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1 Introduction

In order to obtain phenomenologically interesting effective theories from string theory, it
is vital to ensure that neutral scalar fields have a sufficiently large mass in order to not
contradict fifth force bounds. The most prominent way to achieve this is by considering
string theory solutions that include background fluxes [1–3]. Such fluxes can, for exam-
ple, fix the complex-structure of the compactifications geometry and thus give potential
complex-structure deformation moduli a mass. The most prominent and best understood
scenario where this happens in a controlled way are Type IIB orientifold compactifications
with O3/O7-planes and their more general F-theory counterparts. In these settings the
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precise way how moduli stabilization occurs has been studied for many examples by ex-
plicitly constructing the compact Calabi-Yau geometry, specifying a flux, and deriving the
scalar potential for the complex-structure moduli. However, it is difficult to draw general
conclusions from such specific examples, which makes it hard to interpret the findings in
these special cases in a broader context.

In recent years the swampland program, which aims at identifying general principles
that every effective theory consistent with quantum gravity has to satisfy, has forced us
to develop novel approaches to study general properties of effective theories arising from
string theory. In particular, the well-defined Type IIB and F-theory settings, are a perfect
testing ground for many swampland conjectures. This does require, however, to move
beyond studying specific examples and rather uncover the universal structures appearing
in all such compactifications. While this is a challenging task in general, it has recently
become clear that it becomes tractable if we focus on the asymptotic regimes of the field
space and apply the powerful tools of asymptotic Hodge theory. Following [4] we will call
the such scenarios asymptotic flux compactifications in the following. To introduce them
in more detail, we recall that the relevant compactification geometries for Type IIB and
F-theory settings without fluxes are Calabi-Yau three- and fourfolds, respectively. These
manifolds admit a deformation space known as the complex-structure moduli space, which
parametrizes the allowed choices of complex-structures on these geometries. It is crucial to
realize that this moduli space is not compact, but rather has boundaries and thus associated
asymptotic regions. Asymptotic Hodge theory gives a detailed understanding of how the
Hodge decomposition of forms behaves in these regions and provides a dictionary for how
data associated to an individual boundary component determines the asymptotic form of
the flux-induced scalar potential.

In this work we suggest that the mathematical results of asymptotic Hodge theory
provide a systematic algorithm to perform moduli stabilization near any boundary of moduli
space. Finding flux vacua requires to solve a self-duality condition on the fluxes involving
the Hodge star. The moduli dependence of the Hodge star is, in general, a very complicated
transcendental function that depends on many details of the compactification geometry.
However, in the asymptotic regime there exists an approximation scheme to extract the
moduli dependence in essentially three steps: (1) the sl(2)-approximation, (2) the nilpotent
orbit approximation, (3) the fully corrected result. In steps (1) and (2) a certain set
of corrections is consistently neglected, turning the extremely hard problem of finding
flux vacua into a tractable algebraic problem. It is important to stress that it is a very
non-trivial fact that such approximations exist in all asymptotic regimes. In particular, this
is remarkable because it was shown in [5] that in almost all asymptotic regimes exponential
corrections are essential when deriving the Hodge star from the period integrals of the
unique (3, 0)-form or (4, 0)-form of the Calabi-Yau manifold. The determination of the
approximated Hodge star is non-trivial, but can be done explicitly for any given example
following the algorithms that we discuss in detail in this work.

The most involved computations are needed to determine the sl(2)-approximation. The
crucial result of [6] is that in any boundary regime in which the moduli satisfy a certain
hierarchy a number of n commuting sl(2,C) algebras and a boundary Hodge decomposition
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can be determined. This data in turn determines a split of the flux space and the asymptotic
form of the Hodge star operator used, for example, in the flux vacuum conditions. We collect
some intuitive arguments why such structures emerge at the boundary and discuss the
step-by-step procedure to construct the sl(2)s and the boundary Hodge decomposition. This
algorithm has already been given in [7] and can be extracted from the original works [6, 8].
The approach is iterative in the number of moduli that admit a hierarchy and uses solely
linear algebra, even though in a somewhat intricate way. Therefore, it can be easily
implemented on a computer and any given example can be evaluate very rapidly. We discuss
one example in detail and present all the asymptotic data needed in the sl(2)-approximation.
Remarkably, the sl(2)-approximation can also be used abstractly, i.e. one can parametrise
unknown coefficients and study the general form of the asymptotic flux scalar potential
and vacuum conditions by considering all possible sl(2)-representations. This more abstract
approach can be viewed as an avenue to study general aspects of flux vacua and eventually
provide a classification of possibilities at least in the regime where the sl(2)-approximation is
valid. Initial steps in this program have been carried out for two-moduli Calabi-Yau fourfolds
in [4]. Independent of whether one uses the sl(2)-approximation concretely for specific
examples or abstractly in a classification, we stress that with its help the search for flux vacua
is turned into a rather simple algebraic problem. It can therefore be viewed as providing the
computationally ideal starting point when looking for vacua of the fully corrected potential.

In order to make use of any results obtained in the sl(2)-approximation, it is crucial
to show how closely it approximates the full answer. In particular, the second approxima-
tion step, the nilpotent orbit approximation, will differ from the sl(2)-approximation by
subleading polynomial corrections. The presence of these corrections complicates the field
dependence of the Hodge star significantly and the search for vacua becomes much more
involved and quickly computationally intractable. We show by studying a number of explicit
Calabi-Yau threefold examples, that the sl(2)-approximation actually provides a rather
good approximation, even for a mild hierarchy among the moduli. We show this not only
for a large complex-structure regime, but also at so-called conifold-large complex structure
boundaries that are not straightforwardly accessible via large complex-structure/large
volume mirror symmetry. The periods of the latter setting have been derived in [9, 10]
and we will see explicitly that the general sl(2)-approximation can be evaluated from this
information. Our findings will support the claim that the successive approximation scheme
is powerful not only in specific asymptotic regimes, but rather provides a general systematics
in all asymptotic regimes in Type IIB flux compactifications.

In the final part of this work we show that our strategy is equally applicable to Calabi-
Yau fourfolds used in F-theory flux compactifications. We hereby focus on discussing the
large complex-structure regime, for which the necessary data that determines the sl(2)-
approximation can be given in terms of the intersection numbers and Chern classes of the
mirror Calabi-Yau fourfold. In order to provide an example computation we discuss an
explicit Calabi-Yau fourfold that realizes the so-called linear scenario recently proposed
in [11].1 We show that this scenario admits a flat direction in the sl(2)-approximation that

1A related Type IIA version of such a scenario has been first proposed in [12].
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is subsequently lifted in the nilpotent orbit approximation. Furthermore, we will argue that
this does not necessarily imply that the tadpole conjecture of [13] is violated by adapting a
strategy recently suggested in [14]. The conjecture claims that in high-dimensional moduli
spaces not all fields can be stabilized by fluxes without overshooting the tadpole bound.
If true, it would have far reaching consequences for string phenomenology. The desire to
provide evidence for this conjecture, or to disprove it, can be viewed as another motivation
for implementing a systematic approximation scheme. Remarkably, our constructions can be
carried out for examples with many moduli without much effort and therefore give an exciting
opportunity to explore moduli stabilization on higher-dimensional moduli spaces [15].

This paper is organized as follows. In section 2 we briefly recall some basics about
Type IIB orientifold compactifications, the conditions on flux vacua, and the form of the
Hodge star as a function of the complex-structure moduli. We give a detailed introduction
to the sl(2)-approximation and its derivation in section 3. The idea is to first collect some
intuitive ideas how to see the emergence of an sl(2) and thereafter delve in the technical
details of the general construction. For concreteness we will also exemplify the construction
on one explicit example. In section 4 we then introduce the moduli stabilization scheme
with the successive approximation steps. We show in a number of examples how close
the vacua determined in the sl(2)-approximation are to the vacua obtained with Hodge
star that has all polynomial corrections. Finally, in section 5 we extend the discussion to
Calabi-Yau fourfolds and F-theory. For simplicity, in this case we only discuss the large
complex-structure regime in detail. We determine the sl(2)-approximation for a concrete
fourfold example and show how moduli can be stabilized using the linear scenario of [11].
This will allow us to comment on the compatibility of this scenario (in its type IIB version)
with the tadpole conjecture.

2 Moduli stabilization for type IIB orientifolds

In this section we briefly review moduli stabilization for type IIB orientifolds with O3-
and O7-planes, focusing on the complex-structure and axio-dilaton sectors. (For more
extensive reviews we refer the reader to [1–3], and for recent systematic analyses of moduli-
stabilization scenarios to [4, 11, 16–18]). This part is meant to establish our notation and
conventions but contains no new results, and the reader familiar with the topic can safely
skip to section 3.

Orientifold compactifications. We consider compactifications of type IIB string theory
on Calabi-Yau threefolds Y3, subject to an orientifold projection which contains a holo-
morphic involution σ. This involution is chosen to act on the Kähler form and on the
holomorphic three-form of Y3 as σ∗J = +J and σ∗Ω = −Ω, and σ splits the cohomology
groups of Y3 into even and odd eigenspaces as Hp,q(Y3) = Hp,q

+ (Y3)⊕Hp,q
− (Y3). Relevant

for our purpose is the orientifold-odd third cohomology of Y3, for which we can choose an
integral symplectic basis as

{αI , βI} ∈ H3
−(Y3) , I = 0, . . . , h2,1

− . (2.1)
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For this paper we assume that h2,1
+ = 0, and we therefore set h2,1

− = h2,1 in the following.
The only non-vanishing pairings of the basis forms in (2.1) are given by∫

Y3
αI ∧ βJ = δI

J . (2.2)

Moduli. The effective four-dimensional theory obtained after compactification preserves
N = 1 supersymmetry and contains scalar fields which parametrize deformations of Y3. Of
interest to us are the axio-dilaton τ and the complex-structure moduli ti, which we define as

τ = c+ is , ti = xi + iyi , i = 1, . . . , h2,1 , (2.3)

and our conventions are such s > 0 and yi > 0. The Kähler moduli are not relevant for our
discussion. The Kähler potential describing the dynamics of the moduli fields is given by

K = − log
[
−i(τ − τ̄)

]
− log

[
+i
∫
Y3

Ω ∧ Ω̄
]
− 2 logV , (2.4)

where Ω depends on the complex-structure moduli ti and the volume V of the threefold
depends on the Kähler moduli. The holomorphic three-form Ω of the Calabi-Yau orientifold
will play an important role in our subsequent discussion, and it can be expanded in the
symplectic basis (2.1) as follows

Ω = XIαI −FIβI , I = 0, . . . , h2,1 . (2.5)

Using the intersections (2.2) we can then express the Kähler potential for the complex-
structure moduli Kcs = − log

[
+i
∫
Y3

Ω ∧ Ω̄
]
in terms of a period vector Π and a symplectic

pairing η as

Kcs = − log
[
−i Π̄T ηΠ

]
, Π =

(
X

−F

)
, η =

(
0 +1

−1 0

)
. (2.6)

Fluxes. In order to generate a potential for the axio-dilaton and the complex-structure
moduli we consider NS-NS and R-R three-form fluxes H3 and F3 along the internal space
Y3. These can be expanded into the integral symplectic basis (2.1) as

H3 = hIαI − hIβI , F3 = f IαI − fIβI , (2.7)

where the expansion coefficients hI , hI , f I , fI are integers. These fluxes generate a scalar
potential in the effective four-dimensional theory, which is encoded in the superpotential [19]

W =
∫
Y3

Ω ∧G3 , G3 = F3 −H3 τ . (2.8)

The fluxes furthermore contribute to the tadpole cancellation conditions. In particular, the
fluxes (2.7) appear in the D3-brane tadpole condition in the combination (which in our
conventions is positive)

Nflux =
∫
Y3
F3 ∧H3 = hIf

I − hIfI . (2.9)

– 5 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
7

Scalar potential. The effective four-dimensional theory resulting from compactifying
type II string theory on Calabi-Yau orientifolds can be described in terms of N = 1
supergravity. After taking into account the no-scale property of the Kähler potential, the
corresponding F-term potential takes the form

VF = eKFAG
ABFB , (2.10)

where A,B label the axio-dilaton and the complex-structure moduli, where FA = ∂AW +
(∂AK)W denotes the F-terms and where GAB is the inverse of the Kähler metric computed
from (2.4). The global minimum of (2.10) is of Minkowski-type and corresponds to vanishing
F-terms, that is FA = 0. As discussed in [20, 21], these conditions can equivalently be
expressed as an imaginary self-duality condition for the flux G3 which was given in (2.8).
In particular, with ? denoting the Hodge-star operator of Y3 the F-term conditions are
equivalent to

?G3 = iG3 . (2.11)

Note that the value of the superpotential in the minimum W0 can be zero or non-zero.
The first possibility corresponds to supersymmetric vacua (including the Kähler moduli
sector) while the second possibility is important for the KKLT and Large Volume Sce-
narios [22, 23]. In particular, for KKLT and small W0 is needed which has been studied
recently in [9, 10, 24–29].

Hodge-star operator. Let us become more concrete about the Hodge-star operator
acting on the third cohomology. This operator can be determined from a matrix NIJ ,
which is computed from the periods Π = (XI ,−FI) as NIJ = (FI , DīF̄I)(XJ , Dj̄X̄

J)−1.
However, in a frame for which a prepotential F exists, one can use its second derivatives
FIJ = ∂I∂JF to determine N = R+ iI as

NIJ = FIJ + 2i Im(FIM )XM Im(FJN )XN

XP Im(FPQ)XQ
. (2.12)

For the integral symplectic basis {αI , βI} introduced in (2.1) the action of the Hodge-star
operator then takes the form

?

(
α

β

)
= C

(
α

β

)
, C =

(
RI−1 −I −RI−1R
I−1 −I−1R

)
, (2.13)

while for elements in the Dolbeault cohomology the Hodge-star operator acts as

Cωp,q = ip−qωp,q , ωp,q ∈ Hp,q(Y3) . (2.14)

With the help of the relation (2.13), we can now become more concrete about the self-duality
condition (2.11). First, we computeM = ηC and recall the symplectic matrix η from (2.6) as

M =
(
−I −RI−1R −RI−1

−I−1R −I−1

)
, η =

(
0 +1

−1 0

)
. (2.15)
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Denoting the flux vectors by H3 = (hI ,−hI)T and F3 = (f I ,−fI)T , the self-duality condi-
tion (2.11) can be written in matrix form notation as

F3 =
(
ηMs+ 1c

)
H3 . (2.16)

3 The sl(2)-approximation to the Hodge star

In this section we study the asymptotic regimes in complex-structure moduli space in more
detail. In particular, in view of moduli stabilization we are interested in the boundary
behaviour of the Hodge-star matrix C defined in (2.13). We will show how its leading form
Csl(2), which we call the sl(2)-approximated Hodge star, can be computed systematically
in every asymptotic regime. Our approach relies on techniques coming from asymptotic
Hodge theory, originally developed in the mathematical works [6, 30]. For applications of
the underlying technology in the swampland program we refer to [4, 7, 29, 31–45].

3.1 Sketch of the general idea

Let us first introduce some of the main ideas for studying the boundary behaviour of the
Hodge-star matrix. For simplicity, in this section we consider only one modulus sent to
the boundary but discuss the general case in section 3.2 below. Much of this following
discussion can also be found in [38, 42], but we will provide here a slightly different angle
on the construction.

Boundaries and monodromy symmetries. In complex-structure moduli space one
can naturally associate to each boundary a discrete symmetry, known as a monodromy
symmetry. Sending only a single modulus to the boundary we can choose local coordinates
such that z = 0 corresponds to the boundary locus, but a more useful parametrization is
given by

t = x+ iy = 1
2πi log z , (3.1)

where the boundary corresponds to the limit t→ i∞. The monodromy symmetry is realized
by encircling the boundary as z → e2π iz, which corresponds to a shift of the coordinate x
of the form x→ x+ 1. But, even though the effective theory is invariant under this shift,
certain quantities transform non-trivially. A prominent example is the period vector Π of
the holomorphic three-form Ω shown in (2.5), which behaves as

Π x→x+1−−−−−−→ Π′ = T Π , (3.2)

where matrix notation is understood. Here, T denotes an integer-valued monodromy matrix
which in order for the Kähler potential (2.6) to be invariant has to satisfy

T T η T = η , T ∈ Sp(2h2,1 + 2,Z) . (3.3)

Although not obvious, it turns out that for Calabi-Yau threefolds Y3 the monodromy
matrices T can always be made unipotent [46], that is (T − 1)m+1 = 0 for some m ≥ 0.2

2This might require sending z → zn and amounts to removing a possible semi-simple part of a general
monodromy matrix T .
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Furthermore, to each T we can associate a so-called log-monodromy matrix defined as
N = log T , which is an element of the Lie algebra sp(2h2,1 + 2,R) and therefore satisfies

N = log T , (ηN)− (ηN)T = 0 , N ∈ sp(2h2,1 + 2,R) . (3.4)

Since the monodromy matrices T are unipotent, it follows that the log-monodromy matrices
N are nilpotent, that is Nm+1 = 0 for some m ≥ 0. Note that the symmetry N might
induce an approximate continuous shift symmetry of the moduli space metric near certain
boundaries. This is familiar, for example, from the large complex-structure regime. In order
to simplify the naming we will refer to x as being the axion and y is being the saxion, even
if no continuous symmetry is restored in the limit.

Nilpotent orbit theorem. The nilpotent orbit theorem allows us to descirbe the moduli
dependence of differential forms close to the boundary. An example is the holomorphic
three-form Ω, and one finds that in the limit t→ i∞ the period vector Π defined in (2.6)
can be expressed as

Π(t) = etNeΓ(z) a0 , (3.5)

where Γ(z) ∈ sp(2h2,1 + 2,C) is a matrix which depends holomorphically on z = e2π it. The
(2h2,1 + 2)-dimensional vector a0 is a reference point which is independent of t but which in
general depends holomorphically on all moduli not sent to the boundary. We have therefore
expressed the dependence of the period vector Π on t near the boundary in a simple form.
Expanding the second exponential in (3.5) we find a natural split of Π(t) as

Π(t) = Πpoly + Πexp = etN a0 +O(e2πit) (3.6)

where we have collected all polynomial terms in Πpoly = etN a0 while all exponentially
suppressed terms reside in Πexp. It will be crucial below that the nilpotent orbit theorem
implies that an expansion of the form (3.6) also occurs for all its holomorphic derivatives.

Let us furthermore recall that for a Calabi-Yau threefold Ω is an element of H3,0(Y3).
Taking a holomorphic (covariant) derivative of Ω lowers its holomorphic degree by one, and
hence the fourth (covariant) derivative of Ω has to vanish. Combining this observation
with (3.5) and ignoring some technical subtleties, we find the necessary condition N4 = 0.
The highest non-vanishing power m of N depends on the boundary under consideration.
We find the four choices

Nm 6= 0 , Nm+1 = 0 , for 0 ≤ m ≤ 3 , (3.7)

where m = 0 implies that there is no unipotent monodromy associated to the boundary.

Essential exponential corrections. As stressed in (3.7) the nilpotency order of N does
not have to be maximal, i.e. m = 3. This implies that the polynomial Πpoly = etN a0
appearing in the expansion (3.6) can be of any degree smaller or equal three and is given
by the highest k with non-vanishing Nka0. For a Calabi-Yau threefold the full middle
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cohomology can be obtained by taking holomorphic derivatives of Ω. However, if k < 3
the derivative of Πpoly with respect to t cannot generate all three-forms. This implies that
some of the exponential corrections in Πexp have to be present. Such corrections are thus
essential near any boundary with k < 3 and were termed essential exponential corrections
or essential instantons in [5]. A more precise statement can be made by introducing the
expansion

Π(t) = etN
(
a0 + e2πita1 + e4πita2 + . . .

)
. (3.8)

Denoting by ki the lowest integer such that Nkiai = 0, one finds that the term ai+1 has to
be included whenever k0 + . . . + ki < 3. Essential instanton corrections are thus needed
at almost all boundaries. We stress that essential instanton corrections will be taken into
account in the rest of this work. While they can be constructed systematically as shown
in [5], we will use there presence in a more indirect way in the following.

Nilpotent matrices and sl(2). As we have seen above, N is a nilpotent matrix which
belongs to a symplectic Lie algebra sp(2h2,1 + 2,C). The classification of nilpotent elements
of semi-simple Lie algebras is a well-studied mathematical problem, and in the following we
want to outline the main ideas of this classification. The classifications for N ∈ sp(2h2,1+2,R)
is slightly more involved and we will only quote the result in the following. For a clearer
presentation, let us for this paragraph denote the nilpotent Lie algebra element by N− and
let us use m instead of h2,1 + 1.

• Let N− ∈ sp(2m,K) be a nilpotent element of the Lie algebra sp(2m,C). Here K can
be either R or C. A theorem by Jacobson and Morozov states that one can always
find elements N0, N+ ∈ sp(2m,K) such that the algebra generated by {N−, N+, N0}
is isomorphic to sl(2,K). Recall that sl(2,K) is generated by a triple {n−, n+, n0}
that satisfies the commutation relations

[n0, n+] = +2n+ , [n0, n−] = −2n− , [n+, n−] = n0 . (3.9)

Here, n+ is a raising operator, n− is a lowering operator and n0 is the weight operator,
and we note that sl(2,K) is closely related to the Lie algebra su(2).

• The triple {n−, n+, n0} ∈ sl(2,K) is represented by 2m × 2m dimensional matrices
{N−, N+, N0} acting on a 2m-dimensional vector space V over K. However, this
representation of sl(2,K) is in general reducible and can therefore be expressed as a
direct sum of irreducible representations of sl(2,K). Concretely, this means that up
to conjugation we can write each N−, N+, N0 as

N−, N+, N0 =



∗

∗

∗
. . .


, (3.10)
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where each block corresponds to an irreducible sl(2,K) representation of {n−, n+, n0}
of a certain dimension. Note that typically some of these blocks correspond to the
one-dimensional representation of sl(2,K) which is simply a zero. Also, the dimensions
of the blocks have to add up to 2m.

• The classification of all possible nilpotent matrices N− becomes a combinatorial
problem of how these can be decomposed in irreducible pieces. Considering N− ∈
sp(2m,C) it is well-known that Young diagrams classify irreducible representations.
In the case of N− ∈ sp(2m,R) this problem is solved using so-called signed Young
diagrams as explained, for example, in [7, 47, 48].

Let us now apply the above discussion to our situation. The nilpotent sp(2h2,1 + 2) matrix
N introduced in (3.4) can be identified with the representation N− of n− acting on the
vector space V = H3(Y3,K). Therefore, there exists a matrix S ∈ Sp(2h2,1 + 2) such that
S−1NS has a block-diagonal form where each block ν is a matrix representation N−[ν] of the
sl(2) lowering operator n−, that is

S−1NS =



N−[1]

N−[2]

N−[3]

. . .


. (3.11)

Let us finally note that the weight operators N0
[ν] in each irreducible block are determined

only up to conjugation. This freedom will be fixed in asymptotic Hodge theory by picking
a certain Deligne splitting to be discussed below. Furthermore, we have suppressed in this
discussion that the nilpotent matrix N and the associated triple {N− = N,N+, N0} has to
be compatible with the Hodge decomposition in the limit t→ i∞. This aspect will be also
relevant in the discussion of the Hodge star and will be more central in section 3.2.

Weight-space decomposition. We now want to get a better understanding of how a
nilpotent matrix acts on vectors, for instance how in (3.5) the matrix N acts on a0. This
leads us to the weight-space decomposition under the action of sl(2,K), where again we
can consider K being either R or C. We start with a single irreducible n-dimensional
representation {N−,N+,N0} of sl(2,K), which corresponds to one particular block in (3.10).
(We suppress the subscript [ν] for now.) As is known from Lie-algebra representation theory,
the vector space V on which the n× n-dimensional matrices {N−,N+,N0} are acting can be
decomposed into one-dimensional weight spaces as

V = Vd ⊕ Vd−2 ⊕ . . .⊕ V−d , V` = {v ∈ V : N0v = `v} , (3.12)

where the eigenvalues ` of N0 are the weights and d = n−1 is the highest weight. The raising
and lowering operators N+ and N− then map between these spaces as N+ : V` → V`+2 and
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N− : V` → V`−2. From this decomposition we find that N− satisfies

(N−)d+1 = (N+)d+1 = 0 . (3.13)

So far we have focussed on a single block of the decomposition (3.10), but we can now combine
these building blocks as follows. The triple of 2m×2m dimensional matrices {N−, N+, N0}
is a sum of triples {N−[ν],N

+
[ν],N

0
[ν]}, which is therefore acting on a 2m-dimensional vector

space that can be decomposed as

V = V[1] ⊕ V[2] ⊕ . . . . (3.14)

The nilpotent matrix N = N− satisfies (3.7), and therefore the largest allowed highest
weight of the subspaces satisfies d(i) ≤ 3. In other words, in the decomposition (3.10) at
most four-dimensional irreducible representations of sl(2,K) can appear.

Hodge star. The nilpotent orbit theorem can be used to determine the periods (3.5) of
the holomorphic three-form near the boundary. From this expression one can, in principle,
determine the Hodge-star operator in that limit for every asymptotic regime. However, this
approximation can be still too involved to be of practical use for moduli stabilization, since
it will generally contain many sub-leading polynomial and exponential corrections. We are
therefore going to perform other approximations as follows:

• Let us focus again on one particular block in the decomposition (3.10), and consider
the weight-space decomposition shown in (3.12). For a given triple {N−,N+,N0}
we now introduce a real operator C∞ satisfying the relations C−1

∞ N+C∞ = N−,
C−1
∞ N0 C∞ = −N0 and the requirement C2

∞ = −1. This operator maps the subspaces
V` as

C∞ : V` → V−` . (3.15)

While these conditions significantly constrain C∞ they do not fix it completely. In
order to fix C∞ we require that it corresponds to the Hodge star operator acting on
this representation after being appropriately extended to the boundary. To make
this more precise, we combine the C∞ of the individual irreducible representations of
sl(2,C) into a C∞ ∈ sp(2m,R) acting on the full vector space V given in (3.14). C∞
is then obtained from the full Hodge star operator C via the limiting procedure

C∞ = lim
y→∞

eC e−1 , e = exp
[

1
2 log y N0

]
, (3.16)

where y = Im t is send to the boundary and where N0 denotes the weight operator in
the triple {N,N+, N0}. Let us note that the simple expression (3.16) is somewhat
deceiving, since the construction of an appropriate N0 requires to check for compat-
ibility of the choice with the Hodge decomposition. In practice, as we will see in
section 3.2, we will construct C∞ and the triple {N,N+, N0} at the same time.
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• The operator C∞ in (3.15) does not contain any dependence on the complex-structure
variable y = Im t which is send to the boundary. We therefore introduce a so-called
sl(2)-approximated Hodge star operator by

Csl(2) : V` → V−` , Csl(2)v = y`C∞v , (3.17)

where v ∈ V` and the power in the variable y corresponds to the weight of the
weight-space V`. Using e defined in (3.16) we can make (3.17) more precise as follows

Csl(2) = e−1C∞ e , (3.18)

which produces precisely the type of mapping shown in (3.17). Again, the action
on the full vector space V is obtained by combining the action in each subspace.
Note that in (3.18) we set the axion to zero, which can be re-installed by replacing
Csl(2) → e+xNCsl(2)e

−xN . Finally, the relation to the Hodge-star matrix (2.15) is

Msl(2) = ηCsl(2) . (3.19)

• So far much of the above discussion was possible on the real vector space V = H3(Y3,R).
As soon as one aims to talk about the Hodge decomposition and the compatibility
with the construction of the sl(2,C) representation one is forced to work over C. Let
us denote by Q the operator acting on elements of Hq,3−q with eigenvalue q − 3

2 .
Since Hp,q = Hq,p the operator Q is imaginary and we have Q ∈ i sp(2m,R). It
follows from (2.14) that the Hodge star operator C can be written in terms of Q as
C = eπiQ = (−1)Q. In analogy to (3.16) one can then extract the information about
the boundary Hodge decomposition by evaluating

Q∞ = lim
y→∞

eQ e−1 . (3.20)

As we will explain in the next subsection, also Q∞ should actually be constructed
together with the triple {N,N+, N0}, since these operators are linked through non-
trivial compatibility conditions. To display these compatibility relations it is useful to
introduce a complex triple {L−1, L0, L+1} by setting

L±1 = 1
2(N+ +N− ∓ iN0) , L0 = i(N− −N+) . (3.21)

The algebra satisfied by {L−1, L0, L+1, Q∞} then reads

[L0, L±1] = ±2L±1 , [L1, L−1] = L0 , [Q∞, Lα] = αLα . (3.22)

Note that this is the algebra of sl(2,C) ⊕ u(1) if one introduces the operator
Q̂ = Q∞ − 1

2L0 as the generator of the u(1).

For our purpose of moduli stabilization, the sl(2)-approximation (3.18) of the Hodge star
operator is particularly useful as it one the one hand contains non-trivial information about
the boundary behaviour and on the other is still manageable for practical purposes. In

– 12 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
7

particular, the field dependence in the sl(2)-approximation is polynomial and thus leads to
algebraic equations when used, for example, in the vacuum condition (2.11). It is, however,
important to stress that even in the sl(2)-approximation of the Hodge star we automatically
include essential exponential corrections to the periods as discussed around (3.8). The
intuitive understanding that exponential corrections can lead to a polynomially growing
Hodge star arises by noting that after taking a holomorphic derivative of Π there is the
freedom to rescale the result and remove an overall exponential factor. In the computation of
the Hodge star, one indeed checks that exponential terms in the leading terms precisely cancel
and ensure the leading polynomial behavior with coefficients set by, in general, several ai.

Summary of main steps. Let us finally summarize the necessary steps to construct the
sl(2)-approximated Hodge-star operator shown in equation (3.18):

1. One has to choose a modulus y = Im t which approaches the boundary of moduli
space. Associated to this boundary, the corresponding axion x = Re t admits a
discrete symmetry corresponding to the monodromy transformation of the period
vector shown in (3.2).

2. The associated monodromy matrix T can be made unipotent, and induces a nilpotent
log-monodromy matrix N = log T . For Calabi-Yau threefolds each boundary has an
0 ≤ m ≤ 3 with Nm 6= 0 and Nm+1 = 0.

3. The log-monodromy matrix N can be interpreted as a lowering operator in an sl(2,C)
triple {N− = N,N+, N0}. Then, the weight operator N0 needs to be constructed
which is used in the definition of the sl(2)-approximated Hodge-star operator shown
in (3.18).

4. The sl(2,C) triple {N− = N,N+, N0} has to be compatible with the Hodge decom-
position extended to the boundary. The latter can be encoded by an operator Q∞
that is constructed jointly with the triple.

Let us emphasize that the above steps apply when sending a single modulus to the boundary.
Additional complications arise when two or more moduli ti are considered. More concretely,
even though the corresponding log-monodromy matrices Ni can be shown to commute, when
including the associated weight operators N0

i these operators generically do not all commute
with each other and hence one cannot construct a consistent weight-space decomposition
immediately. How to deal with this situation will be explained in the next section.

3.2 Constructing the multi-moduli sl(2)-approximation

In this subsection we present a more rigorous approach for constructing the sl(2)-approxi-
mated Hodge star operator, including the situation with multiple moduli sent to the
boundary. We first introduce the main concepts from asymptotic Hodge theory, and then
describe an algorithm for obtaining the sl(2)-approximation of the Hodge-star operator.
This algorithm can be extracted from [6] and has also been discussed in [7].
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Approximations. Let us start by introducing two of approximations which can be made
near boundaries in complex-structure moduli space. We use the coordinates ti = xi + iyi

(with i = 1, . . . , n) introduced in (3.1), for which the boundary is located at yi =∞.

• As a first approximation we consider the regime yi � 1, which allows us to drop
exponential corrections of order O(e2πiti) in the Hodge-star matrix (2.15). We refer
to this near-boundary region as the asymptotic regime. While this already simplifies
the Hodge star to a polynomial expression, it will still depend rather non-trivially on
the relative ratios between the saxions yi.

• For a second approximation we assume relative hierarchies between the coordinates
yi, which corresponds to the sl(2)-approximation. This means we consider an ordering
of the saxions as y1 � y2 � . . .� yn � 1, and we refer to this regime as the strict
asymptotic regime. This regime can be specified more accurately by constraining the
ratios yi/yi−1 by the inequalities

y1
y2

> λ ,
y2
y3

> λ , . . . ,
yn−1
yn

> λ , yn > λ , (3.23)

where λ ≥ 1 is a real number. Note that the choice of a strict asymptotic regime
specifies an ordering. This implies, in particular, that a considered regime includes
the ordered limit in which one takes first y1 to the boundary, after that y2 and so
on. Furthermore, we emphasize that different orderings typically give rise to different
asymptotic expressions for the considered coupling functions in the effective theories.
The expansion parameter for these asymptotic expansions will be 1/λ. Keeping only
the leading terms then becomes more accurate for larger λ.

Main concepts I: (pure) Hodge structures and nilpotent orbits. In order to
explain how to construct the sl(2)-approximation, we introduce the relevant notions from
asymptotic Hodge theory. For definiteness, let us consider a Calabi-Yau threefold and recall
the familiar decomposition of the three-form cohomology H3(Y3,C) into (p, q)-forms

H3(Y3,C) =
3⊕
p=0

H3−p,p = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 , (3.24)

where H̄p,q = Hq,p. In asymptotic Hodge theory this (p, q)-decomposition is reformulated
in terms of the Hodge filtration F p with 0 ≤ p ≤ 3, which groups all three-forms with at
least p holomorphic indices together. More concretely, for a Calabi-Yau threefold we have

F 3 = H3,0 ,

F 2 = H3,0 ⊕H2,1 ,

F 1 = H3,0 ⊕H2,1 ⊕H1,2 ,

F 0 = H3,0 ⊕H2,1 ⊕H1,2 ⊕H0,3 ,

0 ⊂ F 3 ⊂ F 2 ⊂ F 1 ⊂ F 0 , (3.25)

and the two formulations are related by

Hp,q = F p ∩ F̄ q , F p =
3⊕

k=p
Hk,3−k . (3.26)
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The Hodge star operator ? can be evaluated on the elements of the Hodge decomposition
and will be denoted by C when acting on cohomology classes. It acts as

Cω = ip−qω , ω ∈ Hp,q . (3.27)

The Hodge structure and the Hodge filtration vary non-trivially over the complex-
structure moduli space. We have already briefly discussed that the (3, 0)-form Ω, as a
representative of F 3 = H3,0, has a holomorphic dependence on the coordinates. In fact, one
can find holomorphically varying sections for spanning all spaces F p. While in general the
moduli dependence of these sections is very complicated, we can provide more information
of form of the F p in the asymptotic regime yi � 1 and constrain the moduli dependence on
the ti, i = 1, . . . , n. It is a key result of the nilpotent orbit theorem by Schmid [30] that
there is always a nilpotent orbit F pnil that approximates the F p. The idea is that, similar to
the expansion of the Ω periods in (3.6), we can drop exponential corrections proportional
zi = e2πiti near the boundary for all (p, q)-forms. In practice this means we approximate
the Hodge filtration F p in the following way

F p ' F pnil = et
iNiF p0 , (3.28)

where F p0 is the limiting filtration which is obtained through

F p0 ≡ lim
ti→i∞

e−t
iNiF p(t) . (3.29)

Here we have introduced multiple log-monodromy matices Ni which can be shown to
commute [Ni, Nj ] = 0 if one focuses on one boundary located at z1 = z2 = . . . = zn = 0.

Let us note that the vector spaces F p0 can be thought of as setting the leading terms in
the holomorphic expansion in zi = e2πiti around zi = 0, which are constant with respect
to changes in ti. In other words, in the asymptotic regime the dependence of the Hodge
filtration F p on the complex-structure moduli ti is captured entirely through the factor
et
iNi . Note that this means that F 3

nil is represented by specifying the periods etiNia0, i.e. the
polynomial term in (3.6). In other words, referring back to (3.8), the one-dimensional space
F 3

nil does not contain the information about the essential exponential corrections and the
derivatives of F 3

nil with respect to ti will, in general, not span the full spaces F pnil, p < 3.
Nevertheless this information is encoded in the full nilpotent orbit when considering all
F pnil, i.e. looking at p = 0, . . . , 3. In fact, it was shown in [5] how the F pnil can be used to
reconstruct the essential exponential corrections. In this process one repeatedly uses the fact
F pnil are vector spaces and that overall exponential factors can be simply ignored. In other
words, the nilpotent orbit form (3.28) states that these spaces are spanned by polynomial
expressions up to overall rescalings in each direction. Importantly, the Hodge star C acting
as in (3.27) only depends on the (p, q)-splitting of H3(Y3,C), i.e. its split into vector spaces.
This implies that it is equally independent of overall rescalings in each direction.

Main concepts II: mixed Hodge structures. As we have discussed above, we can
associate a (pure) Hodge structure Hp,q to the Hodge filtration F p, and their relation
has been given in equation (3.26). A natural question then is whether a similar structure
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underlies the limiting filtration F p0 — and indeed, the relevant framework in this case is that
of a mixed Hodge structure. Concretely, this means we consider another splitting of the
three-form cohomology H3(Y3,C) known as the Deligne splitting Ip,q, which is more refined
than the (p, q)-form decomposition Hp,q. We discuss the following three aspects thereof:

• The Deligne splitting requires us to introduce another set of vector spaces based on the
log-monodromy matrices Ni. For definiteness, say we are interested in a limit involving
the first k saxions y1, . . . , yk →∞ for which we define N = N(k) = N1 + . . .+Nk.3
The so-called monodromy weight filtration for N is then given by

W`(N) =
∑

j≥max(−1,`−3)
kerN j+1 ∩ imN j−`+3 . (3.30)

It is instructive to compare these vector spaces with the weight decomposition of
H3(Y3,C) under an sl(2)-triple. Namely, the log-monodromy matrix N is nilpotent and
can therefore be considered as the lowering operator of a sl(2)-triple. The correspond-
ing weight operator allows for a decomposition of H3(Y3,C) into weight eigenspaces
V` similarly as in (3.12), and the monodromy-weight filtration is then given by

W` =
`−3⊕
m

Vm . (3.31)

• After having introduced the monodromy weight filtration W`(N), we can now define
the Deligne splitting Ip,q. It is given by the following intersection of vector spaces

Ip,q = F p0 ∩Wp+q ∩

F̄ q0 ∩Wp+q +
∑
j≥1

F̄ q−j0 ∩Wp+q−j−1

 , (3.32)

where in the case of a Calabi-Yau threefold we have p, q = 0, . . . , 3. These vector
spaces can be arranged into a diagram, which we have shown in figure 1. The limiting
filtration F p0 as well as the monodromy weight filtration W` can be recovered from
the Deligne splitting via the relations

F p0 =
⊕
r≥p

⊕
s

Ir,s , W` =
⊕
p+q=`

Ip,q . (3.33)

• Let us note that the expression (3.32) is somewhat involved, but for particular cases
it reduces to a simpler form. More concretely, in general the vector spaces Ip,q are
related under complex conjugation only up to lower-positioned elements, that is

Īp,q = Iq,p mod
⊕

r<q,s<p

Ir,s . (3.34)

The special case Īp,q = Iq,p is called R-split, for which the Deligne splitting (3.32)
reduces to4

Ip,qR-split = F p0 ∩ F̄
q
0 ∩Wp+q . (3.35)

3In fact, one can consider any element N = c1N1 + . . .+ ckNk in the linear cone ci > 0. The resulting
vector spaces W`(N) are independent of the choice of ci.

4A simple check of this relation is to see how one can recover the pure Hodge structure (3.26) corresponding
to a log-monodromy matrix N = 0. In this case the monodromy weight filtration (3.30) is given by W` = 0
for ` < 3 and W` = H3(Y3) for ` ≥ 3, and hence the Deligne splitting reduces to Ip,q = F p0 ∩ F̄

q
0 for p+ q = 3

while all others vanish.
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I0,3

I0,2

I0,1

I0,0

I1,3

I1,2

I1,1

I1,0

I2,3

I2,2

I2,1

I2,0

I3,3

I3,2

I3,1

I3,0

Figure 1. Arrangement of the Deligne splitting Ip,q for Calabi-Yau threefolds.

Algorithm I: rotation to the sl(2)-splitting. Having introduced some of the main
concepts of asymptotic Hodge theory, we now turn to the algorithmic part of determining
the sl(2)-approximation of the Hodge-star operator. A crucial observation relevant for the
sl(2)-orbit theorem [6, 30] is that any Deligne splitting can be rotated to a special R-split,
known as the sl(2)-split. This rotation is implemented by rotating the limiting filtration F p0
and consists of two steps: first we use a real phase operator δ to rotate to an R-split, and
then we rotate to the sl(2)-split via another real operator ζ

Ip,q
δ−−−−→ Îp,q = R-split Ip,q ζ−−−−→ Ĩp,q = sl(2)-split Ip,q (3.36)

Let us begin by performing the rotation to the R-split. We introduce a grading operator
N 0 to ascertain how the complex conjugation rule Īp,q = Iq,p is modified by (3.34). This
grading operator will serve as a starting point to construct a triple with N = N1 + . . .+Nk

as the lowering operator. To be precise, we the grading operator N 0 acts on an element of
Ip,q as follows

N 0 ωp,q = (p+ q − 3)ωp,q , ωp,q ∈ Ip,q . (3.37)

Clearly this means that when the Deligne splitting is not R-split, i.e. Īp,q 6= Iq,p, then N 0

is not a real operator since Ip,q and Iq,p are part of the same eigenspace of N 0. In fact, we
can use the way that N 0 transforms under complex conjugation to determine how the F p0
should be rotated. We can achieve this by writing the transformation rule conveniently as

N̄ 0 = e−2iδN 0e+2iδ , δ ∈ sp(2h2,1 + 2,R) , (3.38)

where δ denotes the phase operator of the rotation. Note that δ commutes with all log-
monodromy matrices Ni. This operator can be decomposed with respect to its action on
Ip,q as follows

δ =
∑
p,q≥1

δ−p,−q , δ−p,−q I
r,s = Ir−p,s−q . (3.39)

The fact that δ only has components with p, q ≥ 1 follows from the fact that under complex
conjugation the Ip,q are related only modulo lower-positioned elements, as can be seen
from (3.34). One can then proceed and solve (3.38) for the components δ−p,−q of the phase
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operator as5

δ−1,−1 = i

4(N̄ 0 −N 0)−1,−1 , δ−1,−2 = i

6(N̄ 0 −N 0)−1,−2 , δ−1,−3 = i

8(N̄ 0 −N 0)−1,−3 ,

δ−2,−2 = i

8(N̄ 0 −N 0)−2,−2 , δ−2,−3 = i

10(N̄ 0 −N 0)−2,−3 −
i

5[δ−1,−2, δ−1,−1] ,

δ−3,−3 = i

12(N̄ 0 −N 0)−3,−3 −
i

3[δ−2,−2, δ−1,−1] ,
(3.40)

and the other components follow by complex conjugation. The rotation of the limiting
filtration F p0 to the R-split is then straightforwardly given by (as shown in (3.36), we use a
hat to distinguish the R-split case from the non-R-split case)

F̂ p0 ≡ e
−iδF p0 . (3.41)

Next we want to rotate from the R-split to the sl(2)-split. We parametrize this rotation
by an algebra element ζ ∈ sp(2h2,1 + 2,R). For a recent discussion in the physics literature
on how ζ is fixed we refer to [38]. For our purposes let us simply write down the obtained
result, which tells us that ζ can be expressed componentwise in terms of δ as6

ζ−1,−2 = − i2δ−1,−2 , ζ−1,−3 = −3i
4 δ−1,−3 ,

ζ−2,−3 = −3i
8 δ−2,−3 −

1
8[δ−1,−1, δ−1,−2] , ζ−3,−3 = −1

8[δ−1,−1, δ−2,−2] ,
(3.42)

and all other components either vanish or are fixed by complex conjugation. Let us
emphasize that these (p, q)-decompositions of the operators are computed with respect to
the R-split Îp,q obtained from (3.41) and not Ip,q. In particular, this means that one cannot
use the components δ−p,−q following from (3.40) directly, since these were evaluated with
respect to the starting Deligne splitting Ip,q. One should rather compute the R-split Îp,q
first explicitly by using (3.32) for F̂ p0 , and subsequently decompose δ with respect to Îp,q
in order to determine ζ. The sl(2)-split is then obtained by applying ζ on the limiting
filtration in the following way

F̃ p0 = eζF̂ p0 = eζe−iδF p0 , (3.43)

where we used a tilde to distinguish the sl(2)-split from the other two cases. The sl(2)-split
Ĩp,q is then straightforwardly computed by using (3.32) for F̃ p0 , similar to how the R-split
Îp,q was obtained.

Algorithm II: iterating through the saxion hierarchies. We now iterate the above
procedure through all saxion hierarchies in order to obtain the sl(2)-approximation in the
regime y1 � y2 � . . . � yn � 1 specified by (3.23). We start from the lowest hierarchy
where all saxions are taken to be large y1, . . . , yn →∞, and move one saxion at a time up
to the highest hierarchy y1 →∞. A flowchart illustrating how this iteration runs has been

5Here we used the identity eXY e−X =Y +[X,Y ]+ 1
2! [X, [X,Y ]]+. . ., and that [H,δ−p,−q] =−(p+q)δ−p,−q.

6These relations apply for Calabi-Yau threefolds, and their extended version for Calabi-Yau fourfolds is
given in (C.5) and (C.4).
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input:
F p0 , Ni

Ip,q(n)

Ĩp,q(n)

Ip,q(n−1)

Ĩp,q(n−1)

. . .

Ip,q(1)

Ĩp,q(1)

eζneiδn
eiNn

eζn−1eiδn−1 eiNn−1

eiN2

eζ1eiδ1

Figure 2. Flowchart illustrating the algorithm for constructing the sl(2)-approximation. This figure
focuses on the construction of the sl(2)-split Deligne splittings Ĩp,q(k) . We labelled each arrow by the
rotation that has to be applied on the limiting filtration F p0 according to (3.45). In particular, each
downward arrow corresponds to an iteration of the sl(2)-splitting algorithm for the Deligne splitting
Ip,q(k) , where δk, ζk are determined by (3.40) and (3.42).

provided in figure 2. Our construction follows the same steps as [6–8], in particular, we
point out that [7] already contains some examples that have been worked out explicitly.

1. Our starting data from the periods is given by the limiting filtration F p0 obtained
from (3.29), together with the log-monodromy matrices Ni. We begin from the
lowest hierarchy where all saxions are taken to be large. This means we consider
the monodromy weight filtration (3.30) of N(n) = N1 + · · ·+Nn. By using (3.32) we
subsequently compute the Deligne splitting Ip,q(n), where we included a subscript to
indicate that it involves all n limiting coordinates. We can then apply the algorithm
laid out above to compute rotation operators δn, ζn by using (3.40) and (3.42) in order
to obtain the sl(2)-split Ĩp,q(n) through (3.43).

2. The next step is to consider the Deligne splitting for the limit y1, . . . , yn−1 → ∞.
Similar to the previous step we can compute the monodromy weight filtration (3.30)
for N(n−1) = N1 + · · · + Nn−1. However, the limiting filtration we should consider
requires slightly more work. Let us denote the limiting filtration of the sl(2)-split
obtained in the previous step by F̃ p(n). Rather than taking this limiting filtration, we
should apply Nn in the following way

F p(n−1) = eiNnF̃ p(n) . (3.44)

Roughly speaking this can be understood as fixing the saxion yn to a value, i.e. yn = 1,
while keeping the other saxions large. We then take this limiting filtration and
compute the Deligne splitting Ip,q(n−1) at hierarchy n− 1.

3. From here on the construction continues in the same manner as for the previous step,
where we start from Ip,q(n−1). We first determine the rotation matrices δn−1, ζn−1 to
obtain the sl(2)-split Ĩp,q(n−1), and then move on to the next hierarchy by applying Nn−1.

To summarize, the full iterative process can therefore be described by the two recursive
identities

F̃ p(k) = eζkeiδkF p(k) , F p(k−1) = eiNk F̃ p(k) . (3.45)
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Algorithm III: constructing the sl(2) triples and sl(2)-approximated Hodge star.
We now discuss the final steps in constructing the sl(2)-approximated Hodge star Csl(2).
The above iteration of the sl(2)-splitting algorithm already provided us the necessary data
in the form of the Deligne splittings Ĩp,q(k). The remaining task is now to read off the relevant
quantities for constructing Csl(2) from this data. The strategy is to first determine a set of
mutually communting sl(2)-triples

{N−k , N
+
k , N

0
k} , k = 1, . . . , n , (3.46)

one associated to each Nk. Subsequently we will read off the charge operator Q∞ and the
boundary Hodge star C∞ and then derive Csl(2) in generalization of (3.18).

We begin by determining the weight operators N0
(k) = N0

1 + . . . N0
k . Their action on

the sl(2)-split Ĩp,q(k) is given as grading operators that multiply elements as

N0
(k) ωp,q = (p+ q − 3)ωp,q , ωp,q ∈ Ĩp,q(k) . (3.47)

Since the iteration of the sl(2)-splitting algorithm provides us with explicit expressions for the
vector spaces Ĩp,q(k), this property suffices to write down the grading operators N(k) explicitly.
The weight operators associated with the individual saxions are then determined via

N0
k = N0

(k) −N
0
(k−1) , N0

(0) = 0 . (3.48)

Next we determine the lowering operators N−k of the commuting sl(2)-triples. The idea
is to construct these lowering operators out of the log-monodromy matrices Nk. However,
while the Nk commute with each other, generally they do not yet commute with the weight
operators N0

k of the other sl(2)-triples. This can be remedied by projecting each Nk onto
its weight-zero piece under N0

(k−1). We can write this projection out as

Nk = N−k +
∑
`≥2

Nk,−` ,
[
N0

(k−1), Nk,−`
]

= −`Nk,−` , (3.49)

where ` specifies the weight under N0
(k−1), and the lowering operator N−k = Nk,0 is fixed

as the weight-zero piece. By projecting out the other components Nk,−` we ensure that
the resulting sl(2)-triples are commuting. It is now straightforward to complete the sl(2)-
triples (3.46) by solving [N0

k , N
+
k ] = 2N+

k and [N+
k , N

−
k ] = N0

k for the raising operators N+
i .

For the purpose of computing Csl(2) this will not be necessary.
Besides the sl(2)-triples we also need the boundary Hodge structure to construct

the sl(2)-approximated Hodge star. The Hodge filtration F p∞ defining this boundary
Hodge structure can be obtained from any of the sl(2)-split filtrations F̃ p(k). By applying
N−(k) = N−1 + . . .+N−k on this filtration in a similar manner as the second equation in (3.45)
we obtain

F p∞ = e
iN−(k)F̃ p(k) . (3.50)

The pure Hodge structure is then obtained straightforwardly through (3.26) and we can
read off the operator Q∞ by

Q∞ω = 1
2
(
p− q

)
ω , ω ∈ Hp,q

∞ = F p∞ ∩ F̄ q∞ . (3.51)
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Intuitively the appearance of this pure Hodge structure (rather than a mixed Hodge
structure) follows from the fact that it corresponds to the Deligne splitting with a trivial
nilpotent element N−(0) = 0, so it reduces to a pure Hodge structure as discussed in footnote 4.
The boundary Hodge star operator can obtained through

C∞wp,q = ip−qwp,q , wp,q ∈ Hp,q
∞ , (3.52)

or by recalling that C∞ = eiπQ∞ .
Finally, let us put the above building blocks together and construct the sl(2)-approxi-

mated Hodge star Csl(2). Analogous to the one-modulus case (3.18) we introduce a saxionic
scaling operator e(y) to capture the dependence on the saxions yk. This allows us to define
the sl(2)-approximated Hodge star as

Csl(2) ≡ e+xkN−
k e(y)−1C∞ e(y)e−xkN

−
k , e(y) = exp

[
1
2
∑
k

log[yk]N0
k

]
, (3.53)

and the relation to the Hodge-star matrix (2.15) is again given by Msl(2) = ηCsl(2). We
then find that Csl(2) gives a good approximation to the Hodge star operator C in the strict
asymptotic regime (3.23) with large λ, similar to the one-modulus case (3.16).

3.3 An example computation of the sl(2)-approximation

In this subsection we work out in detail the sl(2)-approximation for a two-moduli example.
We consider the large complex-structure region for the mirror of the Calabi-Yau hypersurface
inside P1,1,2,2,2

4 [8], which in this context was studied originally in [49–51]. A similar two-
moduli model, P1,1,1,6,9

4 [18] of [50, 52], has been worked out in [7] to which we refer for an
additional example.

Periods and log-monodromy matrices at large complex structure. Let us begin
by recalling some generalities on periods near the large complex-structure point. The periods
are encoded in a prepotential F , which splits into a tree-level part, one-loop corrections,
and world-sheet instanton corrections when mapped via mirror symmetry to a quantity
depending on curve volumes. At the large complex-structure point there are no essential
exponential corrections and some of the leading polynomial corrections play no central
role in the evaluation of the Hodge star.7 Thus, we can work at leading order with the
prepotential

F = − 1
3!
κijkX

iXjXk

X0 + 1
2(X0)2 χζ(3)

(2πi)3 , (3.54)

where κijk and χ are the triple-intersection numbers and Euler characteristic of the mirror
Calabi-Yau threefold. Using the conventions shown in (2.6) and noting that FI = ∂IF , this

7More precisely, we note that there are generally linear and quadratic terms in Xi appearing in (3.54).
In contrast to the term proportional to χ, their coefficients are real rational numbers. One can show that
they can be absorbed by an additional sp(6,Q)-rotation of the three-form basis.
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prepotential results in the period vector

Π =


1
ti

1
6κijkt

itjtk + iχζ(3)
8π3

−1
2κijkt

jtk

 , (3.55)

where we set XI = (1, ti). Using the relation (3.2) we can determine the monodromy matrix
T , and via (3.4) we find the log-monodromy matrices Na for a = 1, . . . , h2,1. Together with
the leading term of the period vector (cf. (3.5)), we have

Na =


0 0 0 0
δai 0 0 0
0 0 0 −δaj
0 −κaij 0 0

 , a0 =
(

1 , 0 , iχζ(3)
8π3 , 0

)T
. (3.56)

Note that for a large complex-structure limit the matrices Na always commute, and that
they are elements of sp(2h2,1 + 2,Z). Let us now specialize our discussion to the Calabi-Yau
threefold P1,1,2,2,2

4 [8]. The relevant topological data can be found for instance in [49], which
we recall as follows8

κ122 = 4 , κ222 = 8 , χ = −168 , (3.57)

and all other intersection numbers vanishing. The log-monodromy matrices (3.56) are then
given by

N1 =



0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 −4 0 0 0


, N2 =



0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 −1
0 0 −4 0 0 0
0 −4 −8 0 0 0


. (3.58)

Having specified the relevant data about the periods near the large complex-structure point,
we are now in the position to construct the sl(2)-approximation. In the following we work
out this construction in explicit detail for the asymptotic regime y1 � y2 � 1.

Step 1: sl(2)-splitting of Ip,q
(2). We begin our analysis with both saxions y1 and y2

being large, which corresponds to considering the sum of log-monodromy matrices

N(2) = N1 +N2 . (3.59)

As explained on page 16, in order to write down the associated Deligne splitting Ip,q(2) we
need to determine the monodromy weight filtration W`(N(2)) and the limiting filtration F p0 .
We discuss these structures in turn:

8For a clearer presentation, we chose to interchange the complex-structure moduli t1 ↔ t2 as compared
to [49].
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• The monodromy weight filtration for the nilpotent operator (3.59) is computed
using (3.30). Since N(2) is a finite-dimensional and explicitly-known matrix this can
easily be done using a computer-algebra program, and we find

W0(N(2)) = W1(N(2)) = span
[
(0, 0, 0, 1, 0, 0)

]
,

W2(N(2)) = W3(N(2)) = span
[
(0, 0, 0, 0, 1, 0) , (0, 0, 0, 0, 0, 1)

]
⊕W0(N(2)) ,

W4(N(2)) = W5(N(2)) = span
[
(0, 1, 0, 0, 0, 0) , (0, 0, 1, 0, 0, 0)

]
⊕W2(N(2)) ,

W6(N(2)) = span
[
(1, 0, 0, 0, 0, 0)

]
⊕W4(N(2)) .

(3.60)

Note that this filtration corresponds to the decomposition of the even homology
into zero-, two-, four- and six-cycles on the mirror dual. To be precise, W2p(N(2))
is spanned by all even cycles of degree 2p or lower, which turns out to be a general
feature for the monodromy weight filtration of N(h2,1) at large complex structure.

• For the limiting filtration (3.29) we recall that the vector space F p is spanned by the
first 3− p derivatives of the period vector. At large complex structure the derivative
with respect to ti simply lowers a log-monodromy matrix Ni in (3.5), since we can
ignore derivatives of Γ(z) near this boundary. Subsequently multiplying by e−tiNi
from the left we find we are left with the vectors a0, Nia0, . . . to span the spaces F p0 .
In other words, the vector space F p0 is obtained by taking the span of up to 3 − p
log-monodromy matrices Ni acting on a0. We can represent this information about
the limiting filtration F p0 succinctly in terms of a period matrix as

Π(2) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−21iζ(3)
π3 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


. (3.61)

Here the first column corresponds to F 3
0 , the first three columns to F 2

0 , the first five
columns to F 1

0 , and all six columns F 0
0 = H3(Y3).

• Given the monodromy weight filtration (3.60) and the limiting filtration (3.61), we can
now compute the Deligne splitting via equation (3.32). Expressed in the diagrammatic
form introduced in figure 1, with the associated vectors understood as spanning the
corresponding subspace, this yields

Ip,q(2) =

(0, 0, 0, 1, 0, 0)

(0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 0) (0, 0, 1, 0, 0, 0)

(1, 0, 0,− 21iζ(3)
π3 , 0, 0)

(3.62)
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However, note that the Deligne splitting (3.62) is not R-split. Indeed, under complex
conjugation I3,3

(2) is shifted by a piece in I0,0
(2) as

Ī3,3
(2) = span

[
(1,0,0,+21iζ(3)

π3 ,0,0)
]

= span
[
(1,0,0,−21iζ(3)

π3 ,0,0)
]
mod span

[
42iζ(3)
π3 (0,0,0,1,0,0)

]
= I3,3

(2) mod I0,0
(2) ,

(3.63)

and hence the complex-conjugation rule shown in (3.34) follows. We now want to perform
a complex rotation of the period matrix Π(2) to make the Deligne splitting R-split. This
procedure is outlined between equations (3.37) and (3.41).

• To begin with, we determine the grading operator N 0
(2) as defined by (3.37) for the

Deligne splitting (3.62). Using for instance a computer algebra progam, this operator
is computed as

N 0
(2) =



3 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

−126iζ(3)
π3 0 0 −3 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


, (3.64)

where the imaginary component of N 0
(2) corresponds to the breaking of the R-split

property of the Deligne splitting Ip,q(2) in (3.63).

• Next, we recall that the rotation is implemented through a phase operator δ2, which is
fixed by the grading operator N 0

(2) through (3.38), and δ2 can be computed explicitly
by using (3.40). For the derived grading operator (3.64) and Deligne splitting (3.62)
we then find the phase operator

δ2 = (δ2)−3,−3 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

−21ζ(3)
π3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (3.65)

where we stressed that δ2 only has a (−3,−3)-component with respect to Deligne
splitting Ip,q(2) . By using (3.42) one therefore can already see that ζ2 = 0, so our
rotation by δ will directly rotate us to the sl(2)-split. Following (3.45), the period
matrix of this limiting filtration F̃ p(2) is given by

Π̃(2) = eiδ2Π(2) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0


. (3.66)
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• Combining this result with the monodromy weight filtration (3.60), one straightfor-
wardly shows that the sl(2)-splitting at the lowest hierarchy is spanned by

Ĩp,q(2) =

(0, 0, 0, 1, 0, 0)

(0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1)

(0, 1, 0, 0, 0, 0) (0, 0, 1, 0, 0, 0)

(1, 0, 0, 0, 0, 0)

. (3.67)

Notice that the resulting sl(2)-split Ĩp,p(2) can be interpreted precisely as the decompo-
sition into (p, p)-forms on the mirror dual Kähler side, similar to our comment on the
filtration W (N(2)) below equation (3.60).

Step 2: sl(2)-splitting of Ip,q
(1). Following the algorithm outlined in figure 2, we next

consider the hierarchy set by y1 with y2 � y1. From a practical perspective this means we
will be working with the Deligne splitting Ip,q(1) associated with the log-monodromy matrix
N1. We determine this splitting as follows:

• Similarly as above, we first compute the monodromy weight filtration (3.30) associated
with N1. It takes the following form

W0(N1) =W1(N1) = 0 ,

W2(N1) =W3(N1) = span
[
(0, 1, 0, 0, 0, 0) , (0, 0, 0, 0, 0, 1) , (0, 0, 0, 1, 0, 0)

]
,

W4(N1) =W5(N1) = span
[
(1, 0, 0, 0, 0, 0) , (0, 0, 1, 0, 0, 0) , (0, 0, 0, 0, 1, 0)

]
⊕W2(N1) ,

W6(N1) =W4(N1) . (3.68)

• Next, we determine the limiting filtration F p(1) from the sl(2)-split filtration F̃ p(2) of
the previous hierarchy through equation (3.45). At the level of the period matrix this
means we rotate (3.66) as

Π(1) = eiN2Π̃(2) = eiN2eiδ2Π(2) =



1 0 0 0 0 0
0 1 0 0 0 0
−i 0 1 0 0 0
4i
3 −2 −4 0 −i 1
2 0 4i 1 0 0
4 4i 8i 0 1 0


. (3.69)

• Using the definition of the Deligne splitting given in (3.32) together with the mon-
odromy weight filtration (3.68) and the limiting filtration (3.69), we find that the
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Deligne splitting is spanned by

Ip,q(1) =

(0, 1, 0,−2, 0, 4i) (0, 1, 0,−2, 0,−4i)
(0, 1, 0, 2, 0, 0)

(1,− 2i
3 , 0,−

4i
3 ,−2,− 4

3 )
(1, 0,−i, 4i

3 , 2, 4) (1,− 4i
3 , i,

4i
3 , 2,−

4
3 )

. (3.70)

Note that none of the spaces in the upper part of the Deligne splitting (3.70) obey the
R-split conjugation rule. In particular, under complex conjugation I2,2 is related to itself
up to a shift in I1,1, while I1,3 is related to I3,1 up to a piece in I2,0 and vice versa. To be
precise, we find

Ī2,2
(1) = span

[
(1,+2i

3 , 0,+
4i
3 ,−2,−4

3)
]

= span
[
(1,−2i

3 , 0,−
4i
3 ,−2,−4

3)
]
mod span

[
4i
3 (0, 1, 0, 2, 0, 0)

]
= I2,2

(1) mod I1,1
(1) ,

Ī3,1
(1) = span

[
(1,+4i

3 ,−i,−
4i
3 , 2,−

4
3)
]

= span
[
(1, 0,−i,+4i

3 , 2, 4)
]
mod span

[
4i
3 (0, 1, 0,−2, 0, 4i)

]
= I3,1

(1) mod I2,0
(1) ,

(3.71)

which is in accordance with the complex conjugation rule (3.34). We can now perform the
rotation to the sl(2)-split Ĩp,q(1) :

• As before we begin by computing the grading operator defined in (3.37) for the above
Deligne splitting (3.70). This grading operator is found to be

N 0
(1) =



1 0 0 0 0 0
−4i

3 −1 −4
3 0 0 0

0 0 1 0 0 0
0 0 0 −1 4i

3 0
0 0 0 0 1 0
0 0 16i

3 0 4
3 −1


. (3.72)

• Next, using (3.40), the phase operator is then computed from N 0
(1) as

δ1 = (δ1)−1,−1



0 0 0 0 0 0
−2

3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 2

3 0
0 0 0 0 0 0
0 0 8

3 0 0 0


. (3.73)
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Note that similar to the Deligne splitting Ip,q(2) discussed above, we find that ζ1 = 0
by using (3.42), since δ only has a (−1,−1)-component. Therefore by rotating to
the R-split we again directly rotate to the sl(2)-split. At the level of the period
matrix (3.69) this means that F̃ p(1) can be represented as

Π̃(1) = eiδ1Π(1) =



1 0 0 0 0 0
2i
3 1 0 0 0 0
−i 0 1 0 0 0
0 −2 −4

3 −
2i
3 i 1

2 0 4i 1 0 0
4
3 4i 16i

3 0 1 0


. (3.74)

• Finally, using (3.32) for the filtration F̃ p(1) we obtain the sl(2)-splitting which is
spanned by

Ĩp,q(1) =

(0, 1, 0,−2, 0,−4i)(0, 1, 0,−2, 0, 4i)
(0, 1, 0, 2, 0, 0)

(1, 0, 0, 0,−2,− 4
3 )

(1,− 2i
3 , i, 0, 2,

4
3 )(1, 2i

3 ,−i, 0, 2,
4
3 )

. (3.75)

Step 3: constructing the sl(2)-approximation. We now construct the sl(2)-approxi-
mated Hodge star from the two sl(2)-splittings (3.75) and (3.67) determined above. We
begin with the sl(2)-triples. The weight operators N0

(i) are fixed by the multiplication
rule (3.47) on the two sl(2)-splittings. For (3.75) and (3.67) these grading operators are
respectively given by

N0
(1) =



1 0 0 0 0 0
0 −1 −4

3 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 4

3 −1


, N0

(2) =



3 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −3 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


. (3.76)

In order to construct the lowering operators N−i we need to decompose the log-monodromy
matrices Na with respect to the weight operators as described in (3.49). For the first
lowering operator we find simply that N1 = N−1 , since N0

(0) = 0. On the other hand, for N2
we find that it decomposes with respect to N0

(1) as

N2 = (N2)0 + (N2)−2 , (3.77)
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where

(N2)0 =



0 0 0 0 0 0
−2

3 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 2

3 −1
0 0 −4 0 0 0
0 −4 −16

3 0 0 0


, (N2)−2 =



0 0 0 0 0 0
2
3 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −2

3 0
0 0 0 0 0 0
0 0 −8

3 0 0 0


. (3.78)

We then identify the lowering operator with the weight-zero piece as N−2 = (N2)0.
Next we construct the boundary Hodge star C∞. The Hodge filtration F p∞ associated

with this boundary Hodge structure follows from (3.50), and we can write the period matrix
associated to these vector spaces F p∞ as

Π̃(0) = eiN
−
1 Π̃(1) = ei(N

−
1 +N−2 )Π̃(2) =



1 0 0 0 0 0
i
3 1 0 0 0 0
i 0 1 0 0 0
−2i −2 −16

3 −
i
3 −i 1

2 0 −4i 1 0 0
16
3 −4i −28i

3 0 1 0


. (3.79)

From this boundary Hodge filtration one finds that the boundary (p, q)-spaces
Hp,q
∞ = F p∞ ∩ F q∞ are spanned by

H3,0
∞ = span

[
(1,− i

3 ,−i, 2i, 2,
16
3 )
]
,

H2,1
∞ = span

[
(1, 0,−3i

8 ,−2i,−1
2 ,−

11
6 ) , (0, 1,−3

8 , 0,−
3i
2 ,

i
2)
]
,

(3.80)

and the other spaces follow by complex conjugation. The corresponding Hodge star operator
is then determined by the multiplication rule (3.52) as

C∞ =



0 0 0 1
2 0 0

0 0 0 0 11
18 −

1
6

0 0 0 0 −1
6

1
4

−2 0 0 0 0 0
0 −2 −4

3 0 0 0
0 −4

3 −
44
9 0 0 0


. (3.81)

Having constructed the necessary building blocks, we are now ready to put together the
sl(2)-approximated Hodge star operator according to (3.53). Setting the axions to zero for
simplicity, that is xi = 0, we find that

Csl(2) =



0 0 0 − 1
2y1y2

2
0 0

0 0 0 0 − y1
2y2

2
− 1

9y1
1

6y1

0 0 0 0 1
6y1

− 1
4y1

2y1y
2
2 0 0 0 0 0

0 2y2
2

y1

4y2
2

3y1
0 0 0

0 4y2
2

3y1

8y2
2

9y1
+ 4y1 0 0 0


, (3.82)

and the Hodge-star matrixMsl(2) is then again obtained asMsl(2) = ηCsl(2).
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It is instructive to compare the sl(2)-approximated Hodge star operator (3.82) to the
full Hodge star operator (2.13) computed via the LCS prepotential (3.54). In particular,
this allows us to see which terms are dropped in the sl(2)-approximation. We find that the
full Hodge star operator is given by

C =


0 0 6

K 0
0 0 0 3

2KG
ij

−K6 0 0 0
0 −2K

3 Gij 0 0



=



0 0 0 − 3
6y1y2

2+4y3
2

0 0

0 0 0 0 −3y2
1+4y1y2+2y2

2
6y1y2

2+4y3
2

1
6y1+4y2

0 0 0 0 1
6y1+4y2

− 3
12y1+8y2

2
3y

2
2(3y1 + 2y2) 0 0 0 0 0

0 6y2
2

3y1+2y2

4y2
2

3y1+2y2
0 0 0

0 4y2
2

3y1+2y2

4(3y2
1+4y1y2+2y2

2)
3y1+2y2

0 0 0


,

(3.83)

with K = Kijkyiyjyk − 3χζ(3)
16π3 and Kähler metric

Gij =


144y4

2

(8y2
2(3y1+2y2)−3ε)2

96y4
2+36y2ε

(8y2
2(3y1+2y2)−3ε)2

96y4
2+36y2ε

(8y2
2(3y1+2y2)−3ε)2

96y2
2(3y2

1+4y1y2+2y2
2)+36ε(y1+2y2)

(8y2
2(3y1+2y2)−3ε)2

 , (3.84)

where in the second line of (3.83) we dropped the ε = χζ(3)
8π3 correction. Note by compar-

ing (3.82) and (3.83), we see that the sl(2)-approximation is more involved than simply
dropping ε, and in the limit y1 � y2 � 1 we exclude further polynomial corrections in y2/y1.

4 Moduli stabilization in the asymptotic regime

In this section we explain how the sl(2)-approximation can be used as a first step for finding
flux vacua. We begin with an overview of the various degrees of approximation in section 4.1.
Using this scheme we then stabilize moduli for three different examples in complex-structure
moduli space in sections 4.2, 4.3 and 4.4.

4.1 An approximation scheme for finding flux vacua

In general, it is a rather difficult problem to stabilize moduli in flux compactifications,
since the Hodge star operator in the extremization conditions (2.16) depends in an intricate
way on the underlying complex-structure moduli. In this work we propose to address this
problem by approximating the moduli dependence of the scalar potential in three steps as

(1) sl(2)-approximation (2) Nilpotent orbit
approximation

(3) Full series of
exponential corrections

(4.1)
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By using the sl(2)-approximation as a first step, we break the behavior of the scalar potential
down into polynomial terms in the complex-structure moduli. This allows us to solve the
relevant extremization conditions for the vevs of the moduli straightforwardly. Subsequently,
we can include corrections to this polynomial behavior by switching to the nilpotent orbit
approximation. Roughly speaking, this amounts to dropping all exponential corrections
in the scalar potential,9 but including corrections to the simple polynomial terms of the
sl(2)-approximation, yielding algebraic equations in the moduli. Taking the flux vacua found
in the sl(2)-approximation as input, we then iterate a numerical program to extremize the
scalar potential in the nilpotent orbit approximation. Finally, one can include exponentially
small terms in the saxions in the scalar potential. In this work we aim to stabilize all moduli
at the level of the nilpotent orbit, but in principle one could use these corrections to lift flat
directions in the first two steps.

Sl(2)-approximation. As a starting point, we study the extremization conditions for
flux vacua in the sl(2)-approximation (3.23) for the saxions. In section 3 we explained how
the Hodge star in this regime can be approximated by the operator Csl(2) given by (3.53).
By writing the self-duality condition (2.11) with Csl(2) we obtain as extremization condition

Csl(2)(x, y) G3 = iG3 . (4.2)

This approximation drastically simplifies how the Hodge star operator depends on the
moduli. For the axions the dependence enters only through factors of e−xkN

−
k . It is therefore

useful to absorb these factors into G3 by defining flux axion polynomials

ρsl(2)(x) ≡ e−xkN
−
k G3 . (4.3)

Note that ρsl(2) is invariant under monodromy transformations xi → xi + 1 when we shift
the fluxes according to G3 → eN

−
i G3.

For the saxions we can make the dependence explicit by decomposing into eigenspaces
of the weight operators N0

i of the sl(2,R)-triples. By applying this decomposition for ρsl(2)
we obtain

ρsl(2)(xi) =
∑
`∈E

ρ`(xi) , N0
i ρ`(xi) = `iρ`(xi) , (4.4)

where ` = (`1, . . . , `n), and E denotes the index set that specifies which values the `i can take.
Generally one has bounds −d ≤ `i ≤ d, with d the complex dimension of the underlying
Calabi-Yau manifold, which here is d = 3. This decomposition (4.4) allows us to write
out the self-duality condition (4.2) in terms of the sl(2)-approximated Hodge star (3.53)
componentwise as

y`11 · · · y
`n
n C∞ ρ`(xi) = ρ−`(xi) , ` ∈ E , (4.5)

9We should stress that one has to be careful where these exponential corrections are dropped. While
we can drop corrections at these orders in the scalar potential, essential exponential corrections have to be
included in its defining Kähler potential and flux superpotential. These terms are required to be present
for consistency of the period vector following the discussion of (3.8) (see also [5, 29] for a more detailed
explanation).
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where C∞ is the boundary Hodge star operator independent of the limiting coordinates.10

With (4.5) we now have obtained a simple set of polynomial equations that one can solve
straightforwardly.

Nilpotent orbit approximation. For the next step in our approximation scheme we
proceed to the nilpotent orbit. Recall that this approximation amounts to dropping some
exponential terms in the (3, 0)-form periods. In order to identify the essential corrections
which remain one has to use (3.28) and (3.29). In the end, this yields a set of vector
spaces Hp,q

nil that can be spanned by a basis valued polynomially in the coordinates xi, yi.
Generally speaking, the corresponding Hodge star operator Cnil then depends on these
coordinates through algebraic functions, in contrast to more general transcendental functions
when exponential corrections are included. On the other hand, in comparison to the sl(2)-
approximation one finds that Cnil contains series of corrections to Csl(2) when expanding in
y1/y2, . . . , yn−1/yn, 1/yn � 1. For now, let us simply state the self-duality condition (2.11)
at the level of the nilpotent orbit as

CnilG3 = iG3 . (4.6)

Next, we write out the dependence of Cnil on the coordinates in a similar manner as we did
for the sl(2)-approximation. The dependence on the axions again factorizes as

Cnil(xi, yi) = ex
kNk Ĉnil(yi) e−x

kNk , Ĉnil(yi) = Cnil(0, yi) , (4.7)

where here the log-monodromy matrices Ni appear instead of the lowering operators N−i of
the sl(2,R)-triples in (3.53). In analogy to (4.3) we then absorb the axion dependence into
flux axion polynomials as

ρnil(xi) = e−x
kNkG3 , (4.8)

which are invariant under monodromy transformations xi → xi + 1 if we redefine the fluxes
according to G3 → eNiG3. The dependence of Ĉnil on the saxions yi is considerably more
complicated than that of the sl(2)-approximated Hodge star operator Csl(2), so we do not
write this out further.11 The self-duality condition (4.6) can then be rewritten as

Ĉnil(yi) ρnil(xi) = iρnil(xi) . (4.9)

This extremization condition can be expanded in any basis of choice for the fluxes by
writing out ρnil componentwise, yielding a system of algebraic equations in the moduli. Our
approach in this work is to take solutions of (4.5) as input, and then slowly vary the moduli
vevs to find a solution to (4.9).

Exponential corrections. As a final remark, let us comment on the importance of
exponential corrections in the saxions. Following the discussion of (3.8) based on [5, 29],
we can divide the set of exponential corrections into terms that are essential in the period
vector and those that are not. The former are included in the nilpotent orbit approximation,
while the latter represent subleading corrections.

10The operator (3.52) is also constructed as a product of the sl(2)-approximation. It can be understood as a
Hodge star operator attached to the boundary for the Hodge structure (3.50) arising in the asymptotic limit.

11A systematic approach to incorporate these corrections in y1/y2, . . . , yn−1/yn, 1/yn to the Hodge star
operator was put forward in the holographic perspective of [38, 42].
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• Essential exponential corrections. These corrections have to be included in the Kähler
potential and superpotential when deriving the scalar potential from (2.10) in the
nilpotent orbit approximation. They give contributions to the polynomial part of the
scalar potential, which arise due to non-trivial cancelations with the inverse Kähler
metric. One is thus allowed to drop exponential terms in the saxions only once the
scalar potential has been computed. In particular, we want to point out that these
corrections therefore have to be included in the F-term conditions DIW = 0, while in
the self-duality condition (2.11) exponential terms can be ignored. The fact that the
self-duality condition turns moduli stabilization manifestly into an algebraic problem
is the reason we prefer to work in this paper with those extremization conditions over
the vanishing F-terms constraints.

• Non-essential exponential corrections. These terms in the periods can only produce
exponential corrections in the scalar potential. They are relevant when the nilpotent
orbit approximation does not yet suffice to stabilize all moduli, in which case one can
use them to lift the remaining flat directions by means of e.g. racetrack potentials. In
this work we stabilize all moduli via (4.9) at the level of the nilpotent orbit, so these
corrections can be ignored as long as the saxions take sufficiently large values.

4.2 Large complex-structure limit for h2,1 = 2

Let us consider the example discussed in section 3.3. We recall the triple intersection
numbers of the mirror threefold from (3.57) as

κ122 = 4 , κ222 = 8 , (4.10)

which specify the Kähler metric in the complex-structure sector via the prepotential (3.54).
The sl(2)-approximated Hodge-star operator in the regime y1 � y2 � 1 has been shown
in (3.82), where we note that the prepotential contains more detailed information about
the moduli-space geometry than the sl(2)-approximation. In order to compare these two
approaches, we define the relative difference

∆ = ||φ
nil − φsl(2)||
||φnil||

, (4.11)

where φ = (yi, xi, s, c) and where for simplicity we used the Euclidean norm. To illustrate
this point, let us give an explicit example:

fluxes sl(2)-approximation large complex structure
hI = (0, 0, 1) yi = (9.72, 2.79) yi = (7.85, 2.79)
hI = (−162, 0, 0) xi = (0.00, 0.00) xi = (0.00, 0.00)
f I = (1, 0, 0) s = 0.93 s = 0.93
fI = (0, 1, 37) c = 0.00 c = 0.00
Nflux =−199 ∆ = 0.22

(4.12)
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The choice of H3 and F3 fluxes together with their tadpole contribution (cf. equation (2.9))
is shown in the first column, in the second column we show the location of the minimum in the
sl(2)-approximation, and in the third column the location of the minimum determined using
the full prepotential at large complex structure is shown. These two loci agree reasonably-
well even for the small hierarchy of three, and their relative difference ∆ is 22%. (Note that
we have chosen s ' 1 for illustrative purposes, but could have similarly stabilized s at s� 1.)

Next, we want to investigate how well the sl(2)-approximation to the Hodge-star
operator agrees with the large complex-structure result depending on the hierarchy of the
saxions. We implement the hierarchy through a parameter λ as follows

y1 = λ2 , y2 = λ , (4.13)

and for larger λ we expect a better agreement between the two approaches. We have
considered three different families of fluxes characterized by different initial choices for hI ,
f I and the axions xi. (The data for the fluxes has been summarized in appendix A.) The
dependence of the relative difference ∆ on the hierarchy parameter λ is shown in figure 3a,
and in figure 3b we shown the dependence of the (absolute value) of the tadpole contribution
Nflux on λ. We make the following observations:

• As it is expected, for a large hierarchy λ the sl(2)-approximation agrees better with
the large complex-structure result. Somewhat unexpected is however how quickly
a reasonable agreement is achieved, for instance, for a hierarchy of λ = 6 the two
approaches agree up to a difference of 15%.

• Furthermore, it is also expected that when approaching the boundary in moduli space
the tadpole contribution increases, however, the rate with which the tadpole increases
is higher than naively expected. For the family corresponding to the green curve in
figures 4 the tadpole dependence can be fitted as

Nflux = 8.27λ3.99 + 34.69 , (4.14)

which is in good agreement with the data for λ ≥ 2. Thus, for these examples,
when approaching the large complex-structure limit the tadpole contribution increases
rapidly. The scaling in λ of the tadpole can also be understood from the weights of
the fluxes under the sl(2)-triples. The heaviest charge is (1, 0, 0, 0, 0, 0) with weights
(`1, `2) = (1, 2) under N0

1 , N
0
2 . Using (3.53) for the asymptotic behavior of the Hodge

star and plugging in (4.13) for the saxions we find that

Nflux ∼ (y1)`1(y2)`2 = λ4 . (4.15)

4.3 Large complex-structure limit for h2,1 = 3

As a second example we consider the large complex-structure limit in the case h2,1 = 3, for
which the prepotential F appearing in (2.12) is cubic

F = − 1
3!
κijkX

iXjXk

X0 , (4.16)
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Figure 3. Large complex-structure limit for h2,1 = 2: dependence of the relative difference ∆ and
of the tadpole contribution Nflux on the hierarchy parameter λ. The plots show three different
families, which all show a similar behaviour.

with ti = xi + iyi = Xi

X0 . For our specific model we chose the following non-trivial triple
intersection numbers

κ123 = 3 , κ133 = 4 , κ233 = 4 , κ333 = 5 , (4.17)

and the corresponding Kähler metric in the complex-structure sector is well-defined inside
the Kähler cone characterized by Imti = yi > 0.

As our sl(2)-approximation for this example we consider the regime y1 � y2 � y3 � 1.
Using the algorithm laid out in 3.2, we construct the sl(2)-approximated Hodge star (3.53).
Let us give the relevant building blocks here. The sl(2)-triples are given by

N−1 =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 −3 0 0 0 0
0 0 −3 −4 0 0 0 0


, N0

1 =



1 0 0 0 0 0 0 0
0 −1 0 −4

3 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 4

3 0 −1


,

N−2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 −3 0 0 0 0
0 0 0 0 0 0 0 0
0 −3 0 −4 0 0 0 0


, N0

2 =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 −4

3 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 4

3 −1


,

N−3 =



0 0 0 0 0 0 0 0
−2

3 0 0 0 0 0 0 0
−2

3 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 2

3
2
3 −1

0 0 −3 −2 0 0 0 0
0 −3 0 −2 0 0 0 0
0 −2 −2 −8

3 0 0 0 0


, N0

3 =



1 0 0 0 0 0 0 0
0 1 0 4

3 0 0 0 0
0 0 1 4

3 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 −4

3 −
4
3 1


,

(4.18)
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and the boundary Hodge star by

C∞ =



0 0 0 0 1
3 0 0 0

0 0 0 0 0 13
27

4
27 −

2
9

0 0 0 0 0 4
27

13
27 −

2
9

0 0 0 0 0 −2
9 −

2
9

1
3

−3 0 0 0 0 0 0 0
0 −3 0 −2 0 0 0 0
0 0 −3 −2 0 0 0 0
0 −2 −2 −17

3 0 0 0 0


. (4.19)

Let us now again compare the sl(2)-approximation with the full prepotential at large
complex structure, and display the following explicit example:

fluxes sl(2)-approximation large complex structure
hI = (0, 0, 0, 1) yi = (8.01, 4.01, 2.00) yi = (6.39, 2.69, 2.18)
hI = (−192, 0, 0, 0) xi = (0.00, 0.00, 0.00) xi = (0.00, 0.00, 0.00)
f I = (1, 0, 0, 0) s = 1.00 s = 1.08
fI = (0, 2, 8, 55) c = 0.00 c = 0.00
N =−247 ∆ = 0.13

(4.20)

Similarly as above, the choice of H3 and F3 fluxes is shown in the first column, in the second
column we show the minimum in the sl(2)-approximation, and the third column contains
the location of the minimum using the full prepotential. These loci agree reasonably-well
even for the small hierarchy of two, and their relative difference ∆ is 13%. (We note again
that s ' 1 has been chosen for illustrative purposes.)

Next, we investigate how well the sl(2)-approximation to the Hodge-star operator agrees
with the large complex-structure result depending on the hierarchy of the saxions. We
implement the hierarchy through as follows

y1 = λ3 , y2 = λ2 , y3 = λ , (4.21)

and for larger λ we expect a better agreement between the two approaches. We have again
considered three different families of fluxes characterized by different initial choices for hI ,
f I and the axions xi. (The data for the fluxes has been summarized in appendix A.) The
dependence of the relative difference ∆ on the hierarchy parameter λ is shown in figure 4a,
and in figure 4b we shown the dependence of the (absolute value) of the tadpole contribution
Nflux on λ. We make the following observations:

• For a large hierarchy λ the sl(2)-approximation agrees well with the large complex-
structure result. For a hierarchy of λ = 4 the two approaches agree up to a difference
of 15%.

• When approaching the boundary in moduli space the tadpole contribution increases,
and for the family corresponding to the green curve in figures 4 the tadpole dependence
can be fitted as

Nflux = 3.21λ5.97 + 351.16 , (4.22)
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Figure 4. Large complex-structure limit: dependence of the relative difference ∆ and of the tadpole
contribution Nflux on the hierarchy parameter λ. The plots show three different families, which all
show a similar behaviour. Note that in 4b the green and blue line are almost overlapping.

which is in good agreement with the data for λ ≥ 3. Again we can understand
this scaling from the weights of the fluxes under the sl(2)-triples. The heaviest
charge (1, 0, 0, 0, 0, 0) has weights `1 = `2 = `3 = 1 under the grading operators Hi.
Using (3.53) for the asymptotic behavior of the Hodge star and plugging in (4.21) for
the saxions we find that

Nflux ∼ (y1)`1(y2)`2(y3)`3 = λ6 . (4.23)

4.4 Conifold-large complex-structure limit for h2,1 = 3

As a third example we consider a combined conifold and large complex-structure limit. We
choose h2,1 = 3, and send one saxion to a conifold locus in moduli space and the remaining
two saxions to the large complex-structure point. This example has been considered before
in [9], but here we neglect the instanton contributions to the prepotential. In particular, for
our purposes it is sufficient to consider the following prepotential

F = − 1
3!
κijkX

iXjXk

X0 + 1
2 aijX

iXj + biX
iX0 + c

(
X0)2 − 1

2πi
(
X3)2 log

[
X3

X0

]
, (4.24)

where i, j, k,= 1, . . . , 3. The non-trivial triple intersection numbers κijk and constants aij
and bi are given by

κ111 = 8 ,
κ112 = 2 ,
κ113 = 4 ,
κ123 = 1 ,
κ133 = 2 ,

a33 = 1
2 + 3−2 log[2π]

2π i ,

b1 = 23
6 ,

b2 = 1 ,
b3 = 23

12 .

(4.25)

The constant c can be set to zero for the limit we are interested in for simplicity. After
computing the periods ∂IF and the matrix ∂I∂JF , we set ti = Xi/X0 and X0 = 1, and we
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perform a further field redefinition of the form

t1 → t̃1 , t2 → t̃2 + 4 t̃3 , t3 → e2π i t̃3 , (4.26)

where the tildes will be omitted in the following. The domain of our coordinates is then
specified by Imti = yi > 0.

Let us now consider the sl(2)-approximation in the regime y3 � y2 � y1 � 1. Using
the periods following from the prepotential (4.24) and the algorithm of section 3.2 we
construct the sl(2)-approximated Hodge star (3.53). The relevant building blocks are the
sl(2)-triples

N−1 =



0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
−4

3 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
5 0 0 0 0 −1 4

3 0
0 −16

3 −2 −8
3 0 0 0 0

0 −2 0 −1 0 0 0 0
0 −8

3 −1 −4
3 0 0 0 0


, N0

1 =



2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 8

3 2 4
3 0 0 0 0

0 0 0 0 0 0 0 0
0 31

3 4 31
6 −2 0 0 0

31
3 0 0 0 0 0 −8

3 0
4 0 0 0 0 0 −2 0
31
6 0 0 0 0 0 −4

3 0


,

N−2 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 0 0 0 0


, N0

2 =



0 0 0 0 0 0 0 0
0 0 0 −1

2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 1

2 0 −1


,

N−3 =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
8 0 0 0 0 0 −4 0
0 −8 0 −4 0 0 0 0
0 0 0 0 0 0 0 0
0 −4 0 −2 0 0 0 0


, N0

3 =



1 0 0 0 0 0 0 0
0 1 0 1

2 0 0 0 0
0 −8

3 −1 −4
3 0 0 0 0

0 0 0 0 0 0 0 0
0 5 0 5

2 −1 0 0 0
5 0 0 0 0 −1 8

3 0
0 0 0 0 0 0 1 0
5
2 0 0 0 0 −1

2
4
3 0


,

(4.27)

and the boundary Hodge star

C∞ =



0 −23
24 −1

4 −23
48

1
4 0 0 0

− 5
16 0 0 1

2 0 5
8 −

1
6 −1

−43
12 0 0 0 0 −1

6
38
9 0

0 0 0 −1 0 −1 0 2
−281

32 0 0 0 0 5
16

43
12 0

0 −1745
144 −

31
24 −

1745
288

23
24 0 0 0

0 −31
24 −1

2 −31
48

1
4 0 0 0

0 −1745
288 −

31
48 −

2321
576

23
48 −

1
2 0 1


. (4.28)

To compare moduli stabilization within the sl(2)-approximation and within the conifold-large
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complex structure limit (coni-LCS), we consider first the following example

fluxes sl(2)-approximation coni-LCS
hI = (1, 0, 0, 1) yi = (1.88, 3.78, 8.20) yi = (1.88, 2.61, 6.92)
hI = (3,−60, 1,−30) xi = (−0.14,−1.27, 0.99) xi = (−0.14,−1.27, 1.35)
f I = (0, 1, 0, 0) s = 1.05 s = 1.05
fI = (132, 32, 0, 18) c = 0.07 c = 0.07
N =−210 ∆ = 0.22

(4.29)

The hierarchy in the sl(2)-approximation has been chosen as a factor of two, the relative
difference to the moduli stabilized via the coni-LCS prepotential (4.24) for this example is
22%. (Note that s ' 1 has been chosen for illustrative purposes, and that s� 1 can easily
be realized.)

Next, we want to study how well the sl(2)-approximation of the Hodge-star operator
captures moduli stabilization via the coni-LCS prepotential. We follow a strategy similar to
the previous example and implement a hierarchy for the saxions through a parameter λ as

y1 = λ , y2 = λ2 , y3 = λ3 . (4.30)

As before, we expect that for larger λ the agreement between the two approaches improves.
We have again considered three different families of fluxes characterized by different initial
choices for hI , f I and the axions xi. (The data for the fluxes has been summarized in
appendix A.) The dependence of the relative difference ∆ on the hierarchy parameter λ is
shown in figure 5a, and in figure 5b we shown the dependence of the (absolute value) of
the tadpole contribution Nflux on λ. Our observations agree with the previous example, in
particular:

• we see that even for a small hierarchy of λ = 4 the relative difference between the
stabilized moduli is only around 10%.

• The tadpole contribution (2.9) grows rapidly with the hierarchy parameter λ. For
instance, for the orange curve in figure 5b we obtain a fit

Nflux = 4.29λ4.97 + 96.71 , (4.31)

which is in good agreement with the data for λ ≥ 3. Therefore, also for this example
the tadpole contribution increases rapidly when approaching the boundary in moduli
space. Again this scaling is understood from the growth of the Hodge star for the
heaviest charge (1, 0, 0, 0, 0, 23/6, 1, 23/12). Using (3.53) we find that

Nflux ∼ (y1)`1(y2)`2(y3)`3 = λ5 , (4.32)

where we used that its weights under the N0
i are (`1, `2, `3) = (2, 0, 1), and plugged in

the scaling (4.30) of the saxions in λ.
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Figure 5. Conifold-large complex-structure limit: dependence of the relative difference ∆ and of
the tadpole contribution Nflux on the hierarchy parameter λ. The plots show three different families,
which all show a similar behaviour.

5 Moduli stabilization in F-theory

We now want to apply the techniques discussed in the above sections to F-theory compacti-
fications on elliptically fibered Calabi-Yau fourfolds. We begin with a brief review of the
scalar potential induced by four-form flux, and in section 5.1 we specialize our discussion to
the large complex-structure regime. This then serves as the starting point for an F-theory
example which we study in section 5.2 and which has been discussed before in [11]. For
reviews on the subject of F-theory compactifications and its flux vacua we refer the reader
to [53, 54].

Supergravity description. We begin by considering M-theory compactifications on
Calabi-Yau fourfolds Y4 with G4-flux turned on. This gives rise to an effective N = 2
supergravity theory in three dimensions, where the flux induces a scalar potential for the
complex-structure and Kähler structure moduli [55]. One can then lift this setting to a
four-dimensional N = 1 supergravity theory by requiring Y4 to be elliptically fibered and
shrinking the volume of the torus fiber [53, 54, 56]. The scalar potential obtained in this
way reads

V = 1
V3

4

(∫
Y4
G4 ∧ ?G4 −

∫
Y4
G4 ∧G4

)
, (5.1)

where V4 denotes the volume of the Calabi-Yau fourfold Y4 and ? is the corresponding
Hodge-star operator. The scalar potential (5.1) depends both on the complex-structure and
Kähler moduli through the ? in the first term, and the overall volume factor V4 gives an
additional dependence on the Kähler moduli. We also note that the flux G4 is constrained
by the tadpole cancellation condition as [57]

1
2

∫
Y4
G4 ∧G4 = χ(Y4)

24 . (5.2)

Let us now focus on the complex-structure sector of this theory and mostly ignore the
Kähler moduli in the following. This requires us to assume that G4 is an element of the
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primitive cohomology H4
p(Y,Z) [55], which can be expressed as the condition J ∧G4 = 0

with J being the Kähler two-form of Y4. The Kähler and superpotential giving rise to the
scalar potential (5.1) can then be written as [19, 55]

K = − log
∫
Y4

Ω ∧ Ω̄ , W =
∫
Y4

Ω ∧G4 , (5.3)

where Ω is the (up to rescaling) unique (4, 0)-form on Y4. Minima of the scalar potential (5.1)
are found by either solving for vanishing F-terms or imposing a self-duality condition on
G4 [55], and these constraints read

DIW = ∂IW +KIW = 0 , ?G4 = G4 , (5.4)

respectively. One easily checks that this leads to a vanishing potential (5.1) at the minimum,
giving rise to a Minkowski vacuum.

5.1 Large complex-structure regime

To make our discussion more explicit, we now specialize to a particular region in complex-
structure moduli space. More concretely, we consider the large complex-structure regime of
a Calabi-Yau fourfold Y4.

Moduli space geometry. Using homological mirror symmetry the superpotential can
be expressed in terms of the central charges of B-branes wrapping even-degree cycles of the
mirror-fourfold X4, and we refer to the references [58–61] for a more detailed discussion.
Following the conventions of [11], we expand the periods of the holomorphic four-form Ω
around the large complex-structure point as

Π =



1
−tI

1
2ηµνζ

ν
IJ t

ItJ

−1
6KIJKLt

J tKtL + iK
(3)
I

1
24KIJKLt

ItJ tKtL − iK(3)
I tI


, (5.5)

where KIJKL are the quadruple intersection numbers of X4 and the coefficients K(3)
I arise

from integrating the third Chern class. In formulas this reads

KIJKL = DI ·DJ ·DK ·DL , K
(3)
I = ζ(3)

8π3

∫
X4
c3(X4) ∧ JI , (5.6)

where DI denotes a basis of divisor classes for X4 that generate its Kähler cone12 and
JI ∈ H2(X4,Z) denote their Poincaré dual two-forms. Under mirror symmetry the h1,1(X4)
Kähler moduli ti of X4 are identified with the h3,1(Y4) complex-structure moduli of Y4, and
the coefficients K(3)

I can be interpreted as perturbative corrections to the periods, similar to
the correction involving the Euler characteristic in the prepotential (3.54) for the threefold

12We assume the Kähler cone to be simplicial, i.e. the number of generators is equal to h1,1(X4).
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case. Furthermore, we introduced a tensor ζµIJ to expand all intersections of divisor classes
DI ·DJ into a basis of four-cycles Hµ as

DI ·DJ = ζµIJHµ . (5.7)

The intersection of two four-cycles Hµ ·Hν is denoted by

ηµν = Hµ ·Hν , (5.8)

and comparing with (5.6) leads to the following relation for the intersection numbers

KIJKL = ζµIJ ηµν ζ
ν
KL . (5.9)

The superpotential (5.3) shown above can be expressed as W = G4 ΣΠ, where Σ is the
matrix coupling the periods to the flux quanta which is given by

Σ =


0 0 0 0 1
0 0 0 −δIJ 0
0 0 ηµν 0 0
0 −δJI 0 0 0
1 0 0 0 0

 . (5.10)

Note that we used I, µ to label the rows and J, ν for columns. The G4-flux written in these
conventions takes the form

G4 =
(
m, mI , m̂µ , eI , e

)
, (5.11)

where the flux-quanta are (half-)interger quantized, and the contribution of the fluxes to
the tadpole cancellation condition is given by

Nflux = 1
2

∫
Y4
G4 ∧G4 = 1

2G4ΣG4 . (5.12)

Let us stress that the period vector (5.5) is not expanded in an integral basis, which means
that special care has to be taken with the quantized fluxes coupling to these periods in the
superpotential (5.3). This quantization was worked out in [60], and has been reformulated
as a rational shift of the flux quanta in [11]. For our purposes implementing this shift
will not be important, however, we still require the flux quanta in (5.11) to take integer
values. From the perspective of moduli stabilization these rational shifts typically only
affect the moduli vevs and their masses slightly, while we merely want to demonstrate the
effect of corrections to the sl(2)-approximation on aspects such as flat directions. Also for
the minimal tadpole these shifts only add a small rational term, while we are interesting in
the scaling in large h3,1.

Finally, it is instructive to decompose the periods in (5.5) according to the nilpotent
orbit form similar to the threefold case discussed above. In particular, we can read off the
log-monodromy matrices NA and leading term a0 of the periods as

Π = et
INIa0 , NA =


0 0 0 0 0
−δAI 0 0 0 0

0 −ηµρζρAJ 0 0 0
0 0 −ζνAI 0 0
0 0 0 −δAJ 0

 , a0 =


1
0
0

K
(3)
I

0

 . (5.13)
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Periods for an elliptically fibered mirror. Let us now specialize to an elliptically
fibered mirror fourfold X4, which corresponds to the example considered in the following
section. For fourfolds with this fibration structure the topological data of X4 is determined
by the base B3, and one can explicitly construct a basis for the four-cycles Hµ as discussed
in [61]. In the following we work in the conventions of [11]. We start by constructing a basis
for the two- and six-cycles of X4 from the base B3. For the generators of the Mori cone
of B3 corresponding to two-cycles we write C ′a, while the dual four-cycles that generate
the Kähler cone are denoted by divisors D′a. The index runs as a = 1, . . . , h1,1(B3) with
h1,1(B3) = h1,1(X4)− 1. Denoting the projection of the fibration by π and the divisor class
of the section by E, we can then generate the Mori cone of X4 by

C0, Ca = E · π−1C ′a , (5.14)

where C0 corresponds to the class of the fiber. We generate the Kähler cone of X4 by the
dual basis of divisor classes

D0 = E + π∗c1(B3) , Da = π∗D′a , (5.15)

where c1(B3) = ca1D
′
a denotes the first Chern class of the base B3. We can recover the

intersection numbers of B3 from those of X4 as

Kabc = D′a ·D′b ·D′c = D0 ·Da ·Db ·Dc = K0abc . (5.16)

Having constructed a basis for the two- and six-cycles, let us next consider the four-cycles
Hµ. We can generate these four-cycles via the divisors D′a and curves C ′a of B3 as

Ha = D0 · π−1(D′a) = D0 ·Da , Hâ = π−1(C ′a) , a, â = 1, . . . , h1,1(B3) , (5.17)

where we split µ = (a, â). As a final task we construct the tensors ζµij and ηµν appearing
in the periods (5.5). The tensor ζµIJ relating intersections of two-cycles DI · DJ to the
four-cycle basis Hµ by (5.7) is found to be

ζa0b = δab , ζ âbc = Kabc , ζa00 = ca1 , (5.18)

and all other components either vanish or are fixed by symmetry. The intersections ηµν
between the four-cycles Hµ are given by

ηab = Kabccc1 , ηab̂ = δab , ηâb̂ = 0 . (5.19)

5.2 The linear scenario — construction

With the expressions introduced above, we can now discuss a more concrete setting. We
consider the triple fibration T 2 → P1 → P1 → P1 as the mirror fourfold, and for the
toric construction we refer to [62]. In [11] this geometry was used to realize a particular
moduli stabilization scheme called the linear scenario. Here we discuss this setup from the
perspective of the sl(2)-approximation, and we comment on the scaling of the corresponding
tadpole-contribution of the fluxes.
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Moduli space geometry. The relevant topological data of the above fourfold X4 can
be summarized by the following intersection numbers

KABCDyAyByDyD = yL
(
32y3

0 + 24y0y1y2 + 12y0y
2
2 + 24y2

0y1 + 26y2
0y2
)

+ 64y2
0y1y2 + 24y0y

2
1y2 + 8y0y

3
2 + 24y0y1y

2
2 + 64y3

0y1

+ 24y2
0y

2
1 + 36y2

0y
2
2 + 72y3

0y2 + 52y4
0

= 4yLKL + f(yα) ,

(5.20)

and by the integrated third Chern class

K
(3)
A yA = −ζ(3)

8π3

(
3136y0 + 480yL + 960y1 + 1080y2

)
, (5.21)

and the base B3 of the elliptic fibration has first Chern class

c1(B3) = D1 + 2D2 . (5.22)

The divisor D0 corresponds to the zero section of the elliptic fibration as given in the
basis (5.15), while DL corresponds to the class of the Calabi-Yau threefold fiber over P1.
In the last line of (5.20) we singled out the terms dependent on the saxion yL by writing

KL =
∑
α,β,γ

KLabcyαyβyγ , f(ya) =
∑

α,β,γ,δ

Kαβγδyαyβyγyδ , (5.23)

where f(ya) contains the remaining terms only depending on yα = y0, y1, y2. Let us also note
that we sort our complex-structure moduli in the order (t0, tL, t1, t2) for the construction
of the log-monodromy matrices as described by (5.13), and split the indices as A = (L,α)
with α = 0, 1, 2. Furthermore, we use the four-cycle basis as described by (5.17), where we
let the indices run as a, â = L, 1, 2.13

Saxion hierarchies and the sl(2)-approximation. Let us now introduce particular
scalings for the saxions yA. For the linear scenario of [11] there is a hierarchy yL � yα
which we realize by

yL = λ3 , yα = λ ŷα . (5.24)
In order to understand this regime from the perspective of the sl(2)-approximation we need
to consider a further hierarchy yL � y1 � y2 � y0, which we implement via an additional
scaling parameter ρ as

yL = λ3ρ , y0 = λ , y1 = λρ2 , y2 = λρ . (5.25)

Setting for instance ρ = λ we find scalings (yL, y0, y1, y2) = (λ4, λ, λ3, λ2) as needed for
the hierarchy of the sl(2)-approximation, while for ρ = 1 we reduce to a scaling of the
form of (5.24). Typically we will keep both the scaling in ρ and λ explicit rather than
making a choice for ρ. We can then use the scaling in λ found in the sl(2)-approximation
to make statements about the linear scenario. In order to keep the discussion here concise
we included the data specifying the sl(2)-approximated Hodge star in appendix B. It is,
however, instructive to give the eigenspaces of the weight operators N0

i , which have been
summarized in table 1.

13Note that this four-cycle basis differs from the one used in [11], where another basis was taken using the
fibration structure of the threefold fiber rather than the elliptic fiber.
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weights charges
(−1,−3) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)

(−1,−1)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

(−1, 1)
(0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0)

(−1, 3) (0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(1,−3) (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1

2 , 0)

(1,−1)
(0, 0, 0, 0, 0, 1, 0, 0,−1

2 , 1,−1, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 1, 0, 1,−3

2 , 1, 0, 0, 0, 0, 0)
(0, 0, 0, 0, 0, 0, 0, 1,−1, 1, 0, 0, 0, 0, 0, 0)

(1, 1)
(0, 1, 0, 0,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 1, 0,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
(0, 0, 0, 1,−2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(1, 3) (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Table 1. Eigenspaces of the weight operators given in (B.1). In order to connect to the scaling of
the linear scenario (5.24) we grouped the weights `α under N0

α together as (`L, `0 + `1 + `2).

Parametric scaling of the tadpole. Regarding this model, the aim in [11] was to
make a flux-choice which keeps the tadpole contribution Nflux finite asymptotically. The
parametric growth of the tadpole due to a flux is specified by its weights under the sl(2,R)-
triples and we recall that for a charge in the eigenspace q ∈ V`1`2`3`4 its Hodge norm (3.53)
grows as

‖q‖2 ∼ y`LL y`00 y`11 y`22 . (5.26)

Using the scalings of the saxions shown in (5.25), we find for large λ that 3`L+`0+`1+`2 ≤ 0
must hold for our flux quanta. From (B.1) we can compute that `A = ±1 for all weights, so
the fluxes with weights `L = 1 and `0 + `1 + `2 = −1, 1, 3 should be turned off. Inspecting
table 1 we then find that this corresponds to the flux choice

m = 0 , mi = (0,mL, 0, 0), m̂µ = (0, m̂1, m̂2, m̂L̂, 0, 0) , (5.27)

and all other fluxes unconstrained. This matches precisely with the fluxes that were turned
off in [11], motivated from the sl(2)-approximation. (Note that we chose a different four-cycle
basis as compared to [11] so the choice of m̂µ takes a slightly different form.)

Flat directions. Given the above choice of fluxes, we can now investigate the stabilization
of the saxions within various approximation schemes. Via the self-duality condition of the
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G4-flux, the axions are fixed as [11]

xα = −m̂
α

mL
, xL = − e

eL
− 1

3eL(mL)2

(
KLabcm̂am̂bm̂c − 3eam̂amL

)
. (5.28)

However, for simplicity we set these axions to zero in the following, that is xL = x0 = x1 =
x2 = 0, which means we impose e = m̂1 = m̂2 = m̂L̂ = 0 on the flux quanta in addition
to (5.27).

• sl(2)-approximation. For the specified choice of fluxes (5.27) with vanishing axions
we find (1,−3) and (−1, 3) as allowed weights for (`L, `0 + `1 + `2). Using the
sl(2)-approximated Hodge star (3.53) in the self-duality condition (5.4), this leads to

eL = −y0y1y2
2yL

mL , eα = 2eL . (5.29)

Notice that the saxions only appear as the combination y0y1y2/yL, so there are three
saxionic directions left unconstrained. In particular, when plugging in the scaling of
the linear scenario (5.24) we see that λ drops out completely. We can stabilize these
seemingly flat directions by including corrections to the sl(2)-approximation.

• Nilpotent orbit approximation. We next include the full set of polynomial terms in the
periods, in particular, we investigate the difference between including the corrections
K

(3)
i or not. The relevant extremization conditions for the saxions now read [11]

eL = −K6 gLLm
L =

(
−KL
tL

+ f

24t2L
− K

(3)
L ζ(3)

64π3tL

)
mL +O

( 1
λ4

)
,

eα = mL

6 KL∂α
(

f

4KL

)
− 9K(3)

L KLαmL

8KL
+O

( 1
λ2

)
,

(5.30)

where KLα = ∑
β,γ KLαβγyβyγ . We also specified the order in λ at which corrections

to these equations enter under the scaling (5.24). Note that only K(3)
L appears here,

so it dominates over the other corrections K(3)
α in the expansion in λ. Since it is

rather difficult to solve (5.30) explicitly for the saxions, we will instead consider some
specific flux quanta eL, eα to exemplify that the saxions can indeed be stabilized. As
flux quanta we take

mL = 623 , eA = (−4698,−3072,−2760,−1566) , (5.31)

for which the saxions (5.24) are stabilized at

λ = 6 , ŷα = 1 . (5.32)

• Nilpotent orbit approximation without K(3)
L . We also compute the eigenvalues of the

mass matrix Kab∂a∂bV while formally setting K(3)
L = 0 and K(3)

α = 0. This yields the
canonically-normalized masses

m2 =
(
3.4·1018, 1.7·1013, 1.7·1013, 1.7·1013, 1.6·1013, 3.8·1011, 2.7·1011, 0) , (5.33)

and hence for this setting there is one flat direction.
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• Nilpotent orbit approximation with K(3)
L . We then include the correction K

(3)
L but

still set K(3)
α = 0 and find that the flat direction now acquires a mass

m2 =
(
3.4 ·1018, 1.7 ·1013, 1.7 ·1013, 1.7 ·1013, 1.6 ·1013, 3.6 ·1011, 2.5 ·1011, 2.3 ·107),

(5.34)
while the other masses are only affected slightly. The now non-zero mass is significantly
smaller as compared to the other moduli, since its mass scale is set by the correction
K

(3)
L rather than the leading polynomial terms.

Type IIB2 case. In order to understand the above observations better, let us reduce the
F-theory setting to Type IIB string theory. This brings us to the IIB2 moduli stabilization
scheme of [11], which was originally considered in [12]. In order to match the two configu-
rations we set f = 0 and K(3)

α = 0, and identify KLαβγ with the intersection numbers of
the Calabi-Yau threefold and K(3)

L as the Euler characteristic correction. Furthermore, the
dilaton tL is interpreted as the axio-dilaton τ . We will keep the notation of the F-theory
setting, and simply drop the terms that are absent in the Type IIB setup, for which the
self-duality condition (5.30) reduces to

eL =
(
−1

6
KL
yL
− K

(3)
L ζ(3)

64π3yL

)
mL , eα = −9K(3)

L KLαmL

8KL
. (5.35)

When we drop the correction K
(3)
L and plug in the saxion scaling (5.24) we see that λ

cancels out of these equations. However, subsequently including the correction fixes λ as

λ3 = 64π3

K
(3)
L ζ(3)

(
−1

6KLαβγ ŷ
αŷβ ŷγ − eL

mL

)
. (5.36)

Thus in the IIB2 scenario the modulus λ parametrizes precisely the flat direction we
encountered before, which is stabilized by including perturbative corrections. In the general
F-theory setup this symmetry was more difficult to spot in (5.24) due to the presence
of the function f(ŷα) which alters this parametrization. Nevertheless, by studying the
effect of K(3)

L on the masses in (5.33) and (5.34) we were able to observe this feature. We
should also point out that, in contrast to the general F-theory setting, there is more than
one flat saxionic direction present when K

(3)
L is dropped here. In this case (5.35) only

imposes a single constraint on the saxions, so in addition to λ there are h2,1 − 1 other
saxionic directions that remain flat. This shows how λ is stabilized by corrections to the
sl(2)-approximation, but we will not look further into these other flat directions.

5.3 The linear scenario — discussion

We now want to discuss the linear scenario in view of relations to swampland conjectures,
to the finiteness theorem and to the tadpole conjecture.
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Relations to swampland conjectures and finiteness theorem. The above hierarchy
in the masses of the linear scenario is quite interesting in light of some swampland conjectures.
Say we place a cutoff scale between the moduli masses stabilized in (5.33) and the field
direction stabilized by the K(3)

L effect in (5.34). From the mass hierarchy it then follows that
we can integrate out all axion fields (and three saxion fields), while one runaway direction
remains. In the IIB2 case this direction is parametrized via the saxionic modulus λ by (5.24),
while in the more general F-theory setup this parametrization is slightly more involved.
Either way, by restricting to this valley of the scalar potential we obtain a pseudomoduli
space containing a single saxion field and no axions. In turn, we can send λ→∞, resulting
in an infinite distance limit. Generically this path does not lift to a geodesic in the original
higher-dimensional moduli space, so this provides us with an interesting class of examples for
the Convex Hull Distance Conjecture of [40]. On the other hand, this infinite distance limit
is rather intriguing from the perspective of the Distant Axionic String Conjecture [37, 43].
It predicts the emergence of asymptotically tensionless strings coupled to axion fields, but
in this effective field theory all axions have already been integrated out due to the cutoff. It
would be interesting to return to this puzzle in the near future, and see if a more detailed
study of axion strings in the background of such scalar potentials elucidates this matter.

Let us also comment on the linear scenario in the context of the general finiteness
theorems for flux vacua satisfying the self-duality condition [38, 63]. A first observation
is that the tadpole Nflux = −eLmL seems to be independent of the flux eα. However, it is
not hard to see that eα cannot be chosen freely and there are only finitely many choices
allowed in this setting. The second equation in (5.35) implies that if we want to increase eα,
we either have to increase mL or decrease the moduli. In the former case, we immediately
see that the tadpole grows, while in the latter case we reach a point where our use of
the asymptotic results are no longer applicable. Furthermore, we check that the possible
vevs for the saxions are bounded from above, which is another necessary condition for the
finiteness of solutions. Inserting the scaling (5.24) into the first equation of (5.35) we see
that the ŷα are bounded from above. Namely, otherwise eL grows as we increase the volume
KLαβγ ŷαŷβ ŷγ , resulting in a diverging tadpole Nflux = −eLmL. Using similar reasoning we
find that λ is bounded through the condition (5.36).

Finally, let us also have a closer look at the flux vacuum loci themselves. In particular,
consider the case K(3)

L = 0. For such geometries the modulus λ is unfixed due to the absence
of corrections in the nilpotent orbit approximation. This means the resulting flux vacua
are not point-like, but rather infinite lines stretching to the boundary of moduli space.14

It is interesting to point out that vacuum loci of this type do not need to be algebraic.
This implies that if one aims to describe the structure of all flux vacua one has to leave the
world of algebraic geometry. Remarkably, a delicate and powerful extension of algebraic
geometry that can be use to describe flux vacua is provided by using tame topology and
o-minimality [63]. The resulting tame form of geometry manifest the notion of finiteness and
removes many pathologies that are allowed in geometric settings based on ordinary topology.

14It could be the case that the inclusion of exponential corrections stabilizes this flat direction. There are,
however, examples where such corrections are absent [63]. In that regard it is interesting to point out the
work of [64], where the absence of instantons in special cases was related to higher-supersymmetric settings.
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Tadpole conjecture I — without axions. We now focus on the tadpole contribution
of the fluxes and its scaling with the number of moduli [13, 65]. For simplicity we restrict
our attention to the IIB2 case, and our discussion follows closely the line of arguments first
presented in [14]. In particular, we will be using statistical data for Calabi-Yau threefolds
obtained in [66] to show that the linear scenario is, under certain genericity assumptions, com-
patible with the tadpole conjecture. Our main argument can then be summarized as follows:

• Since we restrict our discussion to the large complex-structure limit and ignore
instanton corrections, we need to ensure that the latter are sufficiently suppressed.
To implement this constraint on the mirror-dual side, we require that all holomorphic
curves C have a volume greater than a constant c. Similarly we require that all divisors
D and the mirror threefold Ỹ3 itself to have volumes greater than c, and we use these
conditions to define the stretched Kähler cone [66], i.e. we consider those J that satisfy

∫
C
J > c ,

1
2

∫
D
J2 > c ,

1
6

∫
Ỹ3
J3 > c . (5.37)

Note that (after applying mirror-symmetry) the asymptotic regime introduced at the
beginning of section 3.2 lies in the stretched Kähler cone with c = 1.

• In [66] the authors analyzed the Kreuzer-Skarke list [67] and determined properties
associated with the stretched Kähler cone. Via mirror symmetry, these results on
the Kähler-moduli side then translate to the large complex-structure limit we are
interested in.

• We note that the Kähler form J can be expanded in any basis of the second cohomology.
For example, we can use the generators ωα of a simplicial subcone as discussed in
more detail in [35] and write J = yαωα. Setting c = 1 in (5.37) then implies yα > 1
and we obtain the above parametrization of the asymptotic regime. However, in [66]
the analysis was carried out in a basis naturally arising in the explicit construction of
Calabi-Yau threefold examples. Denoting this basis by [Dα] we expand J = vα[Dα].
We note that the vα now obey certain non-trivial inequalities for J to be an element
of the stretched Kähler cone (5.37). Clearly, also the intersection numbers καβγ =
Dα ·Dβ ·Dγ have to be evaluated in this different basis and the statistical statements
of [66] concerning their behaviour is generically true in this ‘special’ basis.

• Of interest to us are the number of non-zero entries in the triple intersection numbers
καβγ and a measure for how stretched the Kähler cone is at large h1,1. To associate
a number to the latter, we introduce the distance |v| =

√∑
a(va)2 from the origin

of the Kähler cone to a Kähler form J = va[Da], and denote by dmin the minimal
distance between the origin of the Kähler cone and the tip of the stretched Kähler
cone. In [66] these have been determined for the Kreuzer-Skarke database and their
dependence on h1,1 have been determined. Under mirror symmetry this dependence
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translates into15

#(καβγ 6= 0) & 6.5h2,1 + 25 , dmin ' 10−1.4 (h2,1)2.5 . (5.38)

Furthermore, for large h2,1 the size of the entries of καβγ is of order O(10) which can
be inferred from figure 2 of [66]. For generic situations and in the large h2,1 limit we
then obtain the following rough scaling behavior (see [14] for details on the derivation)

KL ∼ (h2,1)−1/2 |v|3 , KLα ∼ (h2,1)−1 |v|2 K(3)
L ∼ h

2,1 . (5.39)

The scaling behaviour of KLα can be determined using (5.38) together with vα = |v|eα
and eα ∼ (h2,1)−1/2, and we included here the quantity K

(3)
L which contains the

Euler characteristic. Note that this scaling behaviour matches roughly the statistical
analysis presented in [66] for the minimal total volume and divisor volumes in the
stretched Kähler cone when replacing |v| with dmin.

Let us now use (5.39) and determine the moduli-dependent expression in the second relation
in equation (5.35). For generic situations and for large h2,1 we can make the following
estimate

9K(3)
L KLα
8KL

∼ (h2,1)1/2 |v|−1 . (h2,1)−2 , (5.40)

where in the second step we applied the bound |v| ≥ dmin and where we ignored numerical
factors. This scaling can now be used in the self-duality condition (5.35), where the second
condition together with (5.40) translates to

eα . (h2,1)−2mL . (5.41)

However, since the fluxes eα and mL are integer quantized it follows that for non-zero eα
and mL the flux mL has to scale at least as (h2,1)2. For the tadpole contribution this implies

Nflux = −eLmL ∼ (h2,1)2 , (5.42)

which is in agreement with the tadpole conjecture.
While this result is non-trivial, let us emphasize that we have used fitted statistical data

to make this estimate. Some of our steps, most notably (5.40), are true only approximately
and are made under the assumption that conspicuous cancellations are absent. Compar-
ing (5.39) with statistical results on the divisor volumes obtained in [66] shows agreement,
but ideally we would like to have available results on the minimal value that KL/KLα can
take in the stretched Kähler cone directly. Moreover, it is conceivable that certain families
of compactification spaces exist that show a slightly different scaling behaviour. Hence, we
do not claim that the IIB2 moduli stabilization scheme of [11] cannot produce examples
that violate the tadpole conjecture — however, under the assumptions stated above the
scheme of [11] generically satisfies the tadpole conjecture (in the case of vanishing axions).
Note that a similar observation has been made independently in [68].

15When using the basis ωα to expand the Kähler form then the dependence of the quantities in (5.38) on
h2,1 will be different. Since this information is not readily available, we use the basis employed in [66].
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Tadpole conjecture II — including axions. We finally want to discuss the case of
non-vanishing axions. Having non-zero fluxes m̂µ introduces additional terms, and the
modified self-duality equation in F-theory reads

mLeα −
1
2KLαβγm̂

βm̂γ = (mL)2
(

1
6KL∂α

(
f

4KL

)
− 9K(3)

L KLα
8KL

)
. (5.43)

For the type IIB limit we set f = 0, and together with the first relation in (5.35) the
self-duality condition can be expressed as

eL =
(
−1

6
KL
yL
−K

(3)
L ζ(3)

64π3yL

)
mL , mLeα−

1
2KLαβγm̂

βm̂γ =−9K(3)
L KLα(mL)2

8KL
. (5.44)

We now want to repeat our reasoning from above, for which we have to distinguish two
cases:

• We first consider the case in which the combination mLeα − 1
2KLαβγm̂

βm̂γ appearing
in the second relation of (5.44) is generic, in particular, for large mL this combination
is a (half-)integer of order mL (or larger). Using then the scaling (5.40), we conclude
again that

mL ∼ (h2,1)2 =⇒ Nflux ∼ (h2,1)2 , (5.45)

as in our discussion for vanishing axions. Hence, also in this situation the tadpole
conjecture is satisfied.

• As a second case we consider a situation where the combination mLeα− 1
2KLαβγm̂

βm̂γ

is fine-tuned to a non-vanishing O(1) half-integer. Here we only need to require a
linear scaling of mL with h2,1, which leads to

mL ∼ h2,1 =⇒ Nflux ∼ h2,1 . (5.46)

The scaling behaviour of the tadpole conjecture is therefore satisfied also in this
non-generic situation.

6 Conclusions

In this work we have presented a novel strategy for systematically stabilizing complex-
structure moduli in Type IIB and F-theory flux compactifications. For generic regions in
field space the underlying scalar potential is known to be a complicated transcendental
function of the complex-structure moduli. However, a remarkably universal structure
emerges when we move towards an asymptotic regime, i.e. when we approach the boundaries
of the moduli space. Motivated by key results from asymptotic Hodge theory, we laid out an
approximation scheme to study flux vacua in such settings. This procedure approximates the
dependence on the moduli in three steps, which are given by: (1) the sl(2)-approximation,
(2) the nilpotent orbit approximation, and (3) the full series of exponential corrections.
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The first two steps both drop exponential corrections to the scalar potential, therefore
yielding a system of algebraic extremization conditions for the moduli. In fact, in the sl(2)-
approximation the self-duality condition reduces even further to a simple set of polynomial
equations. By iterating through these degrees of approximation and improving the moduli
vevs at each step, we turn moduli stabilization into an organized procedure where the
complicated dependence on the moduli has been broken down systematically.

It is important to stress that our approach can be realized in every asymptotic regime
and generally we find that both approximations (1) and (2) are non-trivial. In particular,
determining the nilpotent orbit approximation (2) might be familiar for the large complex
structure regime, where exponential corrections nicely decouple. However, this decoupling
does not happen on most other boundaries and dropping exponential corrections becomes
a non-trivial step that has to be performed when determining the nilpotent orbit. The
derivation of the sl(2)-approximation (1) is non-trivial in essentially all asymptotic regions
including the large complex structure regime. For this reason, in section 3 we gave an
extensive introduction that explains pedagogically how to construct this sl(2)-approximation
step-by-step. Furthermore, in order to exemplify this story, we worked out an explicit two-
moduli example in great detail. The goal of this approximation is to derive a representation
of sl(2)n and the boundary Hodge decomposition that arise for a n-parameter limit in
complex-structure moduli space. In order to do that one has to impose a hierarchy among
the complex-structure saxions, and if one restricts attention to this strict asymptotic
regime corrections proportional to ratios between the saxions can be dropped. The sl(2)n-
representation and the boundary Hodge decomposition can then be computed algorithmically
by iterating through the saxion hierarchies. The resulting data allowed us to introduce
an sl(2)-approximated version of the Hodge star denoted by Csl(2). It encodes in a simple
fashion how the Hodge norm behaves in the strict asymptotic regime. Furthermore, the
properties of Csl(2) allow us to write down polynomial conditions that need to be satisfied
for flux vacua in this approximation.

The sl(2)-approximation turns the original very complicated problem of solving the flux
vacuum conditions into a tractable polynomial task. We explicitly carried out its construction
for a number of examples, and showed that the vacua found with this method resemble the
vacua found in the nilpotent orbit approximation rather well — even if one imposes only a
moderate hierarchy of the saxions. Raising the hierarchy to an O(10)-factor we found that
the location of vacua in approximation (1) and (2) differ only by few percent. This was true
in a two-moduli and two three-moduli examples in which we derived the sl(2)-approximation,
i.e. both in the large complex-structure and the conifold-LCS regime. Combining these
observations with the fact that the approximation (2) and (3) differ only by exponentially
suppressed corrections [30], we thus realize that our proposed stabilization scheme gives
a favourable numerical approach for finding vacua. It would be very interesting to explore
if this gives a novel way to perform moduli stabilizations in settings with many moduli and
compare the efficiency with direct searches for vacua. We expect that the step-wise approach
reduces the computational complexity (see [69, 70] for an in-depth discussion of the arising
challenges). Furthermore, it would be exciting to combine our approach with recent efforts
to use machine learning algorithms in studying the string landscape [16, 65, 71–77].
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In this work we have also argued that our strategy can be directly extended to F-theory
flux compactifications on Calabi-Yau fourfolds. We have given the relevant information
needed to generally determine the sl(2)n-representation and boundary Hodge decomposition
which includes the relations in appendix C. To prepare for giving an explicit example, we then
specialized to the large complex-structure regime where the defining information of the scalar
potential can be given in terms of the topological data of the mirror fourfold. The example
that we studied in detail was the Calabi-Yau fourfold geometry considered in [11] and we
focused on the realization of the so-called linear moduli stabilization scenario. In order to
analyze this geometry from the perspective of asymptotic Hodge theory, we computed the
nilpotent orbit and then determined the sl(2)-approximation. We then required the tadpole
contribution of the fluxes to remain parametrically finite in the strict asymptotic regime,
leading to constraints on the flux quanta matching with [11]. Subsequently we investigated
the stabilization of moduli in the various degrees of approximation at our disposal. In
the sl(2)-approximation only one combination of saxions was stabilized (while it already
fixes all axions), and by systematically including subleading corrections we could check
how the remaining flat directions were lifted. In particular, we reaffirmed the importance
of the coefficient K(3)

L that is included when going form the sl(2)-approximation to the
nilpotent orbit. This correction reduces to the Euler characteristic term in the type IIB
case. Restricting to cases in which it vanishes we found sets of flux vacua that are real lines
stretching to the boundary.

Based on this analysis of the linear scenario we also made some additional observations
related to recent swampland conjectures and finiteness results. Firstly, we noted that
describing all vacuum loci in a systematic fashion requires one to go beyond the usual
algebro-geometric tools, and instead prompts one to use techniques furnished by tame
topology and o-minimality [63]. We argued that, as it has to be the case, the linear scenario
satisfies the finiteness theorem of [63]. Secondly, we pointed out that flux vacua being
real lines stretching to the boundary provide us with interesting examples that decouple
axions from their counterparts, allowing for infinite distance limits that could serve as
non-trivial testing grounds for the axionic string conjecture of [37, 43], the convex hull
distance conjecture [40], and the claims on supersymmetric protection [64]. Thirdly, we
investigated the validity of the tadpole conjecture [13] for the linear scenario. By using
statistical arguments for Calabi-Yau three-folds following [14] we were able to confirm
that, under certain genericity assumptions, these models are compatible with the tadpole
conjecture. These results suggest that the linear scenario (in its type IIB version) provides
no inherent structure to generically give counter-examples to the tadpole conjecture — if
one aims to find such a counter-example, one would have to perform a thorough search
through the available Calabi-Yau databases. It remains an open question whether an explicit
counter-example exists.

Let us close by commenting on some further directions that exploit the general nature
of our approach. To begin with, we can delve deeper into step (1) of our approximation
scheme, the sl(2)-approximation. By using the classification of boundaries one can turn
moduli stabilization into an abstract problem: the extremization conditions are a simple
set of polynomial equations, and the allowed exponents are fixed by the possible boundary
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types. We can then determine at which boundaries the sl(2)-approximation stabilizes all
moduli. For two-moduli fourfolds this has already been worked out in [4], but a more general
investigation is still missing. For step (2) of our scheme, the nilpotent orbit approximation,
there is also an abstract approach left unexplored. It has recently been shown that
based on [6] the corrections completing the sl(2)-approximation into the nilpotent orbit
approximation can also be incorporated systematically by using the holographic perspective
put forward in [38, 42]. It would be interesting to study moduli stabilization using the
same strategy. Finally, we note that our in our search for flux vacua with approximation
steps (1) and (2) we have only included polynomial corrections and essential exponential
corrections. Finding exact vacua including the whole series of exponential corrections
remains a challenging open task. Luckily, in the asymptotic regime, we can judge how close
we are to the full answer due to the existence of the outlined approximation scheme.

Acknowledgments

It is a pleasure to thank Brice Bastian, Mariana Graña, Alvaro Herráez, Stefano Lanza,
Severin Lüst, Fernando Marchesano, Jeroen Monnee, Eran Palti, David Prieto, Christian
Schnell, Irene Valenzuela and Max Wiesner for useful discussions and correspondence. TG
and DH are partly supported by the Dutch Research Council (NWO) via a Start-Up grant
and a VICI grant, while EP is supported by a Heisenberg grant of the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) with project-number 430285316.

– 53 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
7

A Data on flux-families

The flux choices for the three families considered in section 4.2 are of the following general
form

family 1: hI = ( 0, 0, 2 ) , hI = ( h0, 0, 0 ) , f I = ( 1, 0, 0 ) , fI = ( 0, 3, f2 ) ,
family 2: hI = ( 0, 0, 0 ) , hI = ( h0,−1, h2 ) , f I = (−1, 0, 1 ) , fI = ( 0, 0, 0 ) ,
family 3: hI = ( 2, 2, 0 ) , hI = ( 0,−3, h2 ) , f I = ( 0, 1, 1 ) , fI = ( f0, 4, 3 ) ,

(A.1)

where the unspecified flux quanta take the values listed below:

family 1 family 2 family 3
h0 f2 h0 h2 h2 f0

−2 10 2 −5 −6 4
−5 14 5 −7 −8 10
−10 20 10 −10 −11 20
−19 26 19 −13 −14 38
−32 34 32 −17 −18 64
−51 42 51 −21 −22 103
−78 52 78 −26 −27 156
−114 62 114 −31 −32 229
−162 74 162 −37 −38 324
−223 86 223 −43 −44 446
−300 100 300 −50 −51 600
−396 114 396 −57 −58 791
−512 130 512 −65 −66 1024
−653 146 653 −73 −74 1305
−820 164 820 −82 −83 1640
−1018 182 1018 −91 −92 2036
−1250 202 1250 −101 −102 2500
−1519 222 1519 −111 −112 3039
−1830 244 1830 −122 −123 3660
−2186 266 2186 −133 −134 4373
−2592 290 2592 −145 −146 5184
−3052 314 3052 −157 −158 6104
−3570 340 3570 −170 −171 7140
−4152 366 4152 −183 −184 8304
−4802 394 4802 −197 −198 9604
−5526 422 5526 −211 −212 11051
−6328 452 6328 −226 −227 12656
−7215 482 7215 −241 −242 14430
−8192 514 8192 −257 −258 16384
−9265 546 9265 −273 −274 18530
−10440 580 10440 −290 −291 20880
−11724 614 11724 −307 −308 23447
−13122 650 13122 −325 −326 26244
−14642 686 14642 −343 −344 29284
−16290 724 16290 −362 −363 32580
−18074 762 18074 −381 −382 36148
−20000 802 20000 −401 −402 40000

(A.2)
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The flux choices for the three families considered in section 4.3 are of the following general
form

family 1: hI = ( 0, 0, 0, 1 ) , hI = ( h0, 0, 0, 0 ) , f I = ( 1, 0, 0, 0 ) , fI = ( 0, 2, f2, f3 ) ,
family 2: hI = ( 1, 0, 0, 0 ) , hI = ( h0,−2, h2, h3 ) , f I = ( 1, 0, 0, 1 ) , fI = ( f0, 0, 0, 0 ) ,
family 3: hI = ( 0, 1, 0, 0 ) , hI = ( h0,−2, h2, h3 ) , f I = ( 1, 0, 0, 1 ) , fI = ( 0, 3, 0, 2 ) ,

(A.3)

where the unspecified flux quanta take the values listed below:
family 1 family 2 family 3

h0 f2 f3 h0 h2 h3 f0 h0 h2 h3

−3 2 6 −3 −2 −6 3 −3 −2 −6
−11 3 11 −11 −3 −11 11 −11 −3 −11
−34 4 20 −34 −4 −20 34 −34 −4 −20
−86 6 34 −86 −6 −34 86 −86 −6 −34
−192 8 55 −192 −8 −55 192 −192 −8 −55
−389 10 85 −389 −10 −85 389 −389 −10 −85
−732 12 127 −732 −12 −127 732 −732 −12 −127
−1298 15 183 −1298 −15 −183 1298 −1298 −15 −183
−2187 18 256 −2187 −18 −256 2187 −2187 −18 −256
−3535 21 350 −3535 −21 −350 3535 −3535 −21 −350
−5515 24 468 −5515 −24 −468 5515 −5515 −24 −468
−8343 28 613 −8343 −28 −613 8343 −8343 −28 −613
−12288 32 791 −12288 −32 −791 12288 −12288 −32 −791
−17679 36 1004 −17679 −36 −1004 17679 −17679 −36 −1004
−24911 40 1259 −24911 −40 −1259 24911 −24911 −40 −1259
−34457 45 1559 −34457 −45 −1559 34457 −34457 −45 −1559
−46875 50 1910 −46875 −50 −1910 46875 −46875 −50 −1910
−62817 55 2317 −62817 −55 −2317 62817 −62817 −55 −2317
−83042 60 2787 −83042 −60 −2787 83042 −83042 −60 −2787
−108425 66 3325 −108425 −66 −3325 108425 −108425 −66 −3325
−139968 72 3937 −139968 −72 −3937 139968 −139968 −72 −3937
−178814 78 4631 −178814 −78 −4631 178814 −178814 −78 −4631
−226257 84 5413 −226257 −84 −5413 226257 −226257 −84 −5413
−283755 91 6290 −283755 −91 −6290 283755 −283755 −91 −6290
−352947 98 7270 −352947 −98 −7270 352947 −352947 −98 −7270
−435662 105 8360 −435662 −105 −8360 435662 −435662 −105 −8360
−533936 112 9569 −533936 −112 −9569 533936 −533936 −112 −9569
−650027 120 10904 −650027 −120 −10904 650027 −650027 −120 −10904
−786432 128 12375 −786432 −128 −12375 786432 −786432 −128 −12375
−945899 136 13990 −945899 −136 −13990 945899 −945899 −136 −13990
−1131449 144 15758 −1131449 −144 −15758 1131449 −1131449 −144 −15758
−1346386 153 17689 −1346386 −153 −17689 1346386 −1346386 −153 −17689
−1594323 162 19792 −1594323 −162 −19792 1594323 −1594323 −162 −19792
−1879194 171 22078 −1879194 −171 −22078 1879194 −1879194 −171 −22078
−2205276 180 24557 −2205276 −180 −24557 2205276 −2205276 −180 −24557
−2577205 190 27239 −2577205 −190 −27239 2577205 −2577205 −190 −27239
−3000000 200 30135 −3000000 −200 −30135 3000000 −3000000 −200 −30135

(A.4)
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The flux choices for the three families considered in section 4.4 are of the following general
form,

family 1: hI = ( 1, 0, 1, 1 ) , hI = ( 3, h1, 1, h3 ) , f I = ( 0, 1, 0, 0 ) , fI = ( f0, f1, 0, f3 ) ,
family 2: hI = ( 0, 0, 0, 1 ) , hI = ( h0, h1, 0, h3 ) , f I = ( 1, 0, 0, 1 ) , fI = ( 2, f1, 1, f3 ) ,
family 3: hI = ( 1, 0, 0, 0 ) , hI = ( h0, h1, 1, h3 ) , f I = (−1, 1, 1, 1 ) , fI = ( f0, f1,−2, f3 ) ,

(A.5)

where the unspecified flux quanta take the values listed below.

family 1 family 2 family 3
h1 h3 f0 f1 f3 h0 h1 h3 f1 f3 h0 h1 h3 f0 f1 f3

−5 −2 8 5 3 −2 −4 −2 8 5 7 −11 −6 11 −5 −2
−12 −6 16 8 5 −10 −8 −4 12 7 19 −24 −13 19 −7 −3
−23 −11 34 14 8 −28 −14 −7 17 10 42 −44 −23 38 −9 −4
−39 −19 69 22 12 −64 −22 −12 25 15 84 −72 −38 75 −13 −6
−60 −30 132 32 18 −126 −32 −18 36 20 156 −109 −56 138 −19 −9
−87 −43 234 46 25 −229 −46 −25 49 28 270 −156 −81 243 −26 −12
−121 −60 394 63 34 −389 −63 −34 66 37 445 −216 −111 405 −34 −17
−163 −81 633 83 45 −627 −83 −45 87 48 702 −288 −148 646 −44 −22
−212 −106 976 108 59 −970 −108 −58 112 61 1066 −375 −192 992 −57 −28
−271 −135 1454 137 74 −1448 −137 −73 141 76 1570 −477 −244 1474 −71 −35
−339 −169 2105 172 92 −2099 −172 −91 175 94 2251 −597 −305 2128 −89 −44
−418 −209 2970 211 113 −2964 −211 −112 215 115 3151 −735 −375 2999 −108 −54
−508 −254 4100 256 136 −4094 −256 −136 260 138 4320 −893 −454 4134 −131 −65
−610 −305 5550 307 163 −5544 −307 −162 311 165 5815 −1071 −545 5591 −156 −78
−725 −362 7385 365 192 −7379 −365 −192 368 195 7700 −1272 −646 7433 −185 −92
−854 −426 9676 429 226 −9670 −429 −225 433 228 10047 −1497 −760 9732 −217 −108
−996 −498 12504 500 263 −12498 −500 −262 504 265 12938 −1747 −886 12569 −253 −126
−1154 −576 15957 579 303 −15952 −579 −303 583 306 16460 −2023 −1025 16032 −292 −146
−1327 −663 20135 666 348 −20129 −666 −347 669 350 20714 −2326 −1178 20221 −336 −167
−1517 −758 25146 761 397 −25140 −760 −396 764 399 25807 −2658 −1346 25243 −383 −191
−1724 −862 31108 864 450 −31102 −864 −450 868 452 31860 −3021 −1528 31218 −435 −217
−1949 −974 38151 977 508 −38145 −977 −507 980 510 39002 −3415 −1727 38275 −491 −245
−2193 −1096 46415 1099 570 −46410 −1099 −570 1102 573 47373 −3841 −1942 46555 −552 −276
−2457 −1228 56054 1230 638 −56049 −1230 −637 1234 640 57127 −4302 −2174 56210 −618 −308
−2740 −1370 67232 1372 711 −67226 −1372 −710 1376 713 68429 −4799 −2424 67406 −689 −344
−3045 −1522 80126 1524 788 −80120 −1524 −788 1528 791 81456 −5332 −2692 80318 −765 −382
−3371 −1685 94926 1688 872 −94920 −1688 −871 1691 874 96398 −5903 −2980 95139 −847 −423
−3720 −1860 111836 1862 961 −111831 −1862 −961 1866 963 113462 −6513 −3287 112071 −934 −466
−4092 −2046 131076 2048 1056 −131070 −2048 −1056 2052 1058 132864 −7165 −3614 131334 −1027 −513
−4488 −2244 152876 2246 1157 −152871 −2246 −1157 2250 1159 154838 −7858 −3963 153159 −1126 −562
−4909 −2454 177486 2457 1264 −177480 −2457 −1264 2460 1267 179632 −8594 −4333 177795 −1231 −615
−5356 −2677 205167 2680 1378 −205162 −2680 −1378 2684 1381 207508 −9376 −4726 205505 −1343 −671
−5828 −2914 236200 2916 1499 −236194 −2916 −1498 2920 1501 238748 −10203 −5142 236567 −1461 −730
−6328 −3163 270879 3166 1626 −270873 −3166 −1625 3170 1628 273645 −11077 −5581 271277 −1586 −792
−6855 −3427 309516 3430 1760 −309510 −3430 −1759 3433 1762 312513 −12000 −6045 309947 −1718 −858
−7411 −3705 352442 3707 1901 −352436 −3707 −1901 3711 1904 355682 −12973 −6534 352908 −1857 −928
−7996 −3998 400004 4000 2050 −399998 −4000 −2050 4004 2052 403500 −13997 −7048 400506 −2003 −1001

(A.6)

– 56 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
7

B Sl(2)-approximation for linear scenario example

In this section we summarize the relevant building blocks for the sl(2)-approximated Hodge
star (3.53). This consists of the weight and lowering operators Hi, N

−
i of the sl(2)-triples,

and the boundary Hodge star C∞. The weight operators are given by

N0
0 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 −2 −3 0 0 0 0 0
0 0 0 0 0 0 1 0 −2 −4 −6 0 0 0 0 0
0 0 0 0 0 0 0 1 −3 −6 −6 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 −1 −2 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



,

N0
L=



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 −1 −2 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 −1 0 0 0 2 0 0 0 0 0
0 0 0 0 0 1 0 −1 0 2 3 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 2 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



,

N0
1 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 1 2 1 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 −2 1 0 0 0 2 0 0 0 0 0
0 0 0 0 0 −1 1 −1 2 2 3 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 −2 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −2 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 1 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



,
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N0
2 =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 2 4 2 0 0 0 0 0
0 0 0 0 0 0 −1 1 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



. (B.1)

The lowering operators are given by

N−0 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 −1 −3

2 0 0 0 0 0 0 0 0 0 0 0
0 −4 −1 −2 −3 0 0 0 0 0 0 0 0 0 0 0
0 −9

2 −
3
2 −3 −3 0 0 0 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1

2 0 −1 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1

2 −1 2 4 9
2 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 1 3
2 0 0 0 0 0

0 0 0 0 0 0 −1 0 1 2 3 0 0 0 0 0
0 0 0 0 0 0 0 −1 3

2 3 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 1

2 1 0



,

N−L =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 −3 0 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0



,

– 58 –



J
H
E
P
0
3
(
2
0
2
2
)
1
1
7

N−1 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 −3 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 −1 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0



,

N−2 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 −1 −1

2 0 0 0 0 0 0 0 0 0 0 0
0 −4 −1 −2 −1 0 0 0 0 0 0 0 0 0 0 0
0 −5

2 −
1
2 −1 −1

2 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1

2 −1 0 0 1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 −1 −1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 −1 −2 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 −1

2 −1 −1
2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 −1 0



. (B.2)

Finally, the Hodge star operator of the boundary Hodge structure is given by

C∞ =



1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 −2 0 0 −1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 2 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 2 4 2 0 0 0 0 0
0 0 0 0 0 0 −1 1 1 2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 2 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1



. (B.3)
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C Operator relations for Calabi-Yau fourfolds

In the construction of the sl(2)-approximation two operators η and ζ appear, which can be
expressed componentwise in terms of δ with respect to the decomposition (3.39). In this
appendix we summarize these relations for Calabi-Yau fourfolds. For the purposes of this
work we only need ζ, but the expressions for η are included for completeness.

Before we state these relations, let us briefly recall how η and ζ are fixed in terms of δ.
The main relation between η, ζ and δ is given by [6]

eiδ = eζ
(
1 +

∑
k≥1

Pk(C2, . . . , Ck+1)
)
, (C.1)

where the polynomials Pk(C2, . . . , Ck+1) are defined recursively as

P0 = 1 , Pk = −1
k

k∑
j=1

Pk−jCj+1 , (C.2)

and coefficients Ck are given in terms of η as

Ck+1(η) = i
∑
p,q

bk−1
p−1,q−1η−p,−q , (1− x)p(1 + x)q =

∑
p,q,k

bkp,qx
k . (C.3)

Solving (C.1) componentwise for ζ−p,−q and η−p,−q in terms of δ−r,−s is still a rather non-
trivial task. In the mathematics literature [8] this was solved for the components of ζ for
threefolds.16 These results were extended in [42], where the components of η were given
in the threefold case. Following the strategy of these works [8, 42], we proceed and derive
the componentwise expressions for η and ζ for fourfolds. We refer to these articles for a
more detailed explanation on how to work out these operator relations. We can express ζ
componentwise in terms of δ as

ζ−1,−1 = ζ−2,−2 = 0 , ζ−1,−2 =− i2δ−1,−2 , ζ−1,−3 =−3i
4 δ−1,−3 , ζ−1,−4 =−7i

8 δ−1,−4 ,

ζ−2,−3 =−3i
8 δ−2,−3+ 1

8[δ−1,−2, δ−1,−1] , ζ−2,−4 =−5i
8 δ−2,−4+ 1

4[δ−1,−3, δ−1,−1] ,

ζ−3,−3 = 1
8[δ−2,−2, δ−1,−1] ,

ζ−3,−4 =− 5i
16δ−3,−4+ 3

16[δ−2,−3, δ−1,−1]+ 3
16[δ−1,−3, δ−2,−1]+ i

48[δ−1,−1, [δ−1,−1, δ−1,−2]] ,

ζ−4,−4 = 3
16[δ−3,−3, δ−1,−1]+ 3

32[δ−3,−2, δ−1,−2]+ 3
32[δ−2,−3, δ−2,−1]+ i

32[δ−1,−1, [δ−2,−1, δ−1,−2]] ,
(C.4)

16Furthermore, general expressions for the components ζ−p,−q and η−p,−q in terms of δ−p,−q were derived,
modulo commutators of δ−r,−s (r ≤ p and s ≤ q) left undetermined.
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while η is expressed componentwise as

η−1,−1 = −δ−1,−1 , η−1,−2 = −δ−1,−2 , η−1,−3 = −3
4δ−1,−3 , η−1,−4 = −1

2δ−1,−4 ,

η−2,−2 = −3
2δ−2,−2 , η−2,−3 = −3

2δ−2,−3 + i

2[δ−1,−1, δ−1,−2] ,

η−2,−4 = −5
4δ−2,−4 + 5i

8 [δ−1,−1, δ−1,−3] , η−3,−3 = −15
8 δ−3,−3 + 5i

4 [δ−2,−1, δ−1,−2] ,

η−3,−4 = −15
8 δ−3,−4 + 3i

8 [δ−1,−1, δ−2,−3]

+ 3i
2 [δ−2,−1, δ−1,−3] + 3i

4 [δ−2,−2, δ−1,−2] + 1
8[δ−1,−1, [δ−1,−1, δ−1,−2]] ,

η−4,−4 = −35
16δ−4,−4 + 63i

32 [δ−3,−1, δ−1,−3] + 21i
16 [δ−3,−2, δ−1,−2] + 21i

16 [δ−2,−1, δ−2,−3]

+ 7
48[δ−1,−1, [δ−1,−1, δ−2,−2]] + 7

24[δ−2,−1, [δ−1,−1, δ−1,−2]] + 7
24[δ−1,−2, [δ−1,−1, δ−2,−1]] .

(C.5)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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