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1 Introduction

There has been a recent surge in studying supersymmetric AdSd−2 × Σ solutions of d =
4, 5, 6, 7 gauged supergravity, where Σ is a Riemann surface admitting a non-constant cur-
vature metric. Solutions where Σ is the weighted projective space WCP1

n+,n− , also known as
a spindle, were first found in [1], and later extended in [2–10]. These solutions are naturally
interpreted as arising from compactifying M2-, D3-, D4-, and M5-branes on the spindle and
can be uplifted to 10- or 11-dimensional supergravity. One particularly interesting aspect
of these solutions is the manner in which they preserve supersymmetry. The AdS3 × Σ
solutions were argued to be dual to the compactification of certain N = 1 SCFTs on the
spindle, [1], where supersymmetry is preserved by a new mechanism dubbed the anti-twist.
Contrary to the more canonical topological twist, the background R-symmetry vector is
not identified with the spin-connection of the spindle for the anti-twist and the spinors
are non-constant. It was later shown in [2] that the same mechanism was in play for the
M2-brane geometries in 4d Einstein-Maxwell and later in [2, 6] for the X0X1 truncation.
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For the M5-brane and D4-brane geometries, supersymmetry is preserved by yet another
mechanism, [4, 11] dubbed a topological topological twist, or twist from now on. As in the
usual topological twist the charge of the field strength of a background R-symmetry vector
through the spindle is the Euler character of the spindle, however the spinor is not globally
a constant as in the usual topological twist.1

Another interesting class of Riemann surface with non-constant curvature, which were
initially developed in parallel, are the topological discs of [12, 13]. The Riemann surface
Σ has the topology of a disc, with the boundary a smeared M5 brane, and are holographic
duals of Argyres-Douglas theories. Topological discs were later found for M2-, D3- and D4-
branes in d = 4, 5, 6 gauged supergravity in [5, 14–17]. It was noted in [5, 14] that the discs
and spindle solutions are different global completions of the same local solutions, with the
discs at a seemingly degenerate limit. In the uplifted theory, disc solutions are singular
due to the presence of a smeared brane which wraps AdSd−2 and the boundary of the disc.
Similar mechanisms for preserving supersymmetry are in play for the discs and the spindles.

In this short note we will further study the multi-charge M2-brane spindle solutions
discussed in [5, 6]. As noted in [5], and also more recently in [8], there is a possibility to
realise solutions with both a twist and anti-twist. We will investigate the conditions that
the magnetic charges of the solution need to satisfy in order for this to occur, and confirm
that both twists are realised. We construct infinite families of solutions for given magnetic
charges for both types of twist and we provide an expression for the free-energy of the
two cases in terms of the four independent magnetic charges. We find that the free-energy
takes a subtle yet different, form for the twist and anti-twist solutions,

F = 2π
3n+n−

N3/2
√
n+n− + P̂ (2) + σ

√(
n+n− + P̂ (2))2 − 4P̂ (4) , (1.1)

with σ = 1 for twist and σ = −1 for anti-twist. The P̂ (a) are the unique symmetric
polynomials of power a of the integer magnetic charges and are defined later.

This note is organised as follows. In section 2 we quickly review the AdS2×WCP1
[n+,n]

solutions of 4d U(1)4 gauged supergravity. In section 3 we give a thorough explanation
for inverting the roots of the quartic which governs the solution in terms of the magnetic
charges and orbifold weights. As a byproduct of this analysis we can provide a closed
form expression for the free-energy in the multi-charge case. In section 4 and section 5 we
use the expressions we derive for the roots in terms of the magnetic charges to construct
infinite families of solutions of both types. In the first of two appendices we show that
the solution is supersymmetric by explicitly computing the Killing spinors of the solution.
We also briefly discuss the differences between the two twists at the level of the Killing
spinors. In the second and final appendix we show that the AdS2 solution we consider is
the near-horizon of the asymptotically AdS4 solution found in [25].

Note added. Whilst writing up, [8] appeared on the arXiv which has overlap with this
paper. Amongst other interesting aspects of their work, they give the roots for a single twist

1The recent paper [8] which appeared shortly before submission, shows that the twist and anti-twist are
the only possible ways of realising supersymmetry on a spindle.
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solution, proving the existence but are not able to give the integer magnetic charges. From
our construction we are able to do this and enlarge the known solutions to infinite families.

2 A short review of AdS2×WCP1
[n+,n−] solutions from wrapped M2 branes

We will consider static AdS2 solutions of 4d U(1)4 gauged STU supergravity without axions
which can be obtained as a consistent truncation of 11d supergravity on S7.2 The bosonic
field content of the truncation consists of a metric, four abelian gauge fields and four real
scalars subject to a constraint. The action for the theory is

S = 1
16πG(4)

∫ (
R− 1

2

4∑
I=1

(X(I))−2(dX(I))2 +
∑
I<J

X(I)X(J) − 1
2
∑
I

(
X(I))−2∣∣F I ∣∣2)dvol4 ,

(2.1)
with the four scalars X(I) subject to the constraint X(1)X(2)X(3)X(4) = 1. One may obtain
the above Lagrangian from the general form of 4d N = 2 gauged supergravity coupled to
three vector multiplets with prepotential

F = −i
√
X(1)X(2)X(3)X(4) . (2.2)

The AdS2 solution of 4d U(1)4 gauged STU supergravity that we are interested in was
originally found in 11d supergravity on a squashed S7 in [19] using a double Wick rotation
of the 4d black hole solutions with spherical horizon studied in [20]. We will be interested in
the 4d solutions obtained by truncating the theory on the S7 as studied in [5], see also [6].
The solution is the near-horizon of an asymptotically AdS4 magnetically charged black hole
as we show in appendix B. The near-horizon geometry is

ds2 =
√
P (w)

[
ds2(AdS2) + ds2(Σ)

]
, (2.3)

ds2(Σ) = dw2

f(w) + f(w)
P (w)dz2 , (2.4)

AI = − w

2(w − cI)dz , (2.5)

X(I) = P (w)
1
4

w − cI
, (2.6)

with f(w) and P (w) quartic polynomials given by

P (w) =
4∏
I=1

(w − cI) , f(w) = P (w)− w2 , (2.7)

and the solution depends on four free parameters, cI . This may be uplifted to 11d super-
gravity on a seven-sphere and the resultant compact 9-dimensional space is a GK geome-
try [21–23].

2The most general 4d U(1)4 gauged supergravity from a truncation of 11d supergravity on S7 contains
in addition 3 axions, however these may be consistently truncated out of the theory by requiring that
F I ∧F J = 0. The solution we consider satisfies this property and therefore it is consistent to set the axions
to vanish. Generalisations of the solution to rotate and have non-trivial axions can be found in [6, 18].
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To bound the space we require f(w) to admit two roots which define the domain of
the line-interval parametrised by the coordinate w. Between the two roots we require that
f(w) is positive, this immediately implies that P (w) is also strictly non-zero between two
such roots. We will focus on the regularity condition where f(w) admits single roots and
P (w) is strictly non-zero.3 Since f(w) is quartic and tends to infinity as w → ±∞ it follows
that for a well-defined region where f(w) is positive we require the existence of four real
roots, see for example figure 1 in [5]. Let us denote these roots by w1 < w2 < w3 < w4.
We are lead to bound the line interval between [w2, w3] between which the metric has the
correct signature. Near such a single root the metric on Σ becomes

ds2(Σ) ∼ 4
|f ′(w∗)|

[
dR2 + |f

′(w∗)|2

4w2
∗

R2dz2
]
, (2.8)

where we have defined the coordinate R2 = |w −w∗|. This is locally R2/Zk if the periodic
coordinate z has period

∆z
4π = |w∗|

k|f ′(w∗)|
. (2.9)

In the following we will allow the metric to have conical singularities at both end-points of
the line-interval, fixing the period as

∆z
4π = |w2|

n−|f ′(w2)| = |w3|
n+|f ′(w3)| , (2.10)

with n± relatively prime integers which parametrise the conical deficit angles at the two
poles, that is, there is a deficit angle of 2π(1− n−1

± ) at the two poles.
The magnetic charges of the solution are quantised as

QI = 1
2π

∫
Σ

dAI = ∆z
4π

(w3 − w2)cI

(w3 − cI)(w2 − cI)
= pI

n+n−
, (2.11)

with pI ∈ Z. With this quantisation, and the requirement that the pI are relatively prime
to both n+ and n− the 11d uplift on a seven-sphere is smooth, see [2, 5, 6]. The graviphoton
of the gravity multiplet is identified to be the sum of the four gauge fields AI ,

AR =
4∑
I=1

AI , (2.12)

with the remaining independent combinations dual to flavour symmetries generically. One
can compute the magnetic flux of the graviphoton through the spindle. As derived in [5]
it takes the form

QR =
4∑
I=1

QI = ∆z
4π

(
sgn(w3) |f

′(w3)|
|w3|

+ sgn(w2) |f
′(w2)|
|w2|

)
, (2.13)

whilst a similar expression for the Euler character is

χ = ∆z
4π

( |f ′(w3)|
|w3|

+ |f
′(w2)|
|w2|

)
. (2.14)

3When f(w) and P (w) have a common root one obtains a topological disc solution as noted in [5, 14],
see also [12, 13, 15–17] for other disc solutions.
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Using the period as defined in (2.10) we may write these as4

χ = 1
n+

+ 1
n−

, QR =
4∑
I=1

QI = sgn(w3)
n+

+ sgn(w2)
n−

, (2.15)

with sgn the usual sign function. Since w → −w, cI → −cI is a symmetry of the solution,
we may always take the larger root to be positive. Without loss of generality we can take
sgn(w3) = 1 and if we define sgn(w2) = σ = ±1 we have5

χ = 1
n+

+ 1
n−

, QR = 1
n+

+ σ

n−
. (2.16)

As observed in [5] and confirmed in [8] for roots of the same sign, σ = 1 supersymmetry
should be preserved by a topological topological twist, whilst for roots of differing sign
σ = −1 supersymmetry is not preserved by such a topological twist but instead by the
so-called anti-twist in the language of [4, 8].6 Solutions with σ = −1 were studied in [2]
for the Einstein-Maxwell truncation and in [5, 6] for the X0X1 truncation (pairwise equal
gauge fields and constrained scalars). In [5] it was proven that only anti-twist solutions are
possible in either of these truncations.

The motivation of this paper is to derive constraints on the magnetic charges and
orbifold weights of the solution for preserving supersymmetry with either twist. From the
above discussion this is equivalent to obtaining roots of the quartic f(w) with the middle
two roots either both positive (twist) or one positive and one negative (anti-twist). The
basis of our analysis revolves around a clever rewriting that allows us to give closed form
expressions for the roots, wI in terms of the magnetic charges of the solution and the
orbifold weights n±. To proceed it is useful to split the discussion into the two cases where
w2 < 0 < w3 realising the anti-twist or where both roots are positive realising the twist.
Note that the both negative roots case w2 < w3 < 0, can be obtained from the two positive
roots case by sending w → −w and cI → −cI . Therefore without loss of generality we take
w3 > 0. Note that the full mapping is:

(w, cI , pI , n+, n−) −→ (−w,−cI ,−pI , n−, n+) , (2.17)

in particular it sends the magnetic charges to minus themselves and interchanges the orb-
ifold weights.

Before we conclude this introductory solution let us present the large N free-energy of
the solution. It takes the compact expression

F = 1
4G2

= 2
√

2π
3 N3/2 (w3 − w2)∆z

4π . (2.18)

This result is somewhat unsatisfactory since it is given in terms of unphysical parameters,
as a byproduct of our analysis we will derive an expression in terms of only physical

4These agree with the expressions derived recently in [8] using a similar computation.
5We have chosen σ to match the conventions in [4].
6The way supersymmetry is preserved for the different choices of twist has been nicely explained in [8]

and to elucidate some of the points better we present the Killing spinors of our solution in appendix A with
some discussion about the two twists.
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parameters; magnetic charges and the orbifold weights. Note that this structure of the free
energy depending only on the period and difference between the two roots is also true for
the analogous D3 brane solutions [1, 10].

3 Determining the roots of the quartic

In this section we will perform some clever manipulations of the roots of the polynomial
f(w) which allows us to write the roots in terms of the charges and n± whilst also elimi-
nating the constants cI , in fact by the end of this section these will not appear again in this
paper. As discussed above, and recalling that we take w3 > 0 without loss of generality,
the two types of twist are realised whenw2 < 0 < w3 , anti-twist

0 < w2 < w3 , twist
(3.1)

To cover both cases let us use the parameter σ = ±1 introduced earlier to write σw2 = |w2|.
Then equation (2.15) reads

χ = 1
n+

+ 1
n−

,
4∑
I=1

QI = 1
n+

+ σ

n−
. (3.2)

We now want to compute the roots in terms of the four charges QI and the orbifold
parameters n±, however since the parameters cI appear in the charges QI and the roots
depend non-trivially on them this is somewhat complicated. Instead it is useful to use the
following symmetric combinations of the magnetic charges

Q̂(1) ≡
4∑
I=1

QI = 1
n+n−

4∑
I=1

pI ≡ 1
n+n−

P̂ (1) ,

Q̂(2) ≡
∑

1≤I<J≤4
QIQJ = 1

(n+n−)2

∑
1≤I<J≤4

pIpJ ≡ 1
(n+n−)2 P̂

(2) ,

Q̂(3) ≡
4∑
I=1

∏
J 6=I

QJ = 1
(n+n−)3

4∑
I=1

∏
J 6=I

pJ ≡ 1
(n+n−)3 P̂

(3) ,

Q̂(4) ≡
4∏
I=1

QI = 1
(n+n−)4

4∏
I=1

pI ≡ 1
(n+n−)4 P̂

(4) . (3.3)

The P̂ (a) combinations are the ones which involve the integer magnetic charges and which
we are ultimately interested in expressing everything in terms of, however in the interme-
diate computations the Q̂(a) will be most useful.

Quartic invariant intermezzo. The combinations P̂ (a) are the natural combinations
arising from the quartic invariant for the STU model when considering a purely electric
gauging with only magnetic charges. Let us recap the essential definitions of the quartic
invariant to explain the connection. Let us define the charge vector and gauging parameters
in the usual way

Γ = {pΛ; qΛ} , G = {gΛ; gΛ} , (3.4)

– 6 –
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where the indices Λ ∈ {1, 2, 3, 4} = {i, 4} for consistency with our earlier notation. The
quartic invariant is

I4(Γ) ≡ 1
4! t

ABCDΓAΓBΓCΓD (3.5)

= −(p4q4 − piqi)2 + 4q1q2q3q4 + 4p1p2p3p4 + 4(p1p2q1q2 + p1p3q1q3 + p2p3q2q3) ,

and we may obtain the symmetric tensor tABCD via

tABCD = ∂4I4(Γ)
∂ΓA∂ΓB∂ΓC∂ΓD

. (3.6)

Using the tensor tABCD we may extend I4 to act on four distinct symplectic vectors as
(note that the normalisation for I4(Γ) is different)

I4(W,X, Y, Z) = tABCDWAXBYCZD . (3.7)

For a purely electric gauging, gΛ = 0 and for consistency with our normalisation of the
gauge coupling which we set to 1, we take gΛ = 1, we find

P̂ (1) = 1
4!I4(Γ, G,G,G) , P̂ (2) = 1

42 I4(Γ,Γ, G,G) ,

P̂ (3) = 1
4!I4(Γ,Γ,Γ, G) , P̂ (4) = 1

96I4(Γ,Γ,Γ,Γ) = 1
4I4(Γ) . (3.8)

3.1 Expressing everything in terms of the quartic roots

After this short intermezzo on the quartic invariant let us proceed with expressing these
magnetic quantities we just defined in terms of the roots and orbifold weights. A tedious
but otherwise simple computation shows that we may write these combinations of charges
in terms of only the four roots, without the parameters cI appearing. With the assumptions
that all the roots are both non-zero and not equal, in particular we do not assume any
inequalities for the roots, these may be expressed as7

Q̂(4) =x4w1w4
w2w3

, (3.9)

Q̂(3) =x3w1w4
w2w3

[
(w1 +w4)w2w3

w1w4
+(w1 +w4−2w2−2w3)

]
, (3.10)

Q̂(2) =x2w1w4
w2w3

[
1+3(w2 +w3)2−2(w2 +w3)(w1 +w4)+w1w4 (3.11)

−3w2w3 + 1
w1w4

(
w2w3 +w2w3

∑
1≤I<J≤4

wIwJ +(w1 +w4−2w2−2w3)
4∑
I=1

∏
J 6=I

wI

)]
,

Q̂(1) =x

[
2(w1 +w4)−(w2 +w3)− w1w4

w2w3
(w2 +w3)

]
, (3.12)

where we defined
x ≡ ∆z(w3 − w2)

4π > 0 . (3.13)

7These expressions also appear in the JHEP version of [5].
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First note that the free-energy, as given in (2.18), is proportional to ‘x’. Moreover at this
point we could eliminate Q̂(1) in favour of one of the orbifold weights n±, however it useful
to not do this until later. Finally, the Euler characteristic takes the form

χ = − x

σw2w3

(w3 + σw2)(w1w4 + σw2w3)− (1 + σ)w2w3(w1 + w4)
σw2w3

. (3.14)

A similar comment to that for Q̂(1) applies here too.

3.2 Period constraint

Above we have managed to completely eliminate the parameters cI from the problem. We
now want to solve the condition on the period (2.10). This will immediately imply that the
expressions for Q̂(1) and χ above take the canonical form in terms of n± defined previously.
After some trivial substitutions the condition reduces to

σn+w2(w3 − w1)(w4 − w3) = n−w3(w2 − w1)(w4 − w2) , (3.15)

with both sides reassuringly positive. To solve this it is convenient to define

w1 = 1
2
(
α−

√
α2 − 4β

)
, w4 = 1

2
(
α+

√
α2 − 4β

)
, ⇔ w1 + w4 = α , w1w4 = β ,

(3.16)
eliminating the two roots w1 and w4 in terms of α and β everywhere and to solve the period
constraint in terms of β. The solution is

β =
w2w3

(
n−(w2 − α)− σn+(w3 − α)

)
n+w2σ − n−w3

. (3.17)

As a consistency check substituting this into the Euler characteristic and linear sum of the
charges given above in terms of the roots gives the correct expressions for the twist and
anti-twist:

Q̂(1) =
4∑
I=1

QI = 1
n+

+ σ

n−
, χ = 1

n+
+ σ2

n−
, (3.18)

where one should use that σ2 = 1.

3.3 Roots in terms of the magnetic charges

Having eliminated β in terms of the other roots and the orbifold weights, and thereby
satisfied the period constraint, we may now eliminate α. We do this by changing variables
in favour of the variable x defined above in equation (3.13) rather than α. The solution is

α = n−w3(1 + n+xw3)− n+w2(σ + n−xw2)
n+n−x(w3 − w2) , (3.19)

which we can now insert into the previous expressions to eliminate α. So far we have
eliminated the two roots w1 and w4 in favour of n±; it remains to eliminate w2 and w3. It

– 8 –
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is once again useful to define new variables8

w2 = γ − δ
2 , w3 = γ + δ

2 . (3.20)

We now want to invert the expressions for the symmetric magnetic charge combinations,
P̂ (2) , P̂ (3) and P̂ (4) defined in (3.9)–(3.11) for the three variables {x, γ, δ} that we just
introduced. It is a simple computation to insert this into mathematica and solve, we
suppress the ugly intermediate results and just present the final result. We find four
solutions differing by various signs. We may eliminate two out of four of the possibilities
by noting that without loss of generality we have imposed x > 0 and δ > 0.9 We are left
with two distinct families of solutions parametrised by the sign τ = ±1:

x = 1√
2n+n−

√
P̂ (2) − σn+n− − τ

√(
P̂ (2) − σn+n−

)2 − 4P̂ (4) , (3.21)

δ = τ
xn+n−(n− − σn+)√(
P̂ (2) − σn+n−

)2 − 4P̂ (4)
, (3.22)

γ =
xn+n−

(
2P̂ (3) + n+n−(n+ + σn−)− σ(n+ + σn−)P̂ (2))(

P̂ (2) − σn+n−
)2 − 4P̂ (4)

. (3.23)

Recall that the magnetic charges pI , from which we construct the P (I)’s, satisfy

4∑
I=1

pI = n− + σn+ . (3.24)

The sign τ appears in two places; in the pre-factor of the inner square root in x and the
overall sign in δ. We could now use these expressions to determine the four roots in terms
of the magnetic charges and orbifold weights, however, since we will firstly not need the
roots any longer and given that the expressions are unwieldy we will refrain from presenting
them here.10 Given the above expressions we can immediately read off the free-energy in
terms of the charges using (2.18) and the solution for x above. Note that there are two
distinct classes for the form of the entropy depending on the sign of τ . We will show in the
following sections that τ = −σ.

3.4 Regularity conditions

We have now managed to eliminate the roots in favour of the magnetic charges and orbifold
weights. Before proceeding we must make sure that these new expressions are consistent
with the ordering of the roots we imposed. Moreover, we still need to impose that the
scalars are well-defined and strictly positive. In this final section will obtain the necessary

8Despite the simplicity of the coordinate change it is surprisingly powerful. One sees that it decouples
the system of equations we are about to solve but for convenience suppress. One sees that γ only appears
in a single condition and not in all three.

9They follow since we took w3 > w2. We should also impose that γ + δ > 0 to ensure that w3 > 0 as
required, we will explain this further in the following section.

10The reader may request a mathematica file in which the roots are written if they are curious.
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conditions for the geometries to make well-defined, reducing these regularity conditions to
a minimal set in terms of the physical parameters of the solution.

First, we must require that the roots are ordered correctly, w1 < w2 < w3 < w4 and
w3 > 0. For the twist we must also impose w2 > 0 whilst for the anti-twist we must impose
w2 < 0. This naturally breaks the analysis into two distinct cases, in terms of γ and δ

these read δ > |γ| > 0 , σ = −1
γ > δ > 0 , σ = 1

(3.25)

which should be supplemented with x > 0, n+ > 0 and n− > 0.
We also need to impose that the scalars are positive, which is equivalent to either

taking w2 − cI > 0 or w3 − cI < 0 for all cI . Since we have eliminated the cI completely
this looks somewhat difficult to impose, however after some clever rewriting this is not the
case. Using our favourite symmetric combinations it follows that

w2 − cI > 0 , ∀I ⇐⇒ 0 <



∑4
I=1(w2 − cI) ,∑
1≤I<J≤4(w2 − cI)(w2 − cJ) ,∑4
I=1

∏
J 6=I(w2 − cJ) ,∏4

I=1(w2 − cI) ,

(3.26)

and similar conditions for w3 − cI < 0 are given by

w3 − cI < 0 , ∀I ⇐⇒ 0 <



−
∑4
I=1(w3 − cI) ,∑

1≤I<J≤4(w3 − cI)(w3 − cJ) ,
−
∑4
I=1

∏
J 6=I(w3 − cJ) ,∏4

I=1(w3 − cI) ,

(3.27)

The latter can all be expressed in terms of the roots of f(w) by noticing that these
combinations are precisely the ones that appear in derivatives of P (w) evaluated at the
roots w2 and w3. The positive scalar condition can then be split into the two sets:

First kind.

3w2 − w1 − w3 − w4 > 0 , (3.28)
1 + (w3 − w2)(w4 − w2) + (w2 − w1)(2w2 − w3 − w4) > 0 ,

2w2 + (w2 − w1)(w2 − w3)(w2 − w4) > 0 ,
w2

2 > 0 ,

Second kind.

w1 + w2 + w4 − 3w3 > 0 , (3.29)
1 + (w3 − w2)(w3 − w4) + (w3 − w1)(2w3 − w2 − w4) > 0 ,

2w3 + (w3 − w1)(w3 − w2)(w3 − w4) < 0 ,
w2

3 > 0 .
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Clearly in both cases the final condition is trivial. It remains to interpret these conditions
in terms of the physical parameters.

Interestingly the first kind of positivity constraints for the scalars iimposes 0 < δ <

3−1/2 in both cases and that γ should always be positive. The refined conditions for the
twist solutions, σ = 1 give a single set of (non-trivial) bounds in terms of the auxiliary
parameters

σ = 1 , 0 < δ < min(3−1/2, γ) , n+ >
γ + δ

2x(1− 3δ2) ,

2n+(γ − δ)
γ + δ + 2n+x(1 + δ2) < n− <

n+(γ − δ)
γ + δ + 4n+xδ2 . (3.30)

One can show that n− < n+ for a well defined solution. This asymmetry is an artefact
of fixing w3 > w2 > 0, and also means that for the second kind of positive scalars there
are no solutions for the twist solutions. We may interchange the order of the orbifold
parameters by using the symmetry in (2.17), which interchanges n±. We will further refine
these conditions in section 5 in terms of the magnetic charges.

The anti-twist bounds (σ = −1) are more involved and must be broken into two cases.
Case 1 is

0 < δ <
1√
3
, δ3 < γ < δ − 2δ3 , n+ > − n−(γ + δ)

γ + δ(4n−δx− 1) ,

δ − γ
x(1 + δ2) < n− <

1
4xδ3min

(
2δ3, δ − γ

)
, (3.31)

and case 2 is

0 < δ <
1√
3
, δ3 < γ < δ ,

γ − δ
2x(δ2 − 1) < n− <

1
2x(1 + δ2)min

(
2(δ − γ), δ(1 + δ2)

)
,

n−(γ + δ)
δ(1− 4n−xδ)− γ

< n+ <
n−(γ + δ)

2(δ − γ − n−x(1 + δ2)) . (3.32)

For anti-twist solutions there are a large number of possibilities, the most notable are
the two simple ranges:

σ = −1 , δ > γ > 0 , δ > 1 , x > 0 , n+ > 0 , 2xn− > δ ,

σ = −1 , δ >
√

3 , 0 > γ > −δ , n+ > 0 , 2n−x > δ , (3.33)

We are now in a position to study the parameter space of admissible solutions. In
the following we will obtain bounds on the free parameters of the solution in terms of
the symmetric charge combinations P̂ (I). In principle one can obtain conditions on the
magnetic charges pI rather than these symmetric combinations, it is certainly possible in
mathematica, however the resultant expressions are far more complicated than the sim-
ple(ish) bounds that we find here. As we will see shortly we do not encounter any issues in
finding explicit charge configurations, {pI , n±}, using the bounds in terms of the symmetric
combinations so we are not losing anything by not expressing them in terms of the pI . We
will first consider the parameter space of anti-twist solutions in section 4 before moving on
to the twist solutions in section 5.
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4 Anti-twist solutions

We now want to study the parameter space of the solutions in terms of the magnetic
charges for the anti-twist solution. We will first study the anti-twist solution, σ = −1 in
this section before moving on to the twist solution in the following section. Solutions of
this type have previously been studied in the X0X1 truncation in [5, 6] and the Einstein-
Maxwell truncation in [2], the latter two references also allow for rotation. Here we extend
the analysis to the 4-magnetic charge case. It would be interesting to extend this to study
the 4-charge rotating solution which is currently unknown.

Recall that we require δ > 0 and therefore it follows that only the solution with τ = 1
is valid, the other leads to w2 > w3 which we must avoid. In addition to imposing that the
roots are real which requires(

n+n− + P̂ (2)
)2
> 4P̂ (4) , P̂ (2) + n+n− > 0 , (4.1)

we must also impose the constraints in (3.25) and also those imposing the positive scalars.
In the following we will present only the conditions for the roots to have the correct form,
and instead impose the positive scalar conditions for each of the charge configurations
whilst performing the search:11

0< P̂ (4)<

(
n−
(
n+n−+ P̂ (2))− P̂ (3)

)(
P̂ (3) +n+

(
n+n−+ P̂ (2)))

(n+ +n−)2 , (4.2)

−n+
(
n+n−+ P̂ (2)

)
< P̂ (3)<n−

(
n+n−+ P̂ (2)

)
, (4.3)

0<n+n−+ P̂ (2) . (4.4)

Note that for
P̂ (3) = 1

2(n− − n+)
(
n+n− + P̂ (2)

)
, (4.5)

we have γ = 0 and the two end-point roots satisfy w2 = −w3.
It is clear from the constraints that we require the same number of positive as negative

roots since P̂ (4) is positive definite. The constraints on having well-defined roots seem can
be solved relatively easily for any combination of an even number of positive magnetic
charges. The positivity constraints on the scalars are far more restrictive and seem to
indicate that we must take only negative magnetic charges if we impose w2 − cI > 0 and
only positive charges if we take w3 − cI < 0.

4.1 Class 1: n+ > n− > 0

Let us consider the first case, picking three seed magnetic charges, all negative. We end
up with infinite families of solutions, see figure 1 . Examples of triplets of seed magnetic
charges, the fourth is fixed by satisfying (3.24), and the bounds on n± are

{p2, p3, p4} =

{−11,−17,−319} , n+ > 347 + n− ,

{−p2,−p2,−p2} , n+ > 3p2 + n− ,
(4.6)

11The final constraint is actually implied by the first two however since it is not immediately obvious
that this is true we present it for ease of understanding.
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Figure 1. We plot the domain of validity of the anti-twist solutions for the magnetic charges
{p2, p3, p4} = {−11,−17,−319}. The black region satisfies all the necessary inequalities for a well-
defined anti-twist solution with w2−cI > 0. The grey and white regions give inadmissible solutions.
We find similar plots after taking all positive magnetic charges with w3− cI < 0 and with the roles
of n+ and n− interchanged.

More generally for the charge configuration

{−m2
1,−m2

2,−m2
3} , (4.7)

the necessary bound in almost all of parameter space is

n+ > m2
1 +m2

2 +m2
3 + n− , (4.8)

though we could not prove this in general. Despite not being able to prove the form of
the lower bound for large enough n+ > n− for the large number of data points we test we
always found a solution.

4.2 Class 2: n− > n+ > 0

For the second way of enforcing positive scalars we have the opposite scenario. For all
positive magnetic charges we have infinite families of solutions with n− > n+. In fact,
we may obtain consistent solutions by flipping the sign of the negative seed charges above
whilst also flipping the role of n+ and n−, this is precisely the flip symmetry (2.17).
Consistent charge configurations are then

{p2, p3, p4} =

{11, 17, 319} , n− > 347 + n+ ,

{p2, p2, p2} , n− > 3p2 + n+ ,
(4.9)

and for the general charge configuration

{m2
1,m

2
2,m

2
3} , (4.10)
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the necessary bound in almost all of (n−, n+) parameter space is

n− > m2
1 +m2

2 +m2
3 + n+ . (4.11)

As before despite not being able to prove the form of the lower bound, for all positive seed
magnetic charges and for large enough n− > n+ we find a solution having tested this on a
large number of data points.

We have shown that there is a plethora of anti-twist solutions, for both n+ > n− and
n− > n+. All of the solutions we have found have involved either four positive magnetic
charges or four negative magnetic charges, we have not been able to rule out conclusively
an even mixture of both positive and negative magnetic charges in the general 4-charge
solution however it is possible to rule this possibility out for the three consistent truncations.
Numerics seems to support that no such solutions exist either for the unrestricted multi-
charge case but it would be interesting to prove this conclusively.

Before we move on to the twist solutions let us provide the closed form expression for
the free-energy of the four-charge solution,12

F = 2π
3 N3/2

√
n+n− + P̂ (2) −

√(
n+n− + P̂ (2))2 − 4P̂ (4)

n+n−
. (4.12)

We see that in both the X0X1 and Einstein-Maxwell truncation this reduces correctly to
the free-energy given in [6]. We could insert the expressions for the P̂ (I) in terms of the
quartic invariant at this point however we will refrain from doing this.

5 Twist solutions

Having studied the anti-twist solutions in the previous section let us turn our attention to
the twist solutions. Recall from section 3.4 that we must take n+ > n− > 0 and therefore
in order for δ > 0 we must fix τ = −1 = −σ. We reiterate that the apparent asymmetry
is due to our choice w3 > w2 > 0 and the other option may be obtained by using the flip
symmetry (2.17) we will focus on the case with w3 > 0 and therefore n+ > n−.

The hope of finding twist solutions with w3 > 0 therefore rest on finding solutions
with n+ > n− > 0.13 The constraints for the roots to have the correct form allows for
three regimes which may be found below. Imposing on top that the scalars are positive
definite leads to a far more constrained system, which is also more difficult to write down
due to a larger number of possibilities and redundancies. However, by first studying the
solutions for just the correct roots we find that for two of the three regimes only small
islands of solutions can be found, see for example figure 2. Imposing on top of this the
scalar positivity constraints leads to these islands vanishing for all charge configurations
that we checked. We presume that in these two regimes there are no solutions but we
have been able to rule this out completely. The third regime is far kinder to us and leads
to infinite families of solutions, reminiscent of how simple it was to find the anti-twist

12The same result appears in the JHEP version of [5].
13The case A numerical solution in [8] is indeed in this class with n+ ∼ 3.4n−.
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Figure 2. We plot the domain of validity for the magnetic charges {p1, p2, p3, p4} = {−87 + n+ +
n−, 5, 11, 71} for regime 1 of class 2 twist solutions. The plot black islands are areas in (n+, n−)
parameter space where the order of the roots has been enforced. Imposing in addition the positivity
of the scalars lifts these regions leaving just orange regions and no solution. This type of behaviour
is common to both regime 1 and regime 2 and therefore we shall ignore them in the following.

solutions. The three regimes for solutions with the correct root structure are given below.
It is the third regime where we can find infinite families of solutions and therefore we will
focus on that case.

Regime 1. The first regime has a strictly positive P̂ (4) subject to the inequalities

P̂ (2) > n+n− ,
1
2(n+ + n−)(P̂ (2) − n+n−) < P̂ (3) < n+(P̂ (2) − n+n−) , (5.1)

−
(
P̂ (3) − n−(P̂ (2) − n+n−)

)(
P̂ (3) − n+(P̂ (2) − n+n−)

)
(n+ − n−)2 < P̂ (4) <

1
4(P̂ (2) − n+n−)2 .

Regime 2. The second regime allows for both a positive and negative P̂ (4) subject to

P̂ (2) > n+n− , n+(P̂ (2) − n+n−) < P̂ (3) , (5.2)

−
(
P̂ (3) − n−(P̂ (2) − n+n−)

)(
P̂ (3) − n+(P̂ (2) − n+n−)

)
(n+ − n−)2 < P̂ (4) <

1
4(P̂ (2) − n+n−)2 .

Regime 3. The third and final regime has a strictly negative P̂ (4) satisfying

P̂ (2) < n+n− , P̂ (3) > n−(P̂ (2) − n+n−) , (5.3)

−
(
P̂ (3) − n−(P̂ (2) − n+n−)

)(
P̂ (3) − n+(P̂ (2) − n+n−)

)
(n+ − n−)2 < P̂ (4) < 0 .
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5.1 Infinite families of solutions

This final regime requires an odd number of positive charges since P̂ (4) < 0. For the
anti-twist solutions we had P̂ (4) > 0 in the bountiful region. We are once again able to
find infinite numbers of solutions for generic seed magnetic charges which are all negative.
Amazingly we find that for any seed solution with all three magnetic charges negative any
choice of n+ > n− > 0 gives a valid solution. Some of the explicit configurations that we
have checked are

{p2, p3, p4} =



{−1,−2,−3} , n+ > n− > 0 ,
{−132,−589,−3554} , n+ > n− > 0 ,
{−21,−1993,−1345245} , n+ > n− > 0 ,
{−p2,−p2,−p2} , n+ > n− > 0

(5.4)

though there are plenty more with higher and higher orders. The important constraint is
that all three seed charges are negative and it follows that we end up with three negative
and one positive magnetic charge. Though we did not algebraically prove this the large
number of data points we have tested indicates that this should true and we conclude
that infinite families of solutions exist for three negative and one positive magnetic charges
for n+ > n− > 0. Note that this analysis agrees with the fact that in neither Einstein-
Maxwell nor the X0X1 truncation one can find a twist solution as shown in [5, 8]. In these
truncations the quartic polynomial f(w) is simple enough that one can prove this fully
algebraically.

Given the flip symmetry we can obtain solutions where n− > n+ by taking three
positive seed magnetic charges and one negative. We have checked this explicitly and the
bounds agree with the transformed ones discussed above,

We finish this section by giving the closed form expression for the free-energy for twist
solutions,

F = 2π
3 N3/2

√
n+n− + P̂ (2) +

√(
n+n− + P̂ (2))2 − 4P̂ (4)

n+n−
. (5.5)

We emphasise that this is distinct to the expression for the anti-twist free-energy by a sign
inside the outermost square root.

6 Conclusion

We have studied the possibility of realising both the twist and anti-twist for the multi-
charge AdS2×WCP1

[n+,n]
solutions. We have constructed infinite classes of both solutions,

parametrised by the choice of seed magnetic charges, providing insurmountable evidence
for their existence, in agreement with [8]. For twist solutions we find infinite families of
solutions when three of the four magnetic charges are either all positive or all negative.
Whilst for anti-twist solutions we find that all magnetic charges are either positive or all
negative with the sign correlated to the magnitude of the orbifold weights. It would be
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interesting to prove that these are the only possibilities. A non-extensive numerical analysis
seems to confirm this but we were unable to present an algebraic proof.

We have provided compact and explicit expressions for the free-energy of the solutions
expressed in terms of the magnetic charges and orbifold weights. In [4], they conjectured
a form for the off-shell free-energy wrapped brane spindle solutions in various dimensions.
Their conjecture for the off-shell free energy for M2-branes is14

F−σ = −
√

2π
3 N3/2 1

ε

(
F (ϕI + εQI)− σF (ϕI − εQI)

)
, (6.1)

where
4∑
I=1

ϕI −
n+ − σn−
n+n−

ε = 2 , (6.2)

and, like here the charges satisfy the constraint

4∑
I=1

QI = n+ + σn−
n+n−

. (6.3)

As explained in [4] this should be extremised for ϕI and ε subject to the constraint between
ϕI and ε. The parameter ε is a fugacity associated to the rotational symmetry of the
spindle whilst the ϕI are fugacities for the U(1)4 symmetry. It is a feature of the spindle
(and disc) geometries that the R-symmetry mixes with the rotational symmetries of the
compactification surface and therefore requires the inclusion of the fugacity ε which would
not otherwise appear for a static geometry like the ones we are considering here.

Given our expressions we find that the free-energy of the multi-charge spindle solutions
for twist and anti-twist solutions can be written as

F = 2π
3n+n−

N3/2
√
n+n− + P̂ (2) + σ

√(
n+n− + P̂ (2))2 − 4P̂ (4) . (6.4)

It would be interesting to recover this result from extremising the above functional and to
understand how this latter constraint arises.

Acknowledgments

It is a pleasure to thank Hyojoong Kim, Nakwoo Kim, Yein Lee, Myungbo Shim, Minwoo
Suh, Koen Stemerdink and Damian van de Heisteeg for useful discussions. I would also like
to thank Pietro Ferrero, Jerome Gauntlett and James Sparks for comments on an earlier
version of the draft. CC is supported by the National Research Foundation of Korea (NRF)
grant 2019R1A2C2004880.

14We have rewritten the charges into our notation and swapped the definitions of F and F in [4] for
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A Killing spinors on the spindle

In this section we will study the Killing spinors of the four-dimensional solution. For the
conventions of the supersymmetry transformations we take the general form of the Killing
spinor equations of 4d N = 2 gauged supergravity in [24] with the prepotential

F = −i
√
X(1)X(2)X(3)X(4) . (A.1)

We work in the gauge where
X(1)X(2)X(3)X(4) = 1 , (A.2)

and define the physical scalars via

X(I) = e~vI ·~φ , (A.3)

with

~v1 = 1
2{1,−1,−1} , ~v2 = 1

2{−1, 1,−1} , ~v3 = 1
2{−1,−1, 1} , ~v4 = 1

2{1, 1, 1} , (A.4)

The resultant gravitino Killing spinor equation is15

δΨµ =
[
∇µ −

i
4

4∑
I=1

AIµ + 1
8

4∑
I=1

X(I)γµ + i
8

4∑
I=1

(
X(I))−1 /F

(I)
γµ

]
ε (A.5)

whilst the three gaugino Killing spinor equations are

δλi =
[
/∂φi −

4∑
I=1

~vIiX
(I) − i

4∑
I=1

~vIi (X(I))−1 /F
I
]
ε . (A.6)

Working in components, on AdS2 we find (a = 0, 1)

δΨa =
[
∇̂a −

iα
2 γ23γa + P ′(w)

4
√
P (w)

(
α

2 −
√
f(w)

2
√
P (w)

γ2 + iαw
2
√
P (w)

γ23

)
γa

]
ε , (A.7)

with ∇̂a the covariant derivative on unit radius AdS2 and the curved indices with respect
to the conformally rescaled metric which removes the overall conformal factor in (2.3). The
parameter α is either ±1 depending on whether w− cI > 0, α = 1 or w− cI < 0, α = −1.
This is related to the two different ways of enforcing positive scalars. The other two Killing
spinor are

δΨw =
[
∂w −

iα
2 γ23γw + αP ′(w)

4
√
P (w)

(1
2 + iw

2
√
P (w)

γ23

)
γw

]
ε , (A.8)

δΨz =
[
∂z + f(w)P ′(w)− 2P (w)f ′(w)

8P (w)3/2 γ23 −
iα
2 γ23γz + i

4

(
wP ′(w)
P (w) −

∑
I

nI
)

+ αP ′(w)
4
√
P (w)

(1
2 + iw

2
√
P (w)

γ23

)
γz

]
ε . (A.9)

15The Killing spinor equations are given in terms of symplectic Majorana spinors, with εi of positive
chirality and εi of negative chirality. It is convenient to rewrite the Killing spinor equations in terms of the
Dirac spinor ε = ε1 + ε2, which we will take from now on.
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We have allowed for an arbitrary gauge choice δAI = nIdz for the gauge fields parametrised
by the nI , see [8] for a detailed discussion of gauge choices.

Let us now solve these conditions. From the Killing spinor equation along AdS2 we
see that we must impose that the spinor satisfies the projection condition(

α

2 −
√
f(w)

2
√
P (w)

γ2 + iαw
2
√
P (w)

γ23

)
ε = 0 , (A.10)

which implies [
∇̂a −

iα
2 γaγ23

]
ε = 0 . (A.11)

Let us take the gamma matrices

γ0 = iσ2 ⊗ σ3 , γ1 = σ3 ⊗ σ3 , γ2 = 12×2 ⊗ σ1 , γ3 = 12×2 ⊗ σ2 , (A.12)

then γaγ23 = i ρa⊗12×2, with ρa the 2d gamma matrices for AdS2 and therefore the Killing
spinor on AdS2 reduces to [

∇̂a + α

2 ρa ⊗ 12×2

]
ε = 0 . (A.13)

We should decompose the 4d spinor in terms of AdS2 Killing spinors. There are two
inequivalent Killing spinor equations that we can construct depending on the sign of α. In
terms of these spinors we can decompose the 4d spinors as16

ε± = η± ⊗ θ± , with σ3θ± = ±θ± , (A.14)

with η− solving (A.13) for α = 1 and η+ solving (A.13) for α = −1. If we put the following
metric on AdS2

ds2(AdS2) = −r2dt2 + dr2

r2 , (A.15)

then the Killing spinors on AdS2 are

η+ =
(√
r(c1 + c2t), r−1/2c2

)
, η− =

(
c1r
−1/2,

√
r(c1t+ c2)

)
. (A.16)

We may now solve the Killing spinor equations by first solving the projection condition,
and then solving for the remaining component.

Let us first consider α = 1. We expect to construct a spinor utilising the η− spinor on
AdS2. We find the solution

θ− = P (w)−1/8e
iz
4

(
2−
∑

I
nI
)(√√

P (w) + w , −
√√

P (w)− w
)
. (A.17)

For α = −1 we find that the AdS2 spinor we must take is η+ and the spinor θ+ is

θ+ = P (w)−1/8e
iz
4

(
2−
∑

I
nI
)(√√

P (w) + w ,

√√
P (w)− w

)
= σ3 · θ− . (A.18)

16The ± index of the θ’s confers no information about a projection.
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Note that these spinors agree with the ones found in [8] once the simple redefinitions
mapping between the two solutions are imposed.

Let us now consider the differences between the two types of twist. Since θ+ = σ3θ− we
can restrict to considering only θ+ without loss of generality. First note that the product
of the entries of the spinor is precisely the function

√
f(w) that is

√
f(w) =

√√
P (w) + w ·

√√
P (w)− w . (A.19)

Recall that at a root, w∗ of f(w) we have

P (w∗) = w2
∗ . (A.20)

Therefore we see that at one of the poles of the spindle one entry of the spinor vanishes,
but not both. Let us reinstate the two roots, w2 = σ|w2| and w3 > 0. Then at w3 we have

θ+(w3) = P (w3)−1/8e
iz
4

(
2−
∑

I
nI
)√

2
(√
w3 , 0

)
, (A.21)

whilst at w2 we have

θ+(w2) = P (w3)−1/8e
iz
4

(
2−
∑

I
nI
)√

2


(√
w2 , 0

)
, twist (σ = 1)(

0 ,
√
−w2

)
, anti-twist (σ = −1)

. (A.22)

We therefore see that the twist and anti-twist solutions have Killing spinors with different
properties.17

B Full black hole solution

We present a full black hole solution with near-horizon given by the solution studied in the
main text. Having presented the full black hole solution we take the near-horizon limit and
with a change of coordinates show that it recovers the near-horizon solution studied in the
main text. We will not check explicitly the supersymmetry of the full black hole solution,
instead we will require that it is extremal and has the supersymmetric solution studied in
the main text as near-horizon geometry. Of course this is necessary but not sufficient for
the full black hole solution to preserve supersymmetry however we will content ourselves
with this in this work.

The solution was originally found in [25] and was conjectured to give rise to the near-
horizon solutions we study in this work in [6]. Dualising the solution [25] to have only

17Note that the disc preserves supersymmetry in an altogether different way since at the boundary of the
disc, located at w = 0, the Killing spinor vanishes as w1/8.
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magnetic charges we have18

ds2
4 =

√
F(x)H(y)
α2(y − x)2

[
− Y (y)dt2 + H(y)

Y (y)dy2 + dx2

X(x) + X(x)
F(x) dφ2

]
, (B.1)

X(I) =
[
hI(y)4

H(y)

]1/4[ F(x)
fI(x)4

]1/4
,

AI = − 4BI
αbI(1 + αbIx)dφ ,

with

fI(x) = 1 + αbIx , F(x) =
4∏
I=1

fI(x) , (B.2)

hI(y) = 1 + αbIy , G(x) =
4∏
I=1

hI(y) ,

X(x) = F(x)
(
b0 +

4∑
I=1

16B2
I

fI(x)α2bI
∏
J 6=I(bJ − bI)

)
,

Y (y) = g2

α2 − b0 −
4∑
I=1

16B2
I

hI(y)α2bI
∏
J 6=I(bJ − bI)

.

The solution depends on 9 parameters: 4 BI , 4 bI and α, whilst b0 can be fixed by a
coordinate transformation, this will become important later. We will set the coupling
constant g to 1 as in the main text. Imposing supersymmetry will reduce the number of
parameters down to 4 in the near-horizon. The form of the solution is reminiscent of the
near-horizon solution studied in the main text and it is therefore reasonable that this gives
rise to the solution in (2.3)–(2.6).

B.1 Near-horizon limit

To obtain an AdS2 near-horizon geometry we should find a double root of the function Y (y)
and then expand around this point. Since Y (y) is a quartic this is somewhat non-trivial,
however in keeping with the results in the main text we do not need to solve for the roots,
to take the limit. Instead we will assume the existence of a double root and show that
with this assumption we can uniquely fix the near-horizon geometry by “shooting” for the
near-horizon geometry in (2.3)–(2.6).

Let us fix a double root of Y (y) to be y∗, therefore we have

Y (y∗) = 0 , Y ′(y∗) = 0 . (B.3)

We can now expand the black hole solution around the horizon. The metric becomes

ds2
4 =

√
F(x)H(y∗)
α2(x− y∗)2

[
− Y ′′(y∗)

2 (y − y∗)2dt2 + 2H(y∗)
Y ′′(y∗)(y − y∗)2 dy2 + dx2

X(x) + X(x)
F(x) dφ2

]
.

(B.4)
18We have changed the definitions of some of the functions and parameters to remove some of the

redundancy in the definitions and potential confusion with previous expressions.
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After a coordinate redefinition it takes the form

ds2
4 =

√
F(x)H(y∗)n2

α2(x− y∗)2

[
ds2(AdS2) + dx2

n2X(x) + m2X(x)
n2F(x) dz2

]
, (B.5)

where
n2 = 2H(y∗)

Y ′′(y∗)
, φ = mz . (B.6)

In comparing with (2.3) we identify

F(x)H(y∗)n2 = P (w)α2(x− y∗)2 . (B.7)

Next consider the coefficient of dz2, comparing with (2.3) we find

X(x) = (x− y∗)4α4f(w)
m2n2H(y∗)

, (B.8)

and by equating the dx2 term and the dw2 term in (2.3) we find

x = y∗ + m
√
H(y∗)
wα2 . (B.9)

With these definitions the metric takes the same form as in (2.3). It remains to check the
other fields and that the expressions for X(x) and F(x) are actually consistent with the
change of coordinates in (B.9) and the expressions for f(w) and P (w) in the main text.

Next, the scalars are shown to be equivalent in the near-horizon limit provided

m = αn , bI = − cI

αcIy∗ + n
√
H(y∗)

. (B.10)

The parameters BI are fixed by studying the gauge fields, and we find

BI = cI
√
H(y∗)

4
(
αc1y∗ + n

√
H(y∗)

) . (B.11)

Note that a relation between BI and cI is to be expected if the full black hole was super-
symmetric and therefore this is quite natural from this point of view. In fact one sees that
these relations turn out to be equivalent to Y (y) getting a double root,19 and therefore one
should think of this as the extremal condition for the black hole. We therefore have that
the near-horizon limit of the black hole solution in (B.1) takes the correct general form of
the solution studied in the main text. What remains to be checked is that the definitions of
X(x) and F(x) are consistent with the form of f(w) and P (w) in the main text respectively.
It turns out that checking F(x) gives the correct form for P (w) is straightforward. By sub-
stituting in the change of coordinates (B.9) and (B.10) one simply lands on the correct
form for P (w) and therefore it is consistent, for X(x) and f(w) this is not as simple.

19One can show that
Y (y) = (y − y∗)2

n2H(y)
after applying the solution for BI .
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Firstly, we set b0 = 1
α2 and g = 1 which implies that the first two terms in Y (y) cancel.

After a little rewriting we find that X(x) takes the form

X(x) = H(y∗)
α2w4

[
P (w) + w

(
T0 + T1w + T2w

2 + T3w
3
)]
, (B.12)

with Ti some coefficients. At first these coefficients look particularly unwieldy however we
may express them in terms of Y (y∗) and its derivatives. We find

T0 = Y (y∗)
∑
I

∏
I 6=J

cJ −
n
√
H(y∗)
α

Y ′(y∗)
∑

1≤I<J≤4
cIcJ + n2H(y∗)

2α2 Y ′′(y∗)

×
∑
I

cI −
n3H(y∗)3/2

3!α3 Y ′′′(y∗) ,

T1 = −Y (y∗)
∑

1≤I<J≤4
cIcJ + n

√
H(y∗)
α

Y ′(y∗)
∑
I

cI −
n2H(y∗)

2α2 Y ′′(y∗) ,

T2 = Y (y∗)
∑
I

cI −
n
√
H(y∗)
α

Y ′(y∗) ,

T3 = −Y (y∗) . (B.13)

From the assumption of a double root we see that T2 = T3 = 0 immediately and amazingly
after using the definition of BI in (B.11) T0 vanishes also. Therefore only T1 remains and
is simply given by

T1 = −H(y∗)2

α2 , (B.14)

after using (B.6). Setting
H(y∗) = α , (B.15)

which we are inclined to assume is the final constraint from supersymmetry, implies

X(x) = H(y∗)
α2w4 f(w) , (B.16)

and therefore all the definitions are consistent and the near-horizon limit agrees on the
nose with the solution discussed in the main text. We conclude that the supersymmetric
limit of the asymptotically AdS4 black hole found in [25] and given in (B.1), gives rise to
the AdS2 geometries studied in this work in the near-horizon limit.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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