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ABSTRACT: We quantify the role of scrambling in quantum machine learning. We char-
acterize a quantum neural network’s (QNNs) error in terms of the network’s scrambling
properties via the out-of-time-ordered correlator (OTOC). A network can be trained by
minimizing a loss function. We show that the loss function can be bounded by the OTOC.
We prove that the gradient of the loss function can be bounded by the gradient of the
OTOC. This demonstrates that the OTOC landscape regulates the trainability of a QNN.
We show numerically that this landscape is flat for maximally scrambling QNNs, which
can pose a challenge to training. Our results pave the way for the exploration of quantum
chaos in quantum neural networks.
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1 Introduction

A quantum neural network (QNN) [1-6] is a quantum generalization of a classical neural
network [7-9] used to learn or optimize functions. QNNs are of growing interest because of
their potential to provide a quantum speed-up [10] and they present a promising application
for near-term intermediate scale quantum devices [11]. The role of classical chaos in classical
neural networks has long been established [12-15], with more recent results linking chaos
to expressivity [16].

As the body of literature on QNNs grows, one question remains: what role does quan-
tum chaos play in QNNs? Bridging these currently disjoint fields is necessary to under-
stand the capabilities of QNNs in learning the chaotic properties of many-body systems, as
recently demonstrated in [17]. The connection between chaos and the generalization capa-
bility of QNNs has been explored in [18], and the relation between chaos and approximation
properties of QNNs has been studied via the Loschmidt echo in [19]. There is a growing
interest in quantifying the role of quantum chaos in QNNs and further investigation is
needed to rigorously establish this connection.

In this work, we relate chaos to QNNs by establishing upper and lower bounds on
training error in terms of quantum scrambling. Scrambling measures the delocalization of
quantum information arising from chaotic evolution and is hence a measure of quantum
chaos [20-26]. It was recently shown that QNNs encounter barren plateaus, exponentially
vanishing gradients in the cost function, when learning scrambling unitaries [27]. Hence,
scrambling plays an important role in training. However, QNNs themselves may also have
chaotic properties which characterize their learning ability. These properties have been
investigated through scrambling measures such as the tripartite mutual information [28]
and operator size [29]. Numerical evidence correlating the tripartite mutual information
to the network’s empirical training error has been demonstrated in [28]. One contribution
of our work involves relating the tripartite mutual information to the network’s true error
via an inequality. The scrambling ability of QNNs has also been numerically linked to
the design of efficient network architectures [29]. However, much needed analytic relations
between scrambling measures and QNN training error largely remain unestablished. Our
contribution is to establish a number of inequalities relating the two.

We demonstrate that training error can be bounded by the out-of-time-ordered corre-
lator (OTOC), defined in the following section. This correlator is an essential tool in the
study of chaos, as it can characterize fast scramblers [30-34] and has even been used to
decode the Hayden-Preskill protocol [35, 36]. In our context, we use the OTOC to quan-
tify how well a QNN architecture scrambles information. We show that learning a unitary
requires learning its scrambling properties.

Our main result, given in Theorem 1, shows that training is regulated by the gradient
of the OTOC. In other words, trainability is regulated by the OTOC landscape. Hence,
training depends on how a network’s scrambling ability changes as its training parameters
are perturbed. We provide numerical simulations to support the relevance of our analytic
bounds. We show that when the QNN is maximally scrambling, the OTOC landscape is
flat, which can pose a challenge to training.



1.1 Background on scrambling

Here, we introduce the out-of-time-ordered correlator as a scrambling measure. A common
definition of scrambling is the growth of the Hilbert-Schmidt norm of the commutator
between two local Pauli strings that initially commute, as one operator evolves under the
action of the unitary Heisenberg group U(t) [37-40]. A Pauli string is the tensor product
of local Pauli operators.

Let O and Op be two commuting, local Pauli strings on systems A and D, respec-
tively. Define Op(t) = UT(t)OpU(t). The Hilbert-Schmidt norm of the commutator can
be expressed as

[Op(t), Oalllus = \/2dtot (1 = (Op(t)040p(1)04)). (1.1)

The expectation value () is taken with respect to the N-qubit maximally mixed state
ﬁ, and dioy = 2. The quantity (Op(t)O20p(t)O4) in eq. (1.1) is an out-of-time-
ordered correlator. Although troublesome to measure, protocols to do this have been
constructed [41-45].

To simplify notation, we suppress the variable ¢ and write U for U(t). We remove the
dependence on the choice of O4 and Op by redefining the out-of-time-ordered correlator
as the average

OTOC(U) = E E(UOAUTOpUO,UOp), (1.2)

OA0p
where (unless otherwise state) gE (or OE) denotes an average over the Pauli group on
A D
system A (or D). A signature of chaos is that the OTOC decays to a floor value and the
Hilbert-Schmidt norm reaches a maximum at large time; see Corollary 1. We define U to

be maximally scrambling if the OTOC decays to this floor value.

2 Preliminaries

In this section, we briefly review some basics of QNNs. A QNN is a parameterized quantum
circuit with unitary U(0) and parameters 6. There are two disjoint input subsystems A, B
and two disjoint output subsystems C', D each with Ng» qubits and Hilbert space dimension
dsr = 2Ns' where S’ € {A, B,C, D} (see figure 1). A Pauli string acting on system S’ is
denoted as Og/. N denotes the total number of qubits in the system, and diot = 2N is the
corresponding Hilbert space dimension.

The parameters of the QNN are tuned to train the network to either learn a target
unitary, Ug, or optimize a cost function. We focus on unitary learning in this section
and refer to appendix A for a cost function treatment. We train the QNN with data S =
{ Pds yd}zsl, where d denotes each data point and n; is the total number of points. State pg

encodes the input data and y, is the corresponding target function. U (@) approximates ygq
by computing the output function g4. We use the standard notation for the target function
and output function:

ya = Tr {UspaUkOc}, G =Tr{Up'0Oc} . (2.1)
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Figure 1. Quantum neural network with brick-wall architecture. Data is encoded in state pg a,
while system B is initialized in the maximally mixed state, pp. The QNN unitary U is composed
of 2-qubit, parameterized unitaries, U; ;. Output system C is measured after evolution by U.

The functions are expectation values of Pauli string O¢ on system C with respect to the
input state evolved with either Ug or U, respectively.
To determine the accuracy with which U approximates Ug, we define the loss function:

Li=E \9a — yal® - (2.2)

Although it is common to measure the loss function with respect to one observable O¢, we
take the average over all Pauli strings, as this will help establish a connection between Ly
and the OTOC. The case where the loss function is defined with respect to one observable
is considered in appendix C. The true error L is defined as the average of the loss function
over the data set S:

L= I?Ld. (2.3)

The empirical error is defined as the average of the loss function over a sample set, which is a

finite subset of S. Practically, the QNN is trained by optimizing its parameters to minimize

the empirical error. We assume L is approximated sufficiently well by the empirical error.
Assume pg is local in system A, such that

Pd = Pd,A® pPB. (2.4)

The input data is encoded in pure state pg 4 = [¥g,4) (Va,4] = Ua0) (0] 4 Uil using unitary
Uy, while system B is prepared in the maximally mixed state, pp = é—g. Take Uy to be a
Haar random unitary sampled from the unitary group on A. The true error becomes an
average over all uniformly distributed input states, pga: L = [ja. @UaLg. Since only a
2-design is required, the average over U4 can be taken over the Clifford group, which forms
a 3-design [46, 47].



In this work, we quantify the role of quantum chaos in QNNs. Chaos in QNNs has been
explored through the fidelity OTOC [19], which has the general form ‘(¢| UTMU [4) ’2 [22,
48, 49]. However, it was recently proposed that higher-point correlators can reveal the
finer-grained dynamics of chaos [45, 50-52]. Since the fidelity OTOC carries the same
information as the 2-point correlator ‘(W UTMU |4)/|, it may not reveal the finer scrambling
dynamics available to the 4-point OTOC in eq. (1.2). Therefore, we rely on OTOC(U) to
study scrambling in QNNs.

3 Main results

Let us first introduce the connection between the training error and the out-of-time-ordered
correlator. In the following proposition, we write both the loss function and true error in
terms of out-of-time-ordered correlators.

Proposition 1 The loss function can be written as
Lq = d}(Ca(U,U) + Cy(Us, Us) — 2C4(U, Us)) , (3.1)
where Cy(Ur,Us) is
Ca(Ur,Uz) = E (U1paU 0L UspaUdOp) . (3.2)

It follows that the true error can be written in terms of OTOCs:

L = G[OTOC(U) + OTOC(Us) — 20P(U, Us)| , (3.3)

where OP(U,Ug) and G are defined by

OP(U,Us) = E E (UOAUOpUsOAULOp), (3.4)
d2

G=—-4__. 3.5

(da + l)d% (3.5)

We give the proof of this proposition in appendix G. The expressions Cy(U,U) and
Cy4(Us,Ug) have the form of out-of-time-ordered correlators, but they are sub-optimal
scrambling measures since pg is non-unitary. Hence, we will later rely on the trusted
scrambling measure OTOC(U) to bound Ly in Proposition 3. The first two terms in
eq. (3.3) depend only on the scrambling ability of U and Ug, respectively. The optimization
correlator, OP(U, Ug), reflects the optimization of U with respect to Ug when learning. In
Proposition 2, we will establish bounds on L which are independent of OP (U, Ug).

In the following corollary, we focus on the special case where the target unitary is
maximally scrambling, as this is physically relevant when the QNN learns the large-time
dynamics of a chaotic many-body system. As Ug becomes more scrambling, the true
error approaches the value obtained by integrating Ug over the Haar measure on the
unitary group [52], denoted as Lscram = [nay @UsL. When both U and Ug are maxi-
mally scrambling and independent of each other, the true error reaches a floor value of
Lioor = Jjaar AUdUs L. We prove the following corollary in appendix H.



Corollary 1 When U is untrained and hence independent of Ug, Lscram and Lgoor Satisfy
the following:

2
Lscram = G [OTOC(U) + OTOCscram — (12] ) (3.6)
A
S 1
Lioor = 2G |OTOCgcram — 61,24] . (3.7)
Here, the OTOC for a maximally scrambling unitary is
_____ 1 d? 1
OTOCseram = —5——— |2t — 14 d? <1 - ﬂ . (3.8)
(dtzot - 1) [ d,24 ¢ d?4

When dio is large and dg4 > 1, Lggor — ﬁ. For fixed Npg, the true error in this
limit vanishes exponentially with the total number of qubits N. This is a relevant limit
when learning many-body unitaries.

3.1 Error bounds

In this subsection, we bound the true error and the loss function using OTOCs.

Proposition 2 The true error L can be bounded by OTOCSs:

L_<L<L,, (3.9)
where )
Lo(U.Us) = G [\/OTOC(U) L \/OTOC(US)] . (3.10)
Also /
|L — L+| < 4G,/OTOC(U)OTOC(Us) - (3.11)

We prove Proposition 2 in appendix I. OTOC(U) decays as U becomes more scram-
bling. Hence, the upper bound L, decays as U or Ug become more scrambling. The lower
bound L_ depends on the distance between the OTOCs of U and Ug. This implies that
L_ vanishes as the QNN learns the scrambling properties of the target unitary. A mis-
match in the scrambling abilities of U and Ug may therefore inhibit the optimization of L.
Hence, learning a target unitary requires learning its scrambling properties. The bound in
ineq. (3.11) decays with scrambling, causing L to approach L.

At the start of training, the QNN is initialized as a random parameterized quantum
circuit (RPQC) with unitary Uy. Sufficiently deep random circuits are scrambling [53, 54]
and lead to OTOC decay with circuit depth [55]. Therefore, the initialized QNN becomes
increasingly scrambling with circuit depth, causing OTOC(Uy) and L, (Up, Us) to decay.
Random local quantum circuits form approximate polynomial-designs [56, 57]. Hence,
when the initialized QNN becomes sufficiently deep, OTOC(Uy) tends to OTOCseram
in eq. (3.8), the value found by integrating Uy over the Haar measure on the unitary
group [52]; see appendix H. The corresponding true error bounds are found by setting
OTOC(Up) — OTOCgcram in eq. (3.10).



Aside from the OTOC, the second Rényi entropy and the tripartite mutual in-
formation are also common measures for scrambling. We define the Choi isomor-
phism of U as p(U)=|U)(U|, where [U) = ﬁzg’f i) ® Uli). For a system
S’ and its complement S. in system ABCD, define the reduced density operator
ps/(U) = Trg:{p(U)}. For example, pac(U) = Trpp{p(U)}. The second Rényi en-
tropy is defined as Sffg(U ) = —logy{p%4c(U)}. The tripartite mutual information is de-
fined as I3 (A:C:D) = Iy (A:C) + Iy (A:D) — I/ (A:CD), where the mutual information
is, for example, I7(A: C) = Su(U) + Sc(U) — Sac(U) and the entanglement entropy is
Sac(U) = =Tr{pac(U)logy pac(U)}.

The negativity of I3 (A:C:D) measures how much information in A is shared by C
and D after evolution by U. As the system scrambles, the magnitude of the tripartite
mutual information increases. A numerical correlation between the empirical error and the
tripartite mutual information was found in [28]. In the following corollary, we relate the

true error to the second Rényi entropy and the tripartite mutual information.

Corollary 2 The true error bounds Ly can be expressed in terms of the second Rényi
entropy ngj(Ui) with U; € {U,Ug} as follows,
2

Ly = oN-Na=Np (g [9=SW)/2 1 9-SG2Ws)/2 (3.12)

Moreover, the true error can be bounded by the tripartite mutual information I3, (A:C:D):

L 2 G|:2(I3’U(AZCZD)—2NA)/2 + 2(13,US(A:C:D)_2NA)/2 _ 2OP(U, US):| . (313)

The OTOC for U is related to the second Rényi entropy, Sf()j(U), through
OTOC(U) = oN—Na=Np=S2(U) [36, 58]. We use this relation along with eq. (3.10) to
prove eq. (3.12). It has been shown that OTOC(U) > 2(s.v(A:C:D)=2Na)/2 [58]  which im-
plies that the tripartite mutual information lower bounds the true error via eq. (3.3). This
yields ineq. (3.13).

In Proposition 3, we establish a bound on the loss function in terms of OTOC(U). In

the proof (see appendix J), we use Levy’s lemma to construct a concentration inequality
for the loss function. When working with Levy’s lemma, it is useful to define the following

7T3
o) = 1/2@ In % (3.14)

Proposition 3 Let |14 4) be sampled from the Haar measure on the Hilbert space of system
A. With probability at least 1 — €, the loss function Lq(|1q.a)) satisfies

function

|La — La| < nf(e) + 4G1/OTOC(U)OTOC(Us), (3.15)

and

[La — L| < nf(e), (3.16)

y=8\fin(ir s Ly 17

where the Lipschitz constant n is



The Lipschitz constant decays as U or Ug become more scrambling, since L is a func-
tion of OTOCs, which decay. This decay concentrates Ly about Ly and L via inegs. (3.15)
and (3.16), respectively. Concentration occurs as a RPQC QNN becomes deeper. In the
case where U and Ug are maximally scrambling, it is shown in appendix J that for large
dioy and dp > d 4, the right-hand side of ineq. (3.16) becomes 7 f(e) — % % In % This
implies that performing measurements on a larger system C' will concentrate Ly about L.
Also assuming d4 > 1, L — ﬁ by eq. (3.7). This decays exponentially with N, so Ly
can be made to concentrate near (. The loss function when learning many-body unitaries
can therefore vanish.

3.2 Gradient of loss function

We now introduce our principal result regarding training. We bound the gradient of the
loss function with the gradient of the OTOC. Doing so helps in performing gradient
descent [59, 60], one of the widely used methods for training neural networks. Let us
consider a QNN as in [61] given by U(0) = [[L, U;(6;)W; where Uj(8;) = e Vi, V] is
Hermitian, W; is a constant unitary, and L is the circuit depth. An application of Levy’s
lemma yields the following theorem; see appendix K.

Theorem 1 Let [1)q.4) be sampled from the Haar measure on the Hilbert space of system
A. With probability at least 1 — €, Op,Lq(|10a,)) satisfies

09, La — 9, L| < g f(e), (3.18)
where
Oy, L = G |05, OTOC(U(8)) — 205,0P(U(8), Us)] (3.19)
and the Lipschitz constant ng is
— ( da(da+ )Ly + 2) . (3.20)

For a mazximally scrambling target unitary and an untrained U,

o, Lscram = Gy, OTOC(U(6)). (3.21)

l
The quantity 0p,Lg is probabilistically bounded by the OTOC and its gradient via
ineq. (3.18). It is shown in appendix K that

82

oLl < —2%A
06, L] < (da+ 1)d2,

il - (3.22)
This bound decays exponentially with N¢g, indicating that non-local measurements can
produce vanishing gradients. This is consistent with the presence of exponentially vanishing
gradients of globally defined functions found in [62, 63].

The Lipschitz constant 7, decays as U or Ug become more scrambling.
When U and Ug are maximally scrambling unitaries, ineq. (3.18) simplifies to
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Figure 2. (Left) Plot of OTOC(U) against circuit depth at initialization for N = 8, N4y = Np = 3.
Systems A and D are disjoint (see figure 1 for example), so the commutator between any O4 and
Op vanishes, yielding OTOC(U) = 1. The support of UO4UT reaches D after three QNN layers,
causing the OTOC to decay. The system becomes maximally scrambled once the OTOC reaches its
floor value. (Right) The corresponding Lgeram for a maximally scrambling target unitary is plotted
along with Ly, L_, and Lagoy.

|0p,Lq — 0, L| < 16||V}]| (% + ﬁ) %ln% This bound tightens as d4 and d¢ in-
crease, causing 0y, Lq to concentrate near dp, L. This corresponds to encoding the data
using more qubits and performing measurements on a larger subsystem C.

Eq. (3.21) shows that the true error gradient is given by the gradient of the OTOC.
The OTOC landscape therefore regulates trainability when implementing gradient descent.
The OTOC reaches a floor value for a maximally scrambling QNN and no further chaotic
evolution by U changes the OTOC appreciably. One therefore expects that an infinitesimal
change in 6 should not perturb the OTOC, and hence Lgcam, from its fixed value. We
present numerical simulations in section 4 to demonstrate this. This hints that barren
plateaus, exponentially vanishing gradients [27, 61, 64], may potentially arise due to the
flat OTOC landscape of maximally scrambling QNNs. This also suggests that weakly
scrambling QNNs with 8-sensitive OTOCs may hold potential in avoiding barren plateaus.
Indeed, shallow QNN architectures have been shown to circumvent barren plateaus [62, 65];
these architectures are typically weak scramblers.

4 Numerical simulations

For concreteness, we adopt the brick-wall network architecture (see figure 1) to numerically
simulate the decay of the true error with circuit depth. At layer i in the QNN, a 2-qubit
unitary U; ; is applied to each pair of neighboring qubits. Index j labels the unitaries in
a given layer. Odd layers are staggered by one qubit with respect to even layers, forming
a brick-wall geometry. Each unitary takes on the form U;; = e~ "iiVii | where Vij is
Hermitian and 6; ; is a training parameter.

We numerically simulate the true error for a QNN at initialization when the target
unitary is maximally scrambling. We choose each parameter 0; ; randomly such that we
can assume U, ; is effectively a Haar random unitary. Lgcram is plotted in figure 2 (right)

along with L4, L_, and Lgeo as a function of circuit depth. OTOC(U), and hence Lgcram,
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Figure 3. OTOC landscape with respect to perturbation parameter £ € [—2x, 27|. Each training
parameter 0; ; is randomly initialized. The OTOC is computed using updated parameters 6; ; —
0;,; + €. The QNN has a circuit depth of 30 layers and N = 8, N4y = 1, Noc = N — 1, ensuring the
QNN is in the maximally scrambling regime.

decays with circuit depth. The bounds L, and L_ tighten with circuit depth; this is
consistent with ineq. (3.11). Lgcram decays to Lgoor at sufficiently large depth, since the
QNN becomes maximally scrambling.

In figure 3, we numerically simulate the OTOC landscape generated by varying each
training parameter 6; ; using perturbation parameter € € [—27,2x|. Each 6; ; is randomly
initialized. A circuit depth of 30 layers is used with N = 8 Ny = 1,N¢ = N — 1.
This choice of circuit parameters ensures that, at initialization, the QNN is maximally
scrambling and the OTOC has attained its floor value. The flat landscape indicates that
even after perturbing the parameters, the QNN remains maximally scrambling and the
OTOC retains its floor value. From Theorem 1, we see that 9y, Lscram = G, OTOC(U(6)).
That is, the OTOC landscape determines the Lgcram landscape. Hence, the flat OTOC
landscapes arising from maximally scrambling QNNs may pose challenges to training via
gradient descent algorithms.

5 Discussion

We have shown that training error is bounded by the OTOC, a scrambling measure. Our
results demonstrate that learning a unitary necessitates learning its scrambling properties.
Training of the QNN via gradient descent requires computing the gradient of a loss function.
We establish an inequality relating this gradient to the gradient of the OTOC. As a result,
training is regulated by the OTOC landscape. We show that maximally scrambling QNNs
can produce flat OTOC landscapes, which may present a roadblock to training. An open
question, which we pose, is to prove whether weakly scrambling QNN architectures can
remove barren plateaus in the training landscape.
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A Training with cost functions

In the main text, we considered the training of QNNs by examining the loss function and
its gradient. This method is useful when training with a data set. However, QNNs can
also be trained to optimize a problem-specific cost function, which does not involve a data
set. Let pg be a fixed, random state of the form eq. (2.4). We define the cost function as

C=FEj3, (A1)
Oc¢

where 4 has the form of eq. (2.1). Eq. (A.1) does not include a target function, since the
QNN is not learning a target unitary. It is shown in appendix L that the cost function and
its gradient can be written in terms of the out-of-time-ordered correlator Cy (U, U) defined
in eq. (3.2):

Lemma 1 The cost function and its gradient can be expressed in terms of an out-of-time-
ordered correlator, Cq (U,U), as follows

C =d5Cy(U,U), (A.2)
99,C = d3,0p,Cq (U, U). (A.3)

To understand how the network’s scrambling properties affect training via gradient
descent algorithms, we bound the cost function and its gradient using the OTOC from
eq. (1.2). We consider a QNN architecture as in section 3.2. The following proposition
bounds C and its gradient when pg 4 is a random state (see appendix M for a proof).

Proposition 4 Let [y a) be sampled from the Haar measure on the Hilbert space of sys-
tem A. With probability at least 1 — €, C(|Ybqr a)) satisfies

C — Cay| < nefle), (A.4)
where the Lipschitz constant ne is
ne = 4‘ﬁdf‘ OTOC(D), (A5)
and the average cost function is
Cow = /H auae= [+ - +0TOC(U)]. (A.6)

With probability at least 1 — €, 0p,C(|t)ar,4)) satisfies

106,C — 99, Cav| < 1c,gf(€), (A7)

where the Lipschitz constant nc g is

Vdad
ne.g = 81[Villoo ( ~—/OTOC(U) + ) , (A8)
and the gradient of Cyy s
09,Cav = G0y, OTOC(U). (A.9)

~10 -
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Figure 4. Plots of Lgcam for a randomly initialized QNN of varying depth for a maximally
scrambling target unitary. Lgscram is plotted for N = 3,4,...,8 (darker colors indicate increasing
N) for subsystem sizes: (left) N4 = N — 1, N¢ =1 and (right) N4 =1, No = N — 1.

C and 8y,C are probabilistically bounded by OTOC(U). Importantly, ineq. (A.7) im-
plies that dp,C can be made to concentrate about Jg,Cay, which depends only on the gra-
dient of the OTOC, as shown in eq. (A.9). The OTOC landscape therefore regulates the
network’s trainability when optimizing the cost function. Egs. (A.3) and (A.9) suggest
that maximally scrambling QNNs with flat out-of-time-ordered correlator landscapes may
potentially account for barren plateaus.

B Supplementary numerical simulations

Figure 4 shows the decay of Lgcram With respect to circuit depth for various N. In the left
plot, the input data is encoded in a large state supported on Ny = N — 1 qubits and a
single-qubit measurement on C' is performed. In the right plot, the data is encoded in a
single-qubit state and a measurement on No = N — 1 qubits is performed. For a given N,
the right plot produces a smaller true error. This is consistent with the behavior of Lagor,
which decreases as N4 decreases (i.e. as Np increases) for a given N. Both plots indicate
Lgcram decays with circuit depth and width.

C Generalizing true error

Although Ly in eq. (2.2) is defined with respect to an average of O¢ over Pc, the Pauli
group on C', variants of the true error may be defined with respect to a uniform average
over a subset S¢ C P¢ with cardinality |S¢|. Some useful variants include:

_ 2
Ly, = @OC@SC\W — yal*,

2
Ly =E| E_ (9~ ya)| - (C.1)
Lys=E OCI@SC(yd —Ya)|

- 11 -



where IEZ implies the Haar average over U4. Taking S¢ to consist of a single Pauli observable
gives a common definition of the loss function. It can be shown that

dZ d2
L33<Lys <Ly < £ L< 5L, (C.2)
Sc |Sc

L bounds a function of each variant. Hence, scrambling bounds a larger class of true error
definitions. Variants of the cost function in eq. (A.1) can be defined in a similar fashion.

To prove ineq. (C.2), first recall L < L., as established in the main text. Also note
that > "0 cs. |9 — yal? < > 0cepe 1Ud — yq|?. We can write

Ga-val? = o= Y 1Gu-val® < L dg a—val? = |92 —yal*.
d—Yd d d d—Yd
Oces ‘S ‘OCES ‘S ‘d2 OCG'PC |S |O 6770
(C.3)
This implies Ly < |S |L Since the variance is non-negative, ( E (-))2< E ((-)?).
O¢ € S¢ O¢c € S¢
This implies Lya < Lyq. We also have (Igl( )% < Ig(( )?), which implies L5 < Ly,.
D Diagrammatic formalism
We can diagrammatically express unitary U; € {U,Ug} as
'R
C A
D B
-/

where we label the input (A, B) and output (C,D) subsystems. Define the Bell state
between systems S1 and Ss, each of dimension dg, as

— S
Bell)g, g, = rzdS’ i)g, © li)g, = \/;? " (D.2)
— s,
The corresponding bra vector diagram is
L [ 51
(Belllg, g, = Vi . (D.3)
— 92

An identity relating an operator @) to its transpose is

! — . (D.4)
Q

E Properties of the twirling channel

Define the k-fold twirling channel for an operator ) on the k-copy Hilbert space as

W) (Q) = [ aUUIHQUEE, (5.1)

- 12 —



where unitary U is sampled from Haar measure on the unitary group of dimension d’, U(d').
This can be expanded in terms of permutation operators 15, where m € S and Sy is the
set of all permutations of the set {1,2,...,k}:

(I)g;a)mr(d’ ) = Z CTF,UTWTI‘ {TO'Q} . (EQ)

m,0E€S)

The coefficients Cr , form the Weingarten matrix. In the case of k =1,

1
@ga)tar(d’)(Q) = oI {Q}. (E.3)

The case of k = 2 gives

1

d)%fiar(d/)(Q) 771 —71 2Tr {112Q} +S12Tr {S12Q}
(E.4)

d’Il 2Tr {S12Q} — S1 2Tr {11 2Q}],

where S  is the swap operator between the two Hilbert space copies. For a pure state [1),

the following identity is useful

T,
Rk ZﬂGSk s B5
Haard/ ((|¢><¢|) ) d(d/—l—l) (d/—|—k}—1) ( . )
Permutation operators are invariant under the twirling channel:
k
q)g-lazar(d’)(Tﬂ) = Tﬂ" (EG)

A k-design is a finite ensemble & of unitaries which can replicate the first & moments of
the Haar measure:

E_[UtehQuer] = / dUTTERQUEF., (E.7)

~ Haar

The Pauli group forms a 1-design and the Clifford group forms a 3-design.

F Calculus identity

We derive a useful calculus identity. Define state |¢)) € C%4 and real vectors vy, ve € R94.
Any state can be written as

1) = v1 + ivs. (F.1)

Define I4 as the ds X d4-dimensional identity matrix. We can write

) = [IA iIA} w
[01] (F2)

V2
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For a Hermitian matrix ), we compute the following derivative:
d I I A e .
| wiew)|| = |l (w [_HA] AN w> 2

— || (l_ﬁj Q [Laila) + Ijﬂ Q" |14 —iIA])

= [[wl@ 1y ina] + i @7 [1a —ina]

2

N———

= [((W Q [IA UA] + (" QT [IA —”A:

~11/2
I Ia] i ie
-([_;} ]QWH Z[’jQ ) )

J (W Q [ ila l_i’}A] Q1) + (WI" QT | L —ila] Liﬂ Q)

= /(W QERLYQ! ) + (4" QT (214)Q* [v)*
= /20| QQT[0) + 24" QTQ* [¢)")*

= \2(01QIQ ) +2 (W QIQY)
~201Q 41l o

The second line follows from a standard calculus identity.

G Proof of Proposition 1

G.1 Computing the loss function
We will show that the loss function can be written as
Lq = d35(Cy(U,U) 4+ Cyq(Us, Us) — 2C4(U, Us)), (G.1)

where

Cd<U1,U2) = £<U1de{rOEUdeU§OD>. (GQ)

Let @ be an arbitrary operator on the di.t-dimensional Hilbert space. We can define the
more general correlator C(Q, Uy, Us) as

C(Q.U1,U2) = E (hQU{OLU2QU;Op). (G3)
Note that Cy(Uy,Us) = C(pg, U1, Usz). We express C(Q, Uy, Usy) diagrammatically:

E

Op

C(Q,U1,Us) = 7

— 14 —



Using the transpose identity from eq. (D.4),

b
C(Q7 U17 UQ) !

_ E ) . @
diot 0,

Ur| |QT| |UT

Perform the average of Op over the Pauli group (which forms a 1-design) using the identity
from eq. (E.3): OIEOI)Q’OD = %IDTYD{Q’} where Q' = UQQU;. This identity produces
D

o[ ol

~ diotdp

(G.6)

C(Q,U1,Up) = 7

C(Q,Uy,Uy) = %

T diotdp o, (G7)
Oc¢ is a Pauli string. Using dio,t = dodp, we write this as
1 « "
C(Q,Uy,Us) = %(%Tr{Ul Q"ulop} T {U,QUiOC} . (G.8)
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The transpose leaves the trace invariant, so

T {U; QUL 0p} = T {(UrQTUT 0p)" | = r{0LUiQUT} = T {hQU]OG}, (G.9)

where we used the Hermiticity of O¢. This produces
dhO(Q, U1, Us) = ETr {U1QU{Oc } Tr {U:QUI O }
Setting Q@ = pg4, we obtain an identity for Cy(Uy, Us),
dpCa(U1, U) = ETr {U1paU]0c } T {U2pafOC
L, can be written as
Lq = SEC?J(% + gEcyfz — 2E yaya.
From eq. (G.11), we readily see that
B s = dhCa(U,U),
(Eyg = dhCa(Us, Us),
Evaja = dpCa(U,Us).

This produces
Lg = dj(Ca(U,U) + C4(Us, Usg) — 2C4(U, Us)).

G.2 Computing true error

We will prove that

d2
L= (s [OTOCW) + OTOC(Us) —20P(W,Us)|

Begin by writing L using eq. (3.1):

L= dUxLg

Haar

=d3 /H AU 4(Cq(U,U) + Cyq(Us, Us) — 2C4(U, Us)).
For unitaries Uy, U, € {U,Ug}, we compute the following average

| AUAC(UL, Vo)
1

= dUATe {U1paU OpUspalU§Op }

dtot Op JHaar

1
= dUAT{ U1(Ua [0) (0], UL @ p5)U O

dtot Op JHaar

Us(Ua [0} (0], UL @ pi)USOp }
1

dtot Op JHaar

1

diot Op

~16 —

(G.10)

(G.11)

(G.12)

(G.13)

(G.14)

(G.15)

(G.16)

E [ dUsTe{(Ur @ Us)(Ua]0) (0], UL @ p)* (U] @ USOF?S1,2

E Tr {(U1 @ Us) [/H AUAUA10) (0,4 U @ p)®] (U] © UQT)O%ZSLQ} .

(G.17)



In the second line, we introduce pg = Ua |0) (0| 4 UL ® pp. In the third line, we introduce
the swap operator S;» on the doubled Hilbert space. Compute the average over Uy and
keep track of the doubled systems (e.g. A; and Asg):

[ dUAWA10) (01, U )
= | dUA@UAI0) 014, U} @ py) @ (Ua [0) (014, U @ p)

= | dUAUF(10) (014, © 10) (011, )UK™) @ (3, © )
= ) (10) (0L, ©10) (01,) ® (o5, © ;)

1
= m |:IA17A2 + SAl,AQ:| ® (pBl ® pBg)
1
=TT T
 da(da+1) PAI"“? +daEO4® OA} ® (pB, @ pPB,)

1
T da(da + 1)d%
1

T da(da+ 1) I35+ daE (048 0],

(G.18)

[IA,B ®Iap+ dAg%((OA ® 1) ® (0, ® IB))]

In the second line, we switch the order of the tensor product on systems By and As for ease
of computation. We switch back to the correct order in line six. In the third line, we in-
troduce the 2-fold twirling channel, CI)%;M( i )() (see appendix E). In the fourth line, we use
eq. (E.5). In the fifth line we introduce the 1-design identity:
Sa,4, = dAgl*iOA & OL. In the sixth line, we use pp = éIB’ reorganize the tensor
product and drop the A; and B; labels. In line seven, we redefine notation O4 ® Ig — O 4.
Plugging into eq. (G.17),

/H dUACq(Uy, Us)
v
 diot da(da +1)d%

- ETr {(U1 @ Up) [I5% + dsE (04 ® ol| ] e Ug)o%QSm}
_ 11t
N dtot dA(dA + 1)d23
ETr {o%l s +daE (U1 © 12)(04 ® O4)(U] © Ug)o%QSI,Q} (G.19)
1
" diot dA(dA + 1)dQB
[ r {03} + dAIETr{ (U104U{0p & U04,U§Op)S1 2} |
1 1

dtot dA(dA + 1)d2

1
=— |14+ ds4F(Uy,Uy)]|.
dA(dAJrl)dQB{ + daF(Us, 2)}

[dtot +dsETr {1:04U{0pU>04U50p } |
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In the fourth line, we use the Hermiticity of O and Tr {O%} = Tr{I¢,p} = diot. In line
five, we define the correlation function

F(U,Up) = ££<U10AU1T0DUQOAU§0D>. (G.20)

In the case where Uy = Us, F(U;,U;) = OTOC(U;). In the case where U; = U and
Us = Ug, we retrieve the optimization correlator F'(U,Ug) = OP(U,Ug). From eq. (G.19),
we readily find

/ dUAC(Uy, Uy) = [1+d,0TOC()]. (G.21)
Haar

da(da +1)d%
1

dUAC(U,Ug) = ——————-
/Haar A d< ’ S) dA(dA+1)d2B

|1+ daOP(U, Us)). (G.22)
Eq. (G.16) is then

d2 o _
L= m [(1 +dA0TOC(V)) + (1 +daOTOC(Us)) — 2(1 + d4OP(U, Us))]

_ dhda
da(dy +1)d%
= G[OTOC(U) + OTOC(Us) — 20P(U, Us)|.

[OTOC(U) + OTOC(Us) — 20P(U, Us)|

(G.23)
In the third line, we use dadp = dodp and define G = (dAi%)dQC.
H Proof of Corollary 1
We show that the true error for a maximally scrambling target unitary is
— 2
Lecram = G (OTOC(U) + OTOCscram — 2) . (H.1)
dA

This is computed from L by integrating Ug over the Haar measure on the unitary group,
which is valid under the assumption Ug is scrambling;:

Lscram = dUSL
Haar (HQ)
=G | dUs|[OTOC(U) + OTOC(Us) — 20P(U, Us)|.

Haar

First compute the integral over the OTOC:

/ dUsOTOC(Us) — / dUs E E (UsOAULOpUsOAULOD)
Haar

Haar 0a0p

1
= —EE dUsTx {UsO4ULOpUsO4ULOp }

dtot 040D JHaar

EET { { / dUsUS2052U1#2
Haar

dtot O0a0p

-l Em { E %) (0;%2)0%281’2} :

tot O O,  Haar(deot)

(H.3)

0%281,2}
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The average over Ug is just the 2-fold twirling channel, @g;ar( dtot)(0§2) (see appendix E).
The swap operator Sy 2 acts over the doubled Hilbert space. Using eq. (E.4) we compute
the average of the twirling channel,

i) (OF) = dgotl_ r[Remr {0} + 81T {07781
- Rt {05810} - 81T {0} ]
_ dfotl—l (11 (ﬂ (04)% - dtlotﬂ {0,%}) (H.4)
5 (Tr {04} - dtlot o {OA}Q) }
= dfotl—l 112 (@200, = 1) + 81,2 (dhot — diotd0,,.1,)] -

In the above, O4 actually denotes Oy ® Ip, so Tr{Oa} = diot00,,1,- We also use
Tr{0%} = Tr {Iap} = diot- Now average the twirling channel over 04, using

=5 _ 1.
Eoou14 = 7 220, 00a14 = 2

2 1
(%@%;ar(dtot)(0§2) B Ay — 1 {II’Q <d30t<£EAéoAJA - 1) + 512 (dtot - dtot£60A71A>:|

L d2 dtot
=7 1 |he t°t—1>+sl,2 (do —)]
i e (% "

Plug this into eq. (H.3)

(H.5)

dUsOTOC(Us)

Haar

1 d2 d
=——F%5 < ET 1 tot _ 1 S g — 1ot 92
diot (d2., — 1) 0p r {l 1,2 ( & ) + 51,2 ( tot & O5"S12

= 1 ®2 d‘?ot ®2 diot
g [T (1) (o) (a2

1 i d2 d
= —————E |Tr{0h} | =2 — 1)+ Tr{Op}* | dior —
dtot(dgot - 1)OD { D} < d124 ) + I‘{ D} tot da‘

— B e (% 1) s dpoy — ot
dtot(dgot - 1)013 i tot Cl124 totYOp,Ip tot d124

1 d? d
- d tot -1 d2 d _ﬂ
o [ (1) (-

= OTOCSCI‘&HI)

(H.6)

where we define

OTOC.. — 1 (% ) 2 (1_L )
scram ( d%Ot — 1) d124 C d2A . .
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In the above, we use Tr {OD} = dtot(sOD,Ipv Tr {0%} = dyot, and E 50D Ip = i. For large
D

dtota OTOCscram — é + d dz d2 .
Now we compute the integral over the optimization correlator, assuming U is indepen-
dent of Ug (i.e. U is not yet trained):

This result was originally shown in [66].

/ dUsOP(U, Ug) = / dUs E B Tr {UOAUTOpUs04ULOD }
Haar Haar

tot 0a0p

E ETr {U0AUTOp@y), ;. (04)0p}

dtot ©a0p
t
dt tggﬁ{UoAU Oh} Tr {04}
(H.8)
dtot gE OE (dtot(sOA IA)
_ L
s
Lscram becomes
— 2
Lecram = G <OTOC(U) + OTOCscram — d2> . (H.9)
A
In the case where U is maximally scrambling, we obtain the floor value
— 1
Laoor = 2G | OTOCscram — 7 (H.10)
A
In the large diot limit, this floor value becomes
. e 1
lim Lgoor = 2G ( lim OTOCgeram — 2)
dtot —00 dtot —00 dA
1 1 1 1
=2G ( + s~ 7
4 d3, did% d? )
A D AYD A (H.]_l)
2% 11
 (da+1)dg \d},  didf,
_ 2 - L
~ (da+1)d% d4 )
For ds4 > 1,
2
li Loor = ——. H.12
dcoir—lgoo fi dBdtot ( )
I Proof of Proposition 2
We will prove that L is bounded by
— — 2
L. = G[,/OTOC() + \/OTOC(Us)] - (L.1)
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By noting L is non-negative, we apply the triangle inequality to the true error in eq. (3.3):
L < G[|OTOC()| + [OTOC(Us)| + 2|0P(U, Us)) . (1.2)

We now bound the third term. Begin by rewriting F'(Uy, Us) from eq. (G.20) diagrammat-
ically, taking O4 = OL and Op = OE wherever convenient:

F(U,U)) = L~ EE

diot 0,0,

(.3)
Using the transpose identity from eq. (D.4),

'SR )
D
—O@E—
F(U1,0) = 3 EE — — . (14)
Op
Ut Us

Let 1Ip, p, be the projection onto the Bell state between systems D; and Do
Ip,,p, = Bell) (Bell|p, p, - (I.5)

We average over O and Op, and use the 1-design identity EOD ® Op =Ilp, p,:

Ry
L~
Ay

Ul Us
B
F(U1,Uz) = gax Efﬁ p, D, (ﬁj . (1.6)
By
ur U3

i i
Ry

The labels on the right-hand side refer to the systems in the tensor network. Reference

system R; has dimension d4, where ¢ € {1,2}.
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Define the states

W}(Ul)) = IRl QU; ® Ui* ® IRQ |?l)0> )
|tho) = [Bell) 4, @ [Bell) g g, @ [Bell) 4, g,

Eq. (I.6) can be written as
F(Uy,Uz) = (¢(U1)| 1, p, [ (Ua)) - (I.8)

Ilp, p, actually denotes Igr, A, 4,.rR, ® lIp, p,, but the identity operator is omitted for
convenience. Setting Uy = Us yields F(Uy,U;) = OTOC(Uy), as shown in appendix G.2.
F(Uy,Uy) also gives the probability P(U;) of projecting a Bell state onto Dy Dy while in
state |1(U1)) [66]. We have the relation

OTOC(U1) = (¥(U1)[1lp,,p, [¢(U1)) = P(Uy). (1.9)

Since the OTOC represents a probability, 0 < OTOC(U;) < 1. In the case where Uy = U
and Uy = Ug, F(U,Ug) = OP(U, Ug), which produces

OP(U,Us) = (¢(U)11p, ., [¢(Us)) - (L.10)
We now bound |OP(U, Ug)|. Begin by writing

OP(U, Us)| = |((0)| 113, p, [(Us))|
’<TZJ(U HDl D2)| ¢(US7HD1,D2)>’

(L.11)

where we define the unnormalized state |¢(U;,lp, p,)) = IIp, p, |¥(U;)) and use the fact
IIp,.p, = 112 D1.D ,- Apply the Cauchy-Schwarz inequality,

OP(U, Us)| < W(U, I, p,)| $(U.Ip, p,)) (¢(Us.TIp, p,)| ¥ (Us.IIp, p,))
= SO 113, , [H(0) (@(Us)| 1T, p, [(Us))

(I.12)
= /(W (U)| Ip, p, [$(U)) ((Us) TIp, p, [1(Us))
= \/OTOC (U)OTOC(Ug).
Ineq. (I.2) becomes
L < G[OTOC(U) + OTOC(Us) + 2\/0TOC(U)OTOC(US)] (1.13)
The right-hand side is defined as the upper bound on L:
— — 2
L. = G[,/OTOC(U) + \/OTOC(Us)] - (1.14)
We also construct a lower bound on L. We first bound OP(U, Ug):
OP(U,Us) < |OP(U, Us)|
(L.15)

< /OTOC(U)OTOC(Us).
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We now bound the true error:

L = G[OTOC(U) + OTOC(Us) — 20P(U, Us)]

> G[OTOC(U) + OTOC(Us) — 2¢/0TOC(U)OTOC(Us)|. (110
We define the right-hand side as the lower bound on L:
L_=G[,/oTOC(U) - \/W(Ug)r. (L.17)
Using |L — Ly| < Ly — L_, we arrive at the bound
L — L+| < 4G4/OTOC(U)OTOC(Us). (1.18)

J Proof of Proposition 3

We derive a concentration inequality for the loss function by using Levy’s lemma. Assume
input state pg is given by eq. (2.4). It will be convenient to introduce the notation L4 =
Lq(|1a,.4)). Levy’s lemma in this context states:

Lemma 2 (Levy’s lemma) Let Ly : S?¥o=1 — R satisfy |La(|t1.4)) — La(|i2.4))| <
nl|Y1,4) = |¥2,4)||5- ThenV § >0,

Prob L 4)) — L| > 0] <, J.1
L Prob (Lallva) ~ 1] > 4 (1)
where € = 2exp (—gig‘f; and m is the Lipschitz constant. By definition,
L= . E . [La(1a,4))]. The average is over the uniform distribution on the Hilbert
d,A) ~ Haar(d g

space of system A.
Parameter 0 can be written in terms of e: 6 = 7f(e), where we define f(e) = % In2, as
in eq. (3.14). Levy’s lemma implies that with probability at least 1 — e,

| La([¢a,)) = LI < nf(e). (J.2)

With probability at least 1 — €, we can also construct an inequality for |Lq(|tg a)) — L+|:

|La(|%a,a)) — Lx| = |La(|$a,a)) — L+ L — Ly
< |La([tba,a)) — L| + |L — L]
<nf(e) +|L— L]

< nf(€) + 4G\/OTOC(U)OTOC(Us).

(1.3)

J.1 Lipschitz constant

We now compute the Lipschitz constant. We can write state |t)g 4) in terms of real vectors
v, v§ € Ria:
[a,4) = vf +iv5. (J.4)
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The state can also be written in the form:

Y vl (J.5)
d— vg .
It is straightforward to show that
lle1,4) = [P2,)[l; = [[w1 — wall,. (J.6)

Therefore, the Lipschitz continuity condition for Lg(|1)4.4)) can be written as

[ La([41,4)) = La([¢2,4))| < nlJwr — wal]y . (J.7)

We can therefore compute a Lipschitz constant by finding any 7 such that

\\Chide<|¢d,A>>1\2 <n (1.8)

We compute

H L(|tba,a))

Hdw E 194 = ydl H

d
E 2(yd — yd)d (Ud — ya)

d
T (Gd — ya)

2

<2E H(yd—yd)
c 9

(1.9)

d
—21[‘3 |Ya — yal ’ (Ud — Ya)

2

2E (|g —(Yq —
< 28 (7l + Iy || 15 (5~ )

J

The sixth line follows from |§4], |ya| < 1. The remaining inequalities follow by the triangle

2

< —(Ja — Ya)

<4E
Oc

d'wd

—Yd

<4E
o Oc|: dwy

Hd’wdyd

inequality. Let @ be a Hermitian operator on system AB. Compute the following norm:

d
—T
Hdwd '

_ HdTr{<|¢d,A> (.l ® pB>Q}H2
HTr (|tha,a) (Ya.al @ IB)Q}H2

— |t () (e Q1 (4.10)
1

dp
2
= - ITre{QY waa)ll, -

d
dwy (Ya,a| Tre{Q} [t a) ,
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Trp{-} denotes the partial trace. Line five follows from appendix F. Now we bound the
average over the norm:

d
E dwdTr{pd@}H gimnTrB{Q}Hoo
2
< = EIT{QHls (3.11)
2
< B T {Q) s

The second line follows from the Hilbert-Schmidt norm upper bounding the operator norm.
The third line follows from the variance being non-negative: ((EE (1)? < gE (1)2. Letting
C (o]

Q =U'OcU gives

B |5t < 20 B Imen {00cU iz (1.12)
Now we compute
{UTOCU}HHS —OCT&"A{‘T&“B {UTOCUHQ}. (J.13)

Writing this diagrammatically,

{UTOCU}HHS =&

(J.14)
By introducing a 1-design, we can write this as

{UTOCU}HiIS

=dsEE

040¢

Using the Hermiticity of Pauli string O 4,

{UTOCU}H2 —dAgEAgE‘éTr{UOAUTOC} . (J.16)

Retrieving the identity from eq. (G.10) and setting @ = O4,U; = Uy = U,

(JJETr{UoAUTOC} = dpC(04,U.U) = dp E (U0AU'OpUOLUOp). (J.17)
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This yields,

[vtocv}|] = dadh B E(UOLUI0pU0AUOp)

o (J.18)
= dad50TOC(U).
Ineq. (J.12) becomes
d 2 —
E || o || < 5-/dad,0TOC(0)
c d 2
(J.19)
_ 2Vdadp OTOC(U).
B
A similar inequality holds for y; — y4. Ineq. (J.9) becomes
d 8v/dad —
|- Lallvan)|| < VG |\ /oTOCW) +/OTOC(US)
2
_ 8Vdadp [d
sty [dc T (3.20)
dp da

=8y/da(da+ 1)Ly

The second line follows from the definition of L, in eq. (3.10). The Lipschitz constant is

n=8y/dalda+1)Ls. (J.21)

J.2 Maximally scrambling unitaries

therefore

Consider the case where U; € {U, Ug} is maximally scrambling. In the large dio limit,

1 1 1

OTOC(U;) = — + 5 — —5—5-- (1.22)
i dy,  didy,

Taking the case where dp > d4, OTOC(U;) = —5-. The Lipschitz constant becomes

A
_8\/dAdD 9 i _16\/dAdD_16\/dA (7.23)
T dgp | dpda  de ‘
Therefore,
16y/da 973
nf(e) = i\ 2da ln*
(J.24)
1o fort
do €

Recalling that with probability at least 1 — €, |Lq(|tvq.4)) — L| < nf(e), Lq concentrates
near L as d¢ increases.
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K Proof of Theorem 1

Similar to appendix J, we can use Levy’s lemma to compute a concentration inequality for
0g,Lq. Levy’s lemma in this context reads

Lemma 3 (Levy’s lemma) Let 9y, Lq: S?¥t=1 — R satisfy |0, La(|t1,4)) — g, La(|t2,.4))|
< |l[¢1,4) = |tb2.4)[l,- Then ¥ 620,

(a0 “Oallz o<« K.1
Wd,A)Nli?aar(dA)H o d(W}d’A» 0; | >0] <e (K.1)

where € = 2exp ( 2iA22> and 1y is the Lipschitz constant.
g

In the above, 0g L =
probability at least 1 — ¢,

[09,La(|td,4))]. Levy’s lemma implies that with

[1a,a) ~ Haar(dy)

|00, La(|v0a,4)) — 9, L] < ng f (), (K.2)

where f(€) is defined as in eq. (3.14).

K.1 Lipschitz constant

We compute the Lipschitz constant. As in appendix J, we define |¢4 4) using eq. (J.5) so

that 1y can be found through the inequality: Hﬁza@Ld(\wd,A))HQ < ng. We compute the
bound:

d d
Hdwdaell/d(Wd,A» :Hdw (891E’yd_yd| H
Q—E — U
H dwgon (Ud — Ya)00,Yd ,
—2||E (a0~ va) + (50— ) 51O
Glydd Yd Yd Yd Yd dwd 0, Yd )
<2IE‘8 d( )+ G — ya) 20,3
< elydd a = ya) + (B = ya) g~ 009
d
(’ 391yd yd—yd) +H(yd—yd)d 09,9 )
2 2
d
= (Iﬁelydl ’ (Fd — ya) +yd—yd|‘ f%lyd )
s (sl ) lonad )
d
(K.3)
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Before computing 9y, 34, it will be useful to compute 9p,U:

L
09U = 09, [ U;(0;)W;
j=1
- L N
= | TI Ux(6)Wi| 05,U1(60)W,
L k=Il+1

L
= | [] Ue(x)Wi| (=iV))U(6:)W
| k=it1

3 -
= | I Ur(0x)Wi| (=iV)
| k=i+1

= Uy (—iV)U-.

We define U_ =T[]'_, U;(0;)W; and Uy =[15_,1 Up(60)Wy. Similarly, 85, Ut = UT (iV))UL.
We now compute 9y, 7q:
O, a = 09, Tr {UpalTOC }

= T {(90,U) palUTOc } + Tx {Upa (95,U) Oc }

= T { (U (=W)U-) palTOc } + Tx {Upa (UL (iV)UL) O} ©s)
=Tr {deiUlOcUJr(—iVl)U_} + Tr {dei(iVE)UerCUJFU—}
= Tr {paU! [iV;, UL OcULJU - |
=Tr{paQ} -

In line six, we define the Hermitian operator ) = Ut [iV], U_JLOCUJF]U_. Now compute the
following norm:

d

78 7
Hd'wd 6

d
— |-
2 Hdwd r{de}H2

2
= 1T {Q} a)ll

9 . (K.6)
= oV Waal (75 (Q)) W)
2 2
= s Tr {Pd,A (Trp {@Q}) }
In the second line, we use eq. (J.10). Now diagrammatically write
Pd,A
Tr {Pd,A (Trp {Q})2} = : (K.7)
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We introduce a 1-design:

Pd,A
Tr{paa (Trp{Q})?} =d E H : (K.8)
{ d,A B } B o OT a

Introduce the Bell state:

T {paa (Trp {Q))°} = B E

(K.9)

We can now bound the trace: \ J
Tr {Pd,A (Trp {Q})2} = dQBgEBTF {(Pd,A @1, 5,)05(Q ® Ip)0p(Q ® IB)}

= d% | ETr{ (a1 ©115,,5,)04(Q @ 15)05(Q © IB)}‘

< dbE | Tr{(pa1 © s, 5,)0(Q © 1)05(Q @ )}

<dpE ||05Q® I5)05Q @ I5)|| (K.10)

< dpE ||Ok[|_ 1@ Ip)ll 1011 11(Q @ 1)l

=dpE llQll%

= di [|QII%

< ddp|[VillS, -

In the first line, we take Op to denote 14 ® Op ® Ig. The second line follows from the
trace on the left-hand side being non-negative. The third line follows from the triangle
inequality. The fifth line follows from the sub-multiplicativity property of the norm. The
sixth line uses the fact that Pauli strings have a maximum eigenvalue of 1. The last line
follows from the following bound:

1@l = |[Ulfivi, UL ocULU-||
= [in,ULOCU+]HOO
= iVlUJTrOCUJr—UerCUMVlH (K.11)

<|[vivloous| +||vlocusivi|
=2{[Vills -
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The second and fifth lines follow from the unitary invariance of the Schatten norms. In the
fourth line, we use the triangle inequality. We can now bound eq. (K.6):

2
< —\Jadg Vil = 411Vl (K.12)
2 B

Also, bound |9, 7q:
|00,9al = [Tr {paQ}|

< 1Qlls (K.13)
< 2{Vill
Ineq. (K.3) becomes
d
“rwaezLd(|wd,A>)“2
- d d
cog (sl o] 2 )
d _
o o (]l o ]
d
< -
<2E (2Wille (|| 7|+ |7 yd)+wwu)

2\/d 2
_2<2||Vz|oo< AdD\/W \/‘Edl’ OTOC( U5>+8|V|| )

(4\/@dD

—9 Vil o <\/OTOC(U) + \/OTOC(Us)) +8 IIVzHoo>

= 8| |Vills (V‘f?“dD (\/OTOC(U) n \/OTOC(US)) n 2)

=:8HWHK><V€25D (G2y/@avnes) + )

— 8| [Vill ( da(da+ 1)Ly + 2) .
(K.14)

In line four, we use ineq. (J.19). In line seven, we use the definition of Ly from eq. (3.10).
The Lipschitz constant is therefore

ng_suvluoo( dA(dA+1)L++2>. (K.15)

K.2 Maximally scrambling unitaries

Similar to appendix J.2, let U and Ug be maximally scrambling, let dio; be large, and take
dp > ds. Then OTOC(U) = OTOC(Ug) = d%. The Lipschitz constant is

Vdad
%=WW@< 242

:ﬂwwu(@j+g-

(K.16)
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Levy’s lemma then gives the following concentration inequality:

|09, La(|1a,4)) — Op, L| < ngf(€)

_ Vda 93 2

1 1 973 2
= 1611Villo (5 + =)

K.3 Vanishing gradient
We bound |0y, L|:

06, L| = G |9, 0TOC(U (8)) — 205, 0P(U(8), Us))| -
< G [|9,0TOC(U(9))| + 2105, OP(U(9), Us)| '
We bound the first term:

105, 0TOC(U)|

= |E E95,(UOAU'OD)?)

_2lEE <(UOAUTOD)891(UOAUTOD)>‘

Oa0p
040p

2| E E(UOAUT0p)(85, )04 Op + UoA(a(,ZUT)oD»’

OA0p

2| B B (UOAUTO) UL (—iV)U_0aUTOn + UoAUi(z'vl)UioD))‘
OA0p

=2|E E (U;U-04U UL Op) (U4 (—iV)U-04U UL Op + U+U_OAU1(M)ULOD)>‘

= 2|E E (U-0aULULOpU ) (=iV)U-0aUT UL OpU + U_OAUT(M)UioDU+)>‘

Oa0p

=2 g%g%(]ﬁ +—15)
< QEOI%OTH +[T2]),

(K.19)
where we define
Ty = (U_OAU UL OpU, (—iV)U_04UT UL OpUL),
Ty = (U_OAU UL OpUU_04UL (iV))ULOpU.). (K.20)
Now bound
ITy| = \<U_0AU1ULODU+(—¢VI)U_0AU1U10DU+>\
< ]]U_OAUiUioDU+(—z'vl)U_oAUiUlODm'\OO (K.21)

= [[Villoo -
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The third line follows from the invariance of the Schatten norm under unitaries, and also

noting that all operators but V; are unitary. Similarly, T < ||V}||,,. We therefore have

25, 0TOC()| < 4|Vl

We now bound
05, OP(U(0),Us)|
- EE agl<UoAUToDUSoAU;oD>’

= |E E(((85,U)0AUT +UO0A(0,U))OpUsO4ULOD)

0Oa0p

0A0p

= E:E(jﬁ—%jz)

O40p

< £E (1|1,

0OA0p

where

Ty = (U (—iV)U_04U UL 0pUs0 U Op),
Ty = (U, U_0U (iV)UT OpUsOATULOD).

We can bound ‘Tl

, Tg‘ < ||Vi]|o- This produces
|05, OP(U(8), Us)| < 2|Vl -
Ineq. (K.18) becomes
100, L] < G(4|[Villo +2(2[Vill0))
8d%4

=—A4 ||Vl

This upper bound vanishes as d¢o increases.

L Proof of Lemma 1
Fix input state pg and define gy = Tr {U parU TOC}. The cost function is
_ w2
C<—»g£yw
2
— T
- (ETr{Upd/U Oc}
=d5Cy(U,U).

~32 -

= |E E (U (—iV)U_OAUL UL + UL U_0aUL (iV))UL)OpUsOAULOD)

(K.22)

(K.23)

(K.24)

(K.25)

(K.26)

(L.1)



The third line follows from eq. (G.11). We will use Levy’s lemma to construct a concen-
tration inequality for C. First, we compute its average over all possible input states:

Cow = / dUAC
Haar
:d@é dUACy(U,U)
__dp
da(da +1)d%
d4 1
A = 40T
0M+4Mc[ +0 OqUﬂ

da
= G[a +0TOC(U)].

[1+d40TOC(U))] (L.2)

The third line follows from eq. (G.21).

M Proof of Proposition 4

By applying Levy’s lemma to C, we can show that with probability at least 1 — ¢,

‘C - Cav‘ < nef(e), (Ml)

where 7c is the Lipschitz constant and f(e) is given by eq. (3.14). As in appendix J, we
compute the Lipschitz constant:

Yar

2 HddeC

S%%!yd'\

Hdwd

d
2 :
B g Ve

—Ya
’ dwy 2 (M 2)

d
dwy Yd

4v/dadp

dp

_ Ay C‘;Ad“ OTOC(U).
C

SQIE

2

OTOC(U)

| /\

The fifth line follows from ineq. (J.19). This produces the Lipschitz constant:

4v/dada

e = OTOC(U). (M.3)
Cde

An application of Levy’s lemma to Jg,C shows that with probability at least 1 — e,

|06,C — 99,Cav| < 1,9 (€), (M.4)
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where 7¢ 4 is the Lipschitz constant. We compute the Lipschitz constant:

d
== E— ]E~2/
Hd’wdael 2 Hdwd(%locyd 9
—— (2§09, G0
|y (2B 0050 ) |
d d
=2|E (O 4z gy + Gy ——O0n, Ugr
Hoc< 0, Yd dwdyd + Ya dwy elyd)Hg
d d -
<2E 0o, U0 —— T yd +Z/d/ 0o, Jar
fel Wy 2
<2IE(‘8~d~ +’ da )
S ek 6,Yd dwdyd ) Yd dw Glyd )
d
:2E U — U U _ U
E (laelydl ’dwdyd 2+|yd\ ‘dwdaelyd 2) (ML5)
N d d
<28 (i e, + g
<2<2]|V\| EHd~ + |- a5 >
< oo L ddyd2 u dwdelde

A

g, Jar

2v/dad
2<2|vzr|oo< — OTOC<U>) +E

)

dwd

vdad
_2<4|Vz|| ATD JOTOC(U >+4r|vz\|oo)
=8||vl|oo<vdAdA 0TOC(U) + )

Lines eight, nine, and ten follow from ineq. (K.13), ineq. (J.19), and ineq. (K.12), respec-
tively. The Lipschitz constant is therefore

Vdada

ne.g = 811Vl ( OTOC(U) + > : (M.6)
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