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Abstract: We describe a class of holographic models that may describe the physics of
certain four-dimensional big-bang/big-crunch cosmologies. The construction involves a pair
of 3D Euclidean holographic CFTs each on a homogeneous and isotropic space M coupled
at either end of an interval I to a Euclidean 4D CFT on M × I with many fewer local
degrees of freedom. We argue that in some cases, when the size of M is much greater
than the length of I, the theory flows to a confining three-dimensional field theory on M
in the infrared, and this is reflected in the dual description by the asymptotically AdS
spacetimes dual to the two 3D CFTs joining up in the IR to give a Euclidean wormhole. The
Euclidean construction can be reinterpreted as generating a state of the Lorentzian 4D CFT
on M × time whose dual includes the physics of a big-bang/big-crunch cosmology. When M
is R3, we can alternatively analytically continue one of the R3 directions to get an eternally
traversable four-dimensional planar wormhole. We suggest explicit microscopic examples
where the 4D CFT is N = 4 SYM theory and the 3D CFTs are superconformal field theories
with opposite orientation. In this case, the two geometries dual to the pair of 3D SCFTs can
be understood as a geometrical version of a brane-antibrane pair, and the tendency of the
geometries to connect up is related to the standard instability of brane-antibrane systems.

Keywords: AdS-CFT Correspondence, Black Holes in String Theory, D-Branes

ArXiv ePrint: 2102.05057

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2022)039

mailto:mav@phas.ubc.ca
https://arxiv.org/abs/2102.05057
https://doi.org/10.1007/JHEP03(2022)039


J
H
E
P
0
3
(
2
0
2
2
)
0
3
9

Contents

1 Introduction 1

2 General construction 6
2.1 Euclidean wormholes, eternal traversable wormholes, and cosmology 7
2.2 Coupling auxiliary degrees of freedom 7
2.3 Confinement and symmetry breaking 8
2.4 From two-sided black hole to eternally traversable wormhole 9

3 Microsopic construction 11
3.1 Dual geometries for the single-boundary case 13
3.2 The two-boundary case 15
3.3 Probe example 17
3.4 Non-perturbative version 18
3.5 Asymptotic behavior of the dual geometry 18

4 Bottom-up and effective field theory descriptions 19
4.1 Effective field theory setup 20
4.2 Holographic analysis of interface CFTs 22

5 Discussion 25

A Type IIB supergravity solutions for N = 4 SYM theory coupled to a
3D SCFT 27

B Probe D5-brane solutions 29
B.1 Probe D̄5-brane in the background of a single-boundary solution 32

C Holographic model for conformal interfaces 33

D Effective field theory description with conformal anomaly 33
D.1 Lorentzian solutions 34

1 Introduction

In this note we describe specific holographic constructions through which the physics of 4D
big-bang/big-crunch cosmologies might be encoded in the physics of certain non-gravitational
quantum field theories. We follow the construction of [1–3] (reviewed below; see also [4–6]
for related low-dimensional constructions), which considers states of a 4D holographic
CFT constructed using a Euclidean BCFT path integral. These states were suggested to
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be dual to asymptotically AdS black hole spacetimes with a dynamical end-of-the-world
(ETW) brane providing an inner boundary for the spacetime behind the horizon of the black
hole. In [1] was suggested that in favorable cases, gravity can localize to this ETW brane,
so that the effective description of the ETW brane physics is that of a four-dimensional
big-bang/big-crunch cosmology.

The present work refines and extends this picture in the following ways:

• We point out that the physics of confinement and symmetry breaking plays a crucial
role in the relevant field theories.1 The construction relies on four-dimensional field
theories with one compact direction flowing in the infrared to three-dimensional
confined theories, with a particular pattern of global symmetry breaking.

• We suggest specific microscopic examples constructed from N = 4 SYM theory and
various 3D superconformal field theories that can be coupled to it at a boundary. The
dual gravity picture, including the ETW brane physics, is described in terms of type
IIB supergravity/string theory, and involves the physics of brane-antibrane systems.

• We emphasize that the construction may continue to work when the 4D theory is not
a conventional holographic theory (but the boundary theories involved in constructing
the state are). In this case, there can be a classical gravitational description for the
ETW brane (as a 4D theory of gravity, perhaps with a compact internal space) but no
classical bulk 5D spacetime. The encoding of a cosmological spacetime in the state of
a non-holographic CFT is similar to the encoding of black hole interiors in Hawking
radiation systems [8–10].

While we don’t attempt to construct the relevant supergravity solutions in detail, we are
able to describe the asymptotic behaviour explicitly. It remains to check (or argue indirectly)
that the proposed solutions exist and have the conjectured properties. Alternatively, we
can hope to understand better the 4D effective description of the ETW physics and verify
that the desired solutions relevant to cosmology exist there. If the construction succeeds,
an analytically-continued version gives four-dimensional eternally traversable wormholes
preserving 2+1 dimensional Poincaré symmetry in the effective description. It has been
argued that the existence of these would require an unnaturally large amount of negative
null energy [11, 12]. We review these arguments in section 4 and identify a novel field
theory effect that gives a possible mechanism for achieving the large amount of negative
null energy required to support the wormhole.

These models have some interesting phenomonological/model-building aspects that
we discuss in section 5. However, we emphasize that the immediate motivation here is
not to come up with a phenomenologically accurate model of cosmology, but rather to
come up with some completely defined physical theory which encodes the cosmological
physics of a four-dimensional homogeneous and isotropic universe with a big bang.2 If these
constructions succeed, they could shed light on the question of what are the well-defined

1Related comments were made in the context of Euclidean wormholes in [7].
2For other approaches to cosmology using holography, see for example [13–17].
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Figure 1. Basic field theory construction (the CFT sandwich): a pair of 3D holographic CFTs
related by a reflection are coupled at either end of an interval I to a 4D CFT.

observables in cosmological spacetimes and allow a first principles calculation of these
observables assuming the holographic dictionary is understood well enough and the field
theory calculations can be done. For example, cosmological correlators could be computed
from correlation functions in a four-dimensional Euclidean field theory with boundaries at
some past and future Euclidean time.

Summary of the basic construction. We begin by describing the basic mechanism of
the construction, considering the case where we wish to describe cosmology with spatial
geometry R3. The construction is essentially the same when the spatial geometry is spherical
or hyperbolic. Following [18], we begin by constructing a Euclidean wormhole.

To start, consider a pair of three-dimensional Euclidean holographic CFTs each living
on R3. Each of these is dual to a separate four-dimensional Euclidean gravitational theory
on AdS4 with boundary geometry R3. We now introduce an interaction between the theories
by coupling them to an auxiliary four-dimensional quantum field theory on R3 times an
interval [−τ0/2, τ0/2], with the original three-dimensional theories living at either end of
the interval, as in figure 1a.3 We take the four-dimensional theory to have many fewer local
degrees of freedom than the original 3D theories. In particular, the four-dimensional theory
need not be a conventional holographic theory. Since the fourth dimension is compact, the
field theory we have constructed will flow to some three-dimensional theory in the IR, which
provides a good description of the physics at distance scales much larger than τ0. This theory
could be a non-trivial three-dimensional conformal field theory, but more generically, we
expect that it will be gapped/confining. We will argue that in some cases, the gravitational
description of this confinement is that the asymptotically AdS4 spacetimes associated with
the two 3D CFTs join up in the IR so that the full spacetime is a Euclidean wormhole.

To motivate this assertion, consider the case where the four-dimensional auxiliary
theory is also holographic. In this case, coupling one of the 3D holographic theories to
the auxiliary 4D system gives a holographic boundary conformal field theory. In the dual
description, the four-dimensional gravitational theory dual to the 3D CFT now describes
the physics of an end-of-the-world brane in a five-dimensional geometry (figure 2b). When
the 4D theory has many fewer local degrees of freedom than the 3D theory (c4D � c3D),
gravity localizes to this ETW brane by the Karch-Randall mechanism [19–21], and the 4D
graviton gets a mass that can be made arbitrarily small by taking c4D/c3D small. In our
construction with two 3D theories on either end of an interval, we have two ETW branes
in the UV. But if the full field theory is confining in the IR, the dual geometry must be

3In other words, we make a CFT sandwich.
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Figure 2. Dual geometries for various field theory setups, showing end-of-the-world branes (red)
with asymptotically AdS4 regions. (a) Dual of a single 3D CFT (b) Dual of a 3D CFT coupled to
the boundary of a 4D CFT. Gravity remains well-localized to the ETW brane when c4D � c3D.
(c) Possible dual of a pair of 3D CFTs coupled to a 4D CFT, where the IR physics is a conformal
3D CFT (d) Possible dual of a pair of 3D CFTs coupled to a 4D CFT, where the IR physics is a
confining 3D theory.

capped off somehow in the IR [22], and a natural mechanism for this is for the two ETW
branes to join up (figure 2d).4 We will provide evidence for this picture via a string theory
construction, where the 4D auxiliary theory is taken to be N = 4 SYM theory and the
3D theories are holographic superconformal theories with opposite orientation. In this
case, the ETW branes are related to a certain brane-antibrane system in string theory, and
the tendency for the ETW branes to join up is directly related to the instability of the
brane-antibrane system. From the field theory perspective, this situation is characterized
by a spontaneous breaking G×G→ G of global symmetry, where G is the global symmetry
associated with each of the 3D CFTs and becomes a gauge group for gauge fields on the
ETW brane.

To connect with cosmology, we interpret the τ direction as a Euclidean time direction
and interpret the Euclidean theory for τ < 0 as a path-integral that constructs a specific
state |Ψb,τ0〉 of our auxiliary 4D theory living on a spatial R3 (figure 3a).5 Here, b labels
our choice of 3D theory. Note that the degrees of freedom of this 3D theory are not
physical degrees of freedom in the Lorentzian theory, but appear only in the Euclidean
path integral generating the state |Ψb,τ0〉. This state (evolved with the usual Hamiltonian
for the 4D theory) is dual to a Lorentzian geometry that is the analytic continuation of
the Euclidean wormhole described above (see figure 3b,c,d).6 This will generally be a flat
FRW big-bang/big-crunch cosmology. In the case where the 4D field theory is holographic,
the 4D cosmological physics is confined to an ETW brane living at the IR end of a five-

4As we discuss below, there are more general possibilities for which the effective description of the ETW
brane physics is not a single 4D Euclidean wormhole.

5This is similar to the Hartle-Hawking construction [23], but with a CFT path integral.
6In this context, the Euclidean wormhole is interpreted as a “bra-ket wormhole”.
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Figure 3. Connection to cosmology. (a) State of the 4D CFT on R3 produced by the Euclidean path
integral terminated by a 3D CFT b in the Euclidean past at τ = −τ0. (b) τ < 0 half of the Euclidean
solution dual to the doubled bra-ket path-integral. (c) The τ = 0 slice of the Euclidean solution
serves as the initial data for Lorentzian evolution. (d) Full Lorentzian solution dual to |Ψ〉b,τ0 .

dimensional asymptotically AdS spacetime. This lies behind the horizon of a (planar) black
hole, emerging from the past singularity and ending up in the future singularity (figure 3d).
But when the 4D theory is not a conventional holographic theory, there is no geometrical
5D spacetime. In the language of [24–26], we can think of the 4D cosmological spacetime is
an “island” whose physics is encoded in the state of a field theory that is not conventionally
holographic.7

Eternally traversable wormholes. If they exist, the Euclidean wormholes we describe
(for the case of spatial R3) could instead be analytically continued along one direction of
the R3 to give a four-dimensional eternally traversable wormhole (figure 2d, but with one of
the translationally invariant directions analytically continued to give a time direction). The
existence of such solutions in the effective description requires a substantial violation of the
averaged null energy condition [28]. In the 1+1-dimensional construction of Maldacena and
Qi [29], this arises through a direct coupling of the CFTs associated with the asymptotic
regions. It has been argued in [11] and [12] that obtaining the required amount of negative
null energy in a higher-dimensional construction is difficult. We recall these arguments
in detail in section 4, and explain a possible mechanism to produce the required negative
energy in the effective description. We argue that the matter in the effective description can
be modeled as an interface theory as shown in figure 4; a holographic model suggests that
such setups can lead to large negative Casimir energy densities for interfaces with specific
properties. This will be discussed in more detail in [30].

Microscopic construction. The generalities of our construction are motivated and
described more fully in section 2 below. In order to make everything more concrete, we
discuss a possible specific realization of the construction within string theory in section 3.
Here, the field theory arises as the low-energy limit of D3-branes stretched between a
D5-brane/NS5-brane stack and a complementary D5-brane/NS5-brane stack, with extra
D3-brane degrees of freedom added to the fivebrane stacks at either end (see figure 8). The
low-energy field theory description is U(N) N = 4 SYM theory on R3 times an interval,

7This is similar to the ideas in [27], which argued that bubbles of a spacetime associated with some
holographic CFT can be encoded in states of a different CFT, which might have a significantly smaller
central charge.
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Figure 4. CFTs on R2,1 times S1, with each CFT covering an interval on the S1. A holographic
model suggests that the negative Casimir energy of the CFT with larger central charge can become
much larger than that for this CFT on R2,1 × S1 for special choices of the interface corresponding
to a bulk interface tension close to a lower critical value in the holographic model.

Figure 5. (a) Probe brane solution dual to N = 4 SYM with parallel D5-brane defects. (b)Probe
brane configuration for parallel defects with opposite orientation (D5-D̄5). (c) Dual gravity solution
for SUSY-preserving BCFT, with ETW branes that stay separated. (d) Suggested dual gravity
solution with boundary SCFTs of opposite orientation, breaking SUSY.

coupled to 3D superconformal field theories at either end of the interval. These SCFTs
are holographic with many more local degrees of freedom than the N = 4 theory. These
SCFTs individually preserve half the supersymmetry when coupled to the N = 4 theory.
However, the full construction breaks supersymmetry. We argue that the theory still has a
gravitational dual well-described by type IIB supergravity, and we describe the asymptotic
geometry explicitly using the work [31–34]. In these geometries, the ETW branes are
geometrical, characterized by an internal space which grows in size before pinching off
smoothly (figure 11). We can think of them as a geometrized stack of branes emerging
from one boundary and a geometrized stack of the corresponding anti-branes emerging from
the other boundary. The ETW branes connecting up would then be a non-perturbative
geometrized version of the joining of probe D5 and anti-D5 branes associated with parallel
defects in the N = 4 theory (figure 5) [35–37].

2 General construction

In this section, we describe and motivate the general construction in more detail before
turning to the specific microscopic construction in section 3.

– 6 –
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2.1 Euclidean wormholes, eternal traversable wormholes, and cosmology

Our goal is to construct models of big bang cosmology using the tools of AdS/CFT.
Maldacena and Maoz pointed out that certain big-bang/big-crunch spacetimes arise by
analytic continuation from Euclidean AdS wormholes, with geometry of the form

ds2 = dτ2 + f(τ)ds2
M (2.1)

where M is a homogeneous isotropic space and the geometry is asymptotically AdS4

for τ → ±∞. The form of this Euclidean geometry suggests that it could be related
holographically to a pair of Euclidean CFTs, each living on M . However, for a pair
of decoupled CFTs, the partition function and all correlation functions would factorize
between the two CFTs, while holographic calculations in the geometry (2.1) would give
non-factorizing results.

There is another puzzle with the geometries in (2.1) that applies to the flat case. Here,
we could analytically continue one of the spatial directions in M = R3 to obtain a static
Lorentzian geometry with two asymptotically AdS regions. Such a planar traversable
wormhole geometry cannot exist without violating the averaged null-energy condition
(ANEC) [28].

2.2 Coupling auxiliary degrees of freedom

To resolve these puzzles, it has been suggested that Euclidean AdS wormholes may corre-
spond to ensemble-averaged products of CFT partition functions (see e.g. [18, 38–42]), or
partition functions for CFTs that are weakly interacting in some way (see e.g. [7]). Either of
these can explain the non-factorization of correlators, and for the flat case, it is understood
that introducing interactions between the CFTs associated with asymptotic regions can
give ANEC-violating matter in the bulk that allows a traversable wormhole [29, 43, 44].8

A specific approach that incorporates features of ensemble averages and interactions
is to couple the original CFTs to some auxiliary degrees of freedom spread over an extra
spatial dimension [3].9 Specifically, we can consider a four-dimensional CFT on M times
a spatial interval [−τ0/2, τ0/2], with the fields at τ = ±τ0 coupled to our original CFTs
(figure 1). The partition function for the full theory can be understood as a product of
partition functions of the original CFTs, averaged over an ensemble of sources [3]. Here,
the sources are fields in the auxiliary theory and the probability distribution for the sources
comes from the path integral over the auxiliary degrees of freedom.

In order that the dual gravitational system associated with the coupled CFTs remains
effectively four-dimensional, we require that the number of local degrees of freedom in the
auxiliary CFT is small compared to the number of local degrees of freedom in the original
CFTs. In this case, the addition of auxiliary degrees of freedom can be understood to be a
small perturbation of the original theory, at least in the UV.10

8Note, however that there has not been an explicit construction of an eternal traversable wormhole in
four dimensions with R3 spatial slices.

9See [45] for a related construction involving the coupling of two theories via an auxiliary system.
10Below, it will be important that such perturbations can significantly alter the IR physics.
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Localized gravity and Karch-Randall branes. To understand the effects on the
gravitational physics from coupling to a 4D auxiliary CFT, it is helpful to consider the case
where these auxiliary degrees of freedom are also holographic. Consider first the case where
we have a single 3D holographic CFT which we couple to a four-dimensional CFT on a
half-space. In this case, the full dual geometry has an asymptotically AdS5 region, and the
original four-dimensional gravitational theory describes the physics of an end-of-the-world
brane, as shown in figure 2b.11,12 Gravity is localized to this end-of-the-world brane via
the Karch-Randall mechanism [19]. Specifically, the physics of the ETW brane has an
effective description as four-dimensional gravity, where the 4D graviton obtains a tiny
mass (m2 ∼ c4/c3), and we have a tower of massive fields coming from the modes of the
5D-graviton [47, 48]. In a bottom-up description, we can think of the brane as a hypersurface
living at some angle θ in the Poincaré coordinates of AdS5×S5. When this angle is close to
−π/2 as in figure 2b, the brane acts as a cutoff surface in AdS, and the effective description
of the physics on the brane will include a cutoff version of the 4D CFT.

When we have two 3D holographic CFTs coupled by a 4D holographic CFT, the dual
geometry now includes two ETW branes in the UV. We will argue below that in some cases,
these connect up in the IR (figure 2d), giving rise to a wormhole in the effective description.

Requirement for strong IR correlations. We have emphasized that the number of
auxiliary degrees of freedom should be small in order to maintain the four-dimensional
character of the dual gravitational theory. However, ending up with a connected wormhole
means that the interactions between the two CFTs induced by the auxilary degrees of
freedom lead to large correlations. In particular, we require that ln(Z/(Z1Z2)) ∼ c3D. In
the Lorentzian case where we have analytically continued one of the directions of M = R3,
the geometrical connection between the two sides implies that the vacuum entanglement
between the original CFTs induced by the auxiliary degrees of freedom is large, with
entanglement entropy of order c3D.13

Thus, we wish to introduce an auxiliary theory whose number of degrees of freedom is
small, c4D � c3D, but which leads to entanglement/correlations between the original CFTs
that are large, of order c3D. In the next section, we will argue that the physics of RG flows
and confinement may help achieve this.

2.3 Confinement and symmetry breaking

Our general Euclidean field theory setup has two 3D CFTs on a homogeneous and isotropic
space M coupled to a 4D CFT on M times an interval Iτ0 = [−τ0/2, τ0/2]. We would like
to understand whether for some τ0, our field theory has a dual gravitational description
as a 4D Euclidean AdS wormhole. We expect that the correlations between the original

11In microscopic examples, the full geometry can be understood as a warped product of AdS4 and an
internal space. When we have only the 3D CFT, the internal space is compact. Coupling to the 4D CFT on
a half space modifies this compact space to include a narrow semi-infinite throat.

12This structure was described as a “bagpipe” in [46].
13To regulate the entanglement entropy, we can consider a subsystem including a ball-shaped region of

one of the 3D theories and compare the entanglement entropy of this region to the entanglement entropy for
the same region in the case where there is not a second 3D CFT.
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CFTs will become larger for smaller values of τ0, so it is natural to consider the small τ0
limit and ask whether the wormhole exists here. Since the field theories we are dealing
with are assumed to be scale-invariant, we can equivalently keep τ0 fixed and take the
curvature length scale of M large, so that our field theory geometry approaches R3 × I. If
the wormhole exists in this flat case, it should also exist in the spherical and hyperbolic
cases for sufficiently small spatial curvature.

At length scales much larger than τ0, the Euclidean field theory on R3 × Iτ0 or the
related Lorentzian field theory on R2,1 × Iτ0 should be described by some three-dimensional
field theory. The IR limit of this theory could either be a non-trivial 3D CFT, or it could
be a gapped theory. We will now argue that the latter may correspond to some type of
connected ETW brane wormhole geometry in the dual gravitational description.

To see this, it is helpful again to consider the case where the auxiliary degrees of
freedom are holographic. In this case, we have a dual geometry with an asymptotically
AdS5×S5 region whose boundary geometry is R3 × Iτ0 , and we have ETW branes in the
bulk anchored to the ends of the interval.

In the case where the IR theory is conformal, we have non-trivial physics at arbitrarily
long wavelengths, and the bulk picture is that the radial direction extends to infinite distance
in the IR. Here, the ETW branes can remain separate and extend infinitely into the IR
(figure 2c). Alternatively, they could join up somehow and extend into the IR. In neither
case do we get the desired wormhole geometry.

On the other hand, when the field theory is gapped in the IR, we expect that the radial
direction should terminate somehow in the IR at a finite distance from any interior point of
the geometry. A natural way for this to occur is for the two ETW branes to join up into
a single brane (figure 6, left). In this case, the ETW brane worldvolume geometry is the
desired asymptotically AdS Euclidean wormhole.

The configuration of figure 6 (left) is not the only way to end up with a confining theory.
Indeed, adding a relevant deformation to the individual 3D theories, or to the 4D CFT
could lead to confinement. In this case, the ETW brane geometries and the bulk geometry
could individually truncate in the IR, as shown in figure 6, right. Here, the effective 4D
description of the ETW brane physics on the gravity side would have two disconnected
asymptotically AdS spacetimes with an IR end.

In order to ensure a single connected ETW brane, one strategy is to endow the ETW
brane with properties similar to those of a string theory brane, such that the pair of ETW
branes acts like a probe brane-antibrane pair. For example, we can take the 3D CFTs to each
include some global symmetry G and the theories to be related to each other by reflection
through τ = 0. The G×G global symmetry in the UV is related to the presence of bulk
gauge fields associated with the ETW branes. If the branes connect up in the bulk the G×G
global symmetry is broken to a single diagonal copy. We will provide explicit examples below.

2.4 From two-sided black hole to eternally traversable wormhole

Before turning to specific microscopic models, we motivate the existence of a connected worm-
hole in a different way. Here, we focus on the Lorentzian picture, where we would have an
eternally traversable wormhole after analytically continuing on one of the directions of the R3.

– 9 –
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Figure 6. Two possibilities for the gravity dual of a theory that confines in the IR. These can
sometimes be distinguished by a different pattern of global symmetry breaking. The ETW brane
geometry in the left case is a Euclidean wormhole.

Consider first the pair of 3D CFTs on spatial R2 in the thermofield double state. This
is dual to the single connected geometry of a two-sided planar 4D black hole. This state
may be constructed using a Euclidean path integral with path integral geometry R2 × I
that connects the two spatial R2s, as shown in figure 7a.

Next, we can consider coupling the 3D CFTs via a 4D CFT as above. For the coupled
theory, we can consider the path-integral state shown in figure 7b. We can choose to evolve
this state forward using the time independent Hamiltonian for the 4D theory on spatial
R2× I. When the 4D CFT has many fewer degrees of freedom than the 3D CFTs, we expect
that the gravitational description of the new state is in some sense a small perturbation of
the original two-sided black hole geometry. In particular, we expect that the ETW brane
geometry for the t = 0 spatial slice should be almost the same as that of the two-sided
4D planar black hole and the ETW branes from the two different 3D CFTs should still
connect. When the 4D theory is holographic, we can visualize the full geometry as having
a 5D bulk such that the original 4D black hole becomes an ETW brane in this geometry.
The presence of the 4D CFT may alter the time-dependence of the ETW brane. Since it
represents a coupling between the original 3D theories, it can have the effect of making the
ETW brane geometry traversable. However, the state is still time-dependent.

By continuously modifying the path integral geometry to the strip geometry of figure 7c,
we end up with the vacuum state of the theory with the two 3D CFTs coupled by the
4D auxiliary theory. In the case we are interested in, the ETW brane geometry would
remain connected in the limit where we reach the vacuum state. Since the final dual
geometry is static, the ETW brane geometry should be an eternally traversable wormhole,
and after analytic continuations give a Euclidean AdS wormhole and a flat cosmological
spacetime.

Of course, for some theories, it could be that the ETW brane disconnects in the limit
where the state approaches the vacuum state. Our goal is to find examples where the ETW
brane remains connected in this limit.

– 10 –
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Figure 7. States created by Euclidean path integrals and gravity duals. (a) Thermofield double
state of two 3D CFTs, dual to a two-sided black hole. (b) State of a pair of 3D CFTs coupled by a
4D CFT. The two-sided black hole is now the geometry of an ETW brane. The black hole may be
traversable for some time. (c) Vacuum state of the 3D CFTs coupled by a 4D CFT, if the ETW
brane remains connected and gives an eternally traversable wormhole in the effective description.

3 Microsopic construction

In this section, we describe a family of specific microscopic constructions designed to realize
the picture we have described. In order to have the largest amount of control, we take as
building blocks quantum field theories with large amounts of supersymmetry, though this
supersymmetry will end up being broken in the final construction.

For simplicity and maximal control over the gravity picture, we start by choosing the
U(N) N = 4 SYM theory as the 4D CFT that gives our auxiliary degrees of freedom. Here,
N2(= c4D) and the ’t Hooft coupling λ can both be taken large if we wish to have a 5D
gravity dual, but we can also consider the case where they are not large.

Next, we introduce the 3D holographic CFTs. We take these to be superconformal
theories that can be coupled to the N = 4 theory at a boundary while preserving half
of the original supersymmetry of the N = 4 theory. Such theories preserve OSp(2, 2|4)
superconformal symmetry; they were classified by Gaiotto and Witten in [49] (see also [50]).
The BCFT obtained by coupling one of these theories to the U(N) N = 4 theory describes
the low-energy physics of N semi-infinite D3-branes (in the 0123 directions) ending on
stacks of D5-branes (in the 123456 directions) and NS5-branes (in the 123789 directions),
with additional D3-branes stretched in the 3 direction between the D5s and NS5s, as shown
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Figure 8. Left: brane construction for N = 4 SYM coupled to a 3D superconformal gauge theory.
D3-branes in the 0123 directions (horizontal, red) are streched between D5-branes in the 0456
directions (vertical, black) and NS5-branes in the 0789 directions (blue, angled). Right: quiver
gauge theory describing the low-energy physics. Circles represent circles represent gauge theory
sectors coupled by bifundamental hypermultiplets (horizontal lines). Squares represent additional
fundamental hypermultiplets.

in figure 8. The 3D theory on its own corresponds to the physics of these extra D3-branes.
Since we are free to add an arbitrarily large number of these, we can take c3D/c4D as large
as we want.

The 3D theories can also be understood as the IR limit of certain supersymmetric
quiver gauge theories of the type shown in figure 8 (right). The parameters describing the
quiver — the ranks of the gauge groups and the number of fundamental hypermultiplets —
are related to the numbers of D5-branes, NS5-branes, and D3-branes in the string theory
construction.

The dual gravity solutions for both the 3D SCFTs and the BCFTs obtained by coupling
these to the N = 4 theory are known explicitly. These solutions of type IIB supergravity
were described in [31–34], based on the general OSp(2, 2|4)-symmetric solutions of type IIB
supergravity found in [31, 32].

For our construction, we want N = 4 SYM theory to couple to a 3D CFT at each end
of the Euclidean time interval. From the string theory perspective, we can obtain such a
theory by introducing additional stacks of D5-branes and NS5-branes so that the D3-brane
stack has two boundaries. The distance between the boundaries can be scaled so that we
end up with a finite separation between the two boundaries in the low-energy limit. We can
preserve supersymmetry if the new D5-branes and NS5-branes have the same orientation as
the original ones. However, we instead want to take them to have the opposite orientation,
i.e. to use anti-branes instead of branes. From the field theory perspective, what we want
is to take the same Euclidean SCFT at either end of the Euclidean time interval, but
coupled with the opposite orientation to the N = 4 theory. The reason is that we want
a construction that is symmetric under Euclidean time reversal. This is required for our
interpretation of the Euclidean geometry as a bra-ket wormhole, and ensures that we obtain
a real Lorentzian geometry under analytic continuation.14 Choosing the boundary theories

14To understand in more detail why the reflection symmetry gives real Lorentzian solutions, note that
this implies fields with an even number of Euclidean time indices will behave as f(τ2), while fields with an
odd number of Euclidean time indices will behaves as τf(τ2) where τ = 0 is the reflection-symmetric point.
For the fields with an odd number of Euclidean time indices, the factor of i in the analytic continuation that
comes from the presence of these indices will cancel the factor of i in the analytic continuation of τf(τ2).
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to have the opposite orientation breaks supersymmetry in the resulting low-energy field
theory, but only nonlocally, due to boundary conditions in the N = 4 theory that are
mutually incompatible with supersymmetry.

We will argue that the resulting non-supersymmetric theory should be gapped in the
IR, and that the dual gravity interpretation has a connected ETW brane whose effective
description can be a four-dimensional Euclidean AdS wormhole.

3.1 Dual geometries for the single-boundary case

Before discussing the complete two-boundary construction, let us describe more explicitly
the dual gravitational physics of the single-boundary theories that preserve supersymmetry,
following [31–33, 51].

The bosonic symmetry of the full BCFT includes the SO(3, 2) 3D conformal symmetry
plus an SO(3) × SO(3) subset of the original SO(6) R symmetry. Accordingly, the dual
geometries takes the form of AdS4 × S2 × S2 fibered over a two-dimensional space. In
general, we can write the metric as

f4(r, θ)ds2
AdS4 + f1(r, θ)dΩ2

2 + f2(r, θ)dΩ2
2 + 4ρ(r, θ)(dr2 + r2dθ2) (3.1)

where r and θ are polar coordinates on the first quadrant of a plane. This is illustrated
in figure 9. The metric functions f4, f1, f2, and ρ are determined by a pair of harmonic
functions h1, (r, θ), h2(r, θ), and these are determined by choosing the locations {lA} for
a set of poles of h1 on the x axis and the locations {kB} for a set of poles of h2 on the y
axis, where multiplicities are allowed. The explicit form of the metric for these solutions
is reviewed in appendix A; see the references [31–33, 51] for more details, including the
expressions for the other supergravity fields.

The geometry is illustrated in figure 9. At each point in the quadrant, we have an
AdS4 × S2 × S2 fiber, where the volumes of the three factors can vary independently. The
first and second S2 volumes go to zero for θ = 0 and θ = π/2 respectively, except at
the locations of the poles, which are associated with D5-brane throats (x-axis poles) or
NS5-brane throats (y-axis poles) in the geometry. The pair of S2s fibred over a curve
connecting the two axes (e.g. a constant r curve) gives a geometry that is topologically
S5. For large r, the curves of constant r describe AdS4 × S5 slices of the local AdS5 × S5

geometry that describes the asymptotic region. These are the slices of fixed Poincaré angle,
as shown on the right in figure 9.

In the region where the solution is well-described by Poincaré AdS5 × S5, the variable
r is related to the angular coordinate Θp in the τ − z plane in Poincaré coordinates via

r

r0
= 1− sin Θp

cos Θp
(large r) . (3.2)

For smaller values of r, the geometry deviates from AdS5 × S5; the r = 0 point corresponds
to a smooth part of the geometry where the S5 contracts to zero size.

The pole locations are constrained in the microscopic type IIB string theory by the re-
quirement that the various fluxes originating from the fivebrane throats should be quantized.
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Figure 9. Left: geometries dual to N = 4 on a half-space. Each point in the quadrant has an
AdS4 × S2 × S2 fiber. Curves connecting the axes are topologically AdS4 × S5. Poles on the x
and y axis correspond to D5 and NS5-brane throats. Right: full geometry is well-approximated by
Poincaré-AdS away from the dark grey shaded region, where the internal space smoothly degenerates.
This region can be understood as an end-of-the-world brane from the lower-dimensional perspective.

Specifically, we must have that

LA = √glA + 2
π

∑
B

arctan lA
kB

KB = kB√
g

+ 2
π

∑
A

arctan kB
lA

(3.3)

are integers for each A and B. These integers are related to the number of units of D3-brane
flux per fivebrane in a given throat, and are directly related to integer parameters in the
brane or quiver pictures of figure 8 specifying the gauge theory.

Microscopic picture of the ETW brane. The geometry for a given microscopic 3D
SCFT labeled by parameters {LA}, {KB} and corresponding supergravity parameters
{lA}, {kB} will contain a portion that is a good approximation to the part of AdS5 × S5

with Poincaré angle Θp > Θ0 for some angle Θ0 that is different for different parameter
choices.15 The remainder of the geometry (grey shaded region in figure 9) can be understood
as a fat ETW brane in which the S5 contracts. This part of the geometry also includes the
fivebrane throats. We can think of Θ0 as the ETW brane angle.

We will now argue that by choosing the boundary SCFT appropriately, we can find
examples with c3D � c4D where Θ0 is arbitrarily close to −π/2, so that our geometry
includes an arbitrarily large portion of AdS5 × S5. In this case, the ETW brane is like
a Planck brane cutting off the asymptotic region on half the space, and we expect that
gravity should be well localized on the brane.

First, we note that the number and location of the poles determines the rank N of the
N = 4 SYM theory gauge group, and the asymptotic AdS radius L by

N = L4

4π`4s
=
∑
A

lA +
∑
B

kB . (3.4)

15Here, Θ0 that depends on how closely we require the geometry to match with AdS5 × S5.
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For the solution specified by parameters {lA} and {kB}, we can expand the metric functions
asymptotically in r to verify that the solution asymptotes to AdS5×S5 with these parameter
values. The same asymptotic behavior is obtained for many different choices of poles; these
choices correspond to our choice of 3D SCFT.

For fixed N , we find that the ETW brane angle Θ0 can be made to approach −π/2 by
taking the pole locations {lA} and {kB} small compared with

r0 =
√
N =

√∑
A

lA +
∑
B

kB . (3.5)

This requires taking a large number of poles. Since each pole corresponds to a fivebrane
in the brane construction, these cases correspond to having a complicated 3D SCFT with
c3D � c4D.16

Thus, we find that by choosing a boundary SCFT with many degrees of freedom, the
effective ETW brane tilts strongly outward so that it should behave like a Planck brane
cutting off half of the asyptotic region of Poincaré-AdS. We expect gravity to localize on
the brane via the Karch-Randall mechanism. The resulting theory is expected to have an
effective description as the N = 4 theory on a half-space coupled to a theory on the other
half-space that includes the gravitational theory dual to our 3D SCFT and a cutoff version
of the N = 4 theory.

Even when Θ0 is not close to −π/2, the ETW brane may be effectively described
by 4D gravity provided that c3D � c4D. As argued in [46], this generally corresponds
to a situation where the internal space volume in the ETW region becomes large before
contracting; such a geometry (shown in figure 11 (left)) was described in [46] as a “bagpipe”.
Here, the “bag” without the pipe is the internal space geometry for the dual of the 3D SCFT
without the N = 4 theory. Coupling to the N = 4 theory adds the pipe, and this is very
narrow compared to the bag when c3D � c4D. From the effective field theory perspective,
the addition of the pipe gives the 4D graviton a small mass m2 ∼ c4D/c3D, and adds a
tower of higher-mass modes coming from the 5D-graviton. But the physics is still a small
perturbation to the original 4D theory dual to our 3D SCFT.

3.2 The two-boundary case

Next, we consider the case with two boundaries, where we have N = 4 SYM theory on
R3 × I with 3D superconformal field theories of opposite orientation on either side of the
interval. In this case, each SCFT preserves a different half of the supersymmetries of the
N = 4 theory, so the full theory has no remaining supersymmetry. Before discussing this
case, it will be useful to understand also the case where the two SCFTs preserve the same
supersymmetries.

16As a specific example (setting g = 1), we can take a pole with multiplicity N5 at location k = N/(2N5)
and a pole with multiplicity N5 at location l = N/(2N5). The flux quantization constraints (3.3) require
that N/(2N5) +N5/2 is an integer. We find that for N5 � N

1
2 , the solution includes a region that is a good

approximation to the portion of AdS5 × S5 with θ < π/2− ε, where ε = N
1
4 /
√
N5. Note that since N5 can

be as large as N , we can make ε parametrically small.

– 15 –



J
H
E
P
0
3
(
2
0
2
2
)
0
3
9

Aside: wedge holography and a 3D dual for AdS5 × S5. The two-boundary
theories preserving supersymmetry case can be understood as arising from a string theory
construction with D3-branes stretched between two separate stacks of D5-branes and NS5-
branes, where we adjust the length of the D3-branes to remain finite in the decoupling limit.
In this case, the dual supergravity solution should include a wedge of AdS5× S5 with ETW
branes on either side. In the IR limit, the field theory will flow to a single 3D SCFT, namely
the one associated with the string theory construction above where all the fivebranes are
taken to be coincident. Such SCFTs were discussed in [52], and provide examples of the
“wedge holography” discussed in [53], where a 3D CFT is dual to a wedge of a 5D AdS space.17

It is interesting to note that, as for the single boundary case, by a judicious choice of the
boundary SCFTs, our dual geometry can include an arbitrarily large wedge of AdS5 × S5,
i.e. a wedge −π/2 + ε ≤ Θp ≤ π/2 + ε for arbitrarily small ε. Thus, we have in a sense a 3D
dual to AdS5 × S5, though the full dual geometry also includes the ETW branes. From a
field theory point of view, this suggests that the full physics of the N = 4 SYM theory may
be contained within an appropriately chosen 3D SCFT. This may be related to the idea of
dimensional deconstruction [54].

Supersymmetry breaking boundary conditions. We now return to the case of inter-
est where the two boundary theories preserve non-intersecting subsets of SUSY generators,
so the full theory breaks all supersymmetry (as well as some of the global symmetries
present in the UV theory).

Most well-controlled microscopic examples of AdS/CFT are supersymmetric, so one
may be concerned that the examples we have described cannot be studied holographically in
a controlled way. However, in our case, the supersymmetry is only broken by the fact that
the boundary conditions at either end of the interval are incompatible with each other from a
SUSY-perspective. A simpler example where we have SUSY broken by boundary conditions
is the N = 4 theory compactified on a circle with antiperiodic boundary conditions for
fermions, introduced by Witten. Here, the theory has a well-controlled gravity dual in which
the circle becomes contractible in the bulk for the case where the noncompact directions
of the field theory are R3.18 From the lower-dimensional perspective, this gives us a 3D
confining gauge theory [22] since the radial direction in the dual geoemtry has finite extent
in the IR.

Our situation is very similar to Witten’s example, except that the compact direction
is an interval rather than a circle. Supersymmetry is broken by the boundary conditions,
and we expect that the interval contracts and pinches off in the bulk. This can happen
smoothly if the ETW branes originating from the two 3D SCFTs join up in the IR as shown

17Note that because of the AdS geometry, the proper distance between the ETW branes actually remains
constant as a function of the radial coordinate, so we can think of this as an example of ordinary holography
where the internal space includes an interval. In the microscopic examples taking into account the spheres,
the full internal space takes a dumbbell shape, with two “bags” connected by a narrow tube [52].

18For the case where we replace R3 with S3, the circle is contractible in the bulk if its radius in field
theory is sufficiently small compared to the S3 radius. The resulting transition is the same one that appears
in the Hawking-Page transition (where the circle is taken to represent Euclidean time).
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Figure 10. Left: geometry dual to 4D holographic CFT on R3 times a circle with antiperiodic
boundary conditions for fermions (internal space is suppressed). Right: geometry dual to 4D
holographic CFT on R3 times an interval, with SCFT of opposite orientation at either end. The
blue ETW brane is described microscopically by a smooth degeneration of the internal space.

in figure 10. This implies that the full geometry is capped in the IR, and the IR physics of
the field theory is that of a confining/gapped 3D theory.

It is also possible to get a gapped theory in the IR without the ETW branes connecting
smoothly. The two ETW branes and the bulk geometry between then could each terminate
independently in the IR (figure 6). Finally, it is possible that the field theory is not confining
in the IR at all, or even that we have some runaway behavior with no stable vacuum. Thus,
we would like to further motivate the idea that the ETW branes do connect in some cases.

3.3 Probe example

It will be useful to consider a probe example. Instead of taking D3-branes that terminate
on stacks of fivebranes, we can consider D3-branes that are intersecting parallel D5-branes.
In this case, the field theory description is a theory with two parallel codimension 1 defects.
The physics of these defects was described in [20, 21, 55]. We have a 3D hypermultiplet in
the fundamental representation of U(N) coupled to the N = 4 fields at the defect [55]. In
the supergravity description, we have a probe D5-brane originating from each defect with
worldvolume geometry AdS4 × S2, where the S2 lives in S5.

If the defects arise from parallel D5-branes with the same orientation, the field theory
preserves supersymmetry. The scale L breaks conformal invariance, but we expect that the
theory flows to a conformal defect theory in the infrared associated with the D3-branes
intersecting two coincident D5-branes. In the dual description, we now have probe D5-branes
living on parallel AdS4 slices of the AdS5 (figure 5a).

For parallel D5-brane defects with the opposite orientation (associated with D3-branes
intersecting a separated D5− D̄5 pair), we have the same probe brane solution (replacing
one D5 with a D̄5) but this is now unstable, both nonperturbatively and perturbatively.
To see this, recall that open strings stretched between a D5− D̄5 pair have a mode that
is tachyonic if the branes separation is smaller than the string scale. This happens in the
probe solution for z > LAdS`/α

′, where ` is the separation in the field theory.
The endpoint of perturbative instability is another classical solution in which the branes

are connected, as shown in figure 5b. The explicit solutions were constructed in [35]; we
review them in appendix B. The physics is qualitatively similar if the probe is a small
number n of D5-branes and if we allow some small number k of D3-branes to end on these.
In this case, the probe branes tilt outward as they enter the bulk, but they still connect
provided that k/n is not too large. The details are presented in appendix B.1.
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Figure 11. Left: schematic of dual geometry for N = 4 SYM theory on M × R+ coupled to a 3D
SCFT with c3D � c4D. Away from the ETW brane, the internal space is S5. The ETW brane is a re-
gion of the 10D geometry where this is deformed, growing and then pinching off smoothly. Right: the
case with N = 4 on an interval coupled to 3D SCFTs with opposite orientation at the ends of the in-
terval. Shown are the Euclidean time (horizontal), radial direction (into the page) and internal space.

3.4 Non-perturbative version

Starting with our probe brane setup, we can generalize to consider defects corresponding to
larger numbers D5-branes or combinations of D5s and NS5s, and finally our case of interest
where the D3-branes all end on the fivebranes.19 In these situations, backreaction must be
taken into account, and the probe brane is replaced by the geometrical ETW brane in some
solution of type IIB supergravity.

It is plausible that the behavior of the ETW branes is similar to that of the probe
branes. In the non-supersymmetric case where we have defects/interfaces/boundaries that
are related by a reversal of orientation, we expect that the instability of the brane-antibrane
configuration in the string theory picture should be reflected in a tendency for the branes
to connect up in the preferred solution. A schematic of the proposed geometry, emphasizing
the geometrical nature of the ETW branes, is shown in figure 11 (right).

To verify this picture, we would ideally want to look for solutions of type IIB supergravity
with the appropriate asymptotic behavior, showing that a connected solution exists and
that this is the solution with least action.

3.5 Asymptotic behavior of the dual geometry

The asymptotic behaviour of the dual geometries for our setup can be understood from
the UV physics of the field theory. Correlators of bulk N = 4 SYM operators separated by
distances much smaller than their distance to the boundary should be well-approximated
by those of N = 4 SYM on R4, so the asymptotic region of the dual geometry associated
with points in the field theory away from the boundaries will be AdS5 × S5. Short-distance
correlators involving operators on one of the boundaries and nearby bulk operators will
be governed by the superconformal theory of N = 4 coupled to the 3D SCFT degrees of

19In appendix B.1, we consider an intermediate situation with one boundary (associated with D3-branes
ending on stacks of D5-branes and NS5-branes) and one defect associated with an anti-D5. This anti-D5 is
a probe version of a second boundary that breaks SUSY. We find that there is a strong tendency for the
probe D̄5 in the bulk that emerges from the defect to be drawn towards the ETW brane (figure 16, right).
In many case, all solutions for the probe brane are of this type. This is in contrast to the supersymmetric
situation where the probe D5 stays away from the ETW brane.
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freedom at a single boundary. Thus, the asymptotic geometry near each of the boundaries
should match with one of single-boundary solutions described above.

In the field theory with two boundaries, conformal invariance is broken, but we preserve
translations and rotations in the three transverse directions. The UV theory also preserves
SO(3)×SO(3) symmetry. If this is not broken spontaneously, the metric would take the form

f3(~x)d~y2 + f1(~x)dΩ2
2 + f2(~x)dΩ2

2 + gij(~x)dxidxj (3.6)

where the three coordinates xi on which the metric functions depend correspond to the
Euclidean time direction, a radial direction, and one internal direction. The other fields
of type IIB supergravity will also generally be nonzero.

Since the asymptotic behavior is known, we (optimistically) expect that it is a tractable
numerical problem to find the desired solutions and investigate their properties. However,
this lies beyond the scope of the present investigation.

4 Bottom-up and effective field theory descriptions

An alternative to searching for the full type IIB supergravity solutions would be to look for
qualitatively similar solutions in a simpler theory of gravity. The simplest possibility with
Einstein gravity and a constant tension ETW brane was considered in [1]. There, it was
found that connected solutions exist and have least action provided that the tension of the
ETW brane is below some value T∗. But this value is below the critical tension Tc where
the Poincaré angle of the ETW brane approaches −π/2 and at which gravity localization
takes place. For T > T∗, the connected ETW brane solutions are self-intersecting and don’t
make sense.20

It seems likely that the non-existence of solutions for T > T∗ reflects a failure of the
simple bottom-up model to properly capture the physics of the CFT setup. In the picture
where the Euclidean path integral is preparing a state of the auxiliary degrees of freedom
and we take the spatial geometry to be S3, the model suggests that for all the boundary
theories corresponding to T > T∗, the state e−βH |b〉 has energy of order N0 even in the
limit β → 0, in conflict with the expectation that boundary states |b〉 should generally be
singular. The resolution is likely that the bottom up model needs additional elements in
order to properly capture the physics. The full type IIB supergravity solutions involve a
non-trivial dilaton, fluxes, and an internal space that becomes larger in the vicinity of the
ETW brane. There are also light degrees of freedom localized near the fivebrane throats.
Likely some of these additional elements are required in a bottom-up model to properly
capture the physics. Below, we will suggest a particular resolution for the problem of
self-intersecting ETW branes for T > T∗.21

20This is in contrast to the case of a 2D CFT, where solutions of the simple model exist for all values up
to Tc.

21A possible alternative resolution was presented by Antonini and Swingle in [2]. These authors considered
adding a bulk gauge field and making the ETW brane charged under this field. In this case, connected
brane solutions were found to exist all the way up to the critical tension.
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An alternative approach to understanding physics on the gravity side is to consider
the effective field theory of the ETW brane. Here, the simplest possible model is to take
4D gravity coupled to a cutoff CFT (which takes the place of the 5D bulk). This should
give the same physics as the bottom up model with pure 5D gravity coupled to a constant
tension ETW brane. As in that description, we do not find the desired solutions in this
setup [11, 12].22 We review this analysis in the four-dimensional effective description in
the next subsection. However, we expect that the correct 4D effective description should
include additional elements. We note in particular that the microscopic models we consider
are characterized by a global symmetry, with a symmetry breaking pattern G×G→ G. In
the effective field theory description, we then have a gauge field with gauge group G. Since
the underlying theory is supersymmetric, this comes along with scalar fields and fermions.
Since supersymmetry is broken by the combination of boundary conditions in our model,
the vacuum energies of these fields do not cancel. Thus, it may be important to take into
account the physics of these extra fields in the effective description. This will be the case in
the analysis that we describe presently.

As emphasized in [11, 12], the main challenge in these effective models is obtaining
a sufficient amount of negative energy from the matter coupled to the 4D gravity (in the
picture where we are describing an eternally traversable wormhole). In the next subsection,
we will review this effective field theory analysis and present a novel mechanism for achieving
the large negative energy.

4.1 Effective field theory setup

We begin with our basic setup of 3D holographic conformal field theories on R2,1 coupled
together by a 4D CFT on R2,1 times an interval [−z1/2, z1/2] as in figure 12 (left).

We would like to understand whether the dual description can include a connected
travesable wormhole (a connected ETW brane with localized gravity in the case where the
4D theory is holographic). We will try to come up with an effective 4D description. Our
analysis is similar to that in [11, 12]. This description should include:

• The 4D gravitational theory dual to the 3D CFT, describing a spacetime with two
asymptotically AdS regions. This may include additional matter.

• A cutoff version of the 4D CFT (accounting for the bulk physics).

• A non-gravitational version of the 4D CFT on a strip, which couples the fields at the
two AdS boundaries.

The geometry of the ETW brane should be

ds2 = a2(z)(dz2 + dxµdxµ) (4.1)

where a(z) has simple poles at z = ±z0/2 (giving asymptotically AdS at the two ends) and
a minimum value at z = 0. Here, the parameter z0 is dynamical.

22We thank Henry Lin and Juan Maldacena for emphasizing this.
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Figure 12. Left: microscopic setup. Right: model for matter, in the Minkowski space conformal
frame.

The zz-component of Einstein’s equation gives

3
(
a′

a

)2
− 3a2

L2
AdS

= 8πGTzz (4.2)

The stress-energy tensor comes from a cutoff version of the 4D CFT plus additional matter
fields that appear in the gravity dual of the 3D CFTs. We will model the whole matter
system as some 4D CFT, which we call CFT0 to distinguish it from CFT1, the original
4D CFT. Note that we do not expect the correct effective theory in the microscopic
models to be a CFT. The reason for choosing a CFT here is that the resulting model is
analytically tractable, and will provide some insight into qualitative aspects of the field
theory stress-energy tensor that are required to obtain a solution.

To understand the stress-energy tensor of CFT0, we can perform a conformal trans-
formation to flat space R2,1 × [−z0/2, z0/2]. In this picture, the CFT0 fields are coupled
at either end of the interval [−z0/2, z0/2] to the CFT1 fields on the ends of the interval
[−z1/2, z1/2] so that the z direction is periodic, as shown in figure 12 (right). We can model
the connection between CFT1 and CFT0 as some conformal interface.

Using the 2+1 Poincaré symmetry and conformal invariance, the stress tensor of CFT0
in this flat space picture must take the form

Tzz = − 3
z4

0
F

(
z1
z0

)
Tµν = ηµν

1
z4

0
F

(
z1
z0

)
(4.3)

where we have used the conservation and tracelessness properties, and used dimensional
analysis to determine the possible dependence on z0 and z1, which are the only scales.

In the original conformal frame, the stress tensor becomes

Tzz = − 1
a2

3
z4

0
F Tµν = ηµν

1
a2

1
z4

0
F (4.4)

where we are ignoring the conformal anomaly for now (we will show in appendix D that it
does not qualitatively change the results, though it does lead to interesting effects in the
Lorentzian cosmology picture).
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Then the zz component of Einstein’s equation gives(
a′

a

)2
− a2

L2
AdS

= −8πG
z4

0
F

1
a2 , (4.5)

or
da√

a4

L2 − 8πGF
z4
0

= dz (4.6)

The minimum value of a occurs where a′ = 0, so we have

amin = 1
z0

(8πGFL2)
1
4 . (4.7)

Integrating from this minimum radius (which occurs at z = 0) to the asymptotically AdS
boundary at z = z0/2, we get ∫ ∞

amin

da√
a4

L2 − 8πGF
z4
0

= z0/2 (4.8)

Defining

I =
∫ ∞

1

dx√
x4 − 1

=
Γ
(

3
2

)
Γ
(

1
4

)
Γ
(

3
4

) =
√

2
2 K

(√
2

2

)
≈ 1.311 , (4.9)

and rewriting the integral in (4.8) in terms of this, we get finally that

F

(
z1
z0

)
= 2I4L2

πG
∼ c3D (4.10)

This gives us an equation for z0. We see that in order for solutions to exist, the function F
must be able to take on a large value for some z0. Naively, the value of F should be of order
c0 (the number of degrees of freedom of the matter theory coupled to gravity), which we
expect to be much less than c3D. However, in the next subsection, we will investigate the
behavior of F in a holographic model and show that large values F � c0 can be achieved
in certain cases.

4.2 Holographic analysis of interface CFTs

In this section, we consider the CFT setup of the previous section in the case where the
two CFTs are holographic. Here, we are just using holography as a tool to answer the CFT
question of whether F can be large. We first recall the behavior of a single holographic 4D
CFT on R2,1 × S1, where we take the S1 to have length L [22]. In the case where we have
antiperiodic boundary conditions for fermions so that the S1 is allowed to contract in the
bulk, the relevant solution is a double-analytic continuation of the planar Schwarzschild
geometry:

ds2 = f(r)dz2 + f−1(r)dr2 + r2

`2
dxµdx

µ , (4.11)

where
f(r) = r2

`2
− µ

r2 . (4.12)
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Figure 13. Left: gravity dual of the interface theory: patches of the double analytically continued
AdS-Schwarzschild geometries are glued together along a constant tension domain wall. Right: when
CFT0 has smaller central charge and the interface tension approaches its minimal value, the region
associated with CFT0 is part of a multiple cover of the original AdS-Schwarzschild geometry.

The periodicity of the z direction is fixed by smoothness at the horizon to be

π`
3
2

µ
1
4
. (4.13)

This should equal the CFT periodicity L so we have that

µ = π4`6

L4 . (4.14)

Using the standard dictionary to read off the stress tensor, we find

Tzz = −3π
3`2

16G
1
L4 Tµν = ηµν

π3`2

16G
1
L4 (4.15)

We recall that `2/G gives a measure of the number of CFT degrees of freedom. In the
language of the previous section, we can think of this case as having a trivial pair of
interfaces with zero separation, identifying L with z0. In this case, we have

F = π3`2

16G ≡ c0 (4.16)

so the behavior of F is as expected.
Now we consider the setup of the previous section. We will employ a holographic

model [27] where the CFT interface corresponds to a constant tension domain wall between
two regions with different AdS length scales `0 and `1 associated with CFT0 and CFT1. As
explained in [27], the tension parameter κ = 8πG5T/3 of the domain wall is constrained to
lie between |1/`1 − 1/`0| and 1/`1 + 1/`0 in order that it can reach the AdS boundary. The
parameter κ is related to properties of the CFT interface (we can think of it as an interface
central charge; this is conjectured to decrease under interface RG flows).

The dual geometries correspond to a patch of the geometry (4.11) with parameters
`0, µ0 connected across the domain wall to a patch of the geometry (4.11), as shown in
figure 13. The trajectory of the domain wall may be determined by solving the Israel junction
conditions. The details of this analysis will be presented in [56], but are essentially the same
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as in [27, 57]. The results for the interface trajectories are given in appendix C. From these
solutions, we can read off the behavior of the function F defined in the previous section.

It will be convenient to describe the behavior of F/c0 as a function of the dimensionless
ratio z1/z0. For generic choices of parameters, F/c0 is of order 1, with mild dependence on
z1/z0. However, there is an interesting behavior when `0 > `1 and we take κ towards the
critical value 1/`1 − 1/`0.23 In this case, the Poincaré angle of the domain wall where it
intersects the AdS boundary approaches −π/2 in the region with AdS length `0 and π/2 in
the region with AdS length `1. In the resulting solutions, the domain wall in the `0 region
winds around the center point (Euclidean horizon) more than once (see figure 13, right),
though the solutions are still smooth, since the horizon is not included in the geometry. For
these solutions, we have that F/c0 > 0. If we take

κ = 1
`1
− 1
`0

+ ε

`0 − `1
, (4.17)

we find that F
c0

is approximately constant as a function of z1/z0, with the value

F

c0
≈ 1
ε

(
1− `1

`0

)3 8I4

π3 , (4.18)

where I is the same order one constant as before. Returning to the equation (4.10), we see
that a solution requires

1
ε
c0 ∼ c3D . (4.19)

Thus, it appears that solutions may be possible if the interface between the CFTs corresponds
to an interface tension close to the minimal value,24 where we take κ as in (4.17) with

ε ∼ c0
c3D

. (4.20)

It turns out that the critical value κ = 1
`1
− 1

`0
corresponds to the BPS bound for a domain

wall in supergravity [58, 59]. Thus, in modelling our setup with softly broken supersymmetry,
it seems natural that the interface should be modelled holographically by a domain wall
with a tension close to this BPS value.

For a given choice of the tension parameter, F varies very little as a function of as a
function of z1/z0 (only by a fractional amount of order ε), so it would seem that having a
solution requires some fine-tuning of the tension to lie within a narrow window. It would
be interesting to understand if this also occurs naturally in our supersymmetric setup. It
should be noted that in the actual models, the matter in the gravitational sector is probably
more accurately described by a non-conformal quantum field theory, and this may lead to
additional dependence on z1/z0 that may eliminate the need for fine-tuning. Given the field

23An interesting behavior was also noted recently in this limit for 2D CFTs in [57].
24We recall that the tension parameter is related to an interface central charge (the “boundary F” for

the folded theory) and that this is conjectured to decrease under RG flows, so these small values may
arise naturally.
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Figure 14. Left: problem with simple 5D model of gravity plus ETW brane. The ETW brane
self-intersects above a tension T∗, below the value necessary for localization of gravity. Right: a model
with an additional interface brane, which takes into account the extra matter in the gravitational
theory beyond the cutoff CFT dual to the bulk. The two solutions on the right are glued along the
interface brane I. The ETW brane and the interface are both multiply wound relative to a single
copy of the Euclidean AdS/Schwarzschild geometry, so self-intersections are avoided.

theory and string theory motivations for the existence of solutions described earlier in the
paper, there is reason to believe that this may be the case.25

Finally, we point out that the mechanism that we have found for producing large
negative Casimir energies may also resolve the original puzzle in the 5D gravity description,
where the desired solutions with ETW branes failed to exist because of self-intersections.
In the model depicted in figure 14, we have both an ETW brane and an interface brane.
The extra geometrical region with AdS length `1 > `0 represents the fact that there is
more matter in the effective gravity theory that in the original 4D CFT that connects the
two 3D theories. Understanding in detail whether these solutions make sense may require
additional input about the intersection between the interface brane and the ETW brane,
but the setup appears to cure the basic pathology of a self-intersecting ETW brane.

5 Discussion

We have presented a class of field theory constructions that may give rise to four-dimensional
Euclidean wormholes, eternally traversable wormholes, and big-bang/big-crunch cosmologies
in the effective description. In all cases, the gravitational theory is not purely four-
dimensional, but couples to a higher-dimensional bulk which may or may not have a
description in terms of classical gravity.

Comments on the effective theory. While our immediate goal in this work is not
to come up with a phenomenologically realistic model of cosmology, we mention a few
interesting points related to the effective field theory description of the cosmological physics.
This matter has two sectors, one coming from a cutoff version of the 4D CFT that we
choose, and the other coming with the gravitational theory dual to the 3D CFTs. The
gauge group in the latter sector is directly related to the global symmetry of our chosen

25For example, in the limit of large z0 for fixed z1, the supersymmetry in our setup would be restored,
and in this case, the vacuum energies may be expected to cancel.
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3D CFT. Thus, we can control the matter that appears in the effective 4D gravity theory
by choosing the 4D CFT and the global symmetry of the 3D CFTs appropriately. In the
specific microscopic examples we have discussed, this global symmetry can be chosen as an
arbitrary product of unitary groups.

In these and other examples where the one-boundary theory preserves supersymmetry,
the matter in the sector dual to the 3D CFT should be that of some 4D gauged supergravity
theory with the appropriate amount of supersymmetry (e.g. OSp(2, 2|4) for the microscopic
theories we discussed). In the two-boundary setup relevant to cosmology, supersymmetry
is broken. So we expect that some of these fields will become massive, and the effective
field theory relevant to low-energy physics will not be supersymmetric. In this case, we
expect that the vacuum energies of the fields would alter the cosmological constant, perhaps
in a way that depends on time (in which case, the “constant” should be modeled using a
field). In the Euclidean picture, the asymptotic value should be the negative cosmological
constant associated with ETW-brane theory with unbroken supersymmetry, but this could
be modified in the interior region of the ETW brane. It is interesting to ask how the
construction can avoid the cosmological problem. Presumably it has to do with the very soft
way that supersymmetry is broken, via incompatible boundary conditions at the boundaries
in the Euclidean past and future.

Future directions. Moving forward, it will be important to verify the existence of the
proposed solutions, either from a gravity point of view (e.g. finding solutions of type IIB
supergravity with the specified asymptotics, or arguing they exist), or from a field theory
point of view (e.g. understanding whether the proposed microscopic theories have the
suggested IR behavior and pattern of symmetry breaking).

It would be interesting to understand better the mechanism for the enhancement of
negative Casimir energies presented in section 4.2. In the context of our holographic model,
this can be made arbitrarily large for a CFT on a strip of fixed width by coupling the
two sides via another strip CFT with smaller central charge and choosing the interface to
correspond to a bulk domain wall close to a critical tension. But in microscopic examples,
there is likely an upper bound on the energy, since the bulk tension corresponds to a central
charge associated with the interface, and there should be some lower bound on this.

Assuming that the setup we have described is viable, it will be interesting to understand
better what are the well-defined observables in the cosmological theory and how to compute
these from the CFT perspective. As discussed in [3], these calculations may be very difficult
in the Lorentzian picture where we start with a state of the auxiliary 4D CFT, since the
cosmological physics happens behind a black hole horizon. But at least some observables
(e.g. cosmological correlators at the time-symmetric point), seem straightforward to obtain
directly from the Euclidean picture.

Finally, we discuss a connection to the physics of islands in black hole evaporation,
also discussed in [3] and in the low-dimensional models of [4–6]. Following [1], we begin
by asking about the entanglement wedge for subsystems of the 4D CFT,26 considering a

26Here, we are talking about the picture where the Euclidean path integral is constructing some state of
the Lorentzian 4D CFT on M .
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three-dimensional ball in particular in the case where the spatial geometry is R3. In the
case where our 4D theory is holographic and we have a 5D bulk spacetime, we recall that
the ETW brane lies behind a planar black hole horizon. There are two possibilities for
the Ryu-Takayanagi surface [60] of a ball-shaped region. We can have a surface that stays
outside the black hole horizon, or we can have a surface that crosses the horizon and ends on
the ETW brane. In the first case, the entropy will scale like the volume of the ball for large
balls, while in the second case, the entropy will scale like the area of the ball for large balls.
For large enough balls, the latter case will have lower area, and the entanglement wedge will
include a portion of the ETW brane. In the case where our 4D theory is not conventionally
holographic, we expect that the density matrix for a large enough ball still encodes the
information about a ball-shaped region of the cosmological spacetime. In this case, this
region does not have a geometrical connection to the original CFT, so it is an island in
the sense of [24–26]. Thus, we expect that any cosmological spacetime with an underlying
description as in this paper should have islands. In a recent paper [26], Hartman et al.
analyzed the conditions under which islands can exist in cosmological spacetimes. They
found that generically, sufficiently large ball-shaped regions of radiation dominated FRW big-
bang/big-crunch universes with negative cosmological constant contain ball-shaped regions
satisfying the conditions to be islands. A possible explanation for the observations of [26] is
that the underlying microscopic description of these big-bang/big-crunch cosmologies is
always similar to the one described in this paper.
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A Type IIB supergravity solutions for N = 4 SYM theory coupled to a
3D SCFT

In this appendix, we briefly recall the solutions of [31–33] corresponding to N = 4 SYM
theory with half-supersymmetric boundary conditions. The metric is given as

ds2 = f2
4ds

2
AdS4 + f2

1ds
2
S2

1
+ f2

2ds
2
S2

2
+ 4ρ2|dw|2 , (A.1)

where f1, f2, f4, and ρ are real-valued functions of the complex coordinate w = x+ iy = reiθ,
which we take to be restricted to the first quadrant 0 < θ < Π/2. We also have non-trivial
dilaton, NS-NS and R-R three-form fields, and five form fields.

The explicit form of the metric and other fields may be expressed in terms of a pair
h1, h2 of real harmonic functions. In terms of these, the Einstein-frame metric functions
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may be expressed as

ρ2 = e−
Φ
2

√
−N2W

h1h2
, f2

1 = 2e
Φ
2 h2

1

√
−W
N1

, f2
2 = 2e−

Φ
2 h2

2

√
−W
N2

, f2
4 = 2e−

Φ
2

√
−N2
W

,

(A.2)
where

e2Φ = e4φ = N2
N1

, (A.3)

is the dilaton field and
W ≡ ∂wh1∂w̄h2 + ∂wh2∂w̄h1 , X ≡ i (∂wh1∂w̄h2 − ∂wh2∂w̄h1) ,
N1 ≡ 2h1h2|∂wh1|2 − h2

1W , N2 = 2h1h2|∂wh2|2 − h2
2W .

(A.4)

Explicit expressions for the other fields may be found in the references.
In general, we have a local solution for arbitrary harmonic functions h1, h2, but to

obtain a global solution without singularities, we have additional constraints, e.g. that the
poles must lie on the axes.

As an example, we can describe AdS5 × S5 with the choice

h1 = L2

4 cos(θ)
(
r

r0
+ r0

r

)
, h2 = L2

4 sin(θ)
(
r

r0
+ r0

r

)
(A.5)

Here, the codimension-one slices of the spacetime corresponding to a fixed r correspond to
AdS4 × S5 slices of AdS5 × S5 (as in figure 9); r = r0 corresponds to the vertical slice. The
S5 arises from the angular coordinate θ and the two S2s, which contract to zero on the x
and y axes respectively.

The general solutions corresponding to N = 4 SYM theory on a half-space correspond
to the choice27

h1 = π

2x+ 1
4
∑
A

ln
(

(x+ lA)2 + y2

(x− lA)2 + y2

)

h2 = π

2 y + 1
4
∑
A

ln
(
x2 + (y + kA)2

x2 + (y − kA)2

)
,

where we are choosing units with `s = 1 [33, 51]. As described in [33, 34], the singularities at
x = lA, y = 0 corresponds to D5-brane throats, where the number of units NA

D5 of D5-brane
flux associated to a throat is the multiplicity of lA in the sum. Similarly, the singularities at
y = kA, x = 0 corresponds to NS5-brane throats, where the multiplicity of the singularity kA
in the sum gives the number of units NB

NS5 of NS5-brane flux. From the five-form fluxes in
the solution, [33] found that the number of units of five-form flux (the flux associated with
D3-branes) per fivebrane coming from the D5-branes in the Ath stack and the NS5-branes
the Bth stack are

nAD3 = lA −
2
π

∑
B

arctan kB
lA

nBD3 = kB + 2
π

∑
A

arctan kB
lA

(A.6)

27For this choice, the asymptotic value of the dilaton field has been set to zero, but we can use the
symmetry φ→ φ+ φ0, B2 → eφ0B2, C2 → e−φ0C2 to restore more general values.
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Thus, microscopic solutions with properly quantized fluxes are obtained by choosing positive
kA and lA (including their multiplicities) so that nAD3, and nBD3 are integers (nAD3 can be
negative). These integer parameters are directly related to the parameters which specify
the underlying field theory [33, 34]. For example, the total amount of D3-brane flux, which
corresponds to the rank N of the U(N) N = 4 SYM Theory gauge group is

N =
∑
A

lA +
∑
B

kB . (A.7)

Note that the lAs and kAs appearing in these sums may appear with some multiplicity.
Ignoring these quantization conditions, we note that in the limit where lA and kA

are taken to be small with ∑A lA +∑
B kB fixed, the harmonic functions approach those

corresponding to AdS5 × S5. Thus, the full 10D supergravity solutions also approach
AdS5 × S5. In the ETW brane picture, we can say that the ETW brane angle goes to Π/2
in this limit so that we recover all of AdS5 × S5. However, in the microscopic theory, we
cannot take lA and kA arbitrarily small and still satisfy the quantization conditions.

B Probe D5-brane solutions

In this section, we review explicit solutions for probe D5-branes in an AdS5×S5 background.
We use Poincaré coordinates for the AdS, where the metric is

ds2 = L2

z2 (dz2 + dτ2 + d~y2) (B.1)

and describe the S5 by a metric

ds2 = dψ2 + cos2 ψ(dθ2 + sin2 θdφ2) + sin2 ψ(dη2 + sin2 ηdχ2) . (B.2)

For a single D5-brane defect at x = 0 in the field theory, the D5-brane worldvolume is
described by the hypersurface τ = ψ = 0, filling the z, ~y, θ, and φ coordinates.

For parallel D5-brane defects with the same orientation, we have two probe branes at
positions x1, x2. We note that the proper distance between the branes becomes small for
large z.

For D5-branes with the opposite orientation, we also have this solution, but it is
unstable. The least energy solution is a connected brane solution, studied in [35], in which
the D5-brane has some trajectory z(τ) (but still fills the ~y directions). On the sphere, the
brane lives at ψ = 0 and fills the θ and φ directions.

The induced metric on the brane is

ds2 = L2

z2 ((z′)2 + 1)dτ2 + d~y2) + L2dΩ2
2 (B.3)

so the brane action gives

S ∼
∫
dτ

(
L

z

)4√
1 + (z′)2 . (B.4)

The action does not depend explicitly on τ , so we find
1

z4
√

1 + (z′)2 = 1
z4

0
(B.5)
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Figure 15. (a) Trajectory of D5-brane probe in Poincaré coordinates. (b) Lorentzian trajectory
of D5-brane probe in Poincaré coordinates. (c) Evolution of the scale factor for the worldvolume
D5-brane metric in FLRW coordiantes.

where z0 is the maximum z coordinate at the turning point on the brane. Solving, we obtain

τ(z) = z0

√πΓ
(

5
8

)
Γ
(

1
8

) − 1
5

(
z

z0

)5
2F1

(
1
2 ,

5
8; 13

8 ;
(
z

z0

)8
) . (B.6)

The parameter z0 is related to the defect separation τ0 by

z0 =
Γ
(

1
8

)
2
√
πΓ
(

5
8

) . (B.7)

This brane trajectory is plotted in figure 15a.
More generally, we can consider the case with a small number n of D5-branes where a

small number k of the D3-branes terminate on the D5s [36, 37, 61]. In this case, the field
theory description is an interface theory where we have gauge group U(N) between the
defects and U(N − k) outside the defects. The probe D5-branes now include k units of
magnetic flux on the S2, and this induces k units of D3-brane charge from the

∫
C4 ∧ F

term in the D5-brane action.
Here, the relevant terms in the D5-brane action are

S = −T5

∫
d6σ

√
−det(gab + 2π`2sFab)− T5

∫
2π`2sF ∧ C4 . (B.8)

With our ansatz, the action governing the trajectory z(τ) becomes [61]

S ∼
∫
dτz−4

{√
(1 + (z′)2)(1 + f2)± f

}
, (B.9)

where f = πq/(
√
λn). In this case, the probe branes tilt outward as they enter the bulk,

at an angle tan θ = f from the radial direction in Poincaré coordinates, but we have a
connected solution provided that f < C where C ≈ 0.357, i.e. provided the number of
D3-branes per fivebrane is not too large. In our full construction, we want a relatively small
number of D3-branes and a large number of fivebranes, so this condition should be satisfied.
However, we should not conclude too much from the probe analysis.

– 30 –



J
H
E
P
0
3
(
2
0
2
2
)
0
3
9

Figure 16. Probe brane in the background dual to N = 4 SYM with one SUSY boundary. Left: a
SUSY-preserving D5-brane probe remains separated from the ETW brane (left). Right: a SUSY-
breaking D̄5 is drawn towards the ETW brane, though we can also have solutions of the first type
in cases where the full solution is very close to AdS5 × S5.

Lorentzian probe brane solutions. As an example of the connection to cosmology, we
can determine the FRW spacetime associated to the probe brane trajectory (without D3
charge), though here, gravity does not localize to the brane. In the analytically continued
case, the brane exists the Poincaré horizon, reaches some minimum z value z0 and then
falls back into the horizon.

The trajectory satisfies
1

z4
√

1− (ż)2 = 1
z4

0
. (B.10)

We can write the solution as

t(z) = z 2F1

(
−1

2 ,
1
2; 7

8;
(
z0
z

)8
)
− z0√

π
Γ
(5

8

)
Γ
(7

8

)
sin
(3π

8

)
. (B.11)

This is displayed in figure 15b.
The worldvolume metric can be written most simply using z to parameterize the time

direction. This gives (for the metric in the t > 0 region

ds2 = L2

z2

[
− z8

0dz
2

z8 − z8
0

+ d~y2
]

(B.12)

In order to see the evolution of the scale factor, we can convert to standard flat FLRW
coordinates

− dη2 + a2(η)d~y2 . (B.13)

We have

a(η) = L

z(η) ds = L

z

z4
0√

z8 − z8
0

dz (B.14)

which gives

a(η) = L

z0
cos

1
4

(4η
L

)
(B.15)

This is plotted in figure 15c.
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B.1 Probe D̄5-brane in the background of a single-boundary solution

In this section, we consider a probe D5-brane in the general half-supersymmetric supergravity
backgrounds reviewed in the previous section. The brane action is the sum of Born-Infeld
and Wess-Zumino terms, given in Einstein frame by

SBI = −T5

∫
d6σe

φ
2

√
−det(gab + e−

φ
2 (Bab + 2πα′Fab)) (B.16)

SWZ = −T5

∫
e2πα′F+B ∧

∑
C . (B.17)

As for the AdS5×S5 solutions, we have that the D5-branes live at θ = 0, wrapping the first
S2. They are described by some trajectory r(u), where u is the Poincaré radial direction in
AdS4 and r is the radial coordinate on the quadrant. The brane is stretched in the other
three directions of AdS4.

The worldvolume gauge field can be consistently set to zero.28 Using the form of the
supergravity solution, we then find a Lagrangian density

L = A(r)
u4

√
1 +B(r)u2

(
du

dr

)2
+ K(r)

u4 (B.18)

where29

A(r) = e
φ
2 f3

4

√
f4

1 + e−φB2
45

B(r) = 4ρ
2

f2
4

K(r) = ±B45C0123

where the two possible signs in K correspond to a D5-brane probe or and anti D5-brane
probe. Redefining u = exp(x), we obtain equations of motion

ABr′′− dK
dr

(1+B(r′)2)
3
2− dA

dr
−4AB2(r′)3+ 1

2(r′)2
(
A
dB

dr
−2dA

dr
B

)
−4ABr′= 0 (B.19)

We want to consider a probe brane starting at r =∞ at some fixed x. Solutions that return
to r =∞ at some fixed x can be ignored since these correspond to having additional defects.
We cannot have a solution that goes to r = ∞ for x → ∞ since the solution approaches
AdS5 × S5 for large r and we do not have such solutions in this case. Thus, we have two
possibilities: the solution approaches some finite r for x → ∞ in the region away from
the ETW brane, or the brane is drawn toward the ETW brane (specifically to one of the
D5-brane singularities).

For the first type of solution, we have r′ → 0 for large x, so (B.19) gives

r′′ = 1
AB

(
dA

dr
+ dK

dr

)
. (B.20)

28It’s possible to consider solutions with world-volume flux, but these correspond to fivebranes carrying
additional D3-brane charge.

29We find that C(6) vanishes for θ = 0, so the Wess-Zumino term only receives a contribution from
B ∧ C(4).
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Thus, we can have solutions where the probe brane is not drawn into the ETW brane if
and only if A+K has a extremum. As an example, for AdS5 × S5, we have

A+K ∝
(
r

r0
+ r0

r

)4
(B.21)

so we have a minimum at r = r0 which corresponds to the vertical slice in Poincaré
coordinates.

We have investigated the probe brane configurations for various parameter values. With
a SUSY-preserving D5 orientation, it appears that solutions of the first type always exist.
On the other hand, replacing the D5 with an anti-D5, we find that such solutions do not
exist in many cases so the anti-D5 brane is necessarily drawn in to the ETW brane. This is
a probe version of the situation where two ETW branes from two boundaries reconnect
in the bulk. On the other hand, we have solutions that are arbitrarily close to AdS5 × S5.
Since A+K has a minimum for AdS5 × S5 it will continue to have a minimum in solutions
that are very close to AdS5 × S5, for either sign of K, but these solutions correspond to
boundary conditions involving a very large number of D5-branes. So in this case, considering
a single D5-brane probe may not give us useful insight about the physics of adding a second
boundary that would involve a very large number of anti-branes.

C Holographic model for conformal interfaces

The details of our holographic model for conformal interface theories can be found in [27].
We include here the formulae for z0/β0 and z1/β1, the fraction of the boundary of Euclidean
global AdS spacetime covered by the spacetime regions associated with CFT0 and CFT1
respectively. We have

z0
β0

= −2µ
3
4
0

π`
3
2
0

∫ ∞
r0

dr(f0 − f1 + κ2r2)
2κrf0

√
V

z1
β1

= 1− 2µ
3
4
1

π`
3
2
1

∫ ∞
r0

dr(f1 − f0 + κ2r2)
2f1κr

√
V

where

fi = r2

`2i
− µi
r2 V = f1 −

(
f2 − f1 − κ2r2

2κr

)2

(C.1)

and r0 is the largest value of r for which V (r0) = 0. These formulae are valid in cases such
as figure 13b where the CFT0 side does not include the Euclidean horizon but the CFT1
side does. We have the restriction that z1/β1 < 1 to have a sensible solution, but z0/β0 can
be greater than 1 in the case where we have multiple wound solutions as in figure 13b.

D Effective field theory description with conformal anomaly

In the analysis of section, we have ignored the conformal anomaly. However, if we assume
that the CFT0 matter theory is holographic with an Einstein gravity dual, it is possible to
explicitly take the conformal anomaly into account.
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The contribution to the stress tensor from the conformal anomaly can be determined
via a gravity calculation to be

Tzz = − 3ĉ0
16a2

(
a′

a

)4
(D.1)

where up to a numerical factor, c0 is the a or c type central charge of CFT0 (which are
equal for a holographic CFT with Einstein gravity dual).

With this contribution, the zz component of Einstein’s equation gives(
a′

a

)2
− a2

L2
AdS

= −8πG
z4

0
F

1
a2 −

πGc0
2a2

(
a′

a

)4
, (D.2)

or
da

dz
= a2
√
πGc0

√√√√√1 + 2πGc0
L2 − 16π2G2Fc0

z4
0a

4 − 1 (D.3)

The minimum value of a is still

amin = 1
z0

(8πGFL2)
1
4 . (D.4)

Integrating from this minimum radius (which occurs at z = 0) to the asymptotically AdS
boundary at z = z0/2 and rearranging things, we get

F

(
z1
z0

)
= c3DQ

(
c0
c3D

)
(D.5)

where we have taken c3D = L2/(2πG) and

Q(ε) =

∫ 1

0

√
εdy√√

1 + ε(1− y4)− 1

4

(D.6)

We can check that in the limit c0/c3D → 0,Q(c0/c3D) approaches a constant to give the
same equation as before. For small c0/c3D (as we expect), we get a slightly different number
on the right hand side of (D.5).

D.1 Lorentzian solutions

Including the effects of the conformal anomaly does have some interesting consequences for
the Lorentzian solutions, namely the existence of a minimum scale factor and/or maximum
initial energy density.

If we work in standard FRW coordinates,

− dt2 +A2(t)d3x (D.7)

the Einstein equation leads to the Friedmann equation(
Ȧ

A

)2

+ 1
L2

AdS
= πGc0

2

(Ȧ
A

)4

+ 16F
z4

0c0

1
A4

 . (D.8)
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Defining

Â = z0

(
c0

16F

) 1
4 1√

πGc0
A t̂ = t√

πGc0
L̂ = L√

πGc0
∼ c3D

c0
, (D.9)

the equation simplifies to

(
dÂ

dt̂

)2

= Â2 ±
√( 2

L̂2
+ 1

)
Â4 − 1 (D.10)

The two signs here correspond to two branches of solutions, one giving expanding and
contracting solutions (− sign) and the other giving rise to inflating spacetimes.30 We are
interested in the former.

For either branch of solutions, we have a minimum possible value of Â, where the
expression inside the square root vanishes,

Âmin =
( 2
L̂2

+ 1
)− 1

4
. (D.11)

Presumably, this is where the semiclassical approximation is breaking down. The energy
density at this point is

T00 ∼
1

c0G2 (D.12)

dominated by the conformal anomaly contribution.
The explicit solutions for a(t) can be obtained by integrating (D.10); the scale factor

expands from its minimum value to a maximum

Âmax =
(
L̂2

2

) 1
4

(D.13)

before contracting. We have

Âmax

Âmin
=
(
L̂2

2 + 1
) 1

4

∼
(
c3D
c0

) 1
4

(D.14)

so we have a large amount of expansion when c3D � c0, i.e. the number of local degrees
of freedom in the original holographic 3D CFT is much larger than the number of matter
degrees of freedom in the dual theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

30This mechanism for inflation is closely related to Starobinsky’s original model for inflation [62].
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