parts are abelian
factors. They cancel due to unitarity and charge conjugation symmetry, similarly to (4.20).
We can therefore focus on the matrix part, which is captured by the R-matrices. Using
their explicit form given in (F.2) and (F.4), we have checked that indeed, the u1 and un
excitations pass freely through a scalar or another pair of fermions, see figure 5.

Note also that unlike in the scalar case, in which each dynamical part in (4.1) factorized
in terms of the two-particle transitions only, in (4.19) the S-matrix explicitly appears in the
last two lines. The two terms in FFFF̄ F̄ and Fψψψ̄ψ̄ are supported on different kinematical
limits, which describe two pairs of decoupled excitations that effectively propagate on the
square. Hence, no additional interaction between the pairs is present.
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Fusion

Lastly, we note that the multi-gluon FF transitions fuse properly into the gluon-bound-state
FF transitions. To see this, the FF transitions have to be contracted with the pentagon
creation amplitudes and the measures, in the way they enter the FFOPE (1.1), see [9, 10]
for details. For example, we can start with the four-gluon contribution to the OPE for the
three-point form factor (1.1):11

W3,F 4 = 〈F|eiPσ−Hτ |0〉
∣∣∣
4−gluons

(4.21)

= 1
4

∫
PFFF̄ F̄ (0|u1, u2, u3, u4)FFFF̄ F̄ (u1, u2, u3, u4)

4∏
i=1

µF (ui)eipF (ui)σ−EF (ui)τ dui
2π

= 1
2

∫ 1
PFF̄ (u1|u1)PFF̄ (u2|u2)PFF̄ (u1|u2)PFF̄ (u2|u1)

×
[

µF (u1)µF (u2)
PFF (u1|u2)PFF (u2|u1)

] 2∏
i=1

e2ipF (ui)σ−2EF (ui)τ dui
2π .

As detailed in [13, 14], gluons are fused into bound states by evaluating the integrand at u1 =
u+, u2 = v− with u± = u± i

2 , and then taking the v → u limit. In terms of the original four
rapidities in the second line, this corresponds to the limit (u1, u2, u3, u4)→ (u+, u−, u−, u+).
The term in the brackets in the last line is the two-gluon contribution to the hexagon. It
has a pole at v = u, whose residue is the bound-state measure µF2(u), [13, 14]. At the
same time, the first factor becomes the creation amplitude for two conjugate bound states.
Hence, in this limit we get

iresidue
v=u

µF (u+)µF (v−)
PFF (u+|v−)PFF (v−|u+)

1
PFF̄ (u+|u+)PFF̄ (v−|v−)PFF̄ (u+|v−)PFF̄ (v−|u+)

du

2π

=PF2F−2(0|u,u)µF2(u) du2π =PF2F−2(0|u,w)FF2F−2(u,w)µF2(u)µF2(w) dudw(2π)2 , (4.22)

which is indeed the way the two bound states contribute to the FFOPE.

4.3 Mixed states

Finally, let us consider states containing all possible combinations of excitations. We find
that they likewise factorize, following essentially the same rules as discussed above.

For example, for two scalars and two gluons or fermions we have

FFφiφj F̄ (u, u′, v′, v) = Fφφ̄(u′, v′)FFF̄ (u, v) δij , (4.23)

FψAφiφj ψ̄B (u, u′, v′, v) = Fφφ̄(u′, v′)Fψψ̄(u, v) δijδBA .

Similarly, for FF transitions involving 2m scalars, the scalar FF transitions themselves form
the building blocks of the factorization. For example,

FFφi1 ...φi2m F̄
(v1, u1, . . . , u2m, v2) = Fφi1 ...φi2m (u1, . . . , u2m)× FFF̄ (v1, v2) . (4.24)

11Compared to [9, 10], here we have used the reflection symmetry to replace FF̄ F̄FF (−u4,−u3,−u2,−u1)
with FFFF̄ F̄ (u1, u2, u3, u4).
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To summarize, we see that for any paring of the gluons, gluon bound states and
fermions, they propagate as if they where on the square, with no reference to the form
factor. In particular, that means that the matrix structure of a FF transition involving
scalars and any number of gluons and fermions is the same as the matrix structure of the
FF transition involving only the scalars. This is a great simplification compared to the case
of the pentagon transitions, which include effective transitions between different type of
excitations and in which fermions also contribute to the matrix part.

4.4 Matching with data

As discussed in section 3.3, perturbative data is by now available up to eight-loop
order [22, 23]. We find that the OPE results which follow from our conjectured multi-particle
FF transitions involving four particles are in perfect agreement with the perturbative data
at order e−4τ in the collinear limit.

In [10], we already reported on a full match at order e−4τ up to three loops, where only
two-particle states and four-particle states with so-called small fermions contribute. We
now extend this to contributions from generic four-particle states.

An important complication over the two-particle case is that both the multi-particle
pentagon creation amplitudes and the multi-scalar FF transitions include non-trivial matrix
parts. For example, to evaluate the four-scalar contribution to the three-gluon form factor,
the two matrix structures are contracted together as

W3,φ4 = 1
4!

∫
Pφiφjφkφl(0|u1, u2, u3, u4)Fφiφjφkφl(u1, u2, u3, u4)

4∏
i=1

µφ(ui)eipφ(ui)σ−E(ui)τdui.

(4.25)
To date, these matrix parts have not been worked out in full generality, not even for the
pentagon transitions (see [20] for some of them). Fortunately, all matrix parts for four
particles are known; we summarize them in appendix E. For the four-scalar example (4.25),
Fφiφjφkφl is the four-scalar FF transition in (4.5), (4.18), while the matrix part of the
pentagon transition is given in (E.4). Using the technique detailed in [10], the integral
above evaluates to

W3,φ4 = g8e−4τ
[
18e4σ +

(
40σ3 + 24σ2 + 10π2σ + 36σ + 2π2 − 847

36

)
e6σ +O(e8σ)

]
+ g10e−4τ

[{(
6π2 − 1323

4

)
e4σ +

(
60ζ3σ

2 − 72ζ3σ − 96σ5 − 256σ4 − 320
3 π2σ3

− 362σ3 − 116π2σ2 − 765σ2

2 − 15π4σ − 185
2 π2σ − 9463σ

18 + 5π2ζ3

− 30ζ5 −
17π4

5 + 13300
27 − 6851π2

216

)
e6σ +O(e8σ)

}
(4.26)

− τ
{

144σe4σ +
(

320σ4 + 352σ3 + 120π2σ2 + 264σ2 + 72π2σ

+ 34σ
9 + 96ζ3 + 8π4

3 + 10π2 − 1006
9

)
e6σ +O(e8σ)

}]
+O(g12) .
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Adding all contributions, we performed a full check up to five-loop order, finding a perfect
match with the perturbative data given in the ancillary files of [22]. Moreover, we have
done selective checks up to eight-loop order, again finding perfect agreement with the
perturbative data given in the ancillary files of [23].

It would be interesting to determine the matrix parts of the FF transitions and the
pentagon transitions for states with more particles and to use them for confronting our
conjectures with data also at higher orders in e−2τ .

5 Conclusions

In this paper, we have bootstrapped the FF transitions of the chiral part of the stress-tensor
supermultiplet in the planar maximally supersymmetric Yang-Mills theory at finite value of
the ’t Hooft coupling.

The form factor transitions of a GKP state vanish unless the excitations are pairwise
conjugate. For transitions involving fermions, gluons, and gluon bound states, we found
that the conjugate pairs decouple and move together as if they were propagating on the
square. On the other hand, the transitions involving scalars are non-trivial. They are given
by a certain sum of factorized ratios of two-scalar transitions, which we have determined up
to a group-theoretical coupling-independent matrix part. We found that the finite-coupling
behavior of the two-scalar transition is governed by the so-called octagon kernel — a quantity
that has previously occurred for other observables. The determination of the two-scalar FF
transition has benefited from a very fruitful interplay with the perturbative form factor
bootstrap [22, 23], and our predictions at order e−2τ and e−4τ perfectly match with the
eight-loop perturbative data. Moreover, the strong-coupling limit of the two-scalar FF
transition agrees with the minimal solution to the form factor axioms for a twist operator
in the O(6) non-linear sigma model.

We conclude by listing some of the many future directions.

• Both the pentagon transitions and the FF transitions factorize into a known dynamical
part that encodes all dependence on the coupling and a matrix part that encodes
the group-theoretic dependence on the fermions’ and scalars’ SU(4)R indices. The
matrix part has not been determined in full generality, neither for form factors nor
for pentagons. Fixing the matrix parts for the FF transition seems simpler than
for the pentagon transitions, because the former only depend on the scalars, not on
the fermions. Moreover, instead of fixing these matrix parts individually, it may be
simpler to find a closed-form integral representation for the full contraction of the
matrix parts that contribute to a particular n-point form factor or n-point amplitude,
as was done for the case of the six-point amplitude in [17].
The missing matrix parts would allow us to perform more tests of the FFOPE and
produce more high-loop predictions.

• It would be interesting to see how the minimal surface area of [3, 4] emerges from the
FFOPE at large coupling. In particular, it would be important to compute the scalar
correction to it, which is expected to be of the same order as the minimal area [34].
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• The octagon kernel has previously occurred in the description of four-point func-
tions [25–30] and the origin of the six-point amplitude [24]; see also [38]. Very recently,
the three-point form factor was related to a particular subspace of the six-point
amplitude in an intricate way [39]. It would be interesting to see whether this relation
can be used to connect the occurrences of the octagon kernel in both cases. Moreover,
it would be interesting to understand a potential connection with the octagon, which,
in turn, is related to Coulomb branch scattering amplitudes [40].

• While we used the three-point MHV form factor to guide and check our derivation
of the FF transitions, they equally determine the n-point MHV form factor. Adding
more than three gluons in MHV configuration is achieved by simply gluing more
OPE channels, connected by the pentagon transitions, see (1.1). This should provide
valuable data for a perturbative bootstrap at n > 3.

• It would be interesting to consider the NkMHV configurations with k ≥ 1, which
would require the known charged pentagons [15, 16].

• The chiral part of the stress-tensor supermultiplet is in a sense the simplest operator
multiplet, having BPS protected dimension and trivial higher integrability charges.
The form factors of local operators with non-trivial charges can equally be incor-
porated into the FFOPE. One has to twist the crossing axiom (2.4) by (T-dual
of) the corresponding charges, see [41]. It would be fascinating to bootstrap the
corresponding FF transitions and try to express them in terms of the operators’
Q-functions. Corresponding perturbative data is available in [42–55].

• By inserting a complete basis of states, form factors can be used to decompose other
observables in terms of sums of product of form factors. In particular, it would be
interesting to decompose the double-trace corrections to scattering amplitudes. These
are dual to correlation functions between two periodic Wilson loops [7], such as the
ones we studied in the present paper. The expansion of this correlator around the
limit where the two Wilson loops are far apart is controlled by the FF transition of
the low-lying operators, the leading contribution being given by the FF transitions of
the chiral part of the stress-tensor supermultiplet, which we studied in this paper.
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A Scalar S-matrix and measure

In this appendix, we review the scalar S-matrix [31] as well as the scalar measure, in a form
that is convenient for our needs.

The S-matrix between two scalar GKP excitations takes the form

Sklij (u, v) = Sφφ̄(u, v)Rklij (u, v) , (A.1)

where
Rklij (u, v) = r(1)(u, v) δki δlj + r(2)(u, v) δliδkj + r(3)(u, v) δijδkl , (A.2)

with

r(1)(u, v) = (u− v)(u− v − 2i)
(u− v + i)(u− v + 2i) ,

r(2)(u, v) = − i(u− v − 2i)
(u− v + i)(u− v + 2i) , (A.3)

r(3)(u, v) = i(u− v)
(u− v + i)(u− v + 2i) .

The scattering phase in different channels are related by a simple phase factor. In
particular, the phase in the singlet and symmetric channels are related as

Sφφ̄(u, v) ≡ 1
6S

kl
ij (u, v)δijδkl = (u− v + 2i) (u− v + i)

(u− v − 2i) (u− v − i) Sφφ(u, v) . (A.4)

The S-matrix in the symmetric channel can be expressed as

Sφφ(u, v) =
Γ
(

1
2 − iu

)
Γ
(

1
2 + iv

)
Γ (iu− iv)

Γ
(

1
2 + iu

)
Γ
(

1
2 − iv

)
Γ (iv − iu)

G(u, v) , (A.5)

where the function G(u, v) captures the entire dependence on the coupling constant. It is
given by

G(u,v) = exp
[
2i
∫ ∞

0

dt

t
(J0(2gt)−1)e

t/2(sin(ut)−sin(vt))
et−1 −2if1(u,v)+2if2(u,v)

]
, (A.6)

where f1 and f2 were defined in (3.23).
The scalar measure is given by [12]

µ(u) = πg2

cosh(πu) exp
[∫ ∞

0

dt

t
(J0(2gt)−1)2et/2 cos(ut)− J0(2gt)− 1

et − 1 + f3(u, u)− f4(u, u)
]
,

(A.7)
where f3 and f4 were defined in (3.23).

– 23 –



J
H
E
P
0
3
(
2
0
2
2
)
1
2
8

B Integral representations for the finite-coupling solution

In this appendix, we derive an integral representation for the functions f5 and f6 that
enter our solution for the scalar two-particle FF transitions at finite coupling. The integral
representations are more tractable for the analysis of crossing symmetry and strong coupling
than the matrix notation, which is more advantageous at weak coupling.

Let us define, using matrix notation,

γvo,+ = 1
1 + K(0)κ

v
+ , γ̃vo,− = 1

1 + K(0) κ̃
v
− . (B.1)

These objects satisfy

γvo,+ + K(0) γvo,+ = κv+ , γ̃vo,− + K(0) γ̃vo,− = κ̃v− , (B.2)

or, in components,

γvo,+,2n + 2
∞∑
m=1

K2n,2mγ
v
o,+,2m = κv+,2n ,

γ̃vo,−,2n−1 + 2
∞∑
m=1

K2n−1,2m−1γ̃
v
o,−,2m−1 = κ̃v−,2n−1 ,

(B.3)

where, similarly to (3.22), we defined

γo,+,2n =
∫ ∞

0

dt

t
J2n(2gt)γvo,+(2gt) , γ̃o,−,2n−1 =

∫ ∞
0

dt

t
J2n−1(2gt)γ̃vo,−(2gt) . (B.4)

The odd components of γo,+ and the even components of γ̃o,− are absent as a direct
consequence of the fact that the tilted BES kernel (3.25) is diagonal for α = 0 and therefore
does not mix even and odd components. The above relations can be inverted using the
orthogonality of the Bessel functions,∫ ∞

0

dt

t
J2n(t)J2m(t) = δn,m

4n ,

∫ ∞
0

dt

t
J2n−1(t)J2m−1(t) = δn,m

2(2n− 1) , (B.5)

which results in

γvo,+(2gt) =
∞∑
n=1

2(2n)J2n(2gt)γo,+,2n , γ̃vo,−(2gt) =
∞∑
n=1

2(2n− 1)J2n−1(2gt)γ̃o,−,2n−1 .

(B.6)
Using the definition of the BES kernel (3.21) and (B.6), we can rewrite (B.3) in the

following way

γvo,+,2n + 2
∫ ∞

0

dt

t

J2n(2gt)γvo,+
et − 1 = κv+,2n ,

γ̃vo,−,2n−1 + 2
∫ ∞

0

dt

t

J2n−1(2gt)γ̃vo,−
et − 1 = κ̃v−,2n−1 .

(B.7)

These equations can be brought into the form∫ ∞
0

dt

t
(cos(ut)− J0(2gt))

[
γvo,+(2gt) e

t + 1
et − 1 + cos(vt)et/2 − J0(2gt)

et − 1

]
= 0 (B.8)
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and ∫ ∞
0

dt

t
sin(ut)

[
γ̃vo,−(2gt) e

t + 1
et − 1 + sin(vt)et/2

et − 1

]
= 0 . (B.9)

Both equations only hold for u ≤ (2g)2. These relations will be later used to find the strong-
coupling behavior of γvo,+ and γ̃vo,−, as well as to determine how the mirror transformation
acts on f5 and f6 (3.26), which we can now rewrite in the following way

f5(u, v) =
∫ ∞

0

dt

t

cos(ut) et/2 − J0(2gt)
et − 1 γvo,+(2gt) , (B.10)

and similarly

f6(u, v) = −
∫ ∞

0

dt

t

sin(ut) et/2
et − 1 γ̃vo,−(2gt) . (B.11)

C Crossing symmetry

In this appendix, we check that the finite-coupling solution (3.28) we found for the scalar
FF transition indeed satisfies the crossing axiom (2.4).12

The mirror transformation maps the rapidity u of a scalar excitation to u±γ = u± i.
While this operation seems rather straightforward, one has to keep in mind that it involves
passing through cuts connecting the points −2g ± i/2 and 2g ± i/2, which would not
be visible from within perturbation theory. To perform this delicate operation, we split
the mirror transformation into three distinct steps: shifting u all the way up to the cut,
actually passing through the cut, and the remaining ± i

2 shift that completes the mirror
transformation.

We first follow this prescription to compute the mirror transformation acting on f6,
using its integral representation (B.11) in terms of γ̃vo,−. We define u± = u± i

2∓ i0 and using

sin(u±t) = sin(ut)e−t/2 ± ie∓iut sinh(t/2) (C.1)

find
f6(u±, v) = −

∫ ∞
0

dt

t

sin(ut)γ̃vo,−(2gt)
et − 1 ∓ i

2

∫ ∞
0

dt

t
e∓iutγ̃vo,−(2gt) . (C.2)

Next, we move through the cut using

∓ i

2

∫ ∞
0

dt

t
e∓iutγ̃vo,−(2gt) = ∓ i2

∫ ∞
0

dt

t
e±iutγ̃vo,−(2gt)−

∫ ∞
0

dt

t
sin(ut)γ̃vo,−(2gt) , (C.3)

leading to

f6(u±, v) = −
∫ ∞

0

dt

t

sin(ut)γ̃vo,−(2gt)
et − 1 ∓ i

2

∫ ∞
0

dt

t
e±iutγ̃vo,−(2gt)−

∫ ∞
0

dt

t
sin(ut)γ̃vo,−(2gt)

=
∫ ∞

0

dt

t

sin(u∓t)et/2γ̃vo,−(2gt)
et − 1 −

∫ ∞
0

dt

t
sin(ut)e

t + 1
et − 1 γ̃

v
o,−(2gt)

=
∫ ∞

0

dt

t

sin(u∓t)et/2γ̃vo,−(2gt)
et − 1 +

∫ ∞
0

dt

t
sin(ut)sin(vt)et/2

et − 1 , (C.4)

12A similar calculation for the S-matrix can be found in appendix B.2 of [31].
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where in the last step we used (B.9). Performing the final shift by ± i
2 , we notice that the

first term in the last line gives us back the original f6. As a result, we find

f6(u±γ , v) = −f6(u, v) +
∫ ∞

0

dt

t
sin(u±t)sin(vt)et/2

et − 1 . (C.5)

Taking the difference between the + and − versions of this equation gives us

f6(uγ , v)− f6(u−γ , v) = i

∫ ∞
0

dt

t
cos(ut) sin(vt) . (C.6)

We now repeat the same derivation for f5 using its integral representation (B.10) in
terms of γvo,+. We have

cos(u±t) = cos(ut)e−t/2 + e∓iut sinh(t/2) . (C.7)

Using it, we find

f5(u±, v) =
∫ ∞

0

dt

t

cos(ut)− J0(2gt)
et − 1 γvo,+(2gt) + 1

2

∫ ∞
0

dt

t
e∓iutγvo,+(2gt) . (C.8)

To cross through the cut, we use

1
2

∫ ∞
0

dt

t
e∓iutγvo,+(2gt) = −1

2

∫ ∞
0

dt

t
e±iutγvo,+(2gt) +

∫ ∞
0

dt

t
cos(ut)γvo,+(2gt) . (C.9)

We thus have

f5(u±, v) =
∫ ∞

0

dt

t

cos(ut)− J0(2gt)
et − 1 γvo,+(2gt)

− 1
2

∫ ∞
0

dt

t
e±iutγvo,+(2gt) +

∫ ∞
0

dt

t
cos(ut)γvo,+(2gt)

= −
∫ ∞

0

dt

t

cos(u∓t)et/2 − J0(2gt)
et − 1 γvo,+(2gt)

+
∫ ∞

0

dt

t
(cos(ut)− J0(2gt)) e

t + 1
et − 1γ

v
o,+(2gt)

= −
∫ ∞

0

dt

t

cos(u∓t)et/2 − J0(2gt)
et − 1 γvo,+(2gt)

−
∫ ∞

0

dt

t
(cos(ut)− J0(2gt)) cos(vt)et/2 − J0(2gt)

et − 1 ,

(C.10)

where in the second line we used that
∫∞

0
dt
t J0(2gt)γvo,+(2gt) = 0 due to the orthogonality

of the Bessel functions, and in the last line we have used (B.8). The final shift results in

f5(u±γ , v) = −f5(u, v)−
∫ ∞

0

dt

t

(
cos(u±t)− J0(2gt)

) cos(vt)et/2 − J0(2gt)
et − 1 . (C.11)

This implies

f5(uγ , v)− f5(u−γ , v) = i

∫ ∞
0

dt

t
sin(ut) cos(vt)− i

∫ ∞
0

dt

t
e−t/2J0(2gt) sin(ut) . (C.12)
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Combining f5 and f6, we find

f5(uγ , v)− f5(u−γ , v)− f6(uγ , v) + f6(u−γ , v) (C.13)

= i

∫ ∞
0

dt

t
sin((u− v)t)− i

∫ ∞
0

dt

t
e−t/2J0(2gt) sin(ut)

= iπ

2 sign(u− v)− i
∫ ∞

0

dt

t
e−t/2J0(2gt) sin(ut) .

Analytic continuation of f5(u, u) and f6(u, u) can be done in steps by first performing
the mirror transformation in u, then in v and then setting v = u. For f6, this results in

f6(u±γ , v±γ)− f6(u, v) = ± i

2

∫ ∞
0

dt

t
sin((u+ v ± i)t) , (C.14)

which leads to

f6(uγ , vγ)− f6(u−γ , v−γ) = i

∫ ∞
0

dt

t
cosh(t) sin((u+ v)t) . (C.15)

Similarly,

f5(u±γ , v±γ)− f5(u, v) = ± i

2

∫ ∞
0

dt

t
sin((u+ v ± i)t) + 1

2 log g2 (C.16)

−
∫ ∞

0

dt

t

(1
2 J0(2gt)

(
e±iu

±t + e±iv
±t
)
− e−t

)
.

Deriving this equation involves a number of subtle steps, which we briefly outline here.13

After the mirror transformation in u is performed, the second mirror transformation in v
acts on both terms in (C.11). In the second term, simply replacing v with v ± i would not
lead to the correct result, due to this integral having a cut between −2g and 2g. One can
see, however, that v → v ± i gives the correct result for almost all terms in this integral,
with an exception of the one term that comes from integrating J0(2gt) with e±ivt. This
integral by itself is divergent at t = 0, so we can add a v-independent regulator e−t to it to
cancel the divergence, while subtracting the same regulator from the rest of the terms. The
analytic continuation through the cut can then be performed using the following relation:

∞∫
0

dt

t

(
J0(2gt) e±i(v±i0)t − e−t

)
= − log g2 +

∞∫
0

dt

t

(
−J0(2gt) e∓i(v∓i0)t + e−t

)
. (C.17)

This then leads to (C.16). The difference between the positive and negative transformations
is given by

f5(uγ , vγ)− f5(u−γ , v−γ) = i

∫ ∞
0

dt

t
cosh(t) sin((u+ v)t) (C.18)

− i
∫ ∞

0

dt

t
e−t/2J0(2gt) (sin(ut) + sin(vt)) .

13We thank B. Basso for useful discussions of these steps.
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Combining (C.15) with (C.18) and setting v equal to u, we find

f5(uγ , uγ)− f5(u−γ , u−γ)− f6(uγ , uγ) + f6(u−γ , u−γ) = −2i
∫ ∞

0

dt

t
e−t/2J0(2gt) sin(ut) .

(C.19)
After inserting (C.13) and (C.19) into (3.27), we see that the remaining integrals cancel

and conclude that

G(u2γ , v)2 = exp(2πi sign(u− v))G(u, v)2 = G(u, v)2 , (C.20)

but
G(u2γ , v) = exp(πi sign(u− v))G(u, v) = −G(u, v) . (C.21)

This relation is exactly what we expect from the minimal solution at strong coupling, which
is presented in section 3.4.

D Strong-coupling limit

In this appendix, we find the strong-coupling limit of our finite-coupling solution for the
scalar two-particle FF transition.

We start with the two equations (B.8) and (B.9). They have the following two particular
solutions:

γvo,+,part = −cos(vt)et/2 − J0(2gt)
et + 1 , γ̃vo,−,part = −sin(vt)et/2

et + 1 . (D.1)

Following [31], one would expect that the physical solutions differ from the particular
solutions by a homogeneous solution that is exponentially suppressed at strong coupling
and hence does not play a role in the strong-coupling limit.

For strong coupling, assuming the homogeneous solution to be suppressed, we can
obtain the following simple integrals for the combinations of f5 and f6 that enter (3.27):

2f5(u,v)−f5(u,u)−f5(v,v) = 1
2

∞∫
0

dt

t

(cos(ut)−cos(vt))2

sinh(t)

= 1
2 log

[
cosh

(
π

2 (u+v)
)

cosh
(
π

2 (u−v)
)]
− 1

4 log [cosh(πu)cosh(πv)] , (D.2)

2f6(u,v)−f6(u,u)−f6(v,v) =−1
2

∞∫
0

dt

t

(sin(ut)−sin(vt))2

sinh(t)

= 1
2 log

[
cosh

(
π
2 (u+v)

)
cosh

(
π
2 (u−v)

)]− 1
4 log [cosh(πu)cosh(πv)] . (D.3)

Inserting these expressions into (3.27) gives

G(u, v) = cosh
(
π

2 (u− v)
)
. (D.4)

This is exactly what we expected from the minimal solution from the O(6) non-linear sigma
model, cf. section 3.4.
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E Pentagon matrix parts and contractions

In this appendix, we collect the matrix part of the creation pentagons, which are required for
the matching with data in subsection 4.4. Moreover, we provide some of the more non-trivial
contractions between the matrix parts of the creation pentagon and the annihilation FF
transition. We are considering order e−4τ , where states of twist four occur. These are
the combinations F2F̄2, FFF̄ F̄ , Fψψ̄F̄ , Fφφ̄F̄ , ψψψ̄ψ̄, ψφφ̄ψ̄ and φφφ̄φ̄. Note that in
addition, the fermions in these expressions can have either large or small momenta.

E.1 Matrix parts

The matrix parts of the pentagon transitions that create the aforementioned states have
been computed in [10, 12, 20].

The matrix part arises for SUR(4)-charged fundamental excitations and is trivial for
pentagons involving gluons. The matrix part for a state involving two gluons and two
non-gluons is identical to the one for the state involving only the two non-gluons.

The two-particle matrix parts have the following form:

Π0|FF̄ (0|v1, v2) = 1, (E.1)

Π0|ψψ̄(0|v1, v2) = i

v1 − v2 + 2i ,

Π0|φφ̄(0|v1, v2) = − 1
(v1 − v2 + i) (v1 − v2 + 2i) .

The matrix part for ψA1ψA2ψ̄B1ψ̄B2 is [20]

Π0|ψψψ̄ψ̄(0|u1, u2, v1, v2)A1A2
B1B2

= δA1
B1
δA2
B2
π1 + δA1

B2
δA2
B1
π2, (E.2)

where

π1 = − 1∏2
j,k=1(uj − vk + 2i)

(u1 − v2 + 3i) (u2 − v1 + 2i)
(u1 − u2 + i) (v1 − v2 + i) , (E.3)

π2 = 1∏2
j,k=1(uj − vk + 2i)

(u1 − v1 + 3i) (u2 − v2 + 3i)− i (u2 − v1) + 2
(u1 − u2 + i) (v1 − v2 + i) .

Similarly, for scalars, [12]

Π0|φφφφ(0|u1, u2, u3, u4)i1i2i3i4 = δi1i2δi3i4 θ1 + δi1i3δi2i4 θ2 + δi1i4δi2i3 θ3, (E.4)

where

θ1 = (u1 − u4 + 3i) (u2 − u3 + 2i) [(u1 − u3 + 2i) (u2 − u4 + 3i) + i (u3 − u4)− 2]∏
1≤j<k≤4(uj − uk + i)(uj − uk + 2i) ,

θ2 = −(u1 − u2 + 2i) (u2 − u3 + 2i) (u3 − u4 + 2i) (u1 − u4 + 3i)∏
1≤j<k≤4(uj − uk + i)(uj − uk + 2i) , (E.5)

θ3 = (u1 − u2 + 2i) (u3 − u4 + 2i) [(u1 − u3 + 2i) (u2 − u4 + 3i) + i (u3 − u4)− 1]∏
1≤j<k≤4(uj − uk + i)(uj − uk + 2i) .
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Lastly, the matrix part for creating the mixed scalar-fermion state is [10]

Π0|ψφφψ̄(0|v1,u1,u2,v2) =−3i
4

1(
u1−v1− 3i

2

)(
u2−v1− 3i

2

)(
u1−v2+ 3i

2

)(
u2−v2+ 3i

2

)
×

(u1+u2)(v1+v2)−2u1u2−2v1v2+5i(v1−v2)− 21
2

(u1−u2+i)(u1−u2+2i)(v1−v2+3i) . (E.6)

The most non-trivial four-particle matrix parts that arise are thus for four scalars, two
scalars and two fermions, as well as for four fermions.

E.2 Non-trivial contractions

Most contractions of the matrix parts of the creation amplitude and the FF transition are
trivial. The only noteworthy cases correspond to four fermions and four scalars.

For four fermions, contracting the last line of (4.19) with (E.2) yields

Π0|ψψψ̄ψ̄(0|u1, u2, v1, v2)A1A2
B1B2

FψA1
ψ′A2

ψ̄′B1
ψ̄B2

(u1, u2, v1, v2)

= 4 (u1 − u2)2 + 22
((u1 − u2)2 + 1) ((u1 − u2)2 + 4)

× δ(u1 − v2) δ(u2 − v1)− Sψψ(u1, u2) δ(u1 − v2) δ(u2 − v1)
µψ(u1)µψ(u2) ,

(E.7)

where we used that [20]

SA1A2
B1B2

(u, v) = Sψψ(u, v)
[
δA1
B1
δA2
B2
s

(1)
ψψ(u, v) + δA1

B2
δA2
B1
s

(2)
ψψ(u, v)

]
, (E.8)

with
s

(1)
ψψ = u− v

u− v − i
, s

(2)
ψψ = −i

u− v − i
. (E.9)

When multiplying (E.7) with the dynamical part of the pentagon transition, the two parts
in (E.7) that are related via the S-matrix give identical contributions, such that one could
drop the second term in favour of a factor of 2.

For four scalars, we contract Πi1i2i3i4(u1, u2, u3, u4) in (4.14) with (E.4), finding

Π0|φφφφ(0|u1, u2, u3, u4)i1i2i3i4Πi1i2i3i4(u1, u2, u3, u4)

= 9∏
1≤j<k≤4(uj − uk + i)(uj − uk + 2i)

4∑
j=1

(
2u2

ju
2
j+1 − 7u2

juj+1uj+2 + 3uju2
j+1uj+2

− 7ujuj+1u
2
j+2 + 7

2u
2
ju

2
j+2 + 4u2

j + 11
2 ujuj+1uj+2uj+3 + 14ujuj+1 − 18ujuj+2 + 16

)
(E.10)

Note that this expression is not real, only becoming real after it is multiplied by the factors
(uj − uk − i)(uj − uk − 2i) in Fφφ̄(uj , uk) in the dynamical part. The other two structures
in (4.5), Πσ34

i1i2i3i4
(u1, u2, u3, u4) and Πσ23

i1i2i3i4
(u1, u2, u3, u4), are related to the one above via

Watson, and they thus yield identical contributions after including also the dynamical part.
Thus, they effectively contribute a factor of 3.
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F R-matrices with fermions

In this appendix, we summarize the matrix form of the S-matrices with fermions that are
used in section 4.2. For more details, we refer the reader to appendix A of [13].

The S-matrix between two fermions or between a fermion and an anti-fermion factorizes
into a coupling-dependent part and the R-matrix14

Sψψ(u, v)CDAB = Sψψ(u, v)R44(u− v)CDAB , Sψψ̄(u, v)CBAD = Sψψ(u, v)R44̄(u− v)CBAD , (F.1)

where

R44(w)CDAB = w

w − i
δCAδ

D
B −

i

w − i
δDA δ

C
B , R44̄(w)CBAD = δCAδ

B
D −

i

w − 2iδ
B
Aδ

C
D . (F.2)

The conjugated R-matrices are trivially related to the ones given above,

R4̄4̄(w)ABCD = R44(w)ABCD , R4̄4(w)ADCB = R44̄(w)DABC . (F.3)

Similarly, for a fermion and a scalar, we have

Sφψ(u, v)jBiA = Sφψ(u, v)R64(u− v)jBiA , R64(w)jBiA = δji δ
B
A + i

2w − 3iρiACρ
jCB . (F.4)

The ρ-matrices entering the R-matrices (F.4) are the off-diagonal components of the 6D
Dirac γ-matrices in the Weyl representation. They satisfy the Clifford algebra

ρiACρ
jCB + ρjACρ

iCB = 2δji δBA , where ρiAB = −ρiBA = −ρ∗iAB , (F.5)

and are usually referred to as ’t Hooft symbols.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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