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1 Introduction

Until recently, four-dimensional Anti de Sitter solutions of type IIB supergravity have been
relatively scarce. The earliest such supersymmetric solutions were found in [1, 2]. Then,
by applying non-abelian T-duality as a solution generating mechanism to some particular
type IIA backgrounds, the authors of [3, 4] augmented the set of such solutions. Further
examples were found using generalised geometry techniques [5, 6].

In the last few years, further progress has been made in constructing new families of
such AdS4 solutions where the internal six-dimensional manifold is given by a deformed
S5, times a S1. The peculiar characteristic of these new solutions is that fields acquire a
non-trivial SL(2,Z) monodromy around the S1. We refer to such backgrounds as S-folds.
A first family of this kind was presented in [7], by uplifting an N = 4 AdS4 vacuum of a
certainD = 4 gauged maximal supergravity with gauge group [SO(6)×SO(1, 1)]nR12 [8, 9].
In these solutions the monodromy around S1 belongs to a hyperbolic conjugacy class of
SL(2,Z), reflecting the SO(1, 1) factor in the four-dimensional gauge group. Their local
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expression was shown to match a singular limit of certain so called Janus solutions of SO(6)
gauged maximal supergravity in five dimensions [10, 11]. This then provided the link to
interface configurations of N = 4 super Yang-Mills and their circle compactifications [12–
15]. The CFT duals of this family of solutions were identified in [16]. From the CFT
perspective they can indeed be thought of as the infrared limit of the circle reduction
of certain interface configurations of N = 4 super Yang-Mills, or alternatively as quiver
Chern-Simons theories with links involving the so-called T [U(N)] theory [15]. These CFTs
were further studied and extended in [17–19].

This setup has been generalised in several directions. Solutions with fewer (or no) pre-
served supercharges have been constructed, again based on hyperbolic SL(2,Z) twists [20–
23]. Numerical studies based on subsectors of D = 5 SO(6) gauged maximal supergravity
uncovered an even richer landscape of AdS4 × S5 × S1 solutions [24, 25], also including
examples of globally geometric (periodic) configurations. The conformal manifolds and
Kaluza-Klein spectra of these classes of solutions have also been analysed [26–31].

In this paper we construct a new family of AdS4 solutions of IIB supergravity pre-
serving four supercharges and having internal space given by a deformed S5 × S1. At
the maximally symmetric point, an SO(3) subgroup of isometries of the five-sphere is also
preserved, which is broken to U(1) along a flat direction. We find these solutions by up-
lifting a new family of supersymmetric vacua of a D = 4 gauged maximal supergravity
with gauge group U(4) n R12 ' [SO(6) × SO(2)] n R12, which is a close cousin of the
[SO(6) × SO(1, 1)] n R12 that has recently received much attention. Both these gaugings
were shown in [7] to arise from type IIB supergravity via a generalised Scherk-Schwarz
reduction on S5 × S1, where all the S1 dependence is encoded in an SL(2) element A(η).
Whether this element is generated by a compact or non-compact generator of SL(2) de-
termines if the gauge group contains an SO(2) or SO(1, 1) factor, respectively.1 We will
display the full type IIB uplifts of the SO(3) invariant vacuum and briefly discuss how the
flat direction can be interpreted as a non-trivial fibering of S5 over S1, in full analogy with
other solutions in the literature [28, 29], but also provide a convenient and complemen-
tary D = 5 interpretation. The resulting ten-dimensional solutions share the same local
expression and are distinguished globally by a choice of periodicity of the S1 coordinate
η. Depending on this choice, these backgrounds can be either globally geometric, with all
fields single-valued along S1, or S-fold configurations. Contrary the other analytic solutions
in the literature, the S-folds found here involve a monodromy in an elliptic conjugacy class
of SL(2,Z), rather than the hyperbolic class.

The U(4) n R12 gauging studied here was already found to admit an unstable AdS4
solution in [32]. The supersymmetric solution we present here was first found numerically,
following a limiting procedure starting from an SO(3) preserving vacuum of the ω deformed
SO(8) gauged supergravity [33]. This is a small part of a much vaster numerical analysis
of D = 4 gauged maximal supergravity vacua that will be presented elsewhere [34].

The uplift of the D = 4 solution to type IIB supergravity is carried out using the
framework of exceptional field theory [35–40]. Exceptional field theory provides us with an

1A parabolic A(η) can also be considered, giving a translation factor instead of SO(2) or SO(1, 1).
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organising principle of how the metric and various p-form fields of supergravity combine
while at the same time realising various duality symmetries in a manifest way. This is
particularly useful for investigating objects like S-folds where duality is a key ingredient
of the solution. For a full review of exceptional field theory and its recent applications
see [41].

Given the low amount of residual (super)symmetry, the final ten-dimensional expres-
sions are rather convoluted. However, a few important observations can be made. The
profiles of the axio-dilaton (3.51)–(3.53) and its S1 dependence may be important to look
for the CFT duals of this family of solutions, just as the axio-dilaton profile of the N = 4
S-fold solution in [7] was used in [16] to construct Janus configurations of N = 4 SYM
preserving sixteen supercharges and admitting compactification to three dimensions with a
SL(2,Z) duality twist. Furthermore, we find that the internal metric exhibits cross-terms
between S5 and S1 that cannot be removed by globally defined diffeomorphisms, which dis-
tinguishes it from other solutions in the literature. Our new solutions can also be phrased
as solutions of D = 5 SO(6) gauged maximal supergravity with AdS4×S1 topology. In this
case, starting from the SO(3) invariant solutions, we can extract the (constant) warp factor
and also interpret the cross-terms of the type IIB internal metric in terms of a non-trivial
Wilson loop along S1, associated with the singlet in the decomposition of the SO(6) gauge
connection with respect to the residual SO(3). This interpretation immediately suggests
the existence of a flat direction breaking SO(3) to U(1), corresponding to turning on a
second Wilson loop in D = 5, this time associated with the gauge connection of such
residual U(1) rather than a broken symmetry. Indeed, we straightforwardly identify such
one-parameter deformation with an axionic flat direction in the D = 4 U(4) n R12 model
and find it preserves N = 1 supersymmetry. Such flat direction is entirely analogous to
similar ones found for vacua of the [SO(6)× SO(1, 1)] nR12 gauging [20, 22, 27–30].

The residual symmetries and periodicity properties of our solutions are also shared
with numerical solutions found in [24, 25] and one may wonder whether the two are in fact
the same. We argue that this is not the case, based on the five-dimensional warp factor
and the comparison of the free energy for the solutions, as well as on the presence of a
non-trivial Wilson loop in our case.

The rest of this paper is organised as follows. In section 2 we review the necessary
ingredients of D = 4 gauged supergravity and describe the new N = 1 AdS4 vacuum
of U(4) n R12 gauged maximal supergravity. In section 3 we summarise the framework
of exceptional field theory and generalised Scherk-Schwarz reductions, and then proceed
to uplift the SO(3) invariant four-dimensional solution to type IIB supergravity. We also
give a discussion of globally geometric and S-fold configurations, valid for the uplift of any
solution of the U(4)nR12 model. In section 4 we discuss the non-triviality of the cross-terms
in the internal metric by interpreting them as a D = 5 Wilson loop associated with a broken
symmetry, and describe how Wilson loops associated to preserved symmetries give rise to
an axionic flat direction. We also discuss how to make contact with previous literature on
similar axionic deformations. We conclude in section 5. The appendix contains some basic
information on our parameterisation of E7(7) and some relevant subgroups.
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Note added. The same SO(3) invariant solution of D = 4, U(4) nR12 gauged maximal
supergravity was also found independently by Friðrik Gautason. Discussions took place
with him and Nikolay Bobev about the existence of a flat direction and its interpretation.
Their analysis will be published elsewhere [42].

2 A new solution of U(4)nnnRRR12 gauged maximal supergravity

2.1 D = 4 gauged maximal supergravity

The field content of maximal supergravity in D = 4 dimensions is given by a metric gµν ,
vector fields AMµ in the 56 representation of the global E7(7) symmetry of the theory, scalar
fields parametrising E7(7)/SU(8), as well as gravitini in the 8 and spin 1/2 fermions in the
56 of SU(8). Only 28 of the vector fields carry independent degrees of freedom, while the
other half are their magnetic dual. The (lagrangian) gaugings of maximal supergravity are
captured by an embedding tensor ΘM

α in the 912 of E7(7) [43]. The index α corresponds
to an adjoint (133) index of e7(7), and the role of ΘM

α is to select a subalgebra g of e7(7)
and couple it to the vector fields so that one can define covariant derivatives

Dµ = ∂µ −AMµ ΘM
αtα , (2.1)

where tα form a basis of e7(7). We absorb the gauge coupling constant into the embedding
tensor. The embedding tensor must satisfy a quadratic constraint that guarantees closure
of the gauge algebra as well as gauge invariance of ΘM

α itself:

ΘM
αtαN

PΘP
β + ΘM

αΘN
γfαγ

β = 0 , (2.2)

where tαMN are the generators in the 56 representation and fαγβ the e7(7) structure con-
stants. The embedding tensor can also be written contracted with generators tαMN in
which case it is usually denoted by XMN

P :

XMN
P = ΘM

αtαN
P . (2.3)

All couplings of the gauged theory are determined by supersymmetry. In this work we
will mainly be concerned with the scalar potential and the supersymmetry transformations
of the fermions. Introducing the E7(7)/SU(8) coset representative VMN (and its inverse
VMN ), where the underlined index transforms under the local SU(8), we define the scalar
field dependent T -tensor

TMN
P = VMMVNN XMN

P VP P , (2.4)

which can be decomposed into SU(8) representations according to

912 → 36 + 36 + 420 + 420 . (2.5)

Introducing SU(8) indices i, j, k, . . . in the 8 and 8̄, the T -tensor decomposes into the
fermion shifts A1 ij and A2 i

jkl and their conjugates, with

A1 ij = A1 (ij) , A2 i
jkl = A2 i

[jkl] , A2 i
ijk = 0 , (2.6)
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and complex conjugation is given by raising/lowering of all SU(8) indices. We use the same
normalisations as [43]. The fermion shifts appear in the fermion supersymmetry transfor-
mations (the dots correspond to terms that vanish when looking at vacuum solutions) as
follows

δψiµ = 2Dµεi + . . .+
√

2Aij1 γµεj (2.7)
δχijk = . . .− 2εlA2 l

ijk , (2.8)

and in the scalar potential

V = 1
24A2 i

jklAi2jkl −
3
4A1 ijA

ij
1 . (2.9)

The stationarity condition for the scalar potential is then given by

Qijkl + 1
24ε

ijklmnpqQmnpq = 0 , Qijkl = 3
4A2m

n[ijA2n
kl]m −Am[i

1 A2m
jkl] . (2.10)

One can also construct a SU(8) invariant combination of the coset representatives,
which is especially convenient when looking at bosonic backgrounds. It reads

MMN = VMMVNN∆MN , (2.11)

where ∆MN is the SU(8) invariant defined by the associated Cartan involution. The scalar
potential then reads

V = 1
672

(
MMNMPQMRSXMP

RXNQ
S + 7MMNXMP

QXNQ
P
)
. (2.12)

2.2 The U(4)nnnRRR12 gauging

It will be convenient to decompose E7(7) with respect to its SL(8,R) subgroup. We in-
troduce indices A, B, . . . = 1, . . . , 8 in the SL(8,R) fundamental, and use the branching
133→ 63 + 70 to decompose the e7(7) generators into

tAB , tABCD , (2.13)

where the former are traceless and the latter fully antisymmetric.
Under SL(8,R), the embedding tensor representation branches as 912 → 36 + 36′ +

420 + 420′ and a large family of consistent models is given by the first two representa-
tions, which we identify with symmetric tensors θAB and ξAB and subject to the quadratic
constraint θACξCB ∝ δBA [8]. The resulting gauge groups are contained within SL(8,R).
The E7(7) defining representation then branches as 56 → 28 + 28′ which we represent
in double-index notation as VM → (V[AB] , V

[AB]). We can then write the non-vanishing
components of the embedding tensor as follows:

Θ[AB]
C
D = 2 δC[AθB]D , Θ[AB]C

D = 2 δ[A
D ξ

B]C
. (2.14)

We are interested in the gauging determined by the following choice of θAB and ξAB:

θAB = diag(1, 1, 1, 1, 1, 1, 0, 0) (2.15)
ξAB = diag(0, 0, 0, 0, 0, 0, 1, 1) .
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One easily checks that the quadratic constraint (2.2) is satisfied, and that the gauge algebra
is su(4) + u(1) plus 12 nilpotent, commuting generators transforming in the 6+1 + 6−1
representation of su(4) + u(1). We therefore identify a U(4) nR12 gauge group.2

2.3 The N = 1 (ZZZ2)3 invariant truncation

We consistently truncate the maximal theory to an N = 1 subsector based on a (Z2)3

global symmetry, reflecting a certain G2 structure orbifold of a seven-torus [44, 45]. The
discrete symmetries are embedded into the 8 of SL(8,R) as the finite transformations3

g1 = diag(+1, +1, +1, −1, −1, −1, −1, +1) , (2.16)
g2 = diag(−1, −1, +1, +1, +1, −1, −1, +1) ,
g3 = diag(−1, +1, −1, −1, +1, −1, +1, +1) ,

and are then embedded into E7(7). No vectors survive the truncation, while the invariant
scalars parametrise an

(
SL(2)/SO(2)

)7 coset space. We associate the seven (positive)
dilatons with the sl(8) generators

s ↔ + t11 + t22 + t33 − t44 − t55 − t66 − t77 , (2.17)
t1 ↔ + t11 − t22 − t33 − t44 + t55 + t66 − t77 ,

t2 ↔ − t11 + t22 − t33 + t44 − t55 + t66 − t77 ,

t3 ↔ − t11 − t22 + t33 + t44 − t55 − t66 − t77 ,

u1 ↔ + t11 − t22 − t33 + t44 − t55 − t66 + t77 ,

u2 ↔ − t11 + t22 − t33 − t44 + t55 − t66 + t77 ,

u3 ↔ − t11 − t22 + t33 − t44 − t55 + t66 + t77 ,

and the associated axions σ, τa and νa (a = 1, 2, 3) with

tABC8 , [ABC] ∈ {123 , 156 , 246 , 345 , 147 , 257 , 367} , (2.18)

where each triplet corresponds to one of the axions in the same order as for the dilatons
above. We then define

S = s + i σ , Ta = ta + i τa , Ua = ua + i νa , (2.19)

and take all fields canonically normalised. Each SL(2) factor is completed by the dual
of the associated axion generator, e.g. the S factor is completed by t4567 and so on. By

2This gauging was denoted [SO(6) × SO(2)] n T 12 in [8]. Gravitini however transform in the 4 + 4̄ of
su(4), hence we prefer the notation above.

3E7(7) truly only contains SL(8,R)/Z2 as a subgroup, hence the overall signs are inconsequential. We
fix the ambiguity by requiring the generators to sit in the same SL(7) subgroup, reflecting the structure
group of an internal torus in a standard Kaluza-Klein reduction from eleven dimensions. A similar sign
ambiguity comes from the action of these (Z2)3 on the fermions, which transform in the double cover SU(8)
of the SU(8)/Z2 subgroup of E7(7). The choice determines which gravitino survives the truncation, but up
to conventions (fixed by comparing with the superpotential) the final model is the same.
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also embedding (Z2)3 into SU(8), one finds that only one gravitino survives the (Z2)3

invariant truncation, hence the resulting theory is N = 1. The Kähler potential is K =
−
∑
X log(X + X̄) for X = (S, Ta, Ua).
The embedding tensor must also be invariant under (Z2)3 for the truncation to be

consistent. When this is the case, the superpotential of the N = 1 model is identified from
the only invariant eigenvalue of A1 ij (more precisely, this eigenvalue equals κ2

√
2e
κ2K/2W in

the normalisation conventions of [46]). The form of this superpotential for all compatible
N = 8 gaugings was given in [47]. For gaugings based on diagonal θAB and ξAB, we have

−1
2W = θ11 S T1U2U3 + θ22 U1U3T1T3 + θ33 S U1U2T3 + θ44 U2U3T2T3 (2.20)

+ θ55 S U1T2U3 + θ66 U1U2T1T2 + θ77 S T1T2T3 + θ88

+ i ξ11 T2T3U1 + i ξ22 S T2U2 + i ξ33 T1T2U3 + i ξ44 S T1U1

+ i ξ55 T1U2T3 + i ξ66 S T3U3 + i ξ77 U1U2U3 + i ξ88 S T1T2T3U1U2U3 .

This fully determines the N = 1 model. In particular, the Kähler covariant derivative of
the superpotential is (we set κ2 = 1)

DXW = ∂W

∂X
+ ∂K

∂X
W , (2.21)

where X are again the seven complex scalar fields. The metric on the scalar manifold is
gXY = ∂X∂YK, and the scalar potential is given by

V = eK
(
gXYDXW DYW − 3|W |2

)
. (2.22)

2.4 The SO(3) invariant solution

We now focus on the U(4) n R12 gauging defined by (2.15). We immediately notice that
we can further consistently truncate the N = 1 model of the previous section to an SO(3)
invariant subsector (breaking the 6 of SU(4) to 3 + 3) given by

Ta = T, Ua = U . (2.23)

Within this subsector, imposing supersymmetry by setting DXW = 0 reduces to the con-
ditions

3 S̄ T − 3T 2 + i U
(
S̄ T 3 − 1

)
= 0 ,

2|T |2 − T 2 − i U + S
[
T̄ + T

(
i |T |2U − 2

)]
= 0 , (2.24)(

S + T
)
T
(
2Ū − U

)
+ i |U |2

(
1 + S T 3) = 0 ,

which have the only two solutions

S =
√

5 + 5i
5 31/4

√
2
, T =

√
5− i

31/4
√

2
, U =

√
5 + 2i√

3
, (2.25)

S =
√

5− 5i
33/4
√

2
, T =

√
5 + i

33/4
√

2
, U =

√
5 + 2i√

3
. (2.26)
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Both of these solutions are indeed stationary points of the scalar potential of the full N = 8
theory. An explicit parametrisation of the full E7(7)/SU(8) coset representative is described
in appendix A. The value of the potential at the extrema equals

Λcosm = −243
√

3
25
√

5
. (2.27)

Thus, these are indeed new N = 1 AdS4 solutions in the full maximal supergravity.
We now summarise the mass spectrum at these vacua. The scalar field masses are

given as (m2
scalL

2)multipl. with Λcosm = −3/L2:

0×28 , −20
9
×5
, −2×3 , −8

9
×3
,

4
3
×5
, 8×6 , 10 , 18 , 71− 3

√
89

9

×5

,
71 + 3

√
89

9

×5

,

− 2.223210 , −1.55059 , 3.42004 , 9.18240 , 10.2209 , 18.2838 .
(2.28)

Out of the 28 massless scalars, 25 are Goldstone bosons for the broken gauge symmetries.
The six numerical values in the second line can be written exactly as the solutions y∗ of
a polynomial equation, which comes from factorisation of the eigenvalue equation for the
scalar field mass matrix and after simplification reduces to

6561 y6
∗ − 244944 y5

∗ + 2793852 y4
∗ − 7955712 y3

∗ (2.29)
−28909760 y2

∗ + 71795200 y∗ + 132736000 = 0 .

This is the minimal polynomial encoding the associated mass eigenvalues. The vector field
masses (m2

vecL
2)multipl. are

0×3 , 2×4 ,
41− 3

√
41

9

×3

,
10
3
×5
, 6×4 ,

41 + 3
√

41
9

×3

, 10×6 , (2.30)

and we recognise the three massless vectors associated to the residual SO(3) symmetry.
The gravitino masses (m2

3/2L
2)multipl. are

1 , 4×4 ,
41
9
×3
, (2.31)

and we identify the first eigenvalue with the preserved supersymmetry. Finally, the eigen-
values (m2

1/2L
2)multipl. of the (unprojected) mass matrix for the spin 1/2 fields are

0×3 ,
4
9
×5
, 1×3 , 4×4 ,

41
9
×3
,

89
9
×5
, 16×5 ,

164
9
×3
,

21−
√

41
2

×6

,
21 +

√
41

2

×6

,
23−

√
129

6

×5

,
23 +

√
129

6

×5

,

0.113103 , 8.30122 , 16.2523 .

(2.32)

The numerical values are the solutions y∗ of the equation 81y3
∗−1998y2

∗+11153y∗−1236 = 0,
and similar comments apply as for the numerical values in (2.28).

As we anticipated, the SO(3) invariant solutions identified here can be generalised to
a one-parameter family of U(1) invariant ones, by turning on an axionic deformation. The
relevant axion is not contained within the N = 1 subsector analysed here. We will discuss
this flat direction in section 4.2 and the end result is displayed in equation (4.10).
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3 Uplift to type IIB supergravity

3.1 IIB supergravity expressions

Let us briefly summarise our notation and conventions for type IIB supergravity. The
bosonic field content is given by an (Einstein frame) ten-dimensional metric, an SL(2)
doublet of two-form potentials Ba

2 (with a = 1, 2 in the SL(2) fundamental), a four-form
potential C4 and an axio-dilaton parametrising SL(2)/SO(2) which we can write as a com-
plex scalar τ or in terms of a symmetric 2× 2 matrix mab:

τ = C0 + i e−φ , mab =

e−φ + eφC2
0 −eφC0

−eφC0 eφ

 . (3.1)

Defining field strengths

F a3 = dBa
2 , F5 = dC4 −

1
2εabB

a
2 ∧ F b3 , (3.2)

the dynamics are captured by the pseudo-action

SIIB =
∫

d10x
√
−gIIBR+ 1

4

∫
dmab ∧ ?dmab − 1

2

∫
mabF

a
3 ∧ ?F b3 −

1
4

∫
F5 ∧ ?F5

− 1
4

∫
εabC4 ∧ F a3 ∧ F b3 ,

(3.3)

combined with the self-duality constraint F5 = ?F5.

3.2 Exceptional field theory and generalised Scherk-Schwarz reductions

The maximal gauged supergravity defined by (2.15) is known to descend from type IIB
supergravity through a generalised Scherk-Schwarz reduction [7, 48–52]. This is where a
Scherk-Schwarz type of reduction is carried out inside the framework of E7(7) exceptional
field theory [36]. See [41] for a review of the whole subject, and references therein. In ExFT,
the spacetime is split into two parts, an external space, where we will have coordinates xµ,
which is described by usual Riemannian geometry and an internal space, with coordinates
ym, which is described by an extended exceptional geometry. Thus in the ExFT formu-
lation the relevant (bosonic) fields of IIB supergravity are encoded by a four-dimensional
Einstein frame metric ĝ(x, y)µν and a unimodular generalised metric M̂(x, y)MN , analo-
gous to (2.11), parametrising a E7(7)/SU(8) coset. We will not need vector fields and other
p-forms in this paper. All the fields depend on the external spacetime coordinates xµ and
on the internal space coordinates ym. The associated derivatives ∂m = ∂

∂ym are embedded
into an exceptional internal derivative ∂M which lies in the 561 of E7(7)×R+ according to
the decomposition

561 → (1,6)+1 + (2,6′)−1 + (1,20)−3 + (2,6)−5 + (1,6′)−7 (3.4)

under the SL(2) × GL(6) subgroup of E7(7) × R+ that we identify with the global sym-
metry of type IIB supergravity times the GL(6) structure group of the internal manifold.
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The derivatives ∂m are mapped into the first (boxed) entry, with all other entries in ∂M
vanishing. This then determines a solution (in the IIB maximal orbit) of the ExFT section
constraint, which we review below.

Let us now describe some of the salient features of exceptional field theory. The local
symmetry of E7(7) exceptional field theory is described by generalised diffeomorpshisms [53].
These are generated by generalised vectors ΛM (in the 56−1) acting on fields through the
generalised Lie derivative as follows:

LΛV
M = ΛP ∂PVM − V P ∂PΛM −

(
12 tαMN tαPQ + 1

2ΩMNΩPQ

)
∂NΛP V Q . (3.5)

ΩMN = ΩMN is the E7(7) symplectic invariant (we use NW-SE conventions to raise and
lower 56 indices). Consistency of the theory, by which we mean closure of this algebra,
requires us to impose a constraint on the internal derivatives ∂M , which reads

tα
MN∂M ⊗ ∂N = 0 = ΩMN∂M ⊗ ∂N . (3.6)

This is sometimes called the section constraint or strong constraint [53, 54]. This determines
how the physical internal derivatives are embedded into ∂M . More intuitively, the solution
of the section condition describes how the physical spacetime is embedded in the extended
space. This section constraint may be solved by the embedding described in (3.4) providing
us with an embedding of IIB supergravity in ExFT.

We do not need to review the whole structure and dynamics of E7(7) ExFT. It suffices
to state that vacuum solutions of a maximal D = 4 gauged supergravity can be uplifted to
ten- or eleven-dimensional supergravity (depending on how we solve the section constraint)
if we can find a generalised frame (or twist matrix) for the internal space

E(y)M̄
M ∈ E7(7) × R+ , (3.7)

where the barred indices are inert under the action of the generalised Lie derivative. This
twist matrix must satisfy the condition

LEM̄EN̄
M = −XM̄N̄

P̄EP̄
M , (3.8)

where XM̄N̄
P̄ is independent of y and corresponds to the embedding tensor of the gauged

supergravity. From now on, indices of gauged supergravity will be barred (in contrast to
section 2) to distinguish them from ExFT ‘curved’ indices. If (3.8) holds, vacuum solutions
are uplifted by first embedding them into ExFT through the relations

ĝ(x, y)µν =
[
detE(y)

]1/28
g(x)µν ,

M̂(x, y)MN =
[
detE(y)

]1/28
E(y)MM̄E(y)NN̄MM̄N̄ ,

(3.9)

where g(x)µν is the dS, Minkowski or AdS metric of the gauged supergravity vacuum
solution andMM̄N̄ encodes the (constant) scalar vevs. The inverse frame E(y)MM̄ appears
in the second line.

The expressions for the standard ten- or eleven-dimensional supergravity fields are
then recovered from their embedding in ExFT. In our case of uplifts from four dimensions
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to IIB supergravity, these expression were given in [7] and we reproduce them here for
convenience. We use indices m,n, . . . = 1, . . . , 6 for the internal space and a, b, . . . = 1, 2
for SL(2) doublets. Using the decomposition (3.4), the generalised metric M̂MN can be
decomposed in several blocks:

M̂MN =


M̂mn M̂m

nb M̂mn1n2n3 M̂mnb M̂m
n

M̂ma
n M̂manb M̂man1n2n3 M̂ma

nb M̂man

M̂m1m2m3 n M̂m1m2m3
nb M̂m1m2m3 n1n2n3 M̂m1m2m3 nb M̂m1m2m3

n

M̂man M̂ma
nb M̂man1n2n3 M̂manb M̂ma

n

M̂m
n M̂mnb M̂m

n1n2n3 M̂m
nb M̂mn

 .

(3.10)
Denoting by Gmn the internal metric, mab the axio-dilaton matrix, Bmna the doublet of
internal two-form potentials, and Cmnpq the internal four-form potential, we have

M̂mn = G−1/2Gmn ,

M̂m
nb = 1√

2
G−1/2GmpBpn

cεcb ,

M̂manb = 1
2G
−1/2Gmnmab + 1

2G
−1/2GpqBmp

cBnq
dεcaεdb ,

M̂p
qmn = −2G−1/2Gpr

(
Crqmn −

3
8εabBp[q

aBmn]
b
)
.

(3.11)

This suffices to identify all the non-vanishing IIB fields.

3.3 IIB origin of U(4)nnnRRR12 gauging

The uplift of the gauging (2.15) can be phrased in terms of a generalised frame taking
values in the SL(8,R) subgroup of E7(7) (times the trombone R+) [7]. To be more precise,
we need to further separate the internal derivatives into those on S5 and the one on the
extra circle. Using SL(8,R) indices, we first decompose ∂M into electric and magnetic
components as

∂M → (∂AB, ∂AB) . (3.12)

The internal derivatives along the S5 coordinates ϕI , I = 1, . . . , 5, are then embedded into
the first half of the exceptional derivative as

∂I6 = ∂

∂ϕI
. (3.13)

The derivative along the S1 direction η is instead one of the ‘magnetic’ components:

∂78 = ∂

∂η
. (3.14)

All other components of ∂M vanish. This embedding of the physical derivatives shows
that there is an SL(2) subgroup of SL(8,R, ) acting on indices A = 7, 8, that is preserved
and hence identified with the global symmetry of IIB supergravity. The GL(6) internal
group acting on the six internal derivatives, corresponding to the decomposition (3.4), is
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not entirely contained within SL(8,R) — only a GL(5) subgroup is, as reflected by the
circle coordinate being identified with a magnetic element of the 56.

We use here a different (but equivalent) presentation of the generalised frame compared
to [7], which will make some statements later easier to illustrate. The internal space
associated to the uplift of a gauged supergravity is always defined by a coset space based
on the (possibly centrally extended) gauge group [55, 56]. In our case, we have4

S5 × S1 = U(4) nR12

USp(4) nR12 . (3.15)

Using this fact, one introduces a coset representative L(y) with transformation properties
under the transitive action of the numerator in (3.15) L(y′) = h(y)L(y)g with g in the gauge
group and h(y) in the isotropy subgroup. The Maurer-Cartan form then is decomposed as

dLL−1 = e̊m
m dym Tm +Qm

i dym Ti , (3.16)

with Tm and Ti a set of coset and isotropy group generators, respectively, and e̊m
m a

‘reference vielbein’ on the manifold. The latter can be seen as an element of the GL(6)
structure group of the internal manifold, and as such has a natural embedding into E7(7)×
R+ following the decomposition (3.4). Similarly, the coset representative L(y) has an
embedding in E7(7) because it is an element of the gauge group. The generalised frame
then takes the universal form [56]

EM̄
N = (L−1)M̄

N̄ (̊e−1)N̄
P CP

N , (3.17)

where CPN encodes part of the information on the reduction ansatz of the higher-dimen-
sional scalars and p-forms (but not the internal metric) and takes values in a subgroup of
E7(7) × R+ defined by

CM
N∂N = ∂M , (3.18)

with ∂M on section as described above.
In our case, all three factors in the right hand side of (3.17) can be parametrised so that

they only take values in SL(8,R) times the trombone R+. This is obvious for (L(y)−1)M̄ N̄ ,
which is valued in the gauge group. In particular, we can choose it to be in U(4) as all the
R12 translations are part of the isotropy group. A natural choice of coset parametrisation
allows us to make e̊ block-diagonal in the S5 and S1 directions, and hence valued in the
GL(5) subgroup of GL(6) which sits inside SL(8,R), up to a determinant factor (which will
give the trombone component of the generalised frame). Finally, CMN will only encode
the four-form potential on the five-sphere that generates the flux needed for its generalised
parallelisation [51]. These are also associated with some SL(8,R) elements as we will
describe in a few moments.

4In fact, the equality only has to hold for the universal coverings, and discrete quotients may differ. In
this case, the period of the S1 need not be related to the U(1) charges in the gauged supergravity. Also
notice that we may write SO(6) in place of SU(4) and SO(5) in place of USp(4), reproducing the gauge
group as it is realised on the bosons. This matters for the embedding of the coset representative in the 56
which we use in a few moments.
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We thus write our expressions in the fundamental of SL(8,R) (up to the trombone
component which is easy to add back at the end). We break it down to SL(6) × SL(2) ×
SO(1, 1) to reflect the separation of the directions A = 7, 8 on which the IIB SL(2) acts.
The SL(6) here acts on A = 1, . . . , 6.5

The coset representative takes values in the SO(6)×SO(2) subgroup of SL(6)×SL(2),
corresponding to the reductive part of the gauge group as realised on the bosons. We then
write in terms of 6× 6 and 2× 2 blocks6

LĀ
B̄ =

 LS5(ϕ)

A(η)

 , A(η) = g

cos η − sin η
sin η cos η

 , (3.19)

where LS5(ϕ) parametrises S5 = SO(6)/SO(5) in terms of a choice of coordinates ϕI and
A(η) is just a rotation dependent on the S1 coordinate η, multiplied from the left by some
constant SL(2) element g. The latter does not affect the consistency of the generalised
frame, which is going to reproduce the embedding tensor defined in (2.15) for any choice
of g. We will specify it in the next subsection when we discuss S-fold configurations.

The reference vielbein e̊I
I on S5 is obtained from LS5 and corresponds to a round

sphere of unit radius. The one on the circle is just 1. The embedding in the SL(8,R)
fundamental is then written as follows, this time separating blocks for A = I = 1, . . . , 5,
A = 6, and A = 7, 8:

ůA
Ā =


e̊−

1
4 e̊I

I

e̊
3
4

e̊−
1
4 δa

b


, (3.20)

where we write e̊ for the determinant of the reference vielbein. Embedding the SL(8,R)
element above into the 56 of E7(7), one has to add a trombone component proportional to
the determinant e̊ in order to reproduce the correct embedding of the vielbein reproducing
the decomposition (3.4). One then has

e̊M
M̄ = e̊−

1
2 ůM

M̄ , (3.21)

and similarly for the inverse e̊M̄M .
Finally, the four-form generating the five-form flux on S5 is encoded in the following

matrix

CA
B =


δI
J

CJ 1

δa
b


, ∂JC

J = 4 e̊ . (3.22)

5We stress that this is not the same as the SL(6) subgroup of the structure GL(6,R) giving rise to (3.4)
— the latter is not contained in SL(8,R). They share an SL(5) subgroup acting on A = I = 1, . . . , 5.

6The barred indices Ā, B̄ play the same role as M̄, N̄ but for the fundamental of SL(8,R) — i.e., they
are inert under generalised diffeomorphisms.
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The generalised frame for the U(4) n R12 gauging (2.15) is obtained by combining these
expressions into (3.17). The embedding of SL(8,R) into E7(7) is reviewed in appendix A.

Incidentally, exchanging A(η) in (3.19) with an hyperbolic or parabolic element of
SL(2), one recovers generalised parallelisations for [SU(4) × SO(1, 1)] n R12 and [SU(4) ×
R]nR12 gaugings, respectively, while A(η) = constant gives the CSO(6, 0, 2) gauging [7, 52].

3.4 Globally geometric and S-fold configurations

The generalised Scherk-Schwarz ansatz is generally globally consistent on the universal
covering of the internal manifold, which in our case is S5 × R, the line being associated
to the coordinate η. The generalised frame is however clearly periodic in the R direction,
which allows us to perform the identification η ∼ η + 2πk and obtain a globally defined
frame on S5 × S1, with k ∈ N∗ indicating how many times the SL(2) twist A(η) winds
around the circle. Any solution of U(4) n R12 gauged supergravity, and in particular the
one we discuss here, can then be uplifted to a family of globally geometric solutions of IIB
supergravity, parametrised by the winding number k.

By changing the periodicity of η we can also consider S-fold configurations, just as
discussed in [7] for the uplift of [SU(4)× SO(1, 1)] nR12 gauged supergravity. The idea is
to patch the fields of type IIB supergravity along S1 by some element of its SL(2,Z) global
symmetry. This is an example of compactifications with duality twists as discussed in [57].
In our case, the monodromy must be a representative of one of the elliptic conjugacy classes
of SL(2,Z):

M2 =
(
−1 0
0 −1

)
, M3 =

(
0 1
−1 −1

)
, M4 =

(
0 1
−1 0

)
, M6 =

(
1 1
−1 0

)
, (3.23)

generating Zn, for n = 2, 3, 4 and 6 respectively.
In practice, all expressions described in the previous sections are unchanged, except

for a change in periodicity in η and a n-dependent choice of the constant g ∈ SL(2) element
appearing in the definition (3.19) of A(η) (which from now on we denote gn), such that

η ∼ η + 2π
n

+ 2πk , k ∈ N , A(η) = gn

cos η − sin η
sin η cos η

 : A(2π/n) = Mn . (3.24)

The constant SL(2) transformation gn simply amounts to a field redefinition of the IIB
fields. It equals the identity for the globally geometric case n = 1 as well as for n = 2 and
4. For the odd cases one finds

g3 =

 −
√

3
2 −1

2
1
2(1 +

√
3) 1

2(1−
√

3)

 , g6 =

1
2(1−

√
3) 1

2(1 +
√

3)

−1
2 −

√
3

2

 . (3.25)

We conclude that solutions of U(4) n R12 gauged supergravity uplift to families of
solutions of type IIB supergravity on S5×S1, parametrised by the order n = 1, 2, 3, 4, 6 of
an elliptic SL(2,Z) twist along the circle and a winding number k. The cases where n = 1
correspond to globally geometric configurations.
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3.5 Linear realisation of SO(3) isometry

In order to display explicit expressions for the uplift of the N = 1, SO(3) invariant solu-
tion (2.25), we use a parametrisation of the S5 coset representative such that these residual
isometries are realised linearly.

We begin by regarding S5 as the product of two S2 fibered over an interval, with either
one of the two factors smoothly shrinking to zero size at each endpoint. This makes an
SO(3) × SO(3) group of isometries manifest, one for each sphere. We are interested in
linearly realising the diagonal subgroup. We denote embedding coordinates for the two S2

by ~P and ~Q respectively, with P 2 = Q2 = 1. Introducing SO(3) indices i, j, . . . = 1, 2, 3,
we have the SO(3) generators

(Tij)k
l = 2δk[iδj]

l , (3.26)

and then define the embedding coordinates as

~P = (0, 0, 1) ·O , ~Q = (0, 0, 1) · eωT23 ·O , O ∈ SO(3) , (3.27)

where O is a generic SO(3) rotation. The interpretation is that the sphere associated to
~Q is first rotated by ω with respect to the first sphere, then acting diagonally by arbitrary
SO(3) transformations allows to entirely cover both spheres independently. Finally, the S5

embedding coordinates are

Y = (cos θ ~P , sin θ ~Q) , Y 2 = 1 . (3.28)

In the following we need a coordinate parametrisation of the SO(3) rotation, which we pick
to be

O = e−γT12 e(α−
π
2 )T23 e(β−

π
2 )T12 , (3.29)

so that for instance ~P = (cosα cosβ, cosα sin β, sinα). The full coset representative LS5

is then given by the 6× 6 matrix

LS5 =

sin θ 13 − cos θ 13

cos θ 13 sin θ 13

O
eωT23 O

 , (3.30)

with the local SO(5) acting from the left on the first five rows. The coordinate ranges are
as follows:

α ∈ (−π/2, π/2) , β ∈ [0, 2π) , γ ∈ [0, 2π) , ω ∈ (0, π) , θ ∈ (0, π/2) . (3.31)

The rigid action of SO(3) from the right is realised linearly (no local compensating
SO(5) transformation is necessary) and the coordinates θ and ω are SO(3) invariant. The
associated vielbein e̊I IdϕI reads

e̊1 = dθ , (3.32)
e̊2 = cos θ sin θ dω , (3.33)
e̊3 = Ψ2 + sin2θ dω , (3.34)
e̊4 = (cos2θ + cosω sin2θ) Ψ1 − sin2θ sinω Ψ3 , (3.35)
e̊5 = cos θ sin θ

(
(1− cosω) Ψ1 + sinω Ψ3) , (3.36)
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in terms of dθ, dω and the SO(3) invariant one-forms

Ψ1 = sin γ dα− cosα cos γ dβ ,
Ψ2 = cos γ dα+ cosα sin γ dβ ,
Ψ3 = dγ − sinα dβ .

(3.37)

The reference vielbein is extended to S5 × S1 by simply adding e6 = dη to the above
expressions. Its determinant is

e̊ = det(̊emn) = det(̊eI I) = cosα sinω cos2θ sin2θ . (3.38)

From this, one can perform an integration to compute CI and complete the generalised
frame. A simple choice is CI = −4 δIω cosα cosω cos2θ sin2θ .

3.6 Uplift of the solution

Combining the expressions (3.9) and (3.11) with the generalised frame constructed in (3.17)–
(3.22), we can in principle directly extract the type IIB supergravity solution. However, for
a generic parametrisation of the S5 manifold, the resulting expressions are too complicated
to handle. There are two sources of simplification that make the computation manageable.
First, notice that plugging (3.17) into (3.9), we have

M̂(x, y)MN = (det e̊)
(
CT e̊−TL−TML−1e̊−1C

)
MN

(3.39)

where T denotes transposition andM encodes the four-dimensional solution (2.25). Using
the parametrisation (3.30) of the S5 coset representative, we notice that its dependence
on the coordinates α, β and γ comes only through the O ∈ SO(3) transformation. Since
M is SO(3) invariant, the matrix O does not contribute to the uplift. Second, we can
write the ten-dimensional fields in terms of a basis of SO(3) invariant one-forms. One such
basis is given by the reference vielbein e̊mm itself, because SO(3) is realised linearly. Using
such a basis amounts to dressing (3.39) with e̊M̄M to ‘flatten’ its indices. This makes the
computations manageable, but we then choose to use the simpler basis (3.37) of SO(3)
invariant one-forms to present our results.

Following the uplift procedure described until now, we find the IIB Einstein frame
metric

ds2 = 5
18

√
5
6 Ξ1/4 ds2

AdS4 +Gmndym ⊗ dyn , (3.40)

where ds2
AdS4

is the AdS4 metric of unit radius and its prefactor determines the (inverse)
warp factor in terms of the function

Ξ = 48 + 32 cos 2θ − 4 cos2ω sin22θ . (3.41)

We shall present the uplift expressions in terms of the SO(3) invariant forms (3.37) com-
pleted with

Ψ4 = dθ , Ψ5 = dω , Ψ6 = dη . (3.42)
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We begin with the internal metric, which we parametrise as

Gmndym ⊗ dyn = Ξ−3/4GmnΨm ⊗Ψn (3.43)

with
G11 =

√
5
6
(
54 + 34 cos 2θ + 4 cos 2ω sin2θ −∆

)
,

G13 = −
√

10
3 sin2θ sin 2ω (5 + 3 cos 2θ) ,

G22 = 1√
30

(
3 Ξ− 8(3 + 2 cos 2θ)2

)
,

G24 = −
√

2
15 sin 2ω (3 sin 2θ + sin 4θ) ,

G25 =
√

5
6

(1
2 Ξ− 8 cos2 θ (3 + 2 cos 2θ)

)
,

G26 = 8
3

√
2
5 sinω (3 sin 2θ + sin 4θ) ,

G33 = 4
√

10
3 sin2θ sin2ω (3 + 2 cos 2θ) ,

G44 = 1√
30

(
3 Ξ− 8 sin2ω (3 + 2 cos 2θ)

)
,

G45 = −4
√

10
3 cos3θ sin θ cosω sinω ,

G46 = −2
3

√
2
5 cosω (23 + 16 cos 2θ + cos 4θ) ,

G55 = 1
2

√
5
6(Ξ− 80 cos4θ) ,

G56 = 16
3
√

10 cos3θ sin θ sinω ,

G66 = 1
3
√

30
(3 Ξ− 32 sin22θ sin2 ω) .

(3.44)

Similarly, for the two-form potentials we write

Ba = 3−1/4Ξ−1Bmn
b(A(η)−1)

b
a 1

2Ψm ∧Ψn (3.45)

with

B12
1 = − 1√

2

(
13 cos 3θ − cos 5θ + 4 cos θ(17 + cos 2ω sin2θ(2 + cos 2θ))

)
,

B14
1 = −

√
2 sin 2ω (7 sin θ + 3 sin 3θ) ,

B15
1 = −4

√
2 sin2θ

(
5 cos θ + cos 3θ + 4 cos 2ω cos3θ

)
,

B16
1 = 4

√
2
3 cos2θ

(
2 sin 3ω sin3θ − sinω sin θ(7 + cos 2θ)

)
,
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B23
1 = −4

√
2 sin 2ω sin2θ(4 cos θ + cos 3θ) ,

B34
1 = 8

√
2 sin2ω (2 sin θ + sin 3θ) ,

B35
1 = 5√

2
sin 2ω sin3 2θ (sin θ)−1 ,

B36
1 = −4

√
2
3 sinω sin 2ω sin θ sin22θ ,

(3.46)

B12
2 = 1

2
√

6

(
−48 cos2θ cos 3ω sin3θ + 5 cosω (46 sin θ + 11 sin 3θ − 3 sin 5θ)

)
,

B14
2 = 2

√
2
3 sinω (4 cos θ + cos 3θ)(3 + cos 2θ − 2 cos 2ω sin2θ) ,

B15
2 = − 5√

6
cosω sin θ(2 cos 2ω sin22θ + 5 cos 4θ − 21) ,

B16
2 = 4

3
√

2 sin 2ω sin2θ (13 cos θ + 3 cos 3θ) ,

B23
2 = 1√

6
sinω sin θ (106− 26 cos 4θ + 3 cos(4θ − 2ω)− 6 cos 2ω + 3 cos(4θ + 2ω)) ,

B34
2 = 8

√
2
3 cosω sin2ω sin2θ (4 cos θ + cos 3θ) ,

B35
2 = −5

√
2
3 sin3θ

(
sinω (23 + 15 cos 2θ)− 2 sin 3ω cos2θ

)
,

B36
2 = −32

3
√

2 sin2ω sin2θ(4 cos θ + 3 cos 3θ) .

(3.47)

We present then the internal part of the F5 flux, with the external part following by
self-duality. In the usual Ψm basis, we write

F5 = 3 Ξ Fmnpqr (1 + ?) 1
5!Ψ

m ∧Ψn ∧Ψp ∧Ψq ∧Ψr , (3.48)

with
F12345 = −

(
(27 + 8 cos 2θ) sin22θ sinω

)
,

F12346 = −2
√

3 (4 sin 2θ + 3 sin 4θ) sin2ω ,

F12356 = −
√

3(3 + 2 cos 2θ) sin22θ sin 2ω ,

F13456 = − 8√
3

cos θ(1 + 4 cos 2θ) sin3θ sin2 ω .

(3.49)

Finally, the axio-dilaton is encoded in the matrix mab (3.1) which takes the form

mab = Ξ−1/2A(η)acA(η)bd Mcd , Mab =

 1√
3(12 + 8 cos 2θ) −2 cosω sin 2θ

−2 cosω sin 2θ 4
√

3

 . (3.50)
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In terms of the standard axion C0 and dilaton eφ, one finds for Zn identifications along S1

with n = 1, 2 and 4 (such that gn = 1 in (3.24))

eφ = 1
3
√

Ξ

(
4
√

3 (3 + 2 cos 2θ sin2η)− 6 cosω sin 2η sin 2θ
)
,

eφC0 = − 2
3
√

Ξ

(
2
√

3 sin 2η cos 2θ − 3 cos 2η cosω sin 2θ
)
, for n = 1, 2, 4.

(3.51)

For the Z3 and Z6 S-folds we must take into account the constant gn transformation
in (3.24). We then find C0 = −e−φ/

√
3 and

eφ = 1√
3 Ξ

(
8(3 + cos 2θ) + 2

√
3 cos 2η (2 cos 2θ + cosω sin 2θ)

− sin 2η (4 cos 2θ − 6 cosω sin 2θ)
)
, for n = 3,

(3.52)

and

eφ = 1√
3 Ξ

(
4(3 + cos 2θ) +

√
3 sin 2η (2 cos 2θ − cosω sin 2θ)

+ cos 2η (2 cos 2θ + 3 cosω sin 2θ)
)
, for n = 6.

(3.53)

These expressions stay finite on the whole coordinate patch and, by continuity, on the
whole internal manifold. The range of values of the dilaton spans between the perturbative
and non-perturbative regimes. Following the same line of reasoning given in [16], we may
still trust the supergravity solution as long as we are in a regime of slowly varying fields,
since at the two-derivative level the IIB supergravity equations of motion are fixed by
supersymmetry.

While most of the explicit expressions of the full ten-dimensional solution are rather
uninformative, the profile of the axio-dilaton may be of relevance in identifying the profiles
of the complex coupling of N = 4 SYM on a circle, which upon flowing to the IR give
the CFT dual of our solutions. We also see that the internal metric contains cross-terms
between S5 and S1. If we reduce our ten-dimensional solution to a Janus-like solution
of D = 5 SO(6) gauged maximal supergravity (or equivalently uplift from four to five
dimensions), with topology AdS4×S1, these cross terms appear as a constant, non-vanishing
five-dimensional vector field along the dη direction and associated with the generator of
SO(6) that is invariant under the residual SO(3) gauge symmetry. Such expectation value
can be locally removed by an η dependent gauge transformation, but a global obstruction
may be present. We analyse this further in section 4.

We have explicitly verified that the expressions displayed in this section satisfy the
equations of motion of type IIB supergravity, including the Einstein equations.

3.7 Supersymmetry and S-folding

In a generalised Scherk-Schwarz reduction fermions behave like scalar densities, namely
their internal space dependence is entirely encoded in an overall power of the determinant
of the generalised frame. In our case this reduces to some power of e̊, which is η independent.
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This is important in order to ensure that the residual supersymmetry of the D = 4 solution
is preserved in the type IIB solution even after compactifying η, especially when we employ a
duality twist as described in section 3.4. From the point of view of IIB supergravity we may
expect that the axio-dilaton undergoing an elliptic SL(2,Z) twist (3.24) when going around
S1 should induce a local compensating U(1) transformation on the fermions, hence requiring
the latter, including Killing spinors, to depend non-trivially on η. Naively, this appears
in contrast with the generalised Scherk-Schwarz ansatz. However, we are not required to
parameterise the SL(2)/SO(2) sigma model of IIB supergravity in terms of the standard
axio-dilaton. We may instead choose a coset representative `a

b that does not require
compensating local SO(2) transformations to accommodate non-trivial monodromies along
S1. The obvious choice is the one dictated, indeed, by the Scherk-Schwarz ansatz. Writing
the coordinate dependence explicitly, we define

m(ϕ, η)ab = `(ϕ, η)ac`(ϕ, η)bc , `(ϕ, η)ab = A(η)ac v(ϕ)cb (3.54)

where ϕI denote the S5 coordinates and v(ϕ)cb is a coset representative for the matrix
M(ϕ)ab appearing in (3.50). Of course, one may prefer to change local SO(2) gauge to
move back to a standard parametrisation of the axio-dilaton sigma model. In this case the
necessary local U(1) transformation (in the double cover) must be applied to the expression
of the Killing spinors, too, thus inducing some η dependence as expected. This discussion
confirms that it is globally consistent to uplift the D = 4 gauged supergravity Killing
spinors preserved by our (or any other) solution, even in presence of S-folding.

4 D = 5 Wilson loops

4.1 One-form contribution in five dimensions

We already observed that the ten-dimensional metric includes cross-terms between S5 and
S1 and that the interpretation in D = 5 SO(6) gauged maximal supergravity is that one
of the vectors in the gauge connection acquires a constant vev, with leg along S1. Let us
now be more precise. Using the isomorphism

E7(7)
SU(8) '

(E6(6) × SO(1, 1)) nR27

USp(8) , (4.1)

we identify with the last factor the 27 scalars of D = 4 maximal supergravity arising from
KK reduction of five-dimensional vector fields. In ExFT language, fixing the exceptional
derivative to be

∂AB = 0, ∂AB = δAB7 8
∂

∂η
, (4.2)

so that we embed D = 5 maximal supergravity into E7(7) ExFT, the R27 generators an-
nihiliate the internal derivative, while their transposes do not as they are associated to
hidden symmetries of the KK reduced D = 4 theory.7 Looking at the 14 scalar truncation

7Transposition is more formally defined as the Cartan involution singling out the local SU(8), but in our
parametrisation it really is just matrix transposition.

– 20 –



J
H
E
P
0
3
(
2
0
2
2
)
0
9
7

described in section 2 and in the appendix, we find that the SL(2)4 group associated to S
and Ta stabilises the choice of fifth coordinate and is therefore a subgroup of E6(6). Re-
garding the axions of the Ua factors, instead, only (t(νa))T annihiliate the fifth coordinate
and are therefore associated with three vectors in D = 5. Up to a change of local SO(2)3

gauge we then reparametrise the coset representative (A.5) as follows

VMN → e−σ t
(σ) s

1
2 t

(s) ∏
a=1,2,3

e−τa t
(τa) (ta)

1
2 t

(ta) ∏
a=1,2,3

e−ν̃a
(
t(νa)

)T
(ũa)

1
2 t

(ua)
, (4.3)

with
ũa = u2

a + ν2
a

ua
, ν̃a = νa

u2
a + ν2

a

, (4.4)

where in particular the axions ν̃a are canonically normalised. It is then easy to convince
oneself from the definitions in (A.4) that these three axions uplift to the dη components of
the five-dimensional vector fields giving the gauge connection of a special choice of Cartan
subalgebra of su(4), such that their diagonal combination is the singlet in the decomposition

su(4)→ so(3) + 3 + 3 + 5 + 1 (4.5)

under the residual gauge symmetry of our solution. From (2.25), uplifting our four dimen-
sional solution to D = 5 gauged maximal supergravity, we find that these three canonically
normalised vectors take the value

Aa =
(2

3

)3/2
dη , a = 1, 2, 3 . (4.6)

Suppose we now construct the D = 5 embedding tensor of D = 5 SO(6) gauged maxi-
mal supergravity. We can fix its overall normalisation such that, upon KK compactification
along the dη circle with A(η) duality twist, the resulting D = 4 model matches (2.15). We
can then check whether the vev (4.6) can be removed by a globally defined gauge transfor-
mation associated with the corresponding U(1) ⊂ SO(6):

Aa → Aa + dλ(η) , a = 1, 2, 3 , λ(η) ∝ η + constant , (4.7)

by making sure that its action on the matter fields is single-valued on S1. We find that
matter fields have integer charges under this U(1) given our choices of normalisation, hence
removing (4.6) would require a multi-valued gauge transformation for any of the allowed
choices of periodicity of η. Because this U(1) is a broken symmetry in our solution, using
it to remove the vev (4.6) would make some E6(6)/USp(8) scalar fields multi-valued along
S1. Therefore (4.6) is globally nontrivial.

We may rephrase this result by stating that the uplift of our solution to D = 5 SO(6)
gauged maximal supergravity involves a nontrivial Wilson loop along S1 associated with
the SO(3) singlet in (4.5). Using appropriate normalisations, this Wilson loop is invariant
under gauge transformations globally defined on S1 and therefore the fact that it differs
from 1 indicates a global obstruction to gauging away the constant value of the associated
vector field.
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Of course, if we decompactify S1 there is no obstruction to removing the vector vev. In
this case, the ten-dimensional interpretation of such procedure is to perform an η-dependent
diffeomorphism on S5 to remove the cross-terms from the internal metric, at the price of
introducing η-dependence elsewhere and not only through the SL(2) twist A(η).

4.2 Axionic flat directions and Wilson loops

It is natural to compare the D = 5 Wilson loop interpretation of the cross-terms found in
the internal metric of our solution with the uplift of some known flat directions associated
to D = 4 axion deformations of other S-fold solutions [22, 28–30]. The vacuum solutions
of [SO(6) × SO(1, 1)] n R12 gauged supergravity have axionic flat directions associated to
E7(7) generators analogous to (t(νa))T , with

Σaxions
ABCD ∝ χIJεIJ78ABCD , (4.8)

where χIJ parametrise su(4). They generate R15 ⊂ R27 and include as special cases the ν̃a
axions described above. They uplift to the dη components of the SO(6) gauge connection
in d = 5 gauged maximal supergravity and are unaffected by the SL(2) twist A(η) in the
uplift process. The flat directions correspond to χIJ taking constant values along an abelian
subalgebra of the residual gauge symmetry. They have been shown in [28, 29] to introduce
a non-trivial fibering of S5 over S1 when uplifted to ten dimensions.

If we focus instead on their uplift to D = 5 SO(6) gauged maximal supergravity and
follow the same reasoning as in the previous section, we notice that they give rise to Wilson
loops along S1, associated to an abelian subgroup of the residual gauge symmetries. The
fact that the associated symmetries are preserved, rather than broken, is the crucial differ-
ence compared to the vev (4.6) found in our solution. These Wilson loops are only invariant
under gauge transformations globally defined on S1 and a trivial Wilson loop means that
the constant value of the associated vector field can be gauged away globally. This time, no
η dependence will be introduced in other fields, since in this case the gauge symmetry being
used is preserved. This gives a straightforward interpretation of the periodicity of these
axionic flat directions [28, 29], as the Wilson loops depend periodically on the axion vevs.

One may gauge away the vector vevs and associated Wilson loops even when they
are non-trivial and the necessary transformation is multi-valued on S1. Since all non-
vanishing matter fields are singlets under such gauge transformation, the end result is still
a consistent field configuration, in contrast with the situation we described in the previous
section. The ten-dimensional interpretation of such a transformation is a multi-valued,
η-dependent diffeomorphism on S5 which removes the cross-terms between S5 and S1 in
the local expression of the internal metric, but causes S5 to be non-trivially fibered over
S1, where going around S1 the deformed S5 is twisted by a preserved isometry. This
matches the results in [28, 29]. On the other hand, if we instead choose to compactify back
from five to four dimensions, the gauge transformation used to remove these vector vevs in
D = 5 can be reinterpreted as introducing an SO(6) twist in the KK ansatz, reproducing
the interpretation in [30] that axion flat directions can be reabsorbed into the D = 4
embedding tensor by adding extra Cremmer-Scherk-Schwarz couplings.
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This discussion can be summarised by stating that any gauged supergravity solution
with vanishing vector field strengths and topology including an S1 admits Wilson loop
deformations along the circle, associated to the maximal torus of the residual gauge group,
and that, if the solution can be reproduced from Kaluza-Klein reduction on S1 (with or
without duality twists), such deformations will manifest as axionic flat directions in the
truncated model.

We can of course immediately apply this observation to our solution, by turning on
a Wilson loop along S1 for a generator of the residual SO(3) gauge symmetry. From the
four-dimensional point of view, recall that the D = 4 scalar mass spectrum (2.28) contains
three massless scalars (apart from Goldstone bosons). We identify these scalars with the
subset of χIJ sitting in the adjoint of the residual gauge group (antisymmetrisation is
understood):

χIJ =

χij

χij

 , i, j = 1, 2, 3 . (4.9)

Denoting χijtaxion
ij these e7(7) generators, the solutions (2.25), (2.26) are generalised to

VMN =
(
eχ

ijtaxion
ij VSO(3) sol.

)
M
N (4.10)

with VSO(3) sol. the coset representative (A.5) evaluated at (2.25) or (2.26). Clearly, the
SO(3) gauge symmetry is broken down to U(1) for generic values of χij, while a quick
computation shows that N = 1 supersymmetry is preserved everywhere along the flat
direction.

5 Discussion

In [24, 25] a new numerical Janus solution of D = 5, SO(6) gauged maximal supergravity
was found, which is periodic along the radial direction, corresponding to the η direction
here. Being periodic allows one to compactify it on a circle, possibly up to an elliptic
SL(2,Z) duality twist, giving rise to a solution of type IIB supergravity on AdS4×S5×S1.
The solution preserves N = 1 supersymmetry and the same SO(3) isometries of S5 as the
solution we presented here. It is therefore natural to ask if our analytic solution is the same
as the numerical one found in [24, 25]. We can see that this is not the case. First of all, as
pointed out already in [25], their solution cannot arise from a D = 4 gauged supergravity,
because such uplifts necessarily give rise to a constant warp factor in five dimensions, while
the solutions studied there exhibit non-constant warp factors.8 The reason is rather simple:
uplifting from four to five dimensions, all η dependence is encoded in the SL(2) duality twist
A(η), which is contained within E6(6). But the warp factor is part of the five-dimensional
Einstein frame metric, which is E6(6) invariant. We can indeed compute the D = 5 metric

8Another part of the argument given in [25] is that solutions arising from D = 4 gauged supergravity
should exhibit a dilaton that depends linearly on the radial coordinate, rather than being periodic. This
however only holds for uplifts of the [SO(6) × SO(1, 1)] n R12 gauging, which rely on a hyperbolic duality
twist.
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from our solution and find9

ds2
5d = 25L2

54

(
ds2

AdS4 + 2
5dη2

)
, (5.1)

with ds2
AdS4

the AdS4 metric of unit radius. Furthermore, this result is enough to evaluate
the ratio of the effective five- and four-dimensional Newton’s constants and compute then
the free energy at large N . We find

FS3 ≈
(2π
n

+ 2πk
)
N2

(25
54

)3/2√2
5 ≈

( 1
n

+ k

)
× 1.25178N2 , (5.2)

which, for n = 1 and k ≥ 0, differs from the free energy of the periodic solution in [25].
Another difference between the two solutions is that our expression includes a non-trivial
Wilson loop along S1, associated with the gauge connection of a broken U(1) ⊂ SO(6)
gauge symmetry, as discussed in section 4.1.

We summarise a few basic observations on the CFT duals of the new solutions described
in this paper. In the globally geometric cases (n = 1), we expect that the dual field theory
must arise from the IR limit of a Janus-like configuration of N = 4 SYM, where the
complex coupling varies periodically along one direction that gets compactified to a circle.
A family of possible profiles for the complex coupling is given by (3.51) for any fixed θ

and ω. There may not be a relation between such configurations and interfaces of N = 4
SYM, as there are neither well-defined asymptotic values for the complex coupling prior to
compactification, and no duality twist is required afterwards. When n 6= 1, the resulting
S-fold geometries will require an elliptic SL(2,Z) duality twist of N = 4 SYM compactified
on a circle. The axio-dilaton profiles in (3.51)–(3.53) again provide a family of complex
coupling profiles along the compactified direction that one may use as a starting point to
investigate these configurations.

There are other directions of investigation that open up from the results presented
here. Despite using a parametrisation of S5 tailored to the properties of our solution, the
ten dimensional expressions we have derived are quite complex, and it would be interesting
to search for further simplifications. We have briefly described the flat direction of our so-
lution associated with the breaking of SO(3) to U(1) by a D = 5 Wilson loop, noting it will
correspond to a non-trivial fibering of S5 over S1 in analogy with [28, 29]. A more explicit
study of this flat direction and its implications for a dual CFT is desirable. Exceptional
field theory techniques allow to study the spectrum of Kaluza-Klein excitations around so-
lutions arising from generalised Scherk-Schwarz ansätze [58, 59] and it would certainly be
interesting to apply these techniques to our new solutions. There may also simply be more

9For instance, one can begin by taking (3.40) and applying a KK decomposition to identify the external
metric of D = 5 E6(6) ExFT, which will depend on the five-sphere coordinates only through a power of
the determinant of its round metric. This factor is eliminated following the standard generalised Scherk-
Schwarz ansatz on S5. The overall normalisation is fixed so that the main AdS5 vacuum of SO(6) gauged
maximal supergravity has radius L2, reflecting the corresponding type IIB solution. Notice that we are
using the same symbol as for the AdS4 radius of our solution in section 2.4. This should not cause any
confusion.
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vacuum solutions to be found in U(4) n R12 gauged supergravity and other related mod-
els admitting uplifts to type II supergravities [7]. Finally, let us remark that although the
solution presented here is completely analytic, its discovery came about through the numer-
ical searches based exploiting modern auto-differentiation methods described in [34]. This
demonstrates the power of such numerical searches. In fact, in [34] another supersymmetric
vacuum of the U(4) n R12 model is found, along with several other non-supersymmetric
ones. Their analytic expressions and possible uplifts should be investigated further.
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A E7(7) parametrisation

We use the SL(8,R) decomposition 56 → 28 + 28′ of the E7(7) fundamental, so that
VM → (V AB, VAB) leaving antisymmetrisation understood. Then, the E7(7) generators
are parametrised as follows

tM
N =

tABCD tABCD

tABCD tABCD

 =

 2 δ[A
[CΛB]

D] ΣABCD

1
24ε

ABCDEFGHΣEFGH −2 δ[C
[AΛD]

B]

 , (A.1)

with ΛAB the SL(8,R) generators and ΣABCD fully antisymmetric. The symplectic invari-
ant reads

ΩMN =

 δAB
CD

−δABCD

 (A.2)

The generators associated to the N = 1 truncation then are as follows, with self-
explanatory notation. The dilatons are associated to

(Λ(s))AB = diag(+1,+1,+1,−1,−1,−1,−1,+1) , (A.3)

(Λ(t1))AB = diag(+1,−1,−1,−1,+1,+1,−1,+1) ,

(Λ(t2))AB = diag(−1,+1,−1,+1,−1,+1,−1,+1) ,

(Λ(t3))AB = diag(−1,−1,+1,+1,+1,−1,−1,+1) ,

(Λ(u1))AB = diag(+1,−1,−1,+1,−1,−1,+1,+1) ,

(Λ(u2))AB = diag(−1,+1,−1,−1,+1,−1,+1,+1) ,

(Λ(u3))AB = diag(−1,−1,+1,−1,−1,+1,+1,+1) ,

and we denote (t(x))MN the embedding of these generators into the 56 according to (A.1),
with x running over the seven dilatons. To avoid confusion in the transition between single-
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and double-index notation, we state the normalisation (t(x))MN (t(x))MN = 24 (no sum over
x). The axions are then associated to

Σ(σ)
ABCD = +24 δ1

A
2
B

3
C

8
D , Σ(τ1)

ABCD = −24 δ1
A

5
B

6
C

8
D , Σ(ν1)

ABCD = −24 δ1
A

4
B

7
C

8
D ,

Σ(τ2)
ABCD = +24 δ2

A
4
B

6
C

8
D , Σ(ν2)

ABCD = −24 δ2
A

5
B

7
C

8
D ,

Σ(τ3)
ABCD = −24 δ3

A
4
B

5
C

8
D , Σ(ν3)

ABCD = −24 δ3
A

6
B

7
C

8
D .

(A.4)

We denote (t(χ))MN the embedding of these generators into the 56 according to (A.1),
with χ running over the seven dilatons. The normalisation is (t(χ))MN (t(χ))MN = 12. The
coset representative for the (Z2)3 invariant N = 1 truncation is then given by the following
expression

VMN = e−σ t
(σ) s

1
2 t

(s) ∏
a=1,2,3

e−τa t
(τa) (ta)

1
2 t

(ta) ∏
a=1,2,3

e−νa t
(νa) (ua)

1
2 t

(ua)
. (A.5)
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