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1 Introduction

The mechanism which is responsible for the emergence of information about the black hole
microstates and interior in Hawking radiation is still not well understood in its full generality.
Recently, significant progress concerning these issues has been made with holographic duality
as one of the central methods of investigation [1–4, 8–10, 13]. One of the central goals of the
researches concerning the black hole information paradox, the firewall phenomena [11], the
fuzzball proposal [12] and many other interesting developments in black hole physics is the
deeper comprehension of the Hawking radiation density matrix evolution [4]. The unitary
black hole evaporation should be accompanied by the specific form of the entanglement
entropy evolution, the so-called Page curve [14, 15]. The entanglement entropy following
the Page curve increases initially due to the thermal character of Hawking radiation and
then decreases at late times, indicating the consistency with the unitary evolution.

Further understanding of this kind of evolution can be achieved by studying of more fine-
grained probes, such as the decomposition of the entanglement entropy in some quasi-local
quantity. In this paper, we consider such a probe describing the distribution of the entangle-
ment inside a subsystem or in other words, a spatially resolved version of the entanglement
entropy, the kind of entanglement density fixed by some certain list of properties [19]. It
is called the entanglement contour and has been recently considered in different contexts
including out-of-equilibrium physics, holography and condensed matter theory [20–30].

In this paper, our main object to study from the viewpoint of the entanglement
contour is quite a wide class of quantum systems, namely boundary conformal field theories
(BCFT) [31]. Our goal here is two-fold. First, we aim to understand what new information
in comparison to the entanglement entropy the contour function can tell us about the
physical properties of a general BCFT. Is it possible to reveal some hidden and more
fine-grained features induced by the presence of the boundary using this quantity? Second,
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we would like to investigate how the entanglement contour resolves the Page curve in
certain examples of two different black hole BCFT models proposed recently [32, 34–36].
The Hawking radiation is believed to carry the imprint of the black hole microscopic
structure encoding the information about it. Also, the entanglement entropy subsequently
monotonously increases and decreases providing us a quite simple picture of the density
matrix evolution at a first sight. So our second goal is to study what fine-grained features of
Hawking radiation in holographic BCFT models could be revealed by entanglement contour.

One convenient and interesting class of models which is believed to mimic black hole
properties and have similar energy radiation is the moving mirrors [37–39]. In this class
of models, the boundary is not stationary and follows the prescribed trajectory leading to
a non-linear response of quantum fields interacting with it. In [35, 36] it was shown that
the Page curve arises as a result of the calculation in the holographic dual of such a model
(see [40–43] for previous studies of the moving mirrors in a holographic setup).

The second model we study is the pair of BCFT in the thermofield double (TFD BCFT
model for short) argued to have the properies of a black hole which is in equilibrium with
the Hawking radiation [32, 34]. While in the holographic mirror we situate the boundary
on the mirror trajectory, in the TFD BCFT model we put it on a complex plane in such a
way that path-integral on this geometry corresponds to a thermofield double.

We start with a holographic dual of the static BCFT proposed in [44, 45] which is the
simplest example to consider. It is known that the entanglement entropy of the interval in
a (holographic) BCFT on a half-line exhibits phase transition when its location is far away
enough from the boundary. The origin of this phase transition is due to contributions of
the entanglement entropy coming from geodesic configurations with different topologies.
It is well known that according to Hubeny-Rangamani-Ryu-Takayanagi prescription only
the configuration with the minimal length contributes to the entanglement entropy [16, 17].
This change of the leading geodesic configuration is present also in the holographic mirror
and TFD BCFT models. In its essence, it provides the change of the entanglement entropy
evolution regime from increasing to decreasing leading to the correct Page curve in the
holographic mirror model. A similar transition shapes the Page curve in the models with
braneworld and dilaton gravity [1–3, 8]. The origin of the phase transition in these models
is the presence of “entanglement islands” which contribute to the entanglement of the
region under consideration but located somewhere else. In BCFT models, the role of an
entanglement island is played by the end-of-the-world brane which is responsible to the
disconnected HRRT geodesics (for discussion and arguments see [32, 35]) and we also will
use this notion in such a way.

We show that the presence of this phase transition leads to an unexpected structure of the
entanglement contour in BCFT. Simple at first sight behavior of the entanglement entropy
gets additional counterintuitive features after the spatial resolution into the entanglement
contour. Let us briefly summarize our findings:

• As expected, the presence of the boundary makes the entanglement contour strongly
inhomogeneous. In the near-boundary zone, the entanglement contour vanishes
identically for small enough values of the boundary entropy. This implies that the

– 2 –



J
H
E
P
0
3
(
2
0
2
2
)
0
3
3

degrees of freedom in this zone do not contribute to the total entanglement of the
region at all. This situation resembles the firewall paradox where the presence of the
entanglement near the horizon contradicts the entanglement across the horizon and
between early/old Hawking radiation. One of the resolutions of this issue proposed
in [18] is that the presence of the observer near the black hole leads to partial
disentanglement in Hawking radiation modes resembling the partial disentanglement
observed here.

• In general, one can state that the manifestation of the “entanglement island” discussed
recently in literature [4] can be observed as the “islands“ even in the static entanglement
contour. For example, these islands can split the region into two parts inducing the
“disentangled zone” with a vanishing entanglement contour in it.

• The Page curve for the mirror and the TFD BCFT models has a complicated structure
after fine-graining by the entanglement contour. One can observe a quite sophisti-
cated pattern of entanglement localization-delocalization consisting of many “islands”
propagating during the black hole evaporation.

This paper is organized as follows. We start with a brief review of the definition
and basic properties of the entanglement contour in section 2. In section 3 we study the
entanglement contour in the static BCFT. Sections 4 and 5 are devoted to the entanglement
contour in the moving mirror model and the TFD BCFT models respectively. We conclude
with some remarks and future directions of research in section 6.

2 The entanglement contour

Roughly speaking, the entanglement contour of a subsystem A is a function fA(x) defined1 as

S(A) =
∫

x∈A
fA(x)dx, (2.1)

where S(A) is the entanglement entropy of A or in other words, it is the density function of
the entanglement entropy. Though the fundamental definition of the entanglement contour
is still missing one can restrict a possible class of functions using the following (incomplete)
list of properties

• the Entanglement contour is a non-negative function:

fA(x) ≥ 0. (2.2)

• The entanglement contour fA(x) inherits symmetries of the reduced density matrix ρA.

• The entanglement contour is invariant under local unitary transformations.

• There is an upper bound for the entanglement contour: if a system A admits decom-
position A = B ⊗ B̄ and X ⊆ B then

fT (x) ≤ S(B). (2.3)
1For simplicity we assume that A is a connected region.
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In [23] the proposal for a contour function in terms of the partial entanglement en-
tropy has been given. For some one-dimensional system and subsystems A1, A2, A3 with
A = A1 ∪A2 ∪A3 the partial entanglement entropy sA(A2) is defined as

sA(A2) = 1
2
(
S(A1 ∪A2) + S(A2 ∪A3)− S(A1)− S(A3)

)
, (2.4)

quantifying the contribution of A2 to the entanglement of the total system A. For the
entanglement entropy of a single interval (x1, x2) given by some function S(x1, x2) in 1+1
dimensional theory with the spatial direction x after taking the size limit A2 → 0 it is
straightforward to obtain the entanglement contour [25] of this interval in the form

fA(x) = 1
2

(
∂S (x1, x)

∂x
− ∂S (x, x2)

∂x

)
. (2.5)

Let us briefly list some simple well-known examples [23, 25] of the entanglement contour
in a two-dimensional conformal field theory for convenience. The entanglement entropy
S(x1, x2) and the related contour of the ground state are given by

S(x1, x2) = c

3 log
(
x2 − x1

ε

)
, fA(x) = c (x2 − x1)

6 (x− x1) (x2 − x) , (2.6)

where c is the central charge and ε is the divergent part of the entropy. The generalization
on the finite temperature T case has the form

S(x1, x2) = c

3 log
(sinh(πT (x2 − x1))

πTε

)
, (2.7)

fA(x) = πcT

6 (coth (πT (x− x1)) + coth (πT (x2 − x))) . (2.8)

These contour functions diverge near the endpoints and take its minimum in the center of
the entangling interval. The divergent term comes from the entanglement between infinite
number of degrees of freedom across the junction of interval and its complement.

3 Static BCFT

The construction of a BCFT holographic dual is based on the insertion of a so-called ETW
brane Q which is the hypersurface consistent with the prescribed boundary conditions in the
gravitational background [44, 45]. The gravitational action including additional boundary
terms due to the ETW brane has the form

I = 1
16πGN

∫
N

√
−g(R− 2Λ) + 1

8πGN

∫
Q

√
−h(K − Tbr), (3.1)

where K is the trace of the extrinsic curvature Kab and the constant Tbr is interpreted as
the tension of the brane Q. The equation of motion for Q with the induced metric hab has
the form

Kab = (K − Tbr)hab, (3.2)
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or after taking the trace
K = d

d− 1Tbr. (3.3)

The dual of a finite temperature 2d BCFT is known to be a one-sided BTZ black hole with
the metric

ds2 = L2

z2

(
−f(z)dt2 + dz2

f(z) + dx2
)
, f(z) = 1− z2/z2

h, (3.4)

and the ETW brane in the bulk is given by

x(z) = ±zH · arcsinh (λz) , λ = LTbr

zH

√
1− L2T 2

br

. (3.5)

For zh →∞ the metric reduces to the Poincare patch of three-dimensional AdS

ds2 = L2

z2

(
−dt2 + dz2 + dx2

)
, (3.6)

and the brane is just a plane given by

x = ±λz. (3.7)

In the holographic duality the entanglement entropy SA of a subsystem A in CFT is given
by the HRRT formula [16, 17] relating SA and the extremal codimension-2 surface γA (i.e.
a geodesic for three-dimensional gravity) spanned on the boundary of A

SA = Area (γA)
4GN

. (3.8)

In BCFT there are additional configurations of the HRRT surfaces connecting the boundary
and the ETW brane. For the simplest case when the subsystem is the interval including
the boundary x ∈ (0, `), there is only one geodesic connecting x = ` and the brane (see
figure 1). The entanglement entropy, in this case, has the form

S(`) = c

6 log
(2`
ε

)
+ log gb, (3.9)

where the constant gb is related to the brane tension Tbr as

Sbnd = log gb = c

6 arctanh(LTbr), (3.10)

and this constant defining the boundary entropy Sbnd is given by the part of the HRRT
surface with2 x > 0 (i.e. on the right-hand side from the red dashed line in figure 1). As
we will see further the presence of these geodesics introduces a nontrivial spatial structure
of the entanglement contour even for the equilibrium setup. As a warm-up consider the
entanglement entropy of a single interval in the dual of (3.6) (not necessary including the
boundary). There are two competing configurations of geodesics which are presented in
figure 2. We have to minimize over all possible configurations and roughly speaking, the

2In further calculations we assume that BCFT is defined for x > 0.
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Figure 1. The HRRT surface corresponding to the entanglement entropy of the interval including
the boundary (red solid line). The blue curve is the HRRT surface and Q is the ETW brane. Here
we assume that BCFT is defined for x < 0.

x0 x1

Q

ℓ ℓ0

Disconnected configuration

x0 x1ℓ ℓ0

Q

Connected configuration

Figure 2. Different geodesic configurations contributing to the entanglement entropy of the interval
A of the length ` (red) placed on the distance `0 from the boundary. Here Q is the ETW brane given
by (3.7) with the parameters T = 0.4, L = 1 fixed, and the blue curves are RT surfaces spanned on
the boundary of the entangling interval A. On the left plot, we present the disconnected geodesic
configuration, and on the right plot the connected one.

HRRT surface with disconnected topology (i.e. with one of the endpoints fixed on the ETW
brane) dominates for small `0, while for large `0 the connected topology contributes. Thus
far away enough from the boundary we will observe a kind of a “phase transition” in the
entanglement entropy. The phase transition between different HRRT surfaces in its essence
is the central technical point in the modern explanation of Page curve behavior in black
hole physics [1–3, 8]. For our further considerations, we need an explicit description of
this transition. The entanglement entropy S(x1, x2) of the interval [x1, x2] is given by the
composition of disconnected and connected phase

S(x1, x2) = Scn(x1, x2)θ(C(x1, x2)− c) + Sdc(x1, x2)θ(c− C(x1, x2)) (3.11)

Scn(x1, x2) = c

3 log
(
x2 − x1

ε

)
, Sdc(x1, x2) = c

6 log
(4x1x2

ε2

)
+ 2 log gb, (3.12)

where “cn” and “dn” stand for “connected” and “disconnected”, θ(x) is the Heaviside step
function and the function C(x1, x2) combined with θ(x) takes into account which topology
contributes to the entanglement entropy for fixed x1,2. It is defined as the solution of
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Figure 3. Left plot: the inverse entanglement contour for the intervals of length ` = 6 and for
different distances to the boundary `0 = 0.16 (red curve), `0 = 0.52 (blue curve) and `0 = 0.75 (green
curve). The values of central charge and boundary entropy are fixed to be c = 7 and Sbnd/c = 0.013.
Right plot: the entanglement contour for the interval including the boundary (i.e. `0 = 0), with
` = 6 and Sbnd/c = 0.035).

Scn(x1, x2) = Sdc(x1, x2) and has the explicit form

C(x1, x2) = − 12 log (gb)
log

(
4x1x2

(x2−x1)2

) . (3.13)

In what follows we also use the notation Sbnd = log gb. The entanglement contour of the
entanglement entropy defined by (3.11) has the form

fA(x) = 1
6c
(2θ (c− C (x, x2))

x2 − x
+ θ (C (x1, x)− c)− θ (C (x, x2)− c)

x
+ 2θ (c− C (x1, x))

x− x1

)
,

and one can see the presence of discontinuities in the entanglement contour from this
formula. We present the typical structures of the (inverse) entanglement contour for
different intervals in figure 3. Naively one can expect one discontinuity in the entanglement
contour corresponding to the phase transition in the entanglement entropy. However, in
contrast with these expectations one can observe, that there are two discontinuities in the
bulk of the interval A. Their location and form strongly depend on the size of the interval
`, the distance to the boundary `0 and the boundary entropy Sbnd revealing large non-local
effects in the spatial entanglement pattern.

What is even more curious one can check that the entanglement contour in the limit
`0 → 0 (i.e. when the interval contains the boundary) vanishes up to some point defined
by the function C(x1, x2). The size of this zone grows with the decrease of the boundary
entropy (see the right plot of figure 3). This shows that the near-boundary zone does not
contribute to the total entanglement at all and in some sense, it is disentangled with the rest
of the system. The inclusion of the boundary in the entangling interval is not a necessary
condition for the entanglement contour to vanish. If the region is situated close enough
to the boundary, the “disentangled island” peculiarly appears in the bulk of the region
separating it into two parts (see the blue curve in figure 4).
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Let us discuss this result before turning to the non-equilibrium situation in the next
sections:

• Remind that here we follow the lines of [32, 34] arguing that BCFT captures some
essential features of the 2D black hole coupled to auxiliary radiation. In that papers
authors considered TFD BCFT model as the main example, however, main features
of the entanglement behavior is already present in the simplest setup of static CFT
on the half-line. In this section, we have noticed that the observer who has the access
to the region containing the boundary degrees of freedom will meet some strange
region with the degrees of freedom disentangled from the rest of the system. The
same pattern should also takes place in other models of black holes.

• A similar situation appears in the firewall paradox. One of the main points in this
paradox is that any Hawking quantum radiated by an old black hole is entangled
with the early radiation, which implies that it cannot be entangled with the modes
behind the horizon. One of the possible resolutions is that the presence of the observer
disentangles in part some degrees of freedom present in early and old Hawking
radiation [18]. In BCFT this manifests itself in spatially resolved entanglement as we
have demonstrated here — close enough to the boundary, some region is simply not
contributing to the entanglement. What strengthens this line of reasoning is that this
region is present only for the region with small enough boundary entropy. This is also
in line with the black hole analogy because the old enough black hole corresponds to
smaller entropy.

• Without access to the boundary, the observer will find out the special “island” where
the entanglement is especially weak. We state that this zone, in general, is the explicit
manifestation of the entanglement island induced by the ETW brane (see [36] for a
general discussion on the relation between the ETW brane and entanglement island
construction in different models). If the interval is large enough, the entanglement
contour may vanish separating the interval by the “disentangled” zone.

• The size of the special zones described above depends strongly on the boundary
entropy. If the value of boundary entropy is larger than some critical value, the
entanglement contour becomes smooth again.

Finally, let us consider the entanglement contour in two-dimensional CFT on the half-line
at finite temperature T . For simplicity let us focus on the zero-tension ETW brane given
by (3.5) which corresponds to Sbnd = 0. The dual background, in this case, is just the BTZ
black hole being cut along the ETW brane orthogonal to the boundary3 given by equation
x = 0. For this dual background the entanglement entropy of the system in different phases

3Notice that if we consider not the half-line but the interval BCFT there is a kind of Hawking-Page
transition between thermal AdS3 and BTZ black hole for some certain range of brane tension values.
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Figure 4. The normalized entanglement contour for the interval x ∈ (0.5, 23) and Sbnd = 0.
the Blue curve corresponds to the zero temperature entanglement contour, the red curve to the
temperature T = 0.03.

is given by

Scn(x1, x2) = c

3 log
(sinh (πT (x2 − x1))

επT

)
, (3.14)

Sdc(x1, x2) = c

6 log
(sinh (2x1πT )

επT

)
+ c

6 log
(sinh (2x2πT )

επT

)
, (3.15)

where T is the temperature of 2d CFT state. From figure 4 one can see that the small
increase of the temperature strongly perturbs the state and the “disentangled” zone is
replaced by the region with the considerably amplified entanglement contour located near
the boundary.

4 Moving mirror

A simple, solvable, and convenient to study model that mimics Hawking radiation in a
boundary field theory is the so-called “moving mirror” [38]. In this model, the spatial
location of the boundary is time-dependent and this dependence is chosen to capture
particular black hole properties. In [35], the holographic realization of the moving mirror
model has been proposed. Starting with the fixed trajectory x = X0(t) of the mirror and
introducing the lightcone coordinates

u = t− x, v = t+ x, (4.1)

one can show that the conformal mapping

ũ = p(u), ṽ = v, t+X0(t) = p(t−X0(t)), (4.2)

transforms the mirror with the trajectory x = X0(t) to the static one, ũ = ṽ. It is
straightforward to find the gravity dual of this construction extending the coordinate

– 9 –



J
H
E
P
0
3
(
2
0
2
2
)
0
3
3

transformation (4.2) into the bulk as

U = p(u), V = v + p′′(u)
2p′(u)z

2, Z = z
√
p′(u), (4.3)

which reduces to (4.2) for z → 0. This mapping relates the Poincare AdS3 with the ETW
brane given by (3.7) in lightcone coordinates U and V

ds2 = dZ2 − dUdV
Z2 , (4.4)

and the background with the boundary along the prescribed mirror trajectory X0(t) with the
ETW brane hanging from X0(t) into the bulk. The choice of the function p(u) reproducing
some certain properties of black hole evaporation is given by

p(u) = −β log
(
1 + e

−u
β

)
+ β log

(
1 + e

u−u0
β

)
, (4.5)

geodesics with different topologies contributing to the entanglement entropy can be obtained
by conformal mapping. The entanglement entropy corresponding to these geodesics is
explicitly given by

Sds
A = c

6 log (t+ x0 − p (t− x0))(t+ x1 − p (t− x1))
ε2
√
p′ (t− x0) p′ (t− x1)

+ 2 log gb, (4.6)

Scn
A = c

6 log (x1 − x0) [p (t− x0)− p (t− x1)]
ε2
√
p′ (t− x0) p′ (t− x1)

. (4.7)

In [35] it was shown that for the interval moving parallel to the boundary (i.e. the interval
(x0 +X0(t), x1 +X0(t))) and choice p(u) in the form (4.5) the entanglement entropy follows
the Page curve if x1 → ∞. For t → ±∞ we have the stationary boundary and at the
intermediate time t ≈ 0 we have X0(t) ≈ −t. If x1 is finite the “Page curve” is repeated
after some time capturing the entanglement corresponding to the particles reflected from the
boundary and crossing the interval. We present the evolution of the normalized difference
between the entanglement contour of radiation due to the mirror and the entanglement
contour of the BCFT ground state in figure 5. We see that the evolution of entanglement
looking simple at first sight and consisting only of the linear growth and decrease, has
complicated fine-grained structure which can be briefly summarized as follows

• One can observe at least four discontinuities in the entanglement which evolve and
spread over the entanglement contour. For example (see the black curve in figure 5),
the influence of the boundary during the evolution is present in the center of entangling
interval at intermediate times.

• As usual for large boundary entropy, one can observe more smooth behavior of evolving
entropy.
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Figure 5. The entanglement contour of radiation in the moving mirror model minus entanglement
contour of the ground state at different time moments t. Green curves correspond to t = 1, red
t = 1.5, blue t = 2, magenta t = 2.5 and black to t = 3. For the left plot boundary entropy
Sbnd = 2 log gb = 0, while Sbnd = 0.1 for the right plot. The entangling interval is chosen to
be x ∈ (0.2, 15).

5 Pair of BCFT in the thermofield double state

In the papers [32, 34] the pair of 2d BCFT which are in the thermofield double state has
been investigated in the context of the Page curve. One can show that this thermofield
double state can be represented as a path-integral on the plane where the boundary is
situated along the circle C in the center. In other words, the thermofield double of 2d
BCFT corresponds to the geometry of the complex plane with the removed disk. It is
straightforward to obtain the holographic description of this system and which consists of
the ETW brane which is the spherical surface hanging from C into the bulk. The Lorentzian
version of this construction can be obtained by the canonical analytical continuation. The
entanglement entropy evolution in this system can be calculated straightforwardly by a
conformal mapping w = w(z) to a half-plane as in the previous section. Mapping w(z) of
the upper half-plane on the disk complement of radius R has the form

w = R

(
i

2 + 1
z + i

)
, z = i

2 + R

iR+ w
. (5.1)

The connected and disconnected contributions to the entanglement entropy are given by

Scn = c

12 log
(
|f (wa)− f (wb)|4

ε4 |f ′ (wa)|2 |f ′ (wb)|2

)
, (5.2)

Sds = c

12 log
(

16 (Im f (wa))2 (Im f (wb))2

ε4 |f ′ (wa)|2 |f ′ (wb)|2

)
+ 2Sb, (5.3)

which is a mild generalization of (4.6). We present the entanglement entropy and entangle-
ment contour evolution for BCFT pair entangled in the thermofield in figure 6. Although
the analysis of entanglement entropy behavior in the TFD BCFT model has been performed
in [32] let us briefly describe its main features here for convenience.
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Figure 6. Left plot: the evolution of normalized entanglement entropy in the TFD BCFT model
minus entropy of the unperturbed ground state. the Blue curve corresponds to Sbnd/c = 0.16,
the red one to Sbnd/c = 0.06 and the magenta to Sbnd/c = 0.05. Right plot: the normalized
entanglement contour evolution in the same model with the entangling interval fixed to be x ∈ (1, 4)
and Sbnd = 0. Curves of different coloring (magenta, red, blue and green) correspond to different
times (t = −1.5,−0.5, 0.5 and t = 2.5 respectively).

The entanglement entropy at some time specified by R exhibits initial quadratic growth
for fixed interval size, then it increases linearly and saturates in a non-smooth manner at
some time. This seems to be very natural if we assume the thermofield double interpretation
of the path-integral geometry. This behavior is very typical in different eternal black holes,
Vaidya and other thermalization models [46–49]. In contrast to the entanglement entropy
late-time decrease in the moving mirror model taking place after the Page time in the TFD
BCFT model, the entanglement saturates at some fixed value. In general, the evolution of
the entanglement contour resembles the one observed in the mirror model, where numerous
“contour islands” are spread over the entangling region.

6 Concluding remarks and future directions of research

In this paper, we have shown that the entanglement contour reveals non-trivial fine-grained
features of the entanglement entropy in different BCFT setups. We find the presence of
spatial entanglement degrees of freedom localization or delocalization in the entanglement
entropy due to the presence of a boundary. Referring to the interpretation of BCFT
as a model resembling the black hole (as was argued in [32, 34]) one can conclude that
the presence of “islands in contour” is an explicit manifestation of “entanglement island”
phenomena recently discovered in black hole physics.

It would be interesting to extend this paper in different directions. For example, to
calculate the entanglement contour on the CFT side and compare the results for different
theories, for example, free against holographic CFTs. The extension of BCFT/entanglement
contour setup on the entanglement negativity, Renyi entropy, reflected entropy, and their
contour function as well as other related quantum measures also seem to be intriguing.
Finally, in future we would like to clarify some issues related to the local modular flow
in BCFTs. The construction in [23] based on the partial entanglement entropy implies
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that in some special regions the evolution corresponding to the local modular flow should
“freeze” due to vanishing of the entanglement contour. Also, it would be interesting to
compare the results obtained here with the higher-dimensional BCFT setups [50] as well as
to understand the entanglement contour role in the black hole final state paradox (see for
example a recent interesting proposal in [51] and references therein).

Note added. I became aware of an independent project considering the entanglement
contour affected by entanglement islands in the models different from considered here and
also reporting a discontinuous and partially vanishing entanglement contour [52].
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