
J
H
E
P
0
3
(
2
0
2
2
)
0
6
3

Published for SISSA by Springer

Received: July 31, 2021
Revised: January 8, 2022

Accepted: February 18, 2022
Published: March 9, 2022

Into the EFThedron and UV constraints from IR
consistency

Li-Yuan Chiang,a Yu-tin Huang,a,b Wei Li,c Laurentiu Rodinaa and He-Chen Wenga
aDepartment of Physics and Center for Theoretical Physics, National Taiwan University,
Taipei 10617, Taiwan

bPhysics Division, National Center for Theoretical Sciences,
Taipei 10617, Taiwan

cDepartment of Physics, Boston University,
Boston, MA 02215, U.S.A.
E-mail: fishbone999999999@gmail.com, yutinyt@gmail.com,
weilibu17@gmail.com, laurentiu.rodina@gmail.com,
albertweng1118@gmail.com

Abstract: Recently it was proposed that the theory space of effective field theories with
consistent UV completions can be described as a positive geometry, termed the EFThedron.
In this paper we demonstrate that at the core, the geometry is given by the convex hull
of the product of two moment curves. This makes contact with the well studied bi-variate
moment problem, which in various instances has known solutions, generalizing the Hankel
matrices of couplings into moment matrices. We extend these solutions to hold for more
general bi-variate problem, and are thus able to obtain analytic expressions for bounds,
which closely match (and in some cases exactly match) numerical results from semi-definite
programing methods. Furthermore, we demonstrate that crossing symmetry in the IR
imposes non-trivial constraints on the UV spectrum. In particular, permutation invariance
for identical scalar scattering requires that any UV completion beyond the scalar sector
must contain arbitrarily high spins, including at least all even spins ` ≤ 28, with the
ratio of spinning spectral functions bounded from above, exhibiting large spin suppression.
The spinning spectrum must also include at least one state satisfying a bound m2

J <

M2
h

(J2−12)(J4−32J2+204)
8(150−43J2+2J4) , where J2 = `(`+1), and Mh is the mass of the heaviest spin 2

state in the spectrum.

Keywords: Effective Field Theories, Scattering Amplitudes

ArXiv ePrint: 2105.02862

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2022)063

mailto:fishbone999999999@gmail.com
mailto:yutinyt@gmail.com
mailto:weilibu17@gmail.com
mailto:laurentiu.rodina@gmail.com
mailto:albertweng1118@gmail.com
https://arxiv.org/abs/2105.02862
https://doi.org/10.1007/JHEP03(2022)063


J
H
E
P
0
3
(
2
0
2
2
)
0
6
3

Contents

1 Introduction 1

2 Positive geometry of moment curves 7
2.1 Conditions for the full moment problem 8

2.1.1 Single moment 10
2.1.2 Double moment 12

2.2 Truncated moment problem 15
2.3 Symmetry planes 18

3 The s-EFThedron 19
3.1 The s-EFThedron as a rotation 20
3.2 Explicit region analysis 21

4 The EFThedron 25
4.1 The EFThedron as a projection 26
4.2 Explicit region analysis 27

5 Constraints on the UV spectrum 29
5.1 Implications for spin spectrum 31
5.2 Bounds on 〈pk,`〉 35
5.3 Implications for mass spectrum 40
5.4 Constraints on EM and gravitational EFTs 42

6 Conclusion and outlook 43

A Using semi-definite programming to carve out the space of EFT coeffi-
cients 45

1 Introduction

Effective field theories (EFT) are a convenient tool to parameterize our ignorance of the
UV physics and at the same time provide a useful description of the IR. Precisely because
of its role of connecting the UV with the IR, it has long been a fertile playground for
understanding how consistency conditions on one side impose non-trivial constraints on
the other. A prominent example is the positivity of the leading four derivative couplings
in EFT [1] relating to the a-theorem [2] as well as the Weak Gravity Conjecture [3].

In the original work [1], positivity bounds were derived from the forward limit of the
low energy amplitude, which is related to the cross-section of the UV scattering amplitude
through dispersion relations and the optical theorem. As one extends away from the
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forward limit, the fact that the imaginary contribution in the dispersion relation has a
positive partial wave expansion further constrains the structure of the derivative expansion.
This was first proposed in [4], and explored in a more systematic framework recently [5–8].
For identical states, crossing symmetry drastically constrains the allowed space of EFT
couplings, in general reducing it to finite compact regions [9–12]. Monodromy relations
push this reduction even further, seemingly converging to a single point corresponding to
the low energy expansion of the open superstring [13].

A geometric characterization of the space of consistent EFTs was recently given in [14],
where positivity bounds are given as the boundaries of the EFThedron, which is a product
of convex spaces. To be concrete, let us begin with the low energy scattering amplitude,
which can be parametrized as

M(s, t)IR =
∑
k,q

gk,qs
k−qtq , (1.1)

where the Taylor expansion in s and t reflects the derivative expansion for the low energy
description, and the couplings gk,q are the Wilson coefficients defined on an on-shell basis.
Via dispersion relations, the couplings admit a representation as a positive sum over data
provided by the UV spectrum. In particular

gk,q =
∑
i

pi
1

m2k+2
i

X`i,k,q , (1.2)

where i labels the UV state, and {pi,mi, `i} are the spectral function, mass and spin of
state i. The coefficient X`i,k,q is related to the Taylor expansion of the Legendre polynomial
P`(x), as well as the precise channel (s or u) in which the state was exchanged.

Importantly, as unitarity requires the spectral function pi to be positive, the dispersive
representation of the couplings is in fact giving a convex hull. In [14] the geometry of the
hull was explored in full for the s-EFThedron, corresponding to the scenario where the
UV states appear only in the s-channel. There are no t-channel poles since the dispersion
relation is implemented for fixed t. The geometry was found to be the product of a bounded
moment curve and a cyclic polytope, whose individual boundaries are well known. For the
product, the new boundaries involve the total positivity of the following Hankel matrix

H(g) =


g0 g1 g2

g1 g2 g3 . . .

g2 g3 g4
... . . .

 ≥ 0 , (1.3)

where here gk represents the inner product of ~gk = (gk,0, gk,1, · · · ) with any boundary of
the cyclic polytope. However, as we will see, these are in fact incomplete. For the su-
EFThedron, where both s- and u-channel thresholds are present, the cyclic polytope is
replaced by a more complicated object, and only a partial exploration was done. One of
the goals of this paper is to fill the gaps for both geometries, by showing they both originate
from a common structure, the product moment curve.
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a-geometry 

 ak,q = ∑ p
J2q

m2k+2

s-EFThedron 

 gsk,q = ∑ p
vq
m2k

cyclic plane  
n(gs) = 0

su-EFThedron 

 gsuk,q = ∑ p
uk,q
m2k

permutation plane  
n(gsu) = 0

Rotation Projection

Intersection Intersection

Figure 1. Deriving s- and su-EFThedrons from a-geometry.

In this paper, while we focus on the case of four-dimensions, using Legendre polynomi-
als for external scalars and Wigner d-matrix for spinning states, the results are applicable
to higher dimensions in two senses. One, the transformation of the dispersion relation to
a double moment problem can be straightforwardly carried out in higher dimensions by
merely substituting Legendre with Gegenbauer polynomials. Second, the four-dimensional
bounds can be viewed as a weaker set of constraint for higher dimensions, since we can
always put the external states on a four-dimensional sub-plane, and the higher dimensional
basis must be positively expanded on the four-dimensional counterpart.

When strictly in four-dimensions, complications arise from infrared divergences. In
such a case, our bounds apply to effective theories of UV completions for which the cubic
massless interactions are weakly interacting, and thus IR effects are higher order in cou-
plings. Massless loops from the higher dimension operators will introduce logarithmic run-
ning, whose effect can be incorporated by modifying the definition of EFT couplings [7, 14].

EFThedron from the moment problem. We begin by demonstrating that even the
s-EFThedron can be expressed in simpler terms. By a GL transformation, the cyclic
polytope defined by vl,q, which are complete polynomials in J2 = `(` + 1) of degree q,
can be rotated into a discrete moment curve in J2. Therefore, instead of considering the
g-geometry defined by eq. (1.2), we can instead consider what we call the a-geometry,

ak,q =
∑
i

pi
1

m2k+2
i

J2q
i . (1.4)

and return to the g-geometry by a simple rotation of the couplings. For the full EFThedron,
the geometry is given by the Minkowski sum of the hulls arising from the s- and u-channels.
Because the u-channel contribution is just itself a GL rotation of the s-channel one, it turns
out we can obtain the full EFThedron geometry by a similar rotation, followed by projecting
out couplings gk,q with k + q = odd, reflecting the s − u channel symmetry. Thus we see
both EFThedrons are unified into the a-geometry, as illustrated in figure 1.

The significance of this result is that the a-geometry is explicitly the product of two
moment curves. The complete characterization of its boundaries can then be formulated
as the “bi-variate moment problem”, which is a rich and well studied problem in mathe-
matics (see [15] for an overview). The problem lies in finding both necessary and sufficient
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conditions that determine whether a set of “moments” (in our terms — couplings) can be
expressed as eq. (1.4). Solutions to various cases of the moment problem are well estab-
lished in the infinite dimension limit, which for us corresponds to the limit where we have
access to Wilson coefficients of all derivative orders, that is arbitrarily high orders in k

and q. This allows us to systematically find all the boundaries of the a-geometry in the
infinite dimension limit. The crucial conditions that we find, compared to [14], involve the
generalization of the Hankel matrix into a moment matrix

M(a) =



a0,0 a1,0 a0,1 a2,0

a1,0 a2,0 a1,1 a3,0

a0,1 a1,1 a0,2 a2,1 . . .

a2,0 a3,0 a2,1 a4,0
... . . .


(1.5)

which we require to be positive semi-definite. Having both necessary and sufficient con-
ditions implies the EFThedron is in fact equivalent to the dispersion relations encoding
locality, unitarity and analyticity!

In practice, we will only be privy to a finite number of Wilson coefficients, meaning
we must truncate at some order k ≤ m. In such case the geometry arising from eq. (1.4)
is referred to as the “truncated moment problem”. A solution to this problem is known as
the positive extension [16, 17], which involves finding an extension to the finite moment (or
Hankel) matrices, which maintains the positivity. For the single moment problem, only a
single extension is required, i.e. to find the solution for a coupling space up to some order
k ≤ m, we need to impose Hankel matrix positivities up to order k = m + 1, and then
project out the k = m+1 couplings. Our particular bivariate moment problem involving
the tensoring of a bounded with discrete moment has however not been previously studied
in the literature. Motivated by the solution for the full bi-variate moment, we propose the
set of constraints for k = m in eq. (2.35) for the a-geometry. Explicit analysis shows that
by including positive extension to k = m+1, the region carved out by these constraints
converges rapidly to the numerical result, while in some cases give the analytic exact
boundary. Thus we conjecture that the constraints given in eq. (2.35), augmented with
sufficient degree of positive extension yields the complete boundary.

In the second row in figure 1, we considered further imposing the cyclic or permutation
invariance of the low energy four point amplitude. These constraints imply linear relations
between the couplings gk,q or ak,q, which define what we will call null or symmetry planes.
Importantly, once we require the EFThedron to intersect with the symmetry plane, the
resulting space becomes bounded in all directions, as was also observed in [10, 12] by using
the dispersion relation form of null constraints. The intersection allows us to project the
typically high dimension geometry of the EFThedron to a low dimensional finite space. To
clarify, we propose that cyclic or permutation invariance can be fully taken into account
simply by slicing the EFThedron by symmetry planes, without having to assume any
explicit dispersion relation form of the null constraints. All bounds are obtained by working
exclusively at the level of couplings, that is with inequalities of the form f(ak,q) ≥ 0,
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Figure 2. (g̃3,1, g̃4,0) space with the k = 4 null constraint, geometry vs SDPB.

intersected with symmetry planes n(ak,q) = 0. The equivalence is guaranteed by having
the necessary and sufficient conditions for eq. (1.4) to have valid solutions.

We compare the boundaries with that obtained from numerical semidefinite program-
ing using SDBP package [18, 19]. In particular we compute the analytic structure of the
allowed region relevant for g3,1 and g4,0 of the s−u channel EFThedron, after intersecting
with the first symmetry plane, which is at k=4. By imposing constraints involving up to
k = 5 couplings, we obtain the following result:

Region I: g̃31 = −3
2
√
g̃40, 0 ≤ g̃40 ≤ 1

Region II: g̃31 = 1
2

√
427
3 g̃40, 0 ≤ g̃40 ≤

243
427

Region III: g̃31 = 30
7 g̃40 + 37

42

√
g̃40 (21− 20g̃40), 243

427 ≤ g̃40 ≤ 1 (1.6)

where we have defined g̃3,1 ≡ g3,1M2

g2,0
and g̃4,0 ≡ g4,0M4

g2,0
, with M the mass gap of the theory.

We plot this in figure 2, finding perfect agreement with numerical results from SDPB. In
particular, we find an exact value for the bound

2g̃3,1 <
9
2 + 7

4

√
61
5 ≈ 10.6125 (1.7)

identical to the value given in [10]. We’ve also demonstrated that these boundaries are
tighter than previous proposal for s-channel EFT hedron [14].

UV constraints from IR symmetry. The reason “slices” of the EFThedron are finite
is simple: the symmetry plane is always defined for fixed derivative order (k), and only the
“J2” moment curve at different (q) orders is relevant for the intersection. The intersection
geometry is therefore always between a polytope and a subplane, and one can easily see
that a minority of vertices, defined by spin `, lies on one side of the plane. Thus the
fact that the physical spectrum must have an empty image in the directions orthogonal
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to the symmetry plane, conventionally termed “null constraints”, requires a balancing act
between the low and the higher spin part of the spectrum.

Indeed we find null constraints, when now expressed in their dispersive representation
form, lead to conditions on the UV spectrum. In both s- and full EFThedron, if the UV
completion involves non-scalar states, cyclic and permutation invariance require the pres-
ence of an infinite number of massive spin states. Permutation invariance in fact requires
every even spin ` ≤ 28 to be present. While any massive UV completion will inevitably
produce states of all spins via the discontinuity of the two-particle threshold, if we assume
that the UV theory has a dimensionless coupling, for example gs in string theory, such that
massive loop corrections can be suppressed, this constraint becomes non-trivial. Further-
more, we also find upper bounds for the ratio of averaged spectral functions, defined as

〈pk,`〉 ≡
∑
{i,`i=`}

p`i

m
2(k+1)
i

. (1.8)

For example, for identical scalars we find

〈p4,`〉
〈p4,2〉

≤ 12
`(`+ 1) (`2 + `− 8) , (` ≥ 4)

〈p5,`〉
〈p5,2〉

≤ 216
`(`+ 1)(`(`+ 1)(2`(`+ 1)− 43) + 150) , (` ≥ 4) . (1.9)

The result for distinct k can be plotted as follows

theory10 20 30 40
l

-10

-20

-30

Log[ <pk,l><pk,2>
]

1
�s-M2� �t-M2� �u-M2�

k=4
k=5
k=7
k=9
k=11

ℓ

Thus we see high spin suppression, at the level of finite spins, observed in [14] and recently
explored in [20], can be in part attributed to the combination of permutation invariance
and unitarity.

Similarly, the mass distribution of the higher spin spectrum is constrained. Taking the
heaviest spin-2 state to have mass Mh, then we find amongst the higher spin states, there
must exists one satisfying

m2
` ≤M2

h

(J2 − 12)(J4 − 32J2 + 204)
8(150− 43J2 + 2J4) . (1.10)
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The above results are just the simplest consequences of a small subset of null constraints.
The full geometry of {p, `,m} is highly non-trivial, as it must in fact satisfy an infinite num-
ber of null constraints. We expect many more conditions can be obtained by a systematic
analysis of this geometry.

The paper is organized as follows. In section 2 we review the positive geometry of
moment curves, and present our proposed complete solution to the bi-variate moment
problem. In section 3 we show the s-EFThedron can be obtained by a GL rotation from
the bi-variate moment form. We then present results for the geometry, which we compare
to a functional approach. In section 4 we perform a similar analysis for the su-EFThedron.
Besides a similar rotation, one also further needs to project out some couplings in order
to satisfy s−u channel symmetry. We similarly compare results to a functional approach.
In section 5 we begin an investigation into conditions imposed by null constraints on the
UV spectrum itself. We derive constraints on spins, spectral functions, and masses. We
conclude in section 6.

2 Positive geometry of moment curves

In this section we give an overview of the geometry associated with the convex hull of
moment curves. The convex hull is the space associated the positive sum of a fixed set of
vectors {vi}

Conv[{vi}] ≡
{

N∑
i

pivi

∣∣∣∣ pi ≥ 0
}
. (2.1)

If a point is inside the hull, then there must be a corresponding solution {pi}. A moment
curve is simply a curve whose image takes the form (1, x, x2, · · · ). The convex hull of points
on the moment curve is a space parameterized by the coordinates {a0, a1, . . .}, satisfying

ak =
N∑
i

pix
k
i →


a0

a1

a2
...

 =
∑
i

pi


1
xi

x2
i
...

 , (2.2)

Stated in integral form,
ak =

∫
xkdµ (2.3)

where dµ represents a positive measure. For the purposes of this paper, the discrete and
integral representations are equivalent.

We are therefore interested in finding the necessary and sufficient conditions on ak
such that they satisfy eq. (2.2). Said in another way, what are the constraints that ensure
the existence of a solution {pi, xi} that solves eq. (2.2)? For a familiar application of this
problem, a1 = ∑n

i pixi can be interpreted as the coordinate for the center of mass, for
a system of n particles of masses pi, placed at positions xi. The possible location for
the center of mass is given by a convex region defined by the “outermost” particles. The
geometry we are looking for is a slight generalization of this problem, and is known as

– 7 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
3

the “moment problem”. This comes in different versions, depending on the support of the
variable x. the usual cases considered are x ∈ R, x ∈ R+, x ∈ [0, 1] and finally x taking
only discrete values in some region. A recent detailed overview of the moment problem can
be found in [15].

Eq. (2.2) contains just one variable, x, and is termed the single or uni-variate moment
problem. In general, one can have any number of moments. The double or bi-variate
moment problem in particular has been extensively studied, and will be the main interest
of this paper. In this case the moments are organized as

ak,q =
N∑
i

pix
k
i y
q
i →


a0,0 a0,1 a0,2

a1,0 a1,1 a1,2 · · ·
a2,0 a2,1 a2,2

... . . .

 =
N∑
i

pi


1
xi

x2
i
...

⊗
(

1 yi y2
i · · ·

)
, (2.4)

where as before pi ≥ 0, while xi, yi can have any domain. The physical geometry that is
our main focus will have xi ∈ [0, 1] (related to the ratio of the masses of the UV states
to the cutoff), yi = `i(`i+1), with `i ∈ N (corresponding to the spins of the UV states).
Finally, the complete geometry will be given by intersecting the convex hull with symmetry
planes corresponding to cyclic or permutation invariance.

Typically, the moment problem is formulated in the infinite dimensional limit, that
is when one is interested in the space of an infinite sequence a = {a0, a1, . . .}. However,
for obvious practical purposes, we would like to carve out a finite dimensional space, a =
{a0, a1, . . . , an}, using only a finite number of constraints. This setup is known as the
truncated moment problem, and is considerably more complicated than the infinite moment
problem, which in fact follows as a corollary whenever a truncated solution is known. In the
single moment problem, the truncated solution is well established through the positive or
flat extension theorems [16], which are conjectured to hold also in the bi-variate case [21].

To our knowledge, for our particular case of physical interest, that is the bi-variate mo-
ment with one discrete and one continuous variable, a solution has not been studied. In the
following we present a systematic way to find conditions for this problem in the infinite di-
mension limit. We note that some of the conditions have already been described in [14], but
we find new ones as well, and we claim these conditions are necessary and sufficient in the in-
finite dimensional limit. In sections 3 and 4 we study two truncated cases, and we find these
conditions quickly converge to the numerical results found by linear programming methods.

2.1 Conditions for the full moment problem

We begin by asking what are the necessary and sufficient conditions an infinite sequence
a = {a0, a1, . . .} must satisfy to be a moment sequence, that is

ak =
∑
i

pix
k
i , pi ≥ 0, xi ∈ R (2.5)
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It is well known the solution to this problem is given in terms of Hankel matrices, that
must be positive semidefinite (PSD):

H =


a0 a1 a2

a1 a2 a3 · · ·
a2 a3 a4

... . . .

 ≥ 0 (2.6)

Further conditions must be imposed if there are further restrictions on x. For example,
one can have x ∈ R+, x ∈ [0, 1], or x ∈ S, where S is some (ordered) discrete set. We will
find uses for all such cases. The extra conditions one needs to impose are in terms of so
called “localizing matrices”. For instance, to impose x ≥ 0, besides eq. (2.6), we need the
“shifted” Hankel matrix:

Hshift =


a1 a2 a3

a2 a3 a4 · · ·
a3 a4 a5

... . . .

 ≥ 0 (2.7)

Next, for x ≤ 1, we have the “twisted” Hankel

Htwist =


a0 − a1 a1 − a2 a2 − a3

a1 − a2 a2 − a3 a3 − a4 · · ·
a2 − a3 a3 − a4 a4 − a5

... . . .

 ≥ 0 (2.8)

Finally, if x ∈ {si}, for ordered si, this is known as the cyclic polytope, and the well
known conditions are in terms of polytopal walls with vertices si, si+1, sj , sj+1, . . .. For
dim[~a] = 2d+ 1 we have

〈~a,~si, ~si+1, ~sj , ~sj+1, . . .〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 1 1 1 1
a1 si si+1 sj sj+1

a2 s
2
i s

2
i+1 s

2
j s

2
j+1 · · ·

a3 s
3
i s

3
i+1 s

3
j s

3
j+1

... . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
2d+1

≥ 0. (2.9)

while for dim[~a] = 2d we have

〈~0,~a,~si, ~si+1, ~sj , ~sj+1, . . .〉 ≥ 0,
〈~a,~si, ~si+1, ~sj , ~sj+1, . . . , ~∞〉 ≥ 0, (2.10)

where ~0 = (1, 0, . . . , 0) and ~∞ = (0, 0, . . . , 1).
In the next section we present an approach that allows to systematically derive such

constraints. The approach then generalizes easily for the double moment problem.
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2.1.1 Single moment

We have seen that the sufficient condition for ~a to reside in the hull is that the Hankel
matrix is positive semidefinite. Observing that an infinite dimensional Hankel matrix can
be written as

H(a) =
∑
i

pixixTi =
∑
i

pi


1
xi

x2
i
...


(

1 xi x2
i · · ·

)
, (2.11)

we immediately see that the Hankel matrix is positive semi-definite, since for any vector v,

vTHv =
∑
i

pi(vTxi)2 ≥ 0 . (2.12)

This implies all the principle minors are non-negative.
Note that at this point, the Hankel matrix being positive-semidefinite is a necessary

condition, but not yet sufficient. To show that it is sufficient we must show that satisfying
the Hankel constraints implies the existence of a positive solution {pi} that gives us {ak}.
First, notice that f(x) = vTx is simply a polynomial in x. Let us interpret the sum
weighted by pi as computing an expectation value. The expectation value for the squared
function f(x)2 is positive

E[f(x)2] ≡
∑
i

pif(xi)2 ≥ 0. (2.13)

Since the vector v is infinite dimensional, one can generate arbitrary polynomials in x with
any degree. In a finite interval, one can approximate the delta function by an infinite sum
of polynomials. In particular, on the interval −1 ≤ x ≤ 1 one can choose f2(x) to be the
Landau Kernal Ln(x) with n being a large even integer, and

Ln(x) = (1− x2)n (2n)!(2n+1)
(n!)222n+1 . (2.14)

Choosing v appropriately, we see that eq. (2.13) ensures with a positive pi. Since the
convex hull is by nature projective, we can rescale x→ Rx by any positive number R and
the geometry is unchanged. Therefore, this argument holds for any bounded interval of x.
A more formal treatment is required for R→∞, given by [22].

Extra conditions for restricted moments. If we further consider that {xi} are re-
stricted on a closed interval [α, β], this implies

E
[
f(x)2(x−α)(β−x)

]
≥ 0 (2.15)

since it gives us a positive sum of polynomial squared. Assuming eq. (2.15), we can once
again let f(x)2 approach delta function, enforcing pi(xi−α)(β−xi) ≥ 0. Since pi is positive,
this guarantees (xi−α)(β−xi) ≥ 0, so xi ∈ [α, β]. Rewriting eq. (2.15) as

E
[
f(x)2(x−α)(β−x)

]
= vT

(∑
i

pi(xi−α)(β−xi)xixTi

)
v ≥ 0 , (2.16)
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the matrix sandwiched by the arbitrary vector v must now be PSD. The new matrix is in
fact a linear combination of the Hankel matrix and its shifted ones

∑
i

pi(xi−α)(β−xi)


1
xi

x2
i
...


(

1 xi x2
i · · ·

)
(2.17)

=


(α+β)a1−a2−αβa0 (α+β)a2−a3−αβa1 · · ·
(α+β)a2−a3−αβa1 (α+β)a3−a4−αβa2 · · ·

...
... . . .

 ≥ 0 .

Therefore, the necessary and sufficient condition to have x ∈ [α, β] is given by the matrices
eq. (2.11) and eq. (2.17) being PSD. We can now apply this result to the following problems.

Half moment: x ≥ 0. This simply corresponds to setting α = 0, β →∞, giving

E
[
f(x)2x

]
≥ 0⇒


a1 a2 a3 · · ·
a2 a3 a4 · · ·
a3 a4 a5 · · ·
...

...
... . . .

 ≥ 0, (2.18)

Bounded moment: x ∈ [0, 1]. In addition to x ≥ 0, i.e., the positivity of the shifted
Hankel, one also needs to impose x ≤ 1, by setting α = 0, β = 1

E[(1− x)f(x)2] ≥ 0⇒


(a0 − a1) (a1 − a2) (a2 − a3) · · ·
(a1 − a2) (a2 − a3) (a3 − a4) · · ·
(a2 − a3) (a3 − a4) (a4 − a5) · · ·

...
...

... . . .

 ≥ 0 (2.19)

Discrete moment: x ∈ {si}. Let s1, s2, . . . , sn be monotonically increasing. The
previous constraints correspond to excluding regions (−∞, a) and (b,∞). If we instead
exclude x ∈ (si, si+1) by imposing E

[
f(x)2(x− si)(x− si+1)

]
≥ 0 and then apply this for
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every adjacent pair, it forces x ∈ {si} and gives us the discrete geometry.

(a) E
[
f(x)2(x− s1)

]
≥ 0⇒


(a1 − s1a0) (a2 − s1a1) · · ·
(a2 − s1a1) (a3 − s1a2) · · ·

...
... . . .

 ≥ 0.

(b) E
[
f(x)2(x− si)(x− si+1)

]
· · · ≥ 0

⇒


(a2 − (si + si+1)a1 + sisi+1a0) (a3 − (si + si+1)a2 + sisi+1a1) · · ·
(a3 − (si + si+1)a2 + sisi+1a1) (a4 − (si + si+1)a3 + sisi+1a2) · · ·

...
... . . .

 · · · ≥ 0.

(c) E
[
f(x)2(sn − x)

]
≥ 0⇒


(−a1 + sna0) (−a2 + sna1) · · ·
(−a2 + sna1) (−a3 + sna2) · · ·

...
... . . .

 ≥ 0. (2.20)

Let us consider the first element of the matrix of (b) in eq. (2.20), which turns out to
be the boundary of cyclic polytope described in [14], up to a positive factor

a2 − (si + si+1)a1 + sisi+1a0 = 1
(si+1 − si)

det


a0 1 1
a1 si si+1

a2 s
2
i s

2
i+1

 .

Since the matrix in (b) of eq. (2.20) is PSD, the above is positive and is exactly the P2

polytopal constraint. Moving on to the larger leading principal minors, we find them having
the form of the usual Hankel matrix with elements being the polytopal wall dotted into ~a
up to a positive factor.

Note the above constraints contain non-linear inequalities from the Hankel matrices.
This is not what we expect for a cyclic polytope, which we know must only have linear
boundaries. This is not a contradiction, as the above conditions are sufficient only in the
infinite limit. Indeed one can check that the Hankel conditions converge to the polytope
as we increase the size of the matrices considered.

2.1.2 Double moment

The solution to the double moment problem, defined by

ak,q =
∑
i

pix
k
i y
q
i , pi ≥ 0 (2.21)

is very similar in the infinite dimensional limit. However, so far only cases where both
moments have identical support, such as [0,∞) × [0,∞) or [0, 1] × [0, 1], have been fully
worked out in the literature, and are reviewed in ref. [15].1 In all cases however, the new
central object in the solution is a generalization of the Hankel matrix, called a moment

1The K moment problem deals with more general moments, but only applies to compact domains [17].
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matrix, to be defined below. This result can be reproduced by extending the arguments
in the previous section. This will allow us to derive constraints which are suited to our
specific physical problem, which involves one moment defined on x ∈ [0, 1], and one discrete
y ∈ {s1, s2, . . .}.

A product of two moment curves requires a complete basis of polynomials in x and y,
now given by {1, x, y, x2, xy, y2, . . .}, to generate arbitrary function f(x, y). Therefore, we
can assemble the couplings into the following matrix generalizing the Hankel matrix

M(a) =
∑
i

pi



1
xi

yi

x2
i

xiyi

y2
i
...



(
1 xi yi x2

i xiyi y
2
i · · ·

)
=


a0,0 a1,0 a0,1 · · ·
a1,0 a2,0 a1,1 · · ·
a0,1 a1,1 a0,2 · · ·
...

...
... . . .

 , (2.22)

which is known as the moment matrix. This particular arrangement will also be well suited
to studying the truncated moment problem, where one is only interested to describe the
space up to some order in k and q.

The constraints for ak,q to satisfy eq. (2.21) are simply M(a) ≥ 0. For example, we
have, up to k, q ≤ 2,

∣∣∣∣∣∣a0,0 a1,0

a1,0 a2,0

∣∣∣∣∣∣ ,
∣∣∣∣∣∣a0,0 a0,1

a0,1 a0,2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣a0,0 a1,1

a1,1 a2,2

∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣∣
a0,0 a1,0 a0,1

a1,0 a2,0 a1,1

a0,1 a1,1 a0,2

∣∣∣∣∣∣∣∣∣ ≥ 0.

We note that conditions such as the last two were not previously considered in [14], and
are also related to an inequality used in [10] to analytically obtain a bound we will also
aim to study from the geometric perspective.

Similarly, the additional constraints for restricted x, y can be straight forwardly de-
rived. One imposes

E
[
f(x, y)2(x− xa)(xb − x)

]
≥ 0

to force x ∈ [xa, xb] and imposes

E
[
f(x, y)2(y − ya)(y − yb)

]
≥ 0

to exclude y ∈ (ya, yb). So for each case we have the following extra constraints:
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1. Half moment.

For x ∈ [0,∞), we require

E
[
f(x, y)2x

]
≥ 0

⇒
∑
i,j

pi,jxi


1
xi

yi
...


(

1 xi yi · · ·
)

=


a1,0 a2,0 a1,1 · · ·
a2,0 a3,0 a2,1 · · ·
a1,1 a2,1 a1,2 · · ·
...

...
... . . .

 ≥ 0 (2.23)

This is the two-dimensional generalization of the shifted Hankel matrix. In short,

M shift,x(a) ≡M(a)|ak,q→ak+1,q
≥ 0. (2.24)

If y is also required to be positive, one has to impose

M shift,y(a) ≡M(a)|ak,q→ak,q+1 ≥ 0. (2.25)

2. Bounded moment.

For x ∈ [0, 1], then one has to impose, besides eq. (2.24), positivity on the twisted
Hankel matrix

E
[
f(x, y)2(1− x)

]
≥ 0⇒


(a0,0 − a1,0) (a1,0 − a2,0) (a0,1 − a1,1) · · ·
(a1,0 − a2,0) (a2,0 − a3,0) (a1,1 − a2,1) · · ·
(a0,1 − a1,1) (a1,1 − a2,1) (a0,2 − a1,2) · · ·

...
...

... . . .

 ≥ 0. (2.26)

This is the generalized version of eq. (2.19).

3. Discrete moment.

Suppose y is discrete and can only take values {si}, then

E
[
f(x, y)2(y − s1)

]
, E

[
f(x, y)2(y − si)(y − si+1)

]
,E
[
f(x, y)2(sn − y)

]
≥ 0.
(2.27)
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In other words,

(a) E
[
f(x,y)2(y−s1)

]
≥0⇒


(a0,1−s1a0,0) (a1,1−s1a1,0) ···
(a1,1−s1a1,0) (a2,1−s1a2,0) ···

...
... . . .

≥0.

(b) E
[
f(x,y)2(y−si)(y−si+1)

]
···≥0

⇒


(a0,2−(si+si+1)a0,1+sisi+1a0,0) (a1,2−(si+si+1)a1,1+sisi+1a1,0) ···
(a1,2−(si+si+1)a1,1+sisi+1a1,0) (a2,2−(si+si+1)a2,1+sisi+1a2,0) ···

...
... . . .

···≥0.

(c) E
[
f(x,y)2(sn−y)

]
≥0⇒


(−a0,1+sna0,0) (−a1,1+sna1,0) ···
(−a1,1+sna1,0) (−a2,1+sna2,0) ···

...
... . . .

≥0. (2.28)

The first element of the matrix (b) above being positive

a0,2 − (si + si+1)a0,1 + sisi+1a0,0 = 1
(si+1 − si)

det


a0,0 1 1
a0,1 si si+1

a0,2 s
2
i s

2
i+1

 ≥ 0 ,

is exactly the P2 polytopal wall, generalized to the bi-variate case. The constraints
in eq. (2.28) should give us the discrete-y geometry in the infinite dimension limit.

We conjecture that in the infinite dimension limit, choosing the appropriate conditions
associated with the two moments from above, yields the complete sufficient conditions.

2.2 Truncated moment problem

Extension theorems for single moment. Above we have seen that an infinite di-
mensional space can be carved out by imposing positivity of particular infinite dimen-
sional matrices. However, suppose we are interested only in a finite dimensional space,
a = {a0, a1, . . . , a2n}. How well can we describe this space by using only a finite number
of constraints?

An obvious practical approach is to impose positivity of matrices of increasing but finite
size m. Clearly we expect m to be at least equal to n, in order to constrain all dimensions,
but it is less obvious that is sufficient. One could also expect this approach will only
converge to the actual solution in the infinite limit, leading to discrepancies whenever m is
finite. Surprisingly, we will see that the correct answer is we only need m = 2n+ 1.

Let us consider some simple examples. Say we are interested in the space a0, a1, a2,
x ∈ R. The simplest guess is we should require the 2×2 Hankel matrix to be positive:

H2 =

a0 a1

a1 a2

 ≥ 0 ⇒ a0 ≥ 0 and a0a2 − a2
1 ≥ 0 (2.29)
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However, these are actually not the complete conditions. The singular geometry with co-
ordinate a0 = 0 is not correctly described. Plugging a0 = 0 into our conditions, we obtain
a1 = 0, but we find no constraint on a2. This is clearly not correct, as a0 = 0⇒ pi = 0, so
we should have obtained a2 = 0. The missing conditions are known as the flat or positive ex-
tensions [16], and involve adding extra moments to construct larger Hankel matrices. In our
case, we need to extend the space to {a0, a1, a2,a3,a4}. We can write a larger Hankel matrix

H3 =


a0 a1 a2

a1 a2 a3

a2 a3 a4

 (2.30)

Now there are two equivalent conditions we can impose:

• The extension is flat: Rank[H3] = Rank[H2], ∀a3, a4

• The extension is positive: H3 ≥ 0, ∀a3, a4

Imposing either we find a2 = 0, as expected. For a slightly less trivial example, consider
the sequence ak = {1, 1, 1, 1, a4}, and we wish to find what values of a4 ensure ak is a
moment sequence. The Hankel matrix

H3 =


1 1 1
1 1 1
1 1 a4

 (2.31)

is PSD for a4 ≥ 1. However, this is not sufficient. Because the 2× 2 submatrix is actually
singular, that requires there is just one state, with p1 = 1, x1 = 1, implying in fact that
a4 = 1. The extension theorem states that the full conditions are, in terms of the extended
sequence ak = (1, 1, 1, a4,a5,a6), the larger Hankel matrix

H4 =


1 1 1 1
1 1 1 a4

1 1 a4 a5

1 a4 a5 a6

 (2.32)

must be PSD, for all a5, a6. The positive extension requires Det[H4] ≥ 0, which implies
a4 ≤ 1. Together with the original condition Det[H3] ≥ 0 , we obtain a4 = 1. Equivalently,
the “flat extension” condition is the requirement that Rank[H4] = Rank[H3]. This latter
condition similarly requires a4 = 1.

This subtle issue will have even more important consequences for the bi-variate prob-
lem, where such discrepancies extend beyond singular points of the geometry to affect
non-trivial regions of the allowed space.
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Extension conjectures for bi-variate problem. The solution to the truncated bi-
variate problem is not as established, but an equivalent statement is conjectured to
hold [21]. The best we can do therefore is impose the infinite solution constraints de-
rived in section 2.1.2, up to some finite order. That is, if we are interested in some finite
dimensional space of moments up to order m, we must impose constraints involving the
extended sequence up to higher order m′ ≥ m. As we increase the number of orders consid-
ered, this approximate solution must converge to the exact solution. In all cases studied in
sections 3 and 4 we find this approximate solution quickly converges to numerical results,
already when considering just constraints at order m′ = m+ 1.

To be concrete about the constraints we will use in our specific physical problem, let
us assume we are interested in the finite dimensional space given by moments

ak,q =
∑
i

pix
k
i y
q
i , x ∈ [0, 1], y ∈ {si} (2.33)

with k ≥ 2, k − q ≥ 2 and for some k ≤ m. First, we re-organize the moment matrix in a
form more appropriate to these requirements. Instead of moments ak,q ∼ xkyq, we rewrite
ak,q ∼ x2xk(xy)q. Then the moment matrix becomes

M2n+2(ak,q) =

1 x (xy) x2 x(xy) (xy)2 · · · (xy)n



1 a2,0 a3,0 a3,1 a4,0 a4,1 a4,2 · · · an+2,n

x a3,0 a4,0 a4,1 a5,0 a5,1 a5,2

(xy) a3,1 a4,1 a4,2 a5,1 a5,2 a5,3

x2 a4,0 a5,0 a5,1 a6,0 a6,1 a6,2
...

x(xy) a4,1 a5,1 a5,2 a6,1 a6,2 a6,3

(xy)2 a4,2 a5,2 a5,3 a6,2 a6,3 a6,4
...

... . . .
(xy)n an+2,n · · · a2n+2,2n

(2.34)
In terms of this matrix we will impose the following constraints to obtain an approximate
solution for ak,q with k ≤ m

M[m](ak,q) ≥ 0
x ≥ 0 : M[m](ak+1,q) ≥ 0
x ≤ 1 : M[m](ak,q − ak+1,q) ≥ 0
xy ≥ 0 : M[m](ak+1,q+1) ≥ 0

y ∈ {si} : P
(i)
k≤m+1,q ≥ 0

y ∈ {si} : M[m](P
(i)
k,q) ≥ 0 (2.35)

where [m] = m for even and [m] = m+ 1 for odd m, and

P
(i)
k,q = sisi+1ak,q − (si + si+1)ak,q+1 + ak,q+2 . (2.36)

– 17 –



J
H
E
P
0
3
(
2
0
2
2
)
0
6
3

One may worry that P (i) still contains an infinite number of constraints, since we must
allow the possibility for an infinite number of spins {si}. However, as we discuss in the
next section, the null planes intersect the polytope at a finite number of locations. The
roots of the null constraint will directly inform us which are the relevant polytope walls
that we need to consider.

2.3 Symmetry planes

An important ingredient in the geometry will be the symmetry planes, which reflect some
symmetry associated to the ordering of external particles in the 4 point amplitude. The
symmetry plane can generically be described by any linear function in ak,q, f(ak,q) = 0.
From the UV point of view, the null constraints act by imposing non-trivial conditions on
the spectrum. This reduces the allowed space of couplings, since now in couplings given
by ak,q = ∑

pix
k
i y
q
i , pi, xi, and yi are further restricted. From the geometry point of view,

the symmetries reduce the allowed space by simply picking slices of the EFThedron. For
now we will only use the purely geometric aspect of the null conditions, and return to the
UV perspective in section 5.

In general, a symmetry plane can combine couplings at both different k and q. This is
the case of the monodromy plane, which was considered in [13]. In our present discussion
we will only consider cyclic and permutation invariance, so it will turn out each symmetry
plane only acts at equal k, relating couplings at different q. While a plane acts in one
particular k level, it also induces non trivial effect to both higher and lower k couplings. For
instance, let us illustrate a simple example, that will also be relevant to the su-EFThedron.
We will explain this in more detail in the following section, but for now we just claim that
permutation invariance, at order k = 4, implies the couplings must be linearly related
(briefly, this is due to the fact that there is just one permutation invariant kinematic
object at k = 4, namely (s2 + t2 + u2)2). In particular, we have

a4,2 = 8a4,1 (2.37)

The polytope boundaries at k = 4 are 〈~a4, J
2
i , J

2
i+1〉 ≥ 0, J2 = `(` + 1), where for su

` ∈ {0, 2, 4, 6, . . .}. The first few are

− 6a4,1 + a4,2 ≥ 0, 120a4,0 − 26a4,1 + a4,2 ≥ 0, 840a4,0 − 62a4,1 + a4,2 ≥ 0 (2.38)

We obtain the intersection in figure 3. It is clear the symmetry plane intersects only one
of the polytope walls, namely the one defined by vertices J2

i = 6, J2
i+1 = 20. This can be

directly explained by looking at the dispersive form of the null constraint in eq. (2.37)

n4 =
∑

pi
1
m10
i

J2
i

(
J2
i − 8

)
(2.39)

We observe the summand has a root at J2 = 8, so the relevant polytope wall is the one
with vertices on either side of this root, namely J2

i = 6, J2
i+1 = 20 in our su case when

there is no J2
i = 12.

For a 3D example, we can consider the geometry of (ã3,1, ã4,1, ã4,2), where ãk,q is just
the projective coordinate ak,q

a2,0
. This scape is carved out by the constraints derived in the
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0 6 20

g4,1

g4,2
a4,2
a4,0

a4,1
a4,0

Figure 3. 1. (a4,2/a4,0, a4,1/a4,0) polytope and a4,2 = 8a4,1 symmetry plane.

ã4,1 ã3,1

ã4,2

ã4,1

ã3,1
g̃4,2

Figure 4. (ã3,1, ã4,1, ã4,2) space intersected with a4,2 = 8a4,1 symmetry plane, and the resulting
(ã3,1, ã4,1) slice.

previous section, including the polytope wall 〈~a4, 6, 20〉. In figure 4 we plot the intersection
with the symmetry plane, now a finite region.

3 The s-EFThedron

As a warm-up for latter analysis, let’s consider a toy-model EFT where the light states
are adjoint or bi-fundamental states that admit an ordering. That is, we can decompose
the amplitude of the massless scalars in terms of color traces and focus on the single trace
amplitudes

M(φaφbφcφd)tr(T aT bT cT d) (3.1)
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Due to its trace structure, at fixed t, the UV completion will only involve s-channel dis-
continuities. Thus the dispersive representation of the EFT coefficients will be given as∑

k,q

g
(s)
k,qs

k−qtq = −
∑
i

pi
P`i(1+2t/m2

i )
s−m2

i

, pi > 0 (3.2)

where P`(cos θ) is the Legendre polynomial and the equality is understood in terms of
Taylor expansion in s, t keeping terms with k−q ≥ 2. The latter constraint is required for
the absence of subtraction terms in the dispersion relation (see [14] for a general discussion).
In the following, we will study the geometry emerging for these dispersion relations and
their implications for the couplings.

3.1 The s-EFThedron as a rotation

Expanding the Legendre polynomial

P`(1 + 2δ) =
∑̀
q=0

v`,qδ
q , (3.3)

the EFT couplings gk,q through the dispersive representation are therefore given by
g

(s)
2,0

g
(s)
3,0 g

(s)
3,1

g
(s)
4,0 g

(s)
4,1 g

(s)
4,2

...
...

... . . .

 =
∑
i

pi
m6
i



1
1
m2

i

1
m4

i...


⊗ (v`i,0, v`i,1, v`i,2, · · · ) . (3.4)

where v`,q, in terms of J2 = `(`+ 1), is

v`,q =
∏q
a=1(J2−a(a−1))

(q!)2 . (3.5)

Importantly, as v`,q is a complete polynomial of degree q in J2, we can invert the relation
via a GL transformation, and so we can write

GJ,v · ~v = ~J2 . (3.6)

For example, the 5× 5 rotation is given by

GJ,v =



1 0 0 0 0
0 1 0 0 0
0 2 4 0 0
0 4 32 36 0
0 8 208 720 576


(3.7)

Writing ~g (s)
k = (g(s)

k,0, g
(s)
k,1, · · · ), we define the new couplings ak,q via the same GL transfor-

mation
~ak = GJ,v · ~g (s)

k , (3.8)
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where now 
a2,0

a3,0 a3,1

a4,0 a4,1 a4,2
...

...
... . . .

 =
∑
i

pi
m6
i



1
1
m2

i

1
m4

i...


⊗ (1, J2

i , J
4
i , · · · ) . (3.9)

Thus we see that the dispersion representation in eq. (3.2) translates to the constraint that
the EFT couplings g(s)

k,q must live in the space of product moment curves. Moreover, one
of the moments will be discrete since J2 can only take discrete values, {0, 2, 6, 12, 20, · · · },
while the other will only take values in the interval [0, 1], as we see next.

For a EFT to be well defined, there must be a gap between the UV states and the low
energy (massless) states. In other words we have that all mi ≥M > 0. These observations
are easily incorporated by considering the rescaled couplings

ak,q

ak+1,q

ak+2,q
...

 =


ak,q

ak+1,qM
2

ak+2,qM
4

...

 =
∑
a

pa


1
M2

m2
a

M4

m4
a...

 =
∑
a

pa


1
xa

x2
a
...

 , (3.10)

where xa is bounded from above and below, 0 < xa ≤ 1, so the results for bounded intervals
derived in the previous section can be used. We will often normalize M = 1 in the rest of
the paper.

In conclusion, we have shown that linear combinations of couplings g(s) of the s-channel
EFThderon must satisfy eqs. (2.35).

Finally, since the amplitude is defined with a color trace, we can choose the states in
such a way that it is cyclic invariant, then we have

M(s, t) = M(t, s) (3.11)

simply implying gk,q = gk,k−q, for k ≥ 2 and k − q ≥ 2. Couplings satisfying the previous
identities are said to live on the cyclic symmetry plane, and the theory space for the EFT
couplings is simply the intersection of the cyclic plane with the product geometry.

In summary, we have shown that the s-EFThedron is simply a rotation of the bi-variate
moment problem defining the a-geometry, intersected with the cyclic symmetry plane!

3.2 Explicit region analysis

Having obtained the constraints, the allowed region for the couplings can be computed,
and in this section, we will be interested in the (g3,0, g3,1)-space. We first carve out the a
space then rotate back to the g space. Since ak,0 = gk,0 and ak,1 = gk,1, mapping those
couplings is trivial. We will consider constraints by order in k.

• k = 3 The only conditions are

a2,0, a3,0, a3,1 ≥ 0
a2,0 − a3,0 ≥ 0 (3.12)
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• k = 4 We now have the moment matrix, and the shifted matrix, which in this case
contains just a4,1 

a2,0 a3,0 a3,1

a3,0 a4,0 a4,1

a3,1 a4,1 a4,2

 ≥ 0, a4,1 ≥ 0 (3.13)

Next, the twisted Hankel constraints are

(a3,0 − a4,0), (a3,1 − a4,1) ≥ 0. (3.14)

Since for s-EFThedron J2
i = `i(`i + 1) can only take discrete values, J2

i =
{0, 2, 6, 12, 20, · · · }, we only have the following polytope constraints

〈~a4, J
2
i , J

2
i+1〉 ≥ 0, (3.15)

with ~a4 = (a4,0, a4,1, a4,2). Eliminating a4,0, a4,1, a4,2 in these inequalities, we obtain
the same simple region carved out by the k = 3 constraints alone

1 ≥ ã3,0 ≥ 0, ã3,1 ≥ 0. (3.16)

where we remind the notation ãk,q ≡ ak,q

a2,0
M2(k−2).

As expected we see no improvement without the presence of a null constraint.

• k = 5 The new constraints are 
a3,0 a4,0 a4,1

a4,0 a5,0 a5,1

a4,1 a5,1 a5,2

 ,

a3,1 a4,1 a4,2

a4,1 a5,1 a5,2

a4,2 a5,2 a5,3

 ≥ 0,


a2,0 − a3,0 a3,0 − a4,0 a3,1 − a4,1

a3,0 − a4,0 a4,0 − a5,0 a4,1 − a5,1

a3,1 − a4,1 a4,1 − a5,1 a4,2 − a5,2

 , (a4,0 − a5,0

)
,
(
a4,1 − a5,1

)
≥ 0. (3.17)

Next, the k = 5 polytope boundaries will be given by

〈0,~a5, J
2
i , J

2
i+1〉 ≥ 0

〈~a5, J
2
i , J

2
i+1,∞〉 ≥ 0 (3.18)

with ~a5 = (a5,0, a5,1, a5,2, a5,3).
Crucially, at k = 5 the first null constraint g5,2 = g5,3 appears, implying

a5,3 = 17a5,2 − 30a5,1 (3.19)

Written in terms of UV states, the associated null constraint

n5 =
∑
i

pi
m12
i

(
J6
i − 17J4

i + 30J2
i

)
= 0 (3.20)

has roots at J2 = 2, 15. This means the only relevant walls will be those with vertices
on either side of J2 = 15, namely 〈0,~a5, 12, 20〉 and 〈~a5, 12, 20,∞〉.
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Figure 5. Geometry bound and SDPB bound for (g̃3,1, g̃3,0) space. Including higher order couplings
and constraints improves the geometry bound. The region with the maximal mismatch is zoomed
in for clarity.

The matrices in eqs. (3.17) make solving the inequalities difficult, so we will resort to a
numerical mapping of the space. To solve for the g3 space, interior-point method was used
to find the extremal value of g̃3,1 under the constraints listed above. By Fixing g̃3,0 to vari-
ous different values, the space can be scanned over and we find a finite allowed region, which
we compare with an SDPB analysis in figure 5. Extracting the upper bounds, we obtain

g̃
(k=5)
3,1 ≤ 13.47 (3.21)

from geometry compared to
g̃3,1 ≤ 13.33 (3.22)

from SDPB. Including higher order constraints involving couplings at order k = 6 further
improves our results, where the upper bound

g̃
(k=6)
3,1 ≤ 13.33 (3.23)

now matches exactly with the bound from SDPB. A small deviation can still be observed
around g̃3,1 = 12, which we expect is a consequence of the truncation at finite order. We
see that the region converges rapidly as the truncation increases, and expect a convergence
to the exact solution in the infinite-k limit. In the next section for the full EFThedron,
where the symmetry plane intersects at lower order in k, we will demonstrate an analytic
result exactly matching with results from SDPB in all regions.

A comparison with previous bounds. In the previous paper introducing the EFThe-
dron [14], a set of bounds of the s-channel geometry were given in terms of gk,q, organized
as follows: fixed q constraints, fixed k constraints, “hedron” constraints, and mass gap con-
straints. The fixed q constraint is given by the Hankel matrices H(gk,q∗) and the shifted
Hankel matrices being PSD for arbitrary fixed q∗. This is the necessary and sufficient
condition that gk,q∗ is a positive span of moment curve of fixed q∗:

gk,q∗ =
∑
a

pa,q∗
1
m2k
a

.
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The fixed k constraint is the positivity of the polytopal wall 〈~gk, ~vi, ~vi+1 . . .〉 ≥ 0. It is the
necessary and sufficient condition that ~gk∗ lives in the convex hull of formed by the vectors
defined by Gegenbauer coefficients, ~vl, for arbitrary fixed k∗:

gk∗,q =
∑
a

pa,k∗vla,q.

The hedron constraint is that the Hankel matrices H(〈~gk, ~vl, ~vl+1 . . .〉) and the shifted
Hankel matrices being PSD. For example, the hedron constraint for a three-dimensional ~gk
would be 

〈~gk, ~vl, ~vl+1〉 〈~gk+1, ~vl, ~vl+1 . . .〉 . . .
〈~gk+1, ~vl, ~vl+1〉 〈~gk+2, ~vl, ~vl+1 . . .〉 . . .

...
... . . .

 ≥ 0. (3.24)

These are necessary conditions for gk,q to live in the product space of the convex hull of
moment curves and the convex hull of Gegenbauer-coefficient vectors. Finally, the mass gap
condition is the positivity of the twisted Hankel matrices and the shifted ones mentioned
in the previous sections being PSD.

We compare the (g̃3,1, g̃3,0) space carved out by the k = 2 ∼ 5 constraints in [14] with
the one carved out by the new bounds derived the previous section, and with SDPB. Note
that at k = 5, the hedron constraints are trivial. The first non-trivial one emerges at k = 6,
and it is computationally prohibitive to analyze fully. The k = 2 ∼ 5 constraints of the
s-channel geometry in the previous paper are listed as follows.

1. Fixed q:g2,0 g3,0

g3,0 g4,0

 ,
g3,0 g4,0

g4,0 g5,0

 ,
g3,1 g4,1

g4,1 g5,1

 , g4,1, g4,2, g5,2, g5,3 ≥ 0 (3.25)

2. Fixed k:
〈~g4, ~vl, ~vl+1〉, 〈~0, ~g5, ~vl, ~vl+1〉, 〈~g5, ~vl, ~vl+1, ~∞〉 ≥ 0 (3.26)

3. Mass gap:

(g4,2 − g5,2) , (g3,0 − g4,0) , (g3,1 − g4,1) , (g4,1 − g5,1) ≥ 0g2,0 − g3,0 g3,0 − g4,0

g3,0 − g4,0 g4,0 − g5,0

 ≥ 0

(g2,0 − 2g3,0 + g4,0) , (g3,0 − 2g4,0 + g5,0) , (g3,1 − 2g4,1 + g5,1) ≥ 0
(g2,0 − 3g3,0 + 3g4,0 − g5,0) ≥ 0 (3.27)

With these constraints and the k = 5 null constraint g5,2 = g5,3, the allowed region of
(g̃3,1, g̃3,0) space can be carved out and the region is an infinite stripe

0 ≤ g̃3,1, 0 ≤ g̃3,0 ≤ 1.
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Figure 6. Comparison of geometry constraints in [14] and new geometry constraints up to k = 5,
and SDPB for (g̃3,1, g̃3,0). All plots are using k = 5 null constraint due to cyclic invariance.

The fact that g3,1 has no upper bound can be easily seen from the constraints (3.25), (3.26),
and (3.27). In this paper, the upper bound of g3,1 arises from the bi-variate moment matrix
eq. (3.13) being PSD, leading to a finite region. In [14], the Gegenbauer coefficients were
not identified as a GL transform of a moment curve and therefore the previous constraints
do not capture the geometry of the product moment curve, thus the constraints in the
previous paper are necessary but not sufficient.

4 The EFThedron

We now turn to the more general set up, the case where both s and u-channel singularities
are allowed at fixed t. This set up will be applicable to general a, b→ a, b scattering where
a, b can be distinct external states. If we consider the explicit amplitude M(a, b, b, a), such
that the t→ 0 limit corresponds to forward scattering, the low energy couplings, defined as

M IR(a, b, b, a) =
∑
k,q

gk,qz
k−qtq , (4.1)

where s = −t/2+z, u = −t/2−z. Due to the 2↔ 3 symmetry of the setup, the couplings
will be non-zero only for even powers of z, i.e. k−q ∈ even. The dispersive representation
equates

∑
k,q

gk,qz
k−qtq = −

∑
i

pi P`i(1+ 2t
m2
i

)
(

1
− t

2 − z −m
2
i

+ 1
− t

2 + z −m2
i

)
, (4.2)

where once again, the equality is understood in terms of a Taylor expansion in z, t on both
sides and for terms with k−q ≥ 2. The result is the identity

gk,q =
∑
i

pi
u`i,k,q

m
2(k+1)
i

(4.3)
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where u`,k,q are related to the Legendre coefficients v`,q via an k-dependent degenerate GL
rotation Gk

u,v

~u`,k =



u`,k,0

0
u`,k,2
...
0

u`,k,k


=



1 0 0 0 0 0
0 0 0 0 0 0

(k−1)2
2

1
22 − (k−1)1

2 1 0 0 0
...

...
...

...
...

...
0 0 0 0 0 0

(1)k

k! 2−k − (1)k−1
k−1! 21−k (1)k−2

k−2! 22−k · · · −1
2 1





v`,0

v`,1

v`,2
...

v`,k−1

v`,k


. (4.4)

In the following, we will demonstrate how via a series of GL rotations, the above geometry
can be converted to our familiar a-geometry.

4.1 The EFThedron as a projection

Due to the k-dependence of Gk
u,v, the convex hull is now of an entangled product geometry.

In [14], the boundaries of this space were obtained by approximating the geometry with a
series of deformed moment curves.

Before the GL transformation, the hull is our previous a-geometry. Thus a priori,
simply acting with an inverse transform on gk,q in eq. (4.3), we can revert to the a-geometry
and apply the associated Hankel positivity. The obstruction is of course that Gk

u,v is
degenerate, of half-rank. To this end, lets instead consider an auxiliary G̃k

u,v

G̃k
u,v =



1 0 0 0 0 0
0 1 0 0 0 0

(k−1)2
2

1
22 − (k−1)1

2 1 0 0 0
0 0 0 1 0 0
...

...
...

...
...

...
0 0 0 0 1 0

(1)k

k! 2−k − (1)k−1
k−1! 21−k (1)k−2

k−2! 22−k · · · −1
2 1


. (4.5)

where we have inserted auxiliary rows such that G̃k
u,v becomes full rank. Defining

~u′`,k = G̃k
u,v~v` , (4.6)

we see that ~u′`,k = ~u`,k for the components where k−q = even, while ~u′ will have non-zero
entries for k−q = odd. Now let’s consider

~g′k =
∑
i

pi
~u′`i,k

m
2(k+1)
i

=
∑
i

pi
1

m
2(k+1)
i

G̃k
u,v~v`i ., (4.7)
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where ~g′k now contains k−q = odd auxiliary couplings. Multiplying both sides by (G̃k
u,v)−1

and GJ,v, we can now recover the a-geometry
a2,0

a3,0 a3,1

a4,0 a4,1 a4,2
...

...
...

...

 = GJ,v(G̃k
u,v)−1~g′k =

∑
i

pi
m6
i



1
1
m2

i

1
m4

i...


⊗ (1, J2

i , J
4
i , · · · ) . (4.8)

In other words, the full EFThedron is simply a projection of the a-geometry!
In practice, we first take the Hankel positivity constraints on the couplings in the a-

geometry, ak,q, and GL rotate back to g′k,q through the action of G̃k
u,v(GJ,v)−1. Second,

project out the auxiliary couplings from the constraint, ie. those which have k−q = odd.
Importantly, the result is independent of how we complete the rank for Gk

u,v, i.e. after
projecting out the auxiliary couplings we retain a “gauge” invariant result. It is straight
forward to verify that this is indeed the case.

For a, b→ b, a scattering, the constraint imposed by the a-geometry is the final result.
However, for identical scalars (a = b), the low energy amplitude must now respect permuta-
tion invariance, i.e. the EFT amplitude is a function of σ2 = s2+t2+u2 and σ3 = stu, imply-
ing linear relations between gk,q of equal k, i.e. the couplings live on the permutation plane

M(z, t) = M

(3t
4 +z

2 , z−
t

2

)
, (4.9)

Thus for identical scalar scattering, the geometry we are interested in is the intersection
of the projected a-geometry, intersected with the permutation plane.

4.2 Explicit region analysis

The conditions we will use are mostly identical to those for the s-EFThedron. The two
differences are related to polytopes, as now J2 = {0, 6, 20, . . .}, and the null constraint,
which now first appears at k = 4. Because the summand of the null constraint, given by

n4 =
∑
i

pi
m10
i

J2
i (J2

i − 8) (4.10)

has a root at J2 = 8, only the polytope wall 〈~a4, 6, 20〉 will intersect the symmetry plane.
Like for the s-EFThedron, we wish to bound (a4,0, a3,1) space. Because the null plane

is at order k = 4, we will be able to analytically solve the constraints. First, let us impose
all possible constraints up to order k = 4

a2,0 − a3,0, a3,0 − a4,0, a3,1 − a4,1 ≥ 0 (4.11)
a2,0 a3,0 a3,1

a3,0 a4,0 a4,1

a3,1 a4,1 a4,2

 ≥ 0 (4.12)

det


a4,0 1 1
a4,1 6 20
a4,2 36 400

 ≥ 0 (4.13)
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subjected to the null constraint a4,2 = 8a4,1. We find

0 < ã3,1 <

√
160
3 ã4,0 for 0 < ã4,0 ≤

5
6 ,

0 < ã3,1 <

√
80
9
(
ã4,0 − ã2

4,0

)
+ 20

3 ã4,0 for 5
6 < ã4,0 < 1 (4.14)

We can further impose the positivity of the following matrices involving k = 5 cou-
plings:

a3,0 a4,0 a4,1

a4,0 a5,0 a5,1

a4,1 a5,1 a5,2

 ,

a3,1 a4,1 a4,2

a4,1 a5,1 a5,2

a4,2 a5,2 a5,3

 ,

a2,0 − a3,0 a3,0 − a4,0 a3,1 − a4,1

a3,0 − a4,0 a4,0 − a5,0 a4,1 − a5,1

a3,1 − a4,1 a4,1 − a5,1 a4,2 − a5,2

 (4.15)

as well as the polytopal constraints,

〈0, a5, 6, 20〉, 〈a5, 6, 20,∞〉 . (4.16)

Solving these conditions, we obtain the final region is given by

0 < ã3,1 <

√
160
3 ã4,0 for 0 < ã4,0 ≤

27
40 ,

0 < ã3,1 <
20
21

(
6ã4,0 +

√
(21− 20ã4,0)ã4,0

)
for 27

40 < ã4,0 < 1 (4.17)

which is stronger than using only the k ≤ 4 constraints, and we find it matches exactly to
numerical results.

Real geometry. The last step requires us to rotate from the a to the g couplings, and
project out couplings gk,q with k + q = odd. In our low dimension example the only non-
trivial rotation is a3,1 → 3

2g3,0+g3,1. Doing these operations we can explicitly solve the con-
ditions up to k = 5 described above, and we obtain the complete (g3,1, g4,0) allowed region,

Region I: g̃31 = −3
2
√
g̃40, 0 ≤ g̃40 ≤ 1 (4.18)

Region II: g̃31 = 1
2

√
427
3 g̃40, 0 ≤ g̃40 ≤

243
427 (4.19)

Region III: g̃31 = 30
7 g̃40 + 37

42

√
g̃40 (21− 20g̃40), 243

427 ≤ g̃40 ≤ 1 (4.20)

This is shown in figure 7, and we find it matches perfectly the results from SDPB [10]. For
a more precise comparison, we can compute the upper bound on g̃3,1, which we find to be

2g̃3,1 <
9
2 + 7

4

√
61
5 ≈ 10.6125 (4.21)

identical to the value found with SDPB.
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Figure 7. (g̃3,1, g̃4,0) space with k = 4 null constraint, geometry vs SDPB.

The boundary structure is the following

• Region I

a3,1 = 0, Rank

 a2,0 a3,0

a3,0 a4,0

 = 1 (4.22)

• Region II

〈~a4, 6, 20〉 = 0, Rank

 a2,0 a3,1

a3,1 a4,2

 = 1 (4.23)

• Region III

〈~a4, 6, 20〉 = 0, 〈0,~a5, 6, 20〉 = 0, 〈~a5, 6, 20,∞〉 = 0

Rank


a3,0 a4,0 a4,1

a4,0 a5,0 a5,1

a4,1 a5,1 a5,2

 = 2, Rank


a3,1 a4,1 a4,2

a4,1 a5,1 a5,2

a4,2 a5,2 a5,3

 = 2,

Rank


a2,0 − a3,0 a3,0 − a4,0 a3,1 − a4,1

a3,0 − a4,0 a4,0 − a5,0 a4,1 − a5,1

a3,1 − a4,1 a4,1 − a5,1 a4,2 − a5,2

 = 1 (4.24)

5 Constraints on the UV spectrum

As we have seen in previous analysis, while the space for the hull is in general unbounded
its intersection with symmetry planes yields a finite region. The reason that it is finite is
simple, in general only the low spins are one side of the symmetry plane while the remaining
majority are on the other side. Indeed take for example the su-channel k = 4 polytope
intersected with the symmetry plane a4,2 = 8a4,1, which we plot again in figure 8. We see
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Figure 8. (a4,1, a4,2) polytope and a4,2 = 8a4,1 symmetry plane.

that only the spin 2 (J2 = 6) vertex lives on one side of the plane. This immediately tells
us that the k = 4 null constraint requires spin 2 to be present. In other words, to live on
the symmetry plane, certain distributions in the spin spectrum are necessary.

A convenient way of formulating such conditions is the statement that the hull must
have zero components perpendicular to the symmetry plane. This condition is often termed
“null constraints”, which we denote as nk. The subscript k indicates that it associated with
symmetry constraints on the k-th level couplings gk,q. Once we substitute the dispersive
representation for the couplings, the condition translates into the vanishing of a sum over
the UV states. For example, the symmetry plane in figure 8 corresponds to a null condition

n4 = a4,2 − 8a4,1 =
∑
i

pi
m10
i

(
J4
i − 8J2

i

)
(5.1)

In general, null conditions will have a form

nk =
∑
i

pi
1

(m2
i )k+1ωk(`i) = 0 (5.2)

where ωk(`) is a polynomial in `, and there may be several null constraints at the same k
level. The fact that the above expression must sum to zero imposes non-trivial conditions
on the UV spectrum. We will analyze these constraints in steps, first utilizing just the sign
of ωk(`), then its magnitude, and finally linear combinations of ωk(`) with distinct k. We
summarize our finding in the following

• Conditions on spins. Given that ωk(`) is a finite degree polynomial, at sufficiently
large spins its sign is fixed, which we can always take to be positive. Thus if the
spectrum only contains high spin states for which ωk(`) > 0, it is impossible for the
null constraints to be satisfied, since negative terms must also be present. This tells us
that the real roots of ωk(`) encode the necessary conditions the spin distribution must
satisfy for nk to hold. Collecting the conditions from different k one obtains global
constraints on the spectrum. For example, we will find that assuming the existence
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of non-scalar states, the UV completion of a theory containing identical scalars must
include an infinite number of arbitrarily high even spins, including all even spins
` ≤ 28. Certainly such result is not surprising and can be argued directly from the
Froissart-Gribov formula, i.e. it is inconsistent to have higher spins without having
the complete even spin spectrum.2 The exercise here is to see how such conditions
arrises from geometry, and set stage to the following.

• Conditions on probabilities. Beyond the sign pattern, the functional form ωk(`)
tells us the magnitude of the contribution for each spin. Since the contribution must
cancel out, this imposes upper bounds on the averaged spinning spectral function
〈p`,k〉 for any fixed `. In particular, for identical scalars we can deduce upper bounds
for the ratio 〈p`,k〉/〈p2,k〉, such as

〈p4,`〉
〈p4,2〉

≤ 12
`(`+ 1) (`2 + `− 8) , (` ≥ 4) (5.3)

• Conditions on masses. Combining different k-order constraints, we now obtain
functions that are no longer homogenous in mi. This will then allow us to deduce
that there must exists a state in the spectrum whose mass is below a “gap”

m2
` ≤M2B(`) (5.4)

where M is the heaviest spin 2 particle.

In the following we will give the details for the s- and full EFThedron, as well as the
case when the external states carry spin.

5.1 Implications for spin spectrum

Substituting the dispersive representation for the couplings in the null constraints, we will
in general arrive at

nk =
∑
i

p`i
(m2

i )k+1ωk(`i) = 0 , (5.5)

where the function ωk(`) is a polynomial in ` and thus have finite roots. Since p` is
positive, this immediately tells us there must be states residing in both the positive and
negative regions of the polynomial. We begin by first analyzing this sign pattern for the
s-EFThedron.

s-EFThedron. Imposing cyclic symmetry

M(s, t)=M(t, s) → gk,q = gk,k−q , (5.6)

leads to the following null constraints

gk,q−gk,k−q =
∑
i

pi
(m2

i )k+1 (v`i,q − v`i,k−q) = 0 . (5.7)

2We thank the referee for pointing this out.
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Since the couplings are well defined only for k ≥ 2 and k− q ≥ 2, the first valid cyclic null
constraint appears at k = 5, and is given by

n5 = g5,2 − g5,3 =
∑
i

pi
m12
i

(`i−1)`i(`i + 1)(`i + 2)(`2i+`i−15) = 0 . (5.8)

First, if all spins in the theory are 0 or 1, the null constraint is trivially satisfied. However,
if there is at least one particle with spin ` > 1, the null constraint becomes non-trivial.
Importantly we must have states residing in both positive and negative regions of the
polynomial w5(`) = (`−1)`(`+1)(`+2)(`2+`−15), in order for the null constraint to hold.
Noting the last factor has a positive root at ` ∼ 3.4, lets consider the sign pattern of this
function for each spin

` 0 1 2 3 4 5 . . .

ω5(`) 0 0 − − + + +

We observe that for spins 2 and 3 it is negative, while for spins 4 and greater it is positive.
This means for a theory to satisfy cyclic invariance and contain spins beyond spin 1, it
must contain either a spin 2 or a spin 3, as well as at least one spin 4 or higher.

The k = 6 null constraint is weaker and does not add new information, while at k = 7
the null constraint g7,3 = g7,4 yields

ω7(`) = (`− 2)(`− 1)`(`+ 1)(`+ 2)(`+ 3)(`2 + `− 28) , (5.9)

with a final root at ` ∼ 4.8, and the following sign pattern

` 0 1 2 3 4 5 . . .

ω7(`) 0 0 0 − − + +

This tells us that if we have states with ` ≥ 3, then the spectrum must have either a spin
3 or 4 and at least one spin ≥ 5.

We can continue this argument order by order at higher k. It is useful to specifically
consider constraints g2a+1,a = g2a+1,a+1 which takes the form

ω2a+1(`) = (`2 + `− fc(a))
a−1∏
i=0

(`− i)
a+1∏
j=1

(`+ j) (5.10)

where fc(a) = (a+ 1)(2a+ 1), leading to a positive root at

`c(a) ≡ −1+
√

1+4fc(a)
2 (5.11)

which for integer a > 0 is well approximated by

`c(a) ≈
√

2a+ 1
2

( 3√
2
− 1

)
(5.12)
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Now ω2a+1(`) has zeroes for ` ≤ a−1, and has only one negative region between
a − 1 < ` < `c(a) , and becomes positive for ` > `c(a). This leads to the following
conditions

k = 5 : ` ∈ {2, 3} and ` ∈ {4, 5, . . . }
k = 7 : ` ∈ {3, 4} and ` ∈ {5, 6, . . . }
k = 9 : ` ∈ {4, 5, 6} and ` ∈ {7, 8, . . . }
k = 11 : ` ∈ {5, 6, 7} and ` ∈ {8, 9, . . . } . (5.13)

These constraints are valid for UV completions of colored scalars states involving massive
states beyond spin 1. From the above we can immediately conclude that the spectrum
must be unbounded in spin. As k increases, we observe that the conditions on spins become
weaker. This is because the interval between the last two roots grows as ∼ (

√
2− 1)a. The

same behavior will also occur for the su-EFThedron, but the conditions will be stronger.

The full EFThedron. We now perform the same analysis with permutation invariance
of identical scalars. Recall that the permutation plane for the full EFThedron is defined as

M(z, t) = M

(
z

2+3t
4 ,−

t

2+z
)
. (5.14)

When translated into linear relations for the couplings, for the first few ks they are given
by (recall that we must have k ≥ 2, k − q ≥ 2 )

k = 4 : g4,2 = 2
3g4,0, k = 5 : g5,3 = g5,1

2
k = 6 : g6,4 = 45

16g6,0−
1
2g6,2, k = 7 : g7,3 = 4

5g7,1, g7,5 = 16
3 g7,1

k = 8 : g8,4 = 21
8 g8,0−

1
4g8,2, g8,6 = 21

8 g8,0−
5
16g8,2 . (5.15)

Substituting the dispersive representation for the k = 4 the null constraint one finds

n4 =
∑
i

pi
m10 `i(`i + 1)(`2i + `i − 8) = 0 . (5.16)

The sign pattern of the summand ω4(`) = (`(`+ 1)− 8) is given as

` 0 2 4 6 . . .
ω4(`) 0 − + + +

This implies that if we have states other than scalars, then we must have a spin ` =
2, and at least one state with ` ≥ 4. Going to higher k, our strategy will be to take
linear combinations of null constraints that force roots for lower spins, are negative for one
particular spin, and positive for higher spins. At k = 5, 6 no new constraints in terms of
spectrum arise. At k = 7 we have two independent null constraints

n7 ≡ g7,3 −
4
5g7,1 = 0, n′7 ≡ g7,5 −

16
3 g7,1 = 0 (5.17)
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Both have zeros at l = 0, and we would like to have a root at l = 2. The combination

n7 + n′7 =
∑
i

pi
m7
i

(`i − 2)`i(`i + 1)(`i + 3)
(
`2i + `i −

49
2

)
= 0 (5.18)

achieves just that, and as desired we obtain sign pattern

` 0 2 4 6 . . .
ω7(`) 0 0 - + +

.

We observe it is negative only for ` = 4, and positive for ` ≥ 6. Thus now we have the new
condition that the spectrum must contain at least one ` = 4 particle, as well even higher
spin particles.

In general, it is easy to arrange null constraints at order k = 3a+ 1 in the form

ω3a+1(`) = (`2 + `− fp(a))
a−1∏
i=0

(`− 2i)
a−1∏
j=0

(`+ 2j + 1) (5.19)

where fp(a) = (3a+ 1)2/2, leading to a root at

`p(a) ≈ 3a√
2

+ 1
2
(√

2− 1
)

(5.20)

Like in s-EFThedron, we have roots for l ≤ 2a− 2, negative values for 2a− 2 < l < `p(a),
and positive values for l > `p(a). For constraints up to k ≤ 43, this implies the following
sign pattern

` 0 2 . . . 2a− 2 2a 2a+ 2 . . .
ω3a+1(`) 0 0 0 0 - + +

which is negative only for ` = 2a, thus requiring the spin ` = 2a, as well as some state with
` ≥ 2a+ 2. Combining the different ks, we immediately conclude that for identical scalars
coupled to at least a higher spin-state, the UV completion must contain an unbounded
number of even spins, including all states below spin 28!

Going to k = 46 we find that both spins 30 and 32 have negative contributions, so
the presence of either is sufficient, a behavior that continues as we increase k. We see that
permutation invariance imposes more stringent constraint on the EFThedron spectrum
than cyclic invariance on the s-EFThedron, but the overall pattern is similar.

Note that pure scalar theories are not constrained, since scalars trivially solve the null
constraints. This allows theories such as

M(s, t) = 1
s−m2 + 1

t−m2 + 1
u−m2 (5.21)

to be compatible with permutation invariance while not containing any higher spin.
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5.2 Bounds on 〈pk,`〉

The function ω(`) not only puts constraints on the spin-spectrum, it also puts upper limits
on how large the p`s can take. It will be convenient to consider the average spectral function
〈pk,`〉, defined as

〈pk,`〉 ≡
∑
{i,`i=`}

p`i

m
2(k+1)
i

. (5.22)

That is, we sum over contributions of all states with spin-`, weighted by their mass. In
terms of 〈pk,`〉, the dispersive representation take on a simple form

gk,q =
∑
`

〈pk,`〉u`,q . (5.23)

To illustrate how constraints on 〈pk,`〉 can be derived from symmetry considerations, start-
ing with eq. (5.5) we write the following sum rule

nk =
∑
i

p`i
(m2

i )k+1ωk(`i) =
∑
`

〈pk,`〉ωk(`) = 0 , (5.24)

where we have used the fact that ωk(`) only depends on the spin and not the mass.
From the previous discussion, we have seen that as we tend to higher k, we have more

than one null constraints ωk(`). Suppose that we can find a linear combination ω̃k(`) of
null constraints, such that for some fixed spin `∗

ω̃k(`∗) < 0, ω̃k(`) ≥ 0 ∀ ` 6= `∗ (5.25)

Now if we can conclude that `∗ must be part of the spectrum, then from the sum rule
∑
`

〈pk,`〉ω̃k(`) = 0 , (5.26)

we immediately find that there is an upper bound for the ratio 〈pk,`〉/〈pk,`∗〉, in order to
cancel the negative contribution from ω̃k(`∗). This leads to

〈pk,`〉
〈pk,`∗〉

≤ |ω̃k(`
∗)|

ω̃k(`)
, ∀` ≥ `∗ . (5.27)

Note that this functional approach is exactly what has been implemented in the conformal
bootstrap analysis [23, 24], and in particular to the problem of maximization of OPE
coefficients. In some cases, such a functional cannot be found, and the best one can do is
having a subset of spins being negative, with the remaining being non-negative. Then one
has instead

〈pk,`〉∑
`∗〈pk,`∗〉|ω̃k(`∗)|

≤ 1
ω̃k(`)

, (5.28)

where the sum is over the subset of spins whose ω̃k(`∗) is negative.
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The s-EFThedron. For s-EFThedron, the first non-trivial null constraint starts at k =
5, with

n5 =
∑
`

〈p5,`〉ω5(`) = 0 . (5.29)

The function ω5(`) is negative for ` = {2, 3} and positive for ` ≥ 4, as illustrated in the
following graph

ℓ

ω5

The null constraint then translate to the sum of the positive region spin must equal to those
in the negative region, weighted by their 〈p5,`〉 respectively. For any given spin `∗ ≥ 4, the
maximum value for 〈p5,`∗〉 is attained when it is the sole source of positive contribution,
which must match with the sum of that from spin-2 and 3. Thus we have an upper bound
of the form,

〈p5,`〉
〈p5,2〉|ω̃5(2)|+〈p5,3〉|ω̃5(3)|=

〈p5,`〉
216〈p5,2〉+360〈p5,3〉

≤ 1
(`−1)`(`+1)(`+2)(`2+`−15) , (` ≥ 4) .

(5.30)
Moving to k = 6, there is also only one null constraint in this case,

n6 =
∑
`∈Z+

〈p6,`〉(`− 1)`(`+ 1)(`+ 2)
(
`4 + 2`3 − 17`2 − 18`− 72

)
= 0 (5.31)

The spin pattern is,

` 0 1 2 3 4 5 6 . . .
ω̃6(`) 0 0 - - - + + . . .

Since the k = 5 null constraint already requires either a spin 2 or spin 3 state, the new
constraint does not impose anything new in terms of which spins should appear. However,
it does yield a bound on 〈p6,`〉:

〈p6,`〉
3〈p6,2〉+15〈p6,3〉+10〈p6,4〉

≤ 1152
(`−1)`(`+1)(`+2) (`4+2`3−17`2−18`−72) , (` ≥ 5) .

(5.32)
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Starting from k ≥ 7, at each level of k there will be more than one null constraint. Thus
the general functionals ω̃k(l) will take the linear combination of these null constraints. One
can then obtain further bounds of the above form, where the spins of the positive region
is bounded by the total contribution of the negative region.

We can test the bound against two candidate amplitudes. The first is given as

M(s, t) = − 1
(s−M2)(t−M2) . (5.33)

Note that the above will have an infinite number of higher spin particles with the same
mass M , and thus does not make sense physically. However it can be shown that this
amplitude satisfies our requirements, in particular the residue in the s-channel has a positive
expansion, see [25]:

− 1
(s−M2)(t−M2) = 1

s−M2

∑
`∈Z+

pM,`P`

(
1 + 2t

M2

)
(5.34)

where
pM,` = 2`+ 1

M2

∫ 0

−1
dxP`(1 + 2x)

1− x > 0 (5.35)

Thus 〈pk,`〉 of this model is,

〈pk,`〉 = 2`+ 1
M2(k+1)

∫ 0

−1
dxP`(1 + 2x)

1− x . (5.36)

The second is the type-1 open string amplitude

M(s, t) = Γ[−s]Γ[−t]
Γ[1−s−t] , (5.37)

where the residue is given as

Resn(t) =
∏n−1
i=1 (t+ i)

(n!) . (5.38)

Since the higher level contributions are suppressed, for each 〈pk,`〉 we only sum over con-
tributions from the first 50 levels after the corresponding spin appears in the leading tra-
jectory. In figure 9 we show that both s-matrix will satisfy the bounds in eq. (5.30).

The full EFThedron. Based on the analysis of previous section 5.1, we know that for
identical scalars coupled to massive spin states, all the even spin particles must exist, for
` ≤ 28. Thus it will be interesting to consider the ratio of 〈pk,`〉 for any higher spin state
with respect to spin 2. We first look at k = 4, 5, 6 case where one only has one null
constraint. From (5.15) we get,

n4 =
∑

`∈even
〈p4,`〉`(`+ 1)(`2 + `− 8) = 0

n5 =
∑

`∈even
〈p5,`〉`(`+ 1)(`(`+ 1)(2`(`+ 1)− 43) + 150) = 0

n6 =
∑

`∈even
〈p6,`〉(`− 3)`(`+ 1)(`+ 4)

(
`(`+ 1)

(
`2 + `− 32

)
+ 204

)
= 0 (5.39)
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String

k=5 bound

ℓ

theory

theory

Figure 9. Here we present the k = 5 bounds in the s-EFThedron ((5.30)) & ((5.32)) with the
S-matrix −1

(s−M2)(t−M2) and the Type-I open string amplitude.

The sign pattern of these three null constraints is,

` 0 2 4 6 8 . . .
ω̃4(`) 0 - + + + . . .
ω̃5(`) 0 - + + + . . .
ω̃6(`) 0 - - + + . . .

Thus for k = 4, 5, we can use derive a valid upper bounds on 〈pk,`〉/〈pk,2〉,

〈p4,`〉
〈p4,2〉

≤ 12
`(`+ 1) (`2 + `− 8) , (` ≥ 4)

〈p5,`〉
〈p5,2〉

≤ 216
`(`+ 1)(`(`+ 1)(2`(`+ 1)− 43) + 150) , (` ≥ 4) . (5.40)

For k = 6, since there are two spins with negative value, we can only obtain bounds of the
form similar to the s-EFThedron.

Starting from k ≥ 7, one will get more than one null constraint. In order to get the
strongest upper bound for 〈pk,`a〉/〈pk,2〉, we require the special functional to satisfy the
following conditions,

For ` ≥ 4, l ∈ even, ω̃k(l) ≥ 0

Minimize − ω̃k(2)
ω̃k(la)

(5.41)

We call this kind of the special functional as optimal functional. At k = 7, 9, one will have
two null constraints. The optimal functionals take the form,

ω̃7(`) = det[ ~G(7)
4 , ~G

(7)
` ], ω̃9(`) = det[ ~G(9)

4 , ~G
(9)
` ] (5.42)

where vector ~G
(k)
` made by the independent null constraints at the level of k. The sign

patterns are,

` 0 2 4 6 8 . . .
ω̃7(`) 0 - 0 + + . . .
ω̃9(`) 0 - 0 + + . . .
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ℓ

Figure 10. Here we compare the different k level upper bounds of 〈pk,`〉
〈pk,2〉 in the su-EFThedron

with the S-matrix 1
(s−M2)(t−M2)(u−M2) .

The upper bounds are,
〈p7,`〉
〈p7,2〉

≤ 604800
(`−4)`(`+1)(`+5)(`(`+1)(7`(`+1)(2`(`+1)−115)+11112)−33516) , (`≥ 6)

〈p9,`〉
〈p9,2〉

≤ 152409600
(`−4)`(`+1)(`+5)(`(`+1)(`(`+1)(`(`+1) (5.43)

× 1
(`(`+1)(2`(`+1)−331)+19014)−448776)+3862728)−8899632) , (`≥ 6)

Starting from k > 11, one cannot find any functional that gives bounds on 〈pk,`〉/〈pk,2〉.
But one can mange to get functional that give upper bound on 〈pk,`〉/〈pk,`∗≥4〉.

We can also test the bound using the following two S-matrices. The first has the simple
form

M(s, t, u) = 1
(s−M2)(t−M2)(u−M2) . (5.44)

The 〈pk,`〉 in this case is

〈pk,`〉 = −2(2`+ 1)
M2k−2

∫ 1

−1
dy 1
y2 − 9P`(y) (5.45)

In figure 10, one can see that the average spectral function of this S-matrix is decaying
exponentially as `→∞, while the bounds eq. (5.43) are just polynomially suppressed.

The second one is the closed-string amplitude,

Mstring(s, t, u) = Γ(−s)Γ(−t)Γ(−u)
Γ(1+s)Γ(1+t)Γ(1+u) , (5.46)

whose residues are just the square of the open string residues:

Resn(t) =
∏n−1
i=1 (t+ i)2

(n!)2 . (5.47)

The result is displayed in figure 11, where we see that it lies between our bound and the
result for eq. (5.44).
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Figure 11. Here we compare the k = 4, 5 upper bounds of 〈pk,`〉
〈pk,2〉 with the S-matrix

1
(s−M2)(t−M2)(u−M2) and the closed string theory.

5.3 Implications for mass spectrum

Previously, we have considered the null constraints each k at a time. This imposes bounds
on the spin content of the spectrum. Here instead we consider various linear combinations
of null constraints from different k, which will result in constraints on the mass content.

Let us begin with the k = 4, 5 null constraint and combine it into a vector equation,n4

n5

 =
∑
i

pi

 J2
i (J2

i −8)
m10

i
J2

i (150+J2
i (2J2

i −43))
m12

i

 =
∑
i,x

pi
m12
i

 J2
i (J2

i − 8)m2
i

J2
i (150 + J2

i (2J2
i − 43))

 = 0 (5.48)

Now we assume that at ` = 2, the mass are bounded from above, and the mass of heaviest
spin-2 particle is Mh. Consider the following functional,

ω1(m,J2) = det[ ~GMh,6,
~Gm,J2 ] = −12J2M2

[
150−43J2 +2J4−18(J2−8)

(
m

M2

)2]
(5.49)

where
~Gmi,J2

i
=

 J2
i (J2

i − 8)m2
i

J2
i (150 + J2

i (2J2
i − 43))

 (5.50)
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ω1 m,J2

-12Mh2 J2
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l=4
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l=8

Figure 12. Here we present the functional ω1(m,J2) for different spin. The position of the largest
zero eq. (5.51) will increase as J2 increase.

By construction the functional will have a zero exactly at the largest massive spin 2 state.
The plot of eq. (5.49) for each spin is at figure 12. For ` > 2 the function has a negative
slope and only for spin 2 does the slope becomes positive. Since the zero occurs at the
largest mass amongst the spin 2 states, all ` = 2 particles have positive contribution. Thus
in order for the sum rule to be true, there must exist a higher spin particle with mass

m2
` ≤

2J4 − 43J2 + 150
18J2 − 144 M2

h . (5.51)

This bound becomes stronger by adding k = 6 constraint. The functional in this case
is,

ω2(m,J2) = det[ ~GMh,6,
~G√5 M

2 ,42,
~Gm,J2 ]

∼
[
(12−J2)((J2−32)J2+204)+8(J2(2J2−43)+150)

(
m

Mh

)2]
(5.52)

where the ~Gm,J2 now is determined by combining three null constraints,

~Gm,J2 =


m4J2(J2 − 8)

m2J2(150 + J2(2J2 − 43))
J2(J2 − 12)(J2(J2 − 32) + 204)

 (5.53)

Using the same method, the mass gap now can be improved as,

m2
` ≤M2

h

(J2 − 12)(J4 − 32J2 + 204)
8(150− 43J2 + 2J4) (5.54)

Note that the dominant contribution to 〈pk,`〉 is the lightest state of a given spin.
Thus an upper bound on 〈pk,`〉 is a constraint on this lightest state, which cannot become
arbitrary light without having its coupling p`i being heavily suppressed. Here the bound is
in the opposite direction, where it requires some state in the spectrum must be sufficiently
“light”. Of course, if the masses of the spin 2 states are unbounded, the condition is less
useful. However, the simplicity of these results suggests the complete geometry in (p, `,m)
space is highly non-trivial.
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5.4 Constraints on EM and gravitational EFTs

In this section we briefly consider some of the above analyses when the external scalars
are replaced by massless particles with spin, leading to constraints for UV completions of
electromagnetic or gravitational EFTs. For external helicity states, dispersion relations for
the couplings of an amplitude M(+h,+h,−h,−h) are given as [14, 20]:

[12]2h〈34〉2h
∑
k,q

gk,qs
k−qtq

 = −[12]2h〈34〉2h
∑
`a≥0

pi
d`i=even0,0 (θ)
s−m2

i

+
∑
`j≥2h

pj
d̃
`j
2h,2h(θ)
−t−s−m2

j


(5.55)

where d`a,b(θ) is the Wigner-d matrix, while d̃`2h,2h(θ) ≡ d`2h,2h(θ)/(cos θ/2)4h, and the s-
channel residue only allows for even spin. Once again the equality is understood as a Taylor
expansion on both sides. Since the spinor bracket prefactor behaves as s2h, the dispersive
representation is valid for any k, q. The Wigner d-matrices can be expanded in small t by
cos(θ) = 1 + 2t and expand in t. It turns out that d`=even0,0 (θ) is just our usual Legendre
polynomial so its expansion written in J2 = `(`+ 1) is as before. For d̃`2,2(θ), we have

d̃`2h,2h(θ)
∣∣∣∣
θ=cos−1(1+2t)

=
∑
q

v`,qt
q , (5.56)

with
v`,q =

∏q
a=1(J2 − (a+ 2h)(a+ 2h− 1))

(q!)2 . (5.57)

Note that our helicity configuration is invariant under 1 ↔ 2 exchange. Since our
dispersive representation for the couplings are valid for any k, q, the constraint that this
symmetry imposes on the spectrum can be obtained by Taylor expanding,

M(s, t, u)−M(s, u, t) =

∑
`i≥0

pi
d`i=even0,0 (θ)
s−m2

i

−
∑
`j≥2h

pj
d̃
`j
2h,2h(θ)
t+s+m2

j

−(t↔ u) = 0 . (5.58)

The constraint is then collecting the coefficients of each satb, which must be zero. The null
constraint is at level k is, ∑

`∈even
〈ps`,k〉ωsk(`) +

∑
`≥2h
〈pu`,k〉ωuk (`) = 0 (5.59)

where 〈ps`,k〉 and 〈pu`,k〉 are the average spectral function in s and u-channels. The remaining
steps are identical with that of the scalar EFThedron. In the following we simply do the
analysis for k = 1, 2 when there is only one null constraint.∑

l∈even
〈psl,1〉`(`+1)+

∑
l≥2h
〈pu`,1〉(−4h2−2h+`2 +`−1) = 0

∑
l∈even

〈psl,2〉`(`+1)(`+`2−6) (5.60)

+
∑
l≥2h
〈pu`,2〉4−(2h−`)(2h−`+1)(2h+`+1)(2h+`+2) = 0

Notice that ω̃s(`) are non-negative for ` given by even integers. Thus we just have to look
at the sign pattern for ω̃u(`),
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` 2 3 4 5 6 7 . . .
h = 1, ω̃u1 (`) - + + + + + . . .
h = 2, ω̃u1 (`) - + + + . . .
h = 1, ω̃u2 (`) - - + + + + . . .
h = 2, ω̃u2 (`) - - + + . . .

Thus when k = 1, we know that there must be spin 2 and spin 4 particles in the u-channels
in the EM and gravitational EFTs respectively. We can then derive upper bounds for
average spectral functions in both s and u-channels,

h = 1 :
〈ps`,1〉
〈pu2,1〉

≤ 1
`(`+ 1) (` ≥ 2),

〈pu`,1〉
〈pu2,1〉

≤ 1
`2 + `− 7 (` ≥ 3)

h = 2 :
〈ps`,1〉
〈pu4,1〉

≤ 1
`(`+ 1) (` ≥ 2),

〈pu`,1〉
〈pu4,1〉

≤ 1
`2 + `− 21 (` ≥ 5) (5.61)

When k = 2, from sign pattern table we know that there must be spin 2 or 3 particles and
EM EFTs and spin 4 or 5 particles gravitational EFTs. Thus in this case we cannot get an
upper bound for 〈ps,u2,` 〉 with respect to only a single average spectral function. The results
are,

h= 1 : 〈psl,2〉≤ 4
〈pu2,2〉+〈pu3,2〉

`(`+1)(`2 +`−6) (`≥ 4), 〈pul,2〉≤ 4
〈pu2,2〉+〈pu3,2〉

68+`(`+1)(`2 +`−18) (`≥ 4)

h= 2 : 〈psl,2〉≤ 4
〈pu4,2〉+〈pu5,2〉

`(`+1)(`2 +`−6) (`≥ 4), 〈pul,2〉≤ 4
〈pu4,2〉+〈pu5,2〉

596+`(`+1)(`2 +`−50) (`≥ 6)

(5.62)

6 Conclusion and outlook

In this paper, we have explored in detail the analytic description of the boundaries for
the space of consistent EFT. This space is defined through the dispersive representation
of the Wilson coefficients. We have demonstrated that at the core of the EFThedron, first
introduced in [14], is the geometry given by the convex hull of product moment curves.
In particular, we have the product of a continuous bounded curve, associated with the
mass spectrum of the UV completion, and a discrete unbounded moment associated with
the spin content of the spectrum. The identification of this geometry allows us to state
the boundary of the EFThedron in the limit of infinite dimensions, which corresponds to
coefficients of higher dimension operators to all orders in derivatives.

In a generic setup, we only have access to a finite number of Wilson coefficients. In such
case the boundaries in the infinite dimension limit are no longer complete. Nevertheless,
even for the “truncated” geometry we present a finite collection of constraints that is very
close to fully describing the space, and converges to the exact solution in the infinite limit.
The space of consistent EFTs is then carved out by considering the intersection of the
symmetry plane, defined either by cyclic or permutation invariance of the amplitude, and
the EFThedron. We have compared the space carved out from the geometry with that from
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SDP, with the results in perfect agreement in the s− u case, where conditions are slightly
simpler to solve. For the s-EFThedron, we expect including higher order constraints will
similarly reduce the region to match the functional method.

In general the intersection yields a finite region. The reason can be attributed to the
fact that for any symmetry plane, there are only finite number of spins on one side of the
plane, while the majority is on the other side. This implies non-trivial constraint on the
UV spectrum. In particular we demonstrate that for permutation invariant amplitudes,
the UV completion must contain all even spins ` ≤ 28. We also derived upper bounds on
the ratios of averaged spinning spectral function, which demonstrates the phenomenon of
large spin suppression. Finally, we have shown that at least one high spin particle satisfy
an upper bound m2

` ≤ M2B(`), where M2 is the mass of the heaviest spin 2. All of
these results have their generalization to the case when the external states carry spins, i.e.
photons and gravitons. Much like the EFThedron, the UV parameters {p, `,m} form a
highly non-trivial geometry (though no longer convex), induced by the null conditions. We
leave a more systematic study of this problem to the future.

In all of the previous discussion, we have only required that pi is positive. However, the
spectral function is further bounded by unitarity to lie between [0, 2]. Indeed by exploiting
this upper limit, the authors of [10] were able to obtain upper bounds for g2,0 in the case of
identical scalars. It is an open problem how to implement such constraint in the geometry,
as well as in the numeric SDP setup.

Generically, one has more than one massless degree of freedom in an EFT. It will
be interesting to explore the constraint of positivity for the scattering of arbitrary mixed
states, and in particular, their implications on the UV spectrum. Some analysis along these
lines have recently been pursued in [14, 20, 26, 27].

Now that the geometry of the EFThedron is settled, and new boundaries have been ob-
tained by using the moment matrix, it would be interesting if the analysis performed in [13]
can be improved by obtaining a stronger convergence to the open string solution. As in this
paper we have also obtained the complete boundary structure for the su-EFThedron, simi-
lar analyses may now be carried out for closed strings (see also [28]). One may also consider
null constraints associated to BCJ relations, which can be used to bootstrap EFTs [29].

We have seen that making contact with the mathematical moment problem was a
crucial step in better understanding the space of physical EFTs. However, many other
possibly fascinating connections to related results remain unexplored. The operations of
slicing and projecting the EFThedron are central, but they spoil the simple boundary
structure of Hankels or cyclic polytopes. Describing the resulting shapes of slices and
shadows of polytopes has also been previously investigated [30]. As we have mentioned
previously, several aspects of the truncated moment problem are still open problems. For
instance, a much more efficient method to determine the boundary of the truncated discrete
moment problem was recently proposed in [31]. While not directly applicable to our case,
as the discrete moments are valued in {0, 1, 2, . . .}, it suggests new closed form solutions
may exist for various problems.

The generalization to higher dimensions is straightforward for external scalars. As
mentioned in the introduction, changing from Legendre to Gegenbauer polynomials is re-
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flected merely in a different GL transformation quoted in eq. (3.7). For external massless
spins, the situation is more complicated, as one can now exchange various mixed represen-
tation of SO(D−1), and the three-point couplings for such exchange are no-longer unique,
albeit constrained from gauge invariance. Thus one in general have an n × n matrix of
polynomials, where n is the number of three-point couplings, and unitarity is reflected in
the coefficient matrix being positive semi-definite. The optimal geometric description of
such constraints remains to be explored.

Finally, the same convex hull of product moment curve also underlies the torus par-
tition function of 2D CFTs [32], where the Taylor coefficients are associated with the ex-
pansion of the partition function around the self-dual fix point under modular invariance.
The symmetry subplane is then derived from modular invariance. This suggests that there
is a formal “duality” between the space of consistent EFT and that of 2D torus partition
functions. It will be interesting to explore this connection in more detail. Similarly it would
be interesting to investigate the connections between the EFTs as those coming from the
flat space limit of AdS/CFT, where the AdS EFT is constrained by the boundary CFT.
For recent results see [33].
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A Using semi-definite programming to carve out the space of EFT co-
efficients

In [10], the authors shows that one can use semi-definite programming to help carve out
the space of EFT coefficients. Here we briefly review their method for self-containedness.

One parameter space (bounds on g̃k,q). If a EFT coefficient gk,q has a dispersive
representation, we know that generally it has the form,

gk,q =
∑
i

pmi,`i

Fk,q(`)
m

2(k+1)
i

(A.1)

where fk,q(`) is polynomial of `. Also because the EFThedron is constrained to a sub-plane,
which will generate infinite number of null constraints which has the form,

nk =
∑
i

pmi,`i

Bk(`)
m

2(k+1)
i

= 0 (A.2)
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where k labels the level of null constraints. With these two ingredients in hand we can
transform it to semi-definite programming problem. Let us define the vector ~Em,` as,

~Em,` =



1
m6

i
M2(k−2)Fk,q(`)

m
2(k+1)
i
Bk1 (`)
m

2(k1+1)
i
Bk2 (`)
m

2(k2+1)
i ...


(A.3)

Thus we can write down a vector equation,

∑
mi,`i

pmi,`i
~Emi,`i =



1
g̃k,q

0
0
...


(A.4)

Then we redefine the p̃mi,`i as,

p̃mi,`i = pmi,`i

m
2(k̃+1)
i

, where k̃ = max(k, k1, k2, . . . ) (A.5)

And make the substitution m2
i →M2(1 + xi). The vector equation now becomes,

∑
xi>0,`i

p̃xi,`i
~Exi,`i =



1
g̃k,q

0
0
...


(A.6)

Notice that now each entry in the vector ~Exi,`i is just polynomial in xi, with xi > 0. The
corresponding semi-definite programming problems are,

• Upper bound (g̃k,q ≤ A)

Minimize A = ~α · (1, 0, 0, · · · )
Such that For x ≥ 0, ~α · ~Ex,` ≥ 0, ~α · (0,−1, 0, 0, . . . ) = 1 (A.7)

• Lower bound (B ≤ g̃k,q)

Maximize B = ~α · (−1, 0, 0, · · · )
Such that For x ≥ 0, ~α · ~Ex,` ≥ 0, ~α · (0, 1, 0, 0, . . . ) = 1 (A.8)
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Two parameter space (g̃k1,q1, g̃k2,q2). The strategy is that one can first use the method
of the previous section to get the upper and lower bound of g̃k1,q1

A1 ≤ g̃k1,q1 ≤ A2 (A.9)

Then at each value β ∈ [A1, A2] we use semi-definite programming again to get the upper
and lower bound of g̃k2,q2 ,

For each β, B1(β) ≤ g̃k2,q2 ≤ B2(β) (A.10)

Then we can carve out the 2D space of (g̃k1,q1 , g̃k2,q2). Below we show the optimization
problem at some β. The vector ~Exi,`i in this problem is,

∑
xi≥0,`i

p̃xi,`i
~Exi,` =



1
g̃k1,q1

g̃k2,q2

0
0
...


(A.11)

• Upper bound

Minimize B2(β) = ~α · (1, β, 0, 0, · · · )
Such that For x ≥ 0, ~α · ~Ex,` ≥ 0, ~α · (0, 0,−1, 0, . . . ) = 1 (A.12)

• Lower bound

Maximize B1(β) = ~α · (−1, β, 0, 0, · · · )
Such that For x ≥ 0, ~α · ~Ex,` ≥ 0, ~α · (0, 1, 0, 0, . . . ) = 1 (A.13)

This algorithm can be easily generalized to carving out higher dimensional parameter space.
And for SDP solver we are using SDPB [18, 19] to perform our computation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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