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1 Introduction

“What is dark matter (DM)?” and “Where does DM come from?” are two very questions
that drive countless particle physicists and cosmologists to work day and night to solve
these problems. As of now, the only thing we know for sure is that it contributes about
26% energy density in the present universe. The remaining energy density is dominantly
attributed to dark energy which is another mystery physicists aim to understand.

The first question concerns the particle nature of DM, such as mass, spin, and fun-
damental interactions. Firstly, the mass of DM can spread over a very broad range from
10−15 GeV to 1015 GeV [1]. Secondly, it could be comprised of a scalar boson, a vector
boson, a Dirac fermion, a Majorana fermion, or a Rarita-Schwinger fermion. Thirdly, it
may possess interactions to the ordinary matter other than the gravitational interaction.
The second question asks about the production mechanism of DM. As we know, it can be
produced thermally or non-thermally in the early universe. Lastly, there is a possibility
that the universe contains more than one kind of DM just like the visible world exist many
stable particles such as the electron, proton, and neutrinos. Indeed, there are many efforts
along this direction [2–10].

The most popular thermally-produced DM is weakly interacting massive particles
(WIMP) [11], where the annihilation cross sections of DM pairs into the standard model (SM)
particles determine the DM relic abundance. Nonetheless, the null result of direct detection
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experiments has pushed the WIMP scenario into a corner, which motivates physicists to
come up with new prospects for DM. The so-called secluded WIMP scenarios are still viable
since they are not to be strongly constrained by direct detection experiments [12, 13].

Strongly interacting massive particles (SIMP) [14] is an alternative thermal DM scenario
that has brought people attention due to its exotic dynamic, where the DM relic abundance
is set by the self-annihilation cross sections of DM number-changing processes. In particular,
the SIMP with a large self-interacting cross section can relax some inconsistencies between
the N-body simulations and astrophysical observations at small-scale structures (. 1 Mpc)
of the universe. For instance, the collisionless cold DM predicts a cuspy density profile in the
center of dwarf galaxy halos. However, what we observe is a relatively flat distribution [15].
This is known as the core-vs-cusp problem. Besides, the collisionless cold DM also predicts
dozens of large sub-halos with speeds v > 25 km/s in the Milky Way and M31, but no such
halos have been discovered [16]. This is commonly named the too-big-to-fail problem.

With the above considerations, we study in ref. [17] the multi-component SIMP scenario
by using the effective operator method. As in the single-component SIMP scenario, the DM
relic abundance is determined by the reaction rate of the 3→ 2 process as shown in the
left graph of figure 1. Surprisingly, we notice that in this scenario there is an irreducible
two-loop induced 2→ 2 number-conserving process1 (see the right graph of figure 1) that
would reshuffle the DM number densities after the chemical freeze-out of DM. We then
dub this scenario as reshuffled SIMP (rSIMP) DM. Note that in the single-component
SIMP scenario, since the external legs of such a two-loop diagram are the same particles,
there is no redistribution of DM number densities due to this diagram. Intuitively, one
may think that this 2 → 2 process is suppressed by the two-loop factor. However, for a
3→ 2 process to take place, it has to capture one extra DM particle whose number yield is
Boltzmann-suppressed. It turns out that the reaction rate of the 2→ 2 process dominates
over that of the 3→ 2 process. Furthermore, we find that the masses of DM particles must
be nearly degenerate to weaken the reshuffled effect. Otherwise, the 2→ 2 process would
actively enforce the heavy SIMP particle annihilating into the light one, with essentially no
remaining of heavy SIMP DM.2

In order to make our analysis of the rSIMP scenario more robust and reliable, we
build up a UV complete model in this paper instead of the effective theory. We consider
a two-component SIMP DM model (hereafter we call it rSIMP model), where the DM is
comprised of a complex scalar and a vector-like fermion.3 In this model, the DM particles
have an accidental Z4 charge after a U(1)D symmetry breaking.4 If this U(1)D symmetry
is promoted to a gauge symmetry, then a vector-portal interaction naturally arises between
the SIMP DM and SM particles. This interaction is necessary for the SIMP scenario to

1Here the number-conserving means the total DM number is conserved. However, the individual DM
density would change due to the 2→ 2 processes.

2In our perspective, each DM component should have a sizable amount in multi-component DM scenarios.
3The two-component SIMP model with complex scalar and vector-like fermion is constructed in this

paper for the first time. In ref. [4], such a possibility based on U(1)D → Z2 × Z3 was mentioned in the
“footnote 2”, but without explicit construction.

4Note that this discrete symmetry does not inherit from a gauge symmetry by the Krauss-Wilczek
manner [18].
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Figure 1. The Feynman diagrams of the 3→ 2 and the two-loop induced 2→ 2 processes in the
rSIMP scenario, where Xi denotes the SIMP particle and the arrow represents the dark charge flow.

prevent the heat up of DM due to the 3→ 2 process before the chemical freeze-out of DM.
This is known as the SIMP conditions [19, 20].

Following this setup, we then explicitly compute the annihilation cross sections of the
3→ 2 and 2→ 2 processes and solve the coupled Boltzmann equations numerically to get
the correct number densities of DM. We find that the reshuffled phenomena still occur
in the UV complete model. Thus, our previous effective operator analysis of the rSIMP
scenario is valid. Also, the form of the 2 → 2 annihilation cross section derived by the
effective operator is consistent with the one in this UV complete model if we treat the
cut-off scale as the mediator mass in the two-loop diagram. Again, we emphasize that the
2→ 2 process in the multi-component SIMP scenario is generic and cannot be ignored in
DM phenomenology, especially in estimating the DM relic abundance. Adding number-
conserving 2→ 2 processes to number-changing 3→ 2 processes in multi-component SIMP
models will not only change the fractions of DM particles but also the total DM number
densities. It can dramatically modify model parameters that accommodate the correct relic
density compared with only involving 3→ 2 processes.

In most of the SIMP models, the DM is assumed to be a complex scalar in order to
have the DM number changing 3 → 2 processes be allowed. And typically one has to
choose large enough quartic or cubic couplings of the scalar DM to satisfy the DM relic
density and the vacuum stability. With such couplings, the prediction of DM self-interacting
cross section may be too big to be compatible with the astrophysical observations from
the Bullet and Abell 3827 clusters [21–24]. However, in the two-component SIMP model
with complex scalar and vector-like fermion DM, this tension can be eased thanks to the
reshuffled effect. For example, if the complex scalar is heavier than the vector-like fermion,
the DM self-interacting cross section can be reduced since the portion of the complex scalar
annihilates into the vector-like fermion due to the 2→ 2 process. Plus, the self-interaction of
the vector-like fermion corresponds to a four-fermion interaction which is suppressed by the
mass scale of the mediator at low energy. This is one of the interesting features of this model.

The structure of this paper is as follows. In the next section, we introduce the rSIMP
model and give a description of the relevant interactions and masses for the new particles.
In section 3, we write down the formulas for the annihilation cross sections of the 3→ 2 and
2→ 2 processes. In section 4, we take into account various theoretical and experimental
constraints on this model. In section 5, we evaluate the relic abundance of the rSIMP
DM and explain the reshuffled mechanism. In section 6, we discuss the SIMP conditions.
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H N X S Φ
SU(2) 2 1 1 1 1

U(1)Y −1/2 0 0 0 0
U(1)D 0 −1/8 +1/12 +1/4 −1/2
Z4 +1 ±i −1 −1 +1

Table 1. Charge assignments of the fermion and scalars in the rSIMP model, where H is the SM
Higgs doublet and i =

√
−1.

In section 7, we show the predictions of DM self-interacting cross section in this model.
Finally, we briefly mention some outlook of this model and conclude our study in section 8.
In the appendices, we demonstrate the computations of annihilation cross sections of the
3→ 2 and 2→ 2 processes in the rSIMP model.

2 rSIMP model

To demonstrate the redistribution of DM mass densities in the rSIMP scenario, we consider
one vector-like fermion, N , and three complex singlet scalars, X,S, and Φ in addition to
the SM particles. These new particles have dark charges under a gauged U(1)D symmetry,
and all SM particles are neutral under this U(1)D symmetry. We summarize the particle
contents and their charge assignments in table 1. In our setup, the X and N are SIMP DM
candidates, and S is an unstable mediator connecting these two particles. In particular,
the Φ particle triggers the breaking of the U(1)D symmetry. After the U(1)D symmetry
breaking, these new particles can possess an accidental Z4 symmetry, which stabilizes the
X and N and make them DM.

The Lagrangian density for the scalar fields in this model is given by

Lscalar =
(
DρH

)†DρH+
(
DρX

)†DρX+
(
DρS

)†DρS+
(
DρΦ

)†DρΦ−V(H,X,S,Φ) , (2.1)

where Dρ = ∂ρ + (i/2)gWτaW a
ρ + igYQYBρ + igDQDCρ denotes the covariant derivative

with gW (W a
ρ ), gY (Bρ), and gD (Cρ) being the SU(2), U(1)Y , and U(1)D gauge couplings

(fields), respectively ; τa
(
a = 1, 2, 3) the Pauli matrices, and QY (QD) the hypercharge (dark

charge) operator. The scalar potential V = V(H,X, S,Φ) is given by

V = µ2
hH
†H + µ2

XX
∗X + µ2

SS
∗S + µ2

φΦ∗Φ
+ λh

(
H†H

)2 + λX
(
X∗X

)2 + λS
(
S∗S

)2 + λφ
(
Φ∗Φ

)2
+ λhX

(
H†H

)(
X∗X

)
+ λhS

(
H†H

)(
S∗S

)
+ λhφ

(
H†H

)(
Φ∗Φ

)
+ λXS

(
X∗X

)(
S∗S

)
+ λXφ

(
X∗X

)(
Φ∗Φ

)
+ λSφ

(
S∗S

)(
Φ∗Φ

)
+
(
λ3X

3S∗ + 1√
2κυφS

2Φ + h.c.
)
, (2.2)

where υφ is the vacuum expectation value (VEV) of Φ. The Hermiticity of the scalar
potential V implies that µ2

h,X,S,φ and λh,X,S,φ,hX,hS,hφ,XS,Xφ,Sφ must be real. For simplicity,
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we will choose λ3 and κ to be real and positive because one can redefine the scalar fields
X and Φ to absorb the phases of λ3 and κ.

Based on our setup, we require that the VEVs of the scalar fields in this model satisfy
the following conditions:

〈H 〉 = 1√
2

(
0
υh

)
, 〈Φ〉 = 1√

2
υφ , 〈X〉 = 〈S〉 = 0 , (2.3)

where υh ' 246.22 GeV is the VEV of H. On the other hand, the κυφ terms in the
potential cause the mass splitting of the real and imaginary part of the S field. Thus, after
spontaneously symmetry breaking, we can expand the scalar fields around the VEVs as

H = 1√
2

(
0

υh + h′

)
, Φ = 1√

2
(
υφ + φ′

)
, S = 1√

2
(
SR + iSI

)
. (2.4)

With these parametrizations, the minimum conditions for the scalar potential would give

dV
dφ′

∣∣∣∣
VEV

= υφ

(
µ2
φ+λφυ2

φ+ 1
2λhφυ

2
h

)
= 0 , dV

dh′

∣∣∣∣
VEV

= υh

(
µ2
h+λhυ2

h+ 1
2λhφυ

2
φ

)
= 0 . (2.5)

Solving these two equations, one can express the VEVs in terms of the quadratic and quartic
couplings in the scalar potential as

υφ =

√√√√4λhµ2
φ − 2λhφµ2

h

λ2
hφ − 4λhλφ

, υh =

√√√√4λφµ2
h − 2λhφµ2

φ

λ2
hφ − 4λhλφ

. (2.6)

Besides, the masses of X,SR , and SI are given by

m2
X = µ2

X + 1
2
(
λhXυ

2
h + λXφυ

2
φ

)
, m2

SR ,SI = µ2
S + 1

2
(
λhSυ

2
h + λSφυ

2
φ

)
± κυ2

φ . (2.7)

Also, the λhφ term in the scalar potential induces a mass mixing between the h′ and φ′. In
the basis

(
h′ φ′

)T , the corresponding mass mixing matrix is written as

M2
hφ =

(
2λhυ2

h λhφυhυφ
λhφυhυφ 2λφυ2

φ

)
. (2.8)

Here we have used the relations in eq. (2.5) to simplify the form of M2
hφ. Upon diagonalizing

M2
hφ, we obtain the mass eigenstates h and φ and their respective massesmh andmφ given by(
h′

φ′

)
=
(

cosα −sinα
sinα cosα

)(
h

φ

)
≡Oα

(
h

φ

)
, OT

αM
2
hφOα = diag

(
m2
h ,m

2
φ

)
, (2.9)

m2
h,φ =λhυ

2
h+λφυ2

φ±
√(

λhυ
2
h−λφυ2

φ

)2+
(
λhφυhυφ

)2 , tan(2α) =
λhφυhυφ

λhυ
2
h−λφυ2

φ

, (2.10)

where h denotes the observed Higgs boson with mh ' 125.1GeV, and φ is a new neutral
scalar with mφ as a free parameter. In our study, we will assume that the mass splitting
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of SR and SI and the mass mixing of h and φ are negligibly small for simplicity. In such
cases, the masses of SR , SI , h, and φ are reduced to

m2
SR ' m

2
SI ≡ m

2
S = µ2

S + 1
2
(
λhSυ

2
h + λSφυ

2
φ

)
, m2

h = 2λhυ2
h , m2

φ = 2λφυ2
φ . (2.11)

The Lagrangian density responsible for the mass and the interactions of newly added
dark fermion N is given by

LN = N
(
iγρDρ −mN

)
N − 1

2
(
yNN

cNS + h.c.
)
, (2.12)

where mN is the Dirac mass of N , yN is the Yukawa coupling, and superscript c refers to
the charge conjugation. Again, we will take yN to be real and positive by absorbing its
phase into the field N or S without loss of generality. Note that the S particle can decay
into a pair of N if mS > 2mN and three X particles if mS > 3mX . Therefore, even S has
a Z4 charge, it is still not suitable to be a DM candidate if mS > 2mN or 3mX .

The Lagrangian density for the SU(2)⊗U(1)Y ⊗U(1)D gauge bosons is given by

Lgauge = −1
4W

3ρσW 3
ρσ − 1

4B
ρσBρσ − 1

4C
ρσCρσ − 1

2 sεB
ρσCρσ − 1

2m
2
CC

ρCρ , (2.13)

where W 3
ρσ = ∂ρW

3
σ − ∂σW 3

ρ + gWW
1
[ρW

2
σ], Bρσ = ∂ρBσ − ∂σBρ, and Cρσ = ∂ρCσ − ∂σCρ

are the field strength tensors of the gauge bosons, sε ≡ sin ε is the kinetic mixing parameter,
and mC = 1

2 gDυφ coming from the |DρΦ|2 term after the U(1)D symmetry breaking.
After the breakdown of the electroweak symmetry, the kinetic and the mass mixing

matrices of the gauge fields in the basis
(
B W 3C

)T , are respectively given by

KG =

 1 0 sε
0 1 0
sε 0 1

 , M2
G = 1

4

 g2
Yυ

2
h −gWgYυ2

h 0
−gWgYυ2

h g2
Wυ

2
h 0

0 0 g2
Dυ

2
φ

 . (2.14)

To write the kinetic terms into the canonical form, it is known that one can diagonalize matrix
KG without changing the diagonal elements by utilizing a general linear transformation T ,
and subsequently diagonalize M2

G by an orthogonal matrix OWξ as

T =

 1 0 −tε
0 1 0
0 0 cε

 , OWξ =

 cW −sW 0
sW cW 0
0 0 1


 1 0 0

0 cξ −sξ
0 sξ cξ

 , (2.15)

where tε ≡ tan ε, cε ≡ cos ε, and cθ ≡ cos θ and sθ ≡ sin θ with θ = W, ξ. Upon diagonalizing
M2
G , we get the mass eigenstates of the gauge bosons A,Z, and Z ′ as B

W 3

C

 = T OWξ

A

Z

Z ′

 ,
(
T OWξ

)TM2
GT OWξ = diag

(
0, m2

Z , m
2
Z′
)
, (2.16)

tan W = gY
gW

, tan(2ξ) =
m2
Z̄
s2εsW

m2
Z̄

(
c2
ε − s2

εs
2
W
)
−m2

C

, m2
Z̄

= 1
2
(
g2
W + g2

Y
)
υ2
h , (2.17)
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where s2
W ' 0.23, and the physical gauge boson masses are given by

m2
A = 0 , m2

Z̄
= m2

Z̄

(
1 + sW tεtξ

)
, m2

Z′ = m2
C

c2
ε

(
1 + sW tεtξ

) (2.18)

with tξ ≡ tan ξ. Here A and Z are the photon and neutral massive gauge boson in the SM,
respectively, and Z ′ is a new massive gauge boson in the dark sector.

As we shall see soon, we are interested in the case where ε� 1 and m2
Z � m2

Z′ , with
which the second equation in eq. (2.17) with eq. (2.18) is reduced to

tξ ' sξ '
m2
Z̄

m2
Z̄
−m2

C

sWε '
m2
Z

m2
Z −m2

Z′
sWε ' sWε . (2.19)

With this approximation and eqs. (2.15) and (2.16), the covariant derivative (here we only
show the dark gauge interaction) becomes

Dρ ⊃ i
(
gDQD − ge cWεQe

)
Z ′ρ , (2.20)

where Qe = 1
2τ

3 + QY is the electromagnetic charge in unit ge = gWsW ∼ 0.3. This
interaction is crucial when we discuss the kinetic equilibrium between the dark sector and
the SM sector.

3 Annihilation cross sections in dark sector

In this section, we will present the formulas for the annihilation cross sections of 3→ 2 and
2 → 2 processes in the dark sector. The detailed derivations for these cross sections can
be found in the appendices. The relevant Lagrangian of the 3→ 2 and 2→ 2 processes is
given by

Lann = −λ3
[
X3S∗ + (X∗)3S

]
− 1

2 yN
(
N cNS +NN cS∗

)
. (3.1)

With these interactions and the U(1)D charge conservation, the possible 3→ 2 processes
are XXX → N̄N̄ ,XXN → X̄N̄ , and XNN → X̄X̄ (here we have omitted their charge
conjugation processes). For these processes to take place, the masses of X and N should
satisfy the relation 3mX > 2mN > mX , under which the 2→ 3 and 2→ 4 processes such
as N̄N̄ → XXX and XX̄ → NN̄NN̄ , etc., are kinematically forbidden. On the other hand,
the 2→ 2 processes NN̄ → XX̄ or XX̄ → NN̄ can be induced via the two-loop diagrams.
The Feynman diagrams of these 3→ 2 and 2→ 2 processes are depicted in figure 2.

First, the non-thermally-averaged 3→ 2 annihilation cross sections are computed as

(σv2)XXX→N̄N̄ = λ2
3y

2
N

128πm5
X

(
9− 4r2

N

)3/2(
9− r2

S

)2 , (3.2)

(σv2)XXN→X̄N̄ = 9
√

3λ2
3y

2
N

32πm5
X

(
1 + rN

)(
1 + 2rN + 2r2

N

)√
3 + 8rN + 4r2

N(
2 + rN

)2[r2
S

(
1 + rN

)
+ 2rN

]2 , (3.3)

where rN,S ≡ mN,S/mX , and we demand that 3/2 > rN > 1/2 and rS > 2rN . Notice that
the (σv2)XNN→X̄X̄ = O(v2) is p -wave suppressed. Here we have applied the Feynman rules
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Figure 2. The Feynman diagrams of the 3→ 2 and 2→ 2 processes in the rSIMP model, where
the arrows represent the direction of dark charge flow.

of fermion-number-violating interactions to derive these cross sections [25]. In our study, we
will consider the resonant effect for SIMP DM [26, 27], where rS ' 3, to reduce the values
of λ3 and yN to escape from the perturbative bounds. For the resonant SIMP DM, we have
to adopt the Breit-Wigner form for (3.2) with a nonvanishing velocity of DM in the center
of mass energy, (p1 + p2 + p3)2 ' 9m2

X

(
1 + 2β/3

)
, as [26, 28]

(σv2)BW
XXX→N̄N̄ = cX

m5
X

γ2
S(

εS − 2β/3
)2 + γ2

S

, cX = 2πλ2
3

y2
N

r2
S

(
9− 4r2

N

)3/2(
r2
S − 4r2

N

)3 , (3.4)

where β ≡ 1
2
(
v2

1 + v2
2 + v2

3
)
with vi the speeds of three initial X particles. In this expression,

the εS indicates the level of degeneracy between mS and 3mX , and the γS is the normalized
dimensionless width of the resonance, respectively:

εS ≡
m2
S − 9m2

X

9m2
X

= r2
S

9 − 1 , (3.5)

γS ≡
mSΓS
9m2

X

= y2
Nr

2
S

144π

(
1− 4r2

N

r2
S

)3/2
. (3.6)

Here the decay rate of the S particle is given by5

ΓS = Γ
(
S → N̄N̄

)
= y2

NmS

16π

(
1− 4m2

N

m2
S

)3/2
. (3.7)

Employing the formula in ref. [29], the annihilation cross section for the process XXX → N̄N̄

near the resonance with thermal average is then

〈σv2〉XXX→N̄N̄ = x3

2

∫ ∞
0

dβ (σv2)BW
XXX→N̄N̄ β

2 exp
(
−xβ

)
, (3.8)

5As mentioned in the previous section, the S particle can also decay into three X particles if it is
kinematically allowed. However, since we are interested in the mass region where mS ' 3mX , the decay
rate of S → X̄X̄X̄ is then suppressed by phase space even if λ3 ∼ O(10). Thus, we ignore this decay mode
in our numerical study.

– 8 –



J
H
E
P
0
3
(
2
0
2
2
)
0
0
5

where x ≡ mX/T is the dimensionless cosmic time variable with T being the thermal
plasma temperature. For the process XXN → X̄N̄ , we simply take 〈σv2〉XXN→X̄N̄ '
(σv2)XXN→X̄N̄ .

Next, the thermally-averaged cross sections for the two-loop induced 2→ 2 processes
are calculated as

〈σv〉2-loop
NN̄→XX̄ =

81λ4
3y

4
N

√
r2
N − 1

π(4π)8r4
Sm

2
XrN

[(
r2
N − 1

)
|I1|2 +

(
11− 2r2

N

)
|I1|2 + 6r2

N |I2|2

4x

]
, (3.9)

〈σv〉2-loop
XX̄→NN̄ =

81λ4
3y

4
N r

2
N

√
1− r2

N

π(4π)8r4
Sm

2
X

[(
1− r2

N

)
|I2|2 +

2
(
1 + 2r−2

N

)
|I1|2 + 3

(
5r2
N − 2

)
|I2|2

4x

]
,

(3.10)

where I1,2 = I1,2(rN , rS) are two-loop functions in the form of quintuple integrals as

I1,2(rN , rS) =
∫ 1

0
dz1

∫ 1

0
dz2

∫ 1−z2

0
dz3

∫ z1(1−z1)

0
dz4

∫ 1

0
dz5 F1,2(rN , rS) (3.11)

with

F1(rN , rS) =
r2
Sz

2
5
[
2P 2z3

5 −
(
P 2 + 3Q2)z2

5 +
(
2Q2 + 3

)
z5 − 2

]
2
(
P 2z2

5 −Q2z5 + 1
)2 , (3.12)

F2(rN , rS) =
r2
S(1− z2 − z3)z3

5
(
2P 2z2

5 − 3Q2z5 + 3
)

2
(
P 2z2

5 −Q2z5 + 1
)2 , (3.13)

P 2 =


z4
[
r2
N (z2 − z3 + 1)(z2 − z3 − 1) + 1

]
for NN̄ → XX̄

z4
[
r2
N (z2 + z3 − 1)2 − (2z2 − 1)(2z3 − 1)

]
for XX̄ → NN̄

, (3.14)

Q2 =


1 + z4

[
2r2
N (z2 + z3 − 1)− r2

S(z2 + z3) + 1
]

for NN̄ → XX̄

1 + z4
[(

2− r2
S

)
(z2 + z3)− 1

]
for XX̄ → NN̄

. (3.15)

We present the typical values of I1 and I2 for rS ' 3 and 3/2 > rN > 1/2 in figure 3. Note
that the 〈σv〉2-loop

NN̄→XX̄ and 〈σv〉2-loop
XX̄→NN̄ are dominated by the p -wave contributions if the

masses of N and X are degenerate. It is worth mentioning that the 2→ 2 annihilation cross
sections in eqs. (3.9) and (3.10) are in agreement with the ones derived by the effective
operator approach, where we introduce c/(2!Λ)X3N cN with c the coupling constant and Λ
the cutoff scale of the theory [17].6 In fact, the X and N particles can also annihilate each
other via one-loop diagrams with the λXS term and Z ′-mediated diagrams with the dark
gauge coupling as shown in figure 4. We will discuss their effects in section 5 and section 6,
respectively.

6For instance, in the case of NN̄ → XX̄ with rN ' 1 and Λ ∼ mS ' 3mX , the two-loop induced
annihilation cross sections in the UV complete model and the effective theory are approximately given by

〈σv〉UVNN̄→XX̄ ≈
243λ4

3 y
4
N

√
r2

N − 1
2π(4π)8xm2

X

(
mX

mS

)4
|I2|2 , 〈σv〉EFTNN̄→XX̄ ≈

243c4
√
r2

N − 1
2π(4π)8xm2

X

(
mX

Λ

)4
|IΛ|2 ,

where I2 = I2
(
rN = 1, rS = 3

)
' 0.27 and IΛ = IΛ

(
rS = 3

)
' 0.45 [17].
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Figure 3. The two-loop functions I1 and I2 as functions of rN with different choices of rS near
the resonance. As indicated, the I1,2 ∼ O(0.1) in the mass range of interest.

4 Theoretical & experimental constraints

In this section, we take into account various theoretical and experimental restrictions on
the masses and couplings of the new particles in the rSIMP model.

Theoretically, the quartic, Yukawa, and dark gauge couplings are subject to the
conditions of perturbativity. We impose that [4, 30, 31]

λk < 4π , yN <
√

8π , gD < 4π , (4.1)

where k = {h,X, S, φ, hX, hS, hφ,XS,Xφ, Sφ}. Besides, the thermally-averaged annihi-
lation cross sections are bounded from above by partial wave unitarity, which can place
bounds on the couplings for given masses. In the non-relativistic limit, we require that [32]

〈σv2〉XXX→N̄N̄ 6
192
√

3π2x2

m5
X

, 〈σv2〉XXN→X̄N̄ 6
16π2x2

m5
X

(
1 + 2

rN

)3/2
, (4.2)

〈σv2〉XNN→X̄X̄ 6
4π2x2

m5
X

( 1
r2
N

+ 2
rN

)3/2
, (4.3)

〈σv〉NN̄→XX̄ 6
4
√
πx

m2
Xr

3/2
N

, 〈σv〉XX̄→NN̄ 6
64
√
πx

m2
X

, (4.4)

here x will be set at the freeze-out time of DM. On the other hand, the quartic couplings
must satisfy certain relations to stabilize the vacuum at large scalar field values, where the
potential energy V is bounded from below. For simplicity, we only focus on the potential
including the X and S fields, and assume that other quartic couplings are negligible but
positive. Under these considerations, we found that [33]

λX,S > 0 , λXS + 2
√
λXλS > 0 , |λ3| <

√√√√(12λXλS + λ2
XS

)3/2 + 36λXλSλXS − λ3
XS

54λS
.

(4.5)
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Figure 4. The NN̄ → XX̄ process through the one-loop and Z ′-mediated tree diagrams.

In particular, the above conditions are reduced to λX,S > 0 and |λ3| <
(
16λ3

XλS/27
)1/4 in

the limit λXS → 0, which turn out to be a stringent constraint in this model. Notice that
these conditions also ensure that 〈X〉 = 〈S〉 = 0.

Cosmologically, the light DM would contribute to the effective number of neutrino
species, Neff . Assuming the entropy of the universe is conserved and considering the DM
particles mainly interact with electrons and positrons, the Neff at the CMB temperature is
estimated as [34]

Neff
(
TCMB

)
=
[

1 + 4
11

∑
j=X,N

gDM?s
(
mj , Tνd

)]−4/3

NSM
eff
(
TCMB

)
, (4.6)

where NSM
eff
(
TCMB

)
= 3.044 in the SM [35, 36], and gDM?s

(
mj , Tνd

)
counts the DM entropy

degrees of freedom at neutrino decoupling temperatures, Tνd ' 2MeV [37], which has the
form as [38]

gDM?s
(
mj , x

)
=

15gj
4π4

∫ ∞
rjx

dw

(
4w2 − r2

j x
2)(w2 − r2

j x
2)1/2

ew ± 1 (4.7)

with gj the internal degrees of freedom of particle j. The latest measurement from the
Planck satellite gives Neff = 2.99+0.34

−0.33 (95% C.L.) [39], which can provide lower bounds
for DM masses. As we will see in the next section, the masses of DM should be near
degenerate in this model. Using eqs. (4.6) and (4.7) with this property, we suggest that the
mX,N & O(10)MeV. Another cosmological constraint is the observed relic abundance of
DM. We will discuss it as well in the next section.

For the gauge sector, there is a constraint for the kinetic mixing parameter, depending
on the mass of the dark gauge boson. In this model, the Z ′ mainly decays into invisible
particles, Z ′ → XX̄,NN̄ , and SS̄. Also, we will concentrate on the Z ′ with a few hundred
MeV mass. In these circumstances, the measurements from the BaBar collaboration cap
ε . 10−3 [40, 41].

5 Relic abundance of DM and reshuffled effect

To estimate the current density of DM in the rSIMP model, one has to numerically solve
the coupled Boltzmann equations for the comoving number yields YX and YN . Assuming
there is no asymmetry in DM, namely YX̄ = YX̄ and YN̄ = YN̄ , the Boltzmann equations
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are given by [17]

dYX

dx =− s(x)2

H(x)x

{
12〈σv2〉XXX→N̄N̄

[
Y 3
X−Y 2

N
(Y eq

X )3

(Y eq
N )2

]
+2〈σv2〉XXN→X̄N̄ Y

q
XY

q
N

(
YX−Y

eq
X

)
−〈σv2〉XNN→X̄X̄ YX

[
Y 2
N−YX

(Y eq
N )2

Y eq
X

]}

− s(x)
H(x)x

{
4〈σv〉XX̄→NN̄

[
Y 2
X−Y 2

N
(Y eq

X )2

(Y eq
N )2

]
−〈σv〉NN̄→XX̄

[
Y 2
N−Y 2

X
(Y eq

N )2

(Y eq
X )2

]}
, (5.1)

dYN

dx =− s(x)2

H(x)x

{
2〈σv2〉XNN→X̄X̄ YX

[
Y 2
N−YX

(Y eq
N )2

Y eq
X

]
−8〈σv2〉XXX→N̄N̄

[
Y 3
X−Y 2

N
(Y eq

X )3

(Y eq
N )2

]}

− s(x)
H(x)x

{
〈σv〉NN̄→XX̄

[
Y 2
N−Y 2

X
(Y eq

N )2

(Y eq
X )2

]
−4〈σv〉XX̄→NN̄

[
Y 2
X−Y 2

N
(Y eq

X )2

(Y eq
N )2

]}
, (5.2)

where Y eq
j is the equilibrium comoving number yield of the species j given by

Y eq
j = 45

4π4
gj

g?s(x)
(
rjx

)2
K2
(
rjx

)
' 45

√
2

8π7/2
gj

g?s(x) (rjx)3/2e−rjx (5.3)

with K2(x) being the modified Bessel function of the second kind. The s(x) and H(x) are
the comoving entropy density and the Hubble parameter, respectively, which are given by

s(x) = 2π2

45 g?s(x)m
3
X

x3 , H(x) =

√
π2g?(x)

90
m2
X

x2mPl
(5.4)

with g? (g?s) being the effective energy (entropy) degrees of freedom of thermal plasma [42],
and mPl = 2.4 × 1018 GeV the reduced Planck mass. Now, with an appropriate initial
condition YX,N (xini.) = Y eq

X,N (xini.), where typically 10 < xini. < 20, we can obtain the
YX,N (x), and then predict the present density of DM by the relation below [43]

ΩDM ĥ
2 = 2

(
ΩX ĥ

2 + ΩN ĥ
2) ' 5.49× 105

(
mX

MeV

)(
Y 0
X + rNY

0
N

)
, (5.5)

where Y 0
j = Yj(x→∞). Imposing the observed DM abundance, Ωobs

DM ĥ
2 = 0.12±0.0012 [39],

one can fix the values of λ3 and yN for given masses of X, N and S. In the following we will
first consider the case without the 2→ 2 processes, and then turn it on to see the effects.

We present in figure 5 a few examples of the cosmological evolution of the comoving
number densities of DM without the 2 → 2 process in the case of mN > mX , where
the color solid lines satisfy the DM relic abundance. Note that the parameter inputs in
these plots may not satisfy other constraints mentioned above. The plots shown here are
merely for demonstration purposes. As indicated, one can see that both SIMP particles
with non-degenerate masses can contribute a sizable amount to the observed DM density.
In particular, there is a phenomenon of the increasing number density of N right after
the chemical freeze-out of DM, remarkably in figures 5(c) and 5(d).7 To account for this

7The bouncing effect of DM density after the DM chemical freeze-out was first pointed out in [3] and [44].
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Figure 5. The cosmological evolution of the comoving number densities of DM in the absence of
the 2→ 2 processes for rN > 1 in the rSIMP model. In region (i), the DM particles are in chemical
equilibrium via the 3→ 2 annihilations. In region (ii), the number densities of DM are out of the
chemical equilibrium and keep changing (increased or decreased) before the freeze-in temperature of
DM. Finally, the DM number densities are frozen until today in region (iii).

behavior of DM number density, let us first define the freeze-out temperature xf.o. and
freeze-in temperature xf.i. of DM in the following ways:

Freeze-out temp. of X: YX(xXf.o.)− Y
eq
X (xXf.o.) ' Y

eq
X (xXf.o.) , (5.6)

Freeze-out temp. of N : YN (xNf.o.)− Y
eq
N (xNf.o.) ' Y

eq
N (xNf.o.) , (5.7)

and we define the freeze-out temperature of DM as a temperature at which both DM
particles start to depart from the chemical equilibrium, namely xf.o. ≡ Max(xXf.o. , xNf.o.) ;

Freeze-in temp. of X: Max
[
12ΓXXX→N̄N̄ (xXf.i.) ,2ΓXXN→X̄N̄ (xXf.i.)

]
'H(xXf.i.)nX(xXf.i.) , (5.8)

Freeze-in temp. of N : 8ΓXXX→N̄N̄ (xNf.i.)'H(xNf.i.)nN (xNf.i.) , (5.9)

where ΓXXX→N̄N̄ (x) =n3
X(x)〈σv2〉XXX→N̄N̄ and ΓXXN→X̄N̄ (x) =n2

X(x)nN (x)〈σv2〉XXN→X̄N̄
are the 3→ 2 annihilation rates per unit volume per unit time with nj(x) = s(x)Yj(x) the
number density of DM, and the prefactors are the ones appearing in eqs. (5.1) and (5.2).
Similar to the xf.o. , we define the freeze-in temperature of DM as a temperature at which
both DM number densities begin to be constants, that is xf.i.≡Max(xXf.i. ,xNf.i.).
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Figure 6. The cosmological evolution of the comoving number densities of DM without including
the two-loop induced 2→ 2 processes for rN < 1 in the rSIMP model.

Now, we take figure 5(d) as an example to explain the increasing phenomenon of DM
number density after the DM freeze-out temperature. At high temperatures, the DM
number-changing processes, XXX → N̄N̄ , and XXN → X̄N̄ , as well as the conjugate
processes (here we ignore the XNN → X̄X̄ process since it is p -wave suppressed) maintain
the chemical equilibrium of DM such that the actual DM number densities follow the
equilibrium DM number densities, Yj(x) ' Y eq

j (x). Around the xf.o. , the actual DM
number densities are no longer tracking the equilibrium DM number densities due to the
inefficiency of the chemical equilibrium of DM at lower temperatures. After the xNf.o. , since
the xNf.i. > xNf.o. and the process XXX → N̄N̄ produces two vector-like fermions, the number
of N is increased. Notice that the process XXN → X̄N̄ does not alter the number of N
in total. The reason this increasing phenomenon is remarkable in figures 5(c) and 5(d) is
that the xNf.i. and rN are much larger in comparison with figures 5(a) and 5(b). The former
prolongs the time of the increasing number in N and the latter decreases the number of N
fastly before the xNf.o. . On the other hand, the number of X is further decreased after the
xXf.o. because the processes XXX → N̄N̄ and XXN → X̄N̄ both annihilate complex scalars
until the xXf.i. . However as we will see immediately, this increasing effect of DM number
density would disappear when we switch on the 2→ 2 processes.

We also show in figure 6 one example of the cosmological evolution of the comoving
number densities of DM without the 2→ 2 process in the case of mX > mN . We see that
in this case there is no increasing phenomenon of DM density after the chemical freeze-out
of DM. This is because rN < 1 and gN = 2gX , meaning the number density of N is always
bigger than that of X. Besides, we find that we have to choose large couplings and relatively
degenerate masses of DM to satisfy the observed DM density. Again, the situation would
change completely once we turn on the 2→ 2 process.

We present in figure 7 a few benchmark plots of the cosmological evolution of the
comoving number densities of DM with both 3 → 2 and 2 → 2 processes in the case of
mX > mN . By comparing figures 7(a-c) with figure 7(d), we see that the masses of DM
must be nearly degenerate to contribute a non-negligible amount to the total DM relic
abundance. Typically, the evolution of the comoving number density is divided into four
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stages as shown in color shaded regions of figures 7(a) and 7(b). In region (i), the 3→ 2
reaction rates are much larger than the Hubble expansion rate, Γ3→2 � H, where the
3 → 2 processes deplete the DM number densities until the xf.o.' 20. In region (ii), the
DM particles deviate from the chemical equilibrium because of Γ3→2 . H. However, the
2 → 2 process seems to be inert for a while after the xf.o. even if the reaction rate of the
2→ 2 process governs over that of the 3→ 2 process. This is because the reaction rate of
the forward 2→ 2 process NN̄ → XX̄ is partially cancelled by that of the backward 2→ 2
process XX̄ → NN̄ , attributing to the degeneracy of DM masses in the rSIMP scenario.
To understand this more clearly, one can look at the last term of eq. (5.1), where

〈σv〉NN̄→XX̄

[
Y 2
N − Y 2

X

(Y eq
N )2

(Y eq
X )2

]
= 〈σv〉NN̄→XX̄

[
Y 2
N − 4Y 2

Xr
3
N e
−2(rN−1)x

]
(5.10)

with the first (second) term in the square bracket the reaction rate of the forward (backward)
2→ 2 process. At high temperatures with rN ∼ 1, we have r3

N e
−2(rN−1)x ∼ 1 and YN ∼ 2YX

right after the xf.o. . As a consequence, this term vanishes and gives no physical effect
until the reshuffled temperature, xr ≡ 1/(2|rN − 1|), after which the backward reaction is
exponentially-suppressed. That is to say, the X particles do not have enough kinetic energy
to overcome the mass gap, mN −mX , to annihilate back into the N particles. In region (iii),
the forward 2→ 2 reaction becomes active, the N particles annihilate into the X particles
during this stage. Note that since the 2→ 2 process preserves the total number of DM, it
would only redistribute the number densities of DM until the xf.i. , which now is defined as

Freeze-in temp. of X: ΓNN̄→XX̄(xXf.i.) ' H(xXf.i.)nX(xXf.i.) , (5.11)
Freeze-in temp. of N : ΓNN̄→XX̄(xNf.i.) ' H(xNf.i.)nN (xNf.i.) , (5.12)

where ΓNN̄→XX̄(x) = n2
N (x)〈σv〉NN̄→XX̄ . In region (iv), the number densities of DM are

frozen until the present day. In figure 7(c), there is no reshuffled period because the masses
of DM are so degenerate (rN = 1.00045) that the xr > xf.i. . Finally, we see that in figure 7(d)
the increasing phenomenon of N is washed out by the 2→ 2 process after the xf.o. , and the
non-degenerate masses of DM lead to almost no abundance of N .

Likewise, we show in figure 8 two typical plots of the cosmological evolution of the
comoving number densities of DM with both 3 → 2 and 2 → 2 processes in the case of
mX > mN . By comparing figure 8(a) with figure 5, we find that we can choose relatively
small couplings to satisfy the relic abundance of DM. Similar to figure 7(d), we show again
there is no reshuffled effect if the masses of DM are extremely degenerate (rN = 0.9995).

We briefly summarize the importance of the 2 → 2 processes for the cosmological
evolution of the comoving DM number densities in the rSIMP model. First, the two-loop
induced 2 → 2 processes are closely related to the tree-level 3 → 2 processes and their
reaction rates cannot be omitted. Second, involving these 2 → 2 processes to the 3 → 2
processes can alter not only the fractions of DM particles but also total DM number densities.
It is clear to compare the solid lines (Y3→2 +Y2→2) and dashed lines (Y3→2 only) in figures 7
and 8 for displaying the differences, where the DM density is overproduced without the
2 → 2 processes. This is easy to understand since the 2 → 2 processes strengthen the
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Figure 7. Cosmological evolution of the comoving number densities in the presence of the 3→ 2
and 2→ 2 processes for some benchmark points in the rSIMP model for rN > 1.
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Figure 8. Cosmological evolution of the comoving number densities in the presence of the 3→ 2
and 2→ 2 processes for some benchmark points in the rSIMP model for rN < 1.

chemical equilibrium of DM around the DM freeze temperature. It is crucial to include the
two-loop induced 2→ 2 annihilations in order to get the correct thermal relic abundance of
multi-component SIMP DM.

Before closing this section, let us discuss the effect of non-zero λXS . As shown in
figure 4, the dominant contributions for the 2→ 2 processes may come from the one-loop
diagrams. Thus, with large values of λXS , we can expect that the reshuffled effect is even
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stronger than that induced by the two-loop diagrams. However, since λXS is nothing to
do with the 3 → 2 processes, we can naively turn it off to keep our model belonging to
the two-component SIMP DM scenario. Of course, one can choose a special λXS value
(which can be positive or negative) such that there is a destructive interference between
one-loop and two-loop diagrams to avoid the reshuffled effect. But we do not consider this
fine-tuning case in our analysis, since that would not be the generic situation.

6 SIMP conditions: thermalization & annihilation

As in the typical SIMP paradigm, the DM particles should maintain the kinetic equilibrium
with SM particles until the freeze-out temperature of DM. Hence, the interactions between
the dark and SM sectors are required in the rSIMP model. Since the U(1)D symmetry
introduced in the model is gauged, then it is natural to have a vector-portal coupling
connecting these two sectors. On the other hand, as we have shown in the previous section,
the preferred mass scale of DM in the rSIMP scenario is around O(20)MeV. It follows
that the freeze-out temperature of DM is Tf ' mX/20 ' O(1)MeV, thereby the relativistic
degrees of freedom in the thermal plasma the DM particles mainly interact with are electron
and positron.8 Accordingly, we then consider the following Lagrangian based on eq. (2.20)
for the thermalization of the DM and e± as

LZ′ = −
[
igDQX

(
X∗∂ρX −X∂ρX∗

)
+ gDQNNγρN + ge cW ε eγ

ρe
]
Z ′ρ , (6.1)

where QX and QN are dark charges of the X and N particles, respectively.
To determine how large the gauge coupling is sufficient for an efficient kinetic equilibrium,

one has to compute the energy transfer rate of the DM and SM particles and then impose
the thermalization condition. Assuming electron and positron are massless at the Tf , the
energy transfer rate between the DM particles and e± is given by [45]

γe(T ) =
∑

j=X,N

1
192π3m3

jT

∫ ∞
0

dEe
eEe/T(

eEe/T + 1
)2 ∫ 0

−4E2
e

dtj (−tj)
∣∣Mje→je(tj , Ee)

∣∣2 , (6.2)

where Ee is the energy of e±, tj =
(
pj − p′j

)2, and |Mje→je|2 here is the squared scattering
amplitude and an overline represents the usual sum (average) over final (initial) spins. Using
eq. (6.1), the squared amplitudes of the DM particles scattering off the e± in the me = 0
limit are calculated as∣∣MXe→Xe(tX , Ee)

∣∣2 = 4
(

cXe
tX −m2

Z′

)2[
s2
Xe +

(
tX − 2m2

X

)
sXe +m4

X

]
, (6.3)

∣∣MNe→Ne(tN , Ee)
∣∣2 = 4

(
cNe

tN −m2
Z′

)2[
s2
Ne +

(
tN − 2m2

N

)
sNe + 1

2 t
2
N +m4

N

]
, (6.4)

where cje ≡ gDge cW εQj , and sje =
(
pj + pe

)2. Since the SIMP DM are non-relativistic and
the e± are relativistic particles at the Tf , Ej ' mj � Tf ' Ee, thus sj '

(
mj +Ee

)2 in the
8The neutrinos and photon are also relativistic particles in the thermal plasma, however, they can only

interact with the DM particles via one-loop diagrams or the kinetic mixing which are much suppressed in
this model.
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center of mass (CM) frame of j and e±. Plugging eqs. (6.3) and (6.4) with this approximate
form of sj into eq. (6.2) and taking the leading order in Ee for the integrations, for rN ∼ 1
we arrive at

γe(T ) = 31π3

189x6
m5
X

m4
Z′

(
c2
Xe + c2

Ne

)
. (6.5)

Imposing the thermalization condition of the DM and e±, γe(x) & H(x)x2 [46], at the time
of freeze-out, we then obtain the lower bound of the gauge coupling as

gD &
0.2√

Q2
X +Q2

N

(
ε

10−3

)−1( mZ′

250MeV

)2( mX

20MeV

)−3/2
. (6.6)

Here we have set xf.o. ' 20 and g?(xf.o.) ' 10.75. Employing eq. (6.5), we can also determine
the highest kinetic decoupling temperature xk.d. of the DM particles from the thermal
plasma by the conditions, γe(xk.d.) ' 2H(xk.d.) [45] and γe(xf.o.) ' H(xf.o.)x2

f.o.. Solving
these equations, we find that xk.d. ' x

3/2
f.o. /

4√2 ' 75 < xf.i. , which implies that Γel < Γ2-loop
2→2 .9

Notice that since the total number and entropy of the DM particles are conserved after the
chemical freeze-out and their masses are near degenerate, the DM temperatures after the
kinetic decoupling are TX,N ∝ R−2 with R = R(x) the cosmic scale factor, just like usual
DM in WIMP or SIMP scenarios.

To achieve the SIMP mechanism, one also needs to suppress the 2→ 2 annihilations
for the WIMP scenario. In the rSIMP model, such 2 → 2 processes are XX̄ → e+e−

and NN̄ → e+e− through the Z ′ exchange diagrams. Applying the crossing symmetry to
eqs. (6.3) and (6.4), we can easily get the squared annihilation amplitudes of these processes
as [38]

∣∣MXX̄→e+e−
∣∣2 = −8

(
cXe

sX −m2
Z′

)2[
t2Xe +

(
sX − 2m2

X

)
tXe +m4

X

]
, (6.7)

∣∣MNN̄→e+e−
∣∣2 = 4

(
cNe

sN −m2
Z′

)2[
t2Ne +

(
sN − 2m2

N

)
tNe + 1

2 s
2
N +m4

N

]
, (6.8)

where sj =
(
p
j̄

+ p
j̄

)2 and tje =
(
pj − pe

)2. The resultant thermally-averaged annihilation
cross sections are calculated as [47]

〈σv〉XX̄→e+e− = c2
Xe

πx

m2
X

m4
Z′
, 〈σv〉NN̄→e+e− = c2

Ne

π

m2
N

m4
Z′
, (6.9)

where we have used the fact that sj ' 4m2
j � m2

Z′ in the CM frame of the DM pair.
Since the 〈σv〉XX̄→e+e− is dominated by p -wave contribution, the reaction of the 2 → 2
annihilation for the WIMP scenario is then approximated as

Γann(x) =
∑

j=X,N
nj(x)〈σv〉j j̄→e+e− ≈ nN (x)〈σv〉NN̄→e+e− , (6.10)

9We have checked numerically that by using the general formula of γe(T ) in ref. [45] and the squared
scattering amplitudes with me 6= 0, the xk.d. ' 120− 140 for mX ' 20− 30MeV, which is still less than the
xf.i. .
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Figure 9. The RNN̄→XX̄ and RXX̄→NN̄ as functions of x with the parameter inputs given in
figures 7 and 8. Here we have fixed the gD to the minimal value of eq. (6.6) with ε = 10−3 and
mZ′ = 250MeV, and 3QX = 2QN for making these plots.

where nj(x) = gjr
3
jm

3
Xe
−x/(2πx)3/2. Now, to make this reaction is subdominant in the

rSIMP scenario, we demand that Γann(xf.o.) � H(xf.o.) ' Γ3→2 during the freeze-out
temperature. With this requirement and rN ∼ 1, we yield the upper bound of the gauge
coupling as

gD �
3
|QN |

(
ε

10−3

)−1( mZ′

250MeV

)2( mX

20MeV

)−3/2
. (6.11)

Here again, we have chosen g?(xf.o.) ' 10.75 with xf.o.' 20. Therefore, saturating the
marginal values of gD given in eq. (6.6), we can have a successful rSIMP scenario.

As we already mentioned in section 3, there are also tree-level Z ′-mediated diagrams
for the 2 → 2 processes in addition to the two-loop diagrams. Using eq. (6.1) again, the
corresponding thermally-averaged cross sections are calculated as

〈σv〉Z′
NN̄→XX̄ = c2

XNm
2
X

4πm4
Z′

√
r2
N − 1
rN

(
r2
N − 1 + 11− 2r2

N

4x

)
, (6.12)

〈σv〉Z′
XX̄→NN̄ = c2

XNm
2
X

8πxm4
Z′

√
1− r2

N

(
2 + r2

N

)
, (6.13)

where cXN ≡ g2
DQXQN . In figure 9, we show the ratios of the cross sections induced by the

Z ′-mediated diagrams to the ones induced by the two-loop diagrams with the parameter
inputs referring to figures 7 and 8, where

R
NN̄→XX̄ ≡

〈σv〉Z′
NN̄→XX̄

〈σv〉2-loop
NN̄→XX̄

, R
XX̄→NN̄ ≡

〈σv〉Z′
XX̄→NN̄

〈σv〉2-loop
XX̄→NN̄

. (6.14)

As indicated, the contribution of the Z ′-mediated diagram for the 2 → 2 process is
subdominant to that of the two-loop diagram. Notice that, unlike the λXS , we cannot
switch gD off to evade the reshuffled mechanism. As we have discussed in this section,
a sufficiently large dark gauge coupling is required to maintain the kinetic equilibrium
between the DM and SM particles. There are a couple of factors that make the RNN̄→XX̄
and RXX̄→NN̄ much smaller than the unity although the 〈σv〉2-loop

NN̄→XX̄ and 〈σv〉2-loop
XX̄→NN̄
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Figure 10. The dominant Feynman diagrams of DM self-interacting processes for X and N , where
the other processes can be obtained by rotating these diagrams.

are suppressed by the two-loop factor (4π)8. Firstly, we have to choose strong couplings,
λ3yN ∼ O(10), to satisfy the relic abundance of DM. Secondly, the SIMP conditions suggest
that cXN ' 0.2QXQN/(Q2

X +Q2
N ) ∼ 0.02 with 3QX = 2QN . Thirdly, the mass of Z ′ in the

tree-level graphs is heavier than that of S in the two-loop diagrams, where mZ′ ∼ 4mS . As
a result, the R

NN̄→XX̄ , for instance, is roughly equal to (4π)8(c2
XN/λ

4
3y

4
N )(m4

S/m
4
Z′)� 1.

7 Observational signature: DM self-interacting cross section

In this model, both X and N particles can have self-interactions via the contact coupling
in eq. (2.2) and the Yukawa coupling in eq. (2.12), respectively, as displayed in figure 10.
There are also self-interactions of DM through the Z ′-mediated diagrams akin to figure 4.
However, these contributions are subleading due to small dark gauge coupling and heavy
Z ′ mass. In general, there is no well-defined effective self-interacting cross section for
two-component DM scenarios. With the degeneracy of DM masses, we fairly define the
self-interacting cross section as follows

σself
mDM

= R2
X

σX
mX

+R2
N

σN
mN

, (7.1)

where RX and RN are the fractions of DM particles given by

RX = ΩX

ΩX + ΩN

, RN = ΩN

ΩX + ΩN

, (7.2)

and the self-interacting cross sections of X and N are computed as

σX = 1
4
(
σXX→XX + σ

XX̄→XX̄ + σ
X̄X̄→X̄X̄

)
= λ2

X

8πm2
X

, (7.3)

σN = 1
4
(
σNN→NN + σ

NN̄→NN̄ + σ
N̄N̄→N̄N̄

)
= y4

N

16πm2
X

r2
N

r4
S

. (7.4)

Note that the σNN→NN and σ
N̄N̄→N̄N̄ are velocity-suppressed. When the RN goes to 0,

eq. (7.1) reduces to the usual definition of the self-interacting cross section for complex
scalar DM.

To alleviate the discrepancy between simulations and observations, several analyses
have set the bounds on the self-interacting cross section of DM. For instance, there are
constraints of 0.1 cm2/g < σself/mDM < 1 cm2/g from Milky Way and cluster scales [48].
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λX λS λ3 yN
(
mX ,mN ,mS

)
/MeV RX RN σself/mDM (cm2/g)

4.4 10.0 4.7 3.0 (20, 20.02, 59.6) 0.56 0.44 6.70
4.2 9.0 4.4 2.5 (22, 22.01, 67) 0.40 0.60 2.34
4.5 8.0 4.5 2.0 (25, 25.1, 76) 0.66 0.34 4.92
4.0 10.0 4.3 2.5 (25, 25.2, 77) 0.86 0.14 6.66
5.0 9.0 5.0 2.2 (30, 30.3, 92.4) 0.89 0.11 6.31

Table 2. The benchmark points in the rSIMP model for rN > 1.

λX λS λ3 yN
(
mX ,mN ,mS

)
/MeV RX RN σself/mDM (cm2/g)

5.9 6.2 5.2 2.6 (15, 14.9, 43.5) 0.01 0.99 0.82
4.0 8.0 4.0 2.0 (20, 19.99, 63) 0.28 0.72 1.45
5.0 4.0 3.9 2.0 (20, 19.9, 61) 0.06 0.94 0.20
7.5 4.0 5.4 1.8 (25, 24.9, 76) 0.07 0.93 0.18
6.5 6.5 5.6 1.3 (28, 27.9, 85.4) 0.14 0.86 0.32

Table 3. The benchmark points in the rSIMP model for rN < 1.

The Bullet cluster also imposes a similar upper bound, σself/mDM < 1 cm2/g [21, 22].
Nevertheless, it has been studied in ref. [49] that the self-interacting DM with baryons can
explain the diverse rotation curves of spiral galaxies if σself/mDM = 3 cm2/g. Therefore,
to cover all of these observations, we then consider an optimistic bound, 0.1 cm2/g <

σself/mDM < 10 cm2/g [48, 50] in our study before the consensus for the value of the DM
self-interacting cross section.

We list in tables 2 and 3 a few benchmark points satisfying all the constraints mentioned
above with the predictions of the DM self-interacting cross section,10 in the cases of
mN > mX and mX > mN , respectively. As can be seen in table 2, the prediction of
σself/mDM is typically larger than 1 cm2/g but still well within the bound, 10 cm2/g. This
is easy to understand since the density of DM is dominated by the X due to the reshuffled
effect and we have to choose a sufficiently large λX to make the vacuum stable. In principle,
one may consider heavier DM masses to suppress the σself/mDM ∝ 1/m3

X . However, we
have to enhance the λ3 and λX at the same time to fulfill the DM relic abundance and
the vacuum stability, respectively. The small values of σself/mDM can only be obtained if
the DM masses are highly degenerate, with which the density of DM is dominated by the
N (no reshuffling in this case) as displayed in the third row of table 2. Hence, there is a
tension among the constraints in the case of mN > mX . On the other hand, the size of
σself/mDM can be smaller than or comparable with 1 cm2/g in the case of mX > mN as
indicated in table 3. There are two reasons for this occurrence. Firstly, the reshuffled effect
reduces the number of the X particle. Secondly, the self-interacting cross section of N is

10The unitarity of S-matrix sets a conservative bound for the amplitude of self-interacting scattering,
where |Mself | < 16π [32, 51], by which the quartic couplings λX,S < 4π.
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suppressed by the mass of the mediator S. Therefore, it is much easier for the latter case to
adjust the parameters to satisfy the DM self-interacting cross section and other constraints.
Future observations and simulations may pin down the value of σself/mDM which can be
used to test the reshuffled effect in this model.

8 Discussions & conclusion

We discuss some future investigations for the rSIMP model. Since the DM masses are
about 20MeV, the DM-e− scattering experiments can be used to test the allowed parameter
space in this model [52–55]. According to ref. [52], the lower limit of the DM-e− scattering
cross section can reach σe' 8.4×10−41 cm2 for mX,N ∼ 20MeV. It can be transferred to
g2
Dε

2(4.95RXQ2
X+6.50RNQ2

N

)
. 10−6 for mZ′ ∼ 250MeV in our rSIMP model. On the

other hand, the dark boson Z ′ is about hundreds MeV and mainly decays to XX̄,NN̄ , and
SS̄. The Belle II [56], KLEVER [57], LDMX@SLAC [58] and LDMX@CERN [58, 59] experi-
ments can be applied to the invisible searches of the Z ′ [41]. In particular, the LDMX@CERN
experiment can constrain 3.0×10−6≤ ε≤ 1.4×10−4 for 0.1GeV≤mZ′ ≤ 1GeV.

Except for the SIMP scenario, the WIMP scenario can also be realized in this model.11

Akin to the vector portal [60, 61] and Higgs portal [62, 63] DM models, the typical DM
annihilation channels are NN̄ → Z ′ → ff̄ , XX̄ → Z ′ → ff̄ , XX̄ → φ, h→ ff̄ , V V, φφ, hh

and four-points interaction XX̄ → φφ, hh. Besides, the secluded WIMP DM scenario [12]
for processes NN̄,XX̄ → Z ′Z ′ can also be achieved when mN,X > mZ′ . Also, instead of
assuming tiny mass splitting between SR and SI in eq. (2.11), we can set mSI

∼ mX,N ∼
mSR

/3 such that SI can be the DM candidate as well and our model becomes three-
component DM. Not only the typical scalar DM annihilation channels in the Higgs portal
but also the new DM semi-annihilation channel NSI → N̄Z ′ and DM self-interaction channel
SIX → XX can occur. Furthermore, in the SIMP scenario, SI can also be annihilated via
SINN̄ → N̄N̄ , SINN → XX̄, SIXX̄ → N̄N̄ , and their conjugate processes. These details
are beyond the scope of this work and we would like to study them in the future.

In summary, we propose a novel scalar and fermion two-component SIMP DM model
with a Z4 symmetry. This residual Z4 symmetry is an accidental symmetry after the gauged
U(1)D symmetry breaking instead of a subgroup via the Krauss-Wilczek mechanism.12

With the help of an extra complex scalar S as a mediator between the SIMP particles X
and N , we can have 3→ 2 number-changing processes as shown in figure 2 which determine
the DM relic density in this model. Note this complex scalar S also has Z4 symmetry
compared with other mediators in SIMP models. Moreover, the SIMP DM particles can
maintain kinetic equilibrium with the thermal bath until the freeze-out temperature of
DM via the vector portal Z ′ interactions with SM particles. To satisfy the thermalization
condition and suppress the annihilation rate for the WIMP scenario, the lower and upper

11Fermion and scalar two-component DM with the discrete Z4 symmetry in the WIMP scenario has
recently been studied in ref. [9]. However, compared with [9], the residual Z4 symmetry in our model is an
accidental symmetry after the gauged U(1)D symmetry breaking, and the phenomenology in our model can
be quite distinct from theirs.

12For multi-component DM models with the Krauss-Wilczek manner, see [4] for U(1)D → Z2 × Z3 ; and
see [64] for U(1)B−L → Z4.
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bounds of the U(1)D gauge coupling gD are estimated in eq. (6.6) and (6.11) which can be
tested in future experiments.

An appealing feature of the multi-component SIMP DM model is that an unavoidable
two-loop induced 2→ 2 process tightly connects to the 3→ 2 process. This process would
reshuffle the SIMP DM number densities after the chemical freeze-out of DM. We underline
that the 2→ 2 process in this kind of model is important and cannot be neglected. Including
2 → 2 processes with 3 → 2 processes in a multi-component SIMP model will not only
change the fractions of DM particles but also the total DM number yields. As a result,
model parameters to explain the correct relic density can be dramatically changed compared
with only involving the 3 → 2 processes. Finally, the size of DM self-interacting cross
section is also a feature in this model. Usually, the SIMP models predict inevitably large
σself/mDM . However, thanks to the redistribution behavior of SIMP DM number densities,
the predictions of σself/mDM < 1 cm2/g are still possible in our model. Therefore, future
observations and simulations of DM self-interactions can help to distinguish the rSIMP
model from the usual SIMP models.
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A The derivation of the 3 → 2 annihilation cross sections

Using eq. (2.12) with the Feynman rule given in [25], the annihilation amplitudes of the 3→ 2
processes X(p1)X(p2)X(p3)→ N̄(q′1, s′1)N̄(q′2, s′2), X(p1)X(p2)N(q1, s1)→ X̄(p′3)N̄(q′2, s′2)
and X(p1)N(q1, s1)N(q2, s2)→ X̄(p′2)X̄(p′3) are written as

MXXX→N̄N̄ = λ3yN
(q′1 + q′2)2 −m2

S + imSΓS
u(q′2, s′2)v(q′1, s′1) , (A.1)

MXXN→X̄N̄ = λ3yN
(q1 − q′2)2 −m2

S

u(q′2, s′2)u(q1, s1) , (A.2)

MXNN→X̄X̄ = λ3yN
(q1 + q2)2 −m2

S

v(q1, s1)u(q2, s2) . (A.3)

Here we have omitted the sign and i for simplicity. In particular, we add the decay width
in the propagator of XXX → N̄N̄ process in order to see the resonance effect in a correct
way. The squared amplitudes appearing in the Boltzmann equations are∣∣MXXX→N̄N̄

∣∣2 = λ2
3y

2
N

12
q′1 ·q′2−m2

N[
(q′1+q′2)2−m2

S

]2+m2
SΓ2

S

= λ2
3y

2
N

24
9m2

X−4m2
N(

9m2
X−m2

S

)2+m2
SΓ2

S

, (A.4)

∣∣MXXN→X̄N̄
∣∣2 = λ2

3y
2
N

2
q1 ·q′2+m2

N[
(q1−q′2)2−m2

S

]2 = λ2
3y

2
N

2
mN

(
mX+mN

)[(
mX+mN

)2+m2
N

][
m2
S

(
mX+mN

)
+2m2

XmN

]2 ,

(A.5)∣∣MXNN→X̄X̄
∣∣2 = λ2

3y
2
N

4
q1 ·q2−m2

N[
(q1+q2)2−m2

S

]2 =O(x−1) , (A.6)
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Figure 11. The 4-momentum flows for the two-loop diagram of the 2→ 2 process NN̄ → XX̄.

after taking the average over initial and final spins, and including the symmetry factors for
identical particles in the initial or final states, where for the second equalities we have used
the Mandelstam variables for the 3→ 2 process, p1 + p2 + p3 → q4 + q5, in the CM frame
of the initial particles at the nonrelativistic limit as [65]

sjk =
(
pj + pk

)2 ≈ (mj +mk

)2 , (A.7)

s45 =
(
q4 + q5

)2 ≈ (m1 +m2 +m3
)2 , (A.8)

tk` =
(
pk − q`

)2 ≈ (mk −m`

)2 − 2mkµ45∆m
m`

(A.9)

with j, k = {1, 2, 3}, ` = {4, 5}, µ45 = m4m5/(m4+m5), and ∆m = m1+m2+m3−m4−m5.
Notice that these Mandelstam variables satisfy the following relation

s12 +s13 +s23 +s45 + t14 + t24 + t34 + t15 + t25 + t35 = 3
(
m2

1 +m2
2 +m2

3 +m2
4 +m2

5
)
. (A.10)

Using the nonrelativistic cross section formula of the 3→ 2 process [65]

(σv2)123→45 =
∣∣M123→45

∣∣2
64πm1m2m3

(
m1 +m2 +m3

)2√K[(m1 +m2 +m3
)2,m2

4,m
2
5
]
, (A.11)

where K
(
a, b, c

)
= a2 + b2 + c2 − 2

(
ab+ bc+ ac

)
, one can readily derive eqs. (3.2) and (3.3).

B The derivation of the two-loop induced 2 → 2 annihilation cross
sections

Before writing down the annihilation amplitudes for the two-loop induced 2→ 2 processes,
let us first assign the 4-momentum flows for the two-loop diagrams. We start with the
process N(q1, s1)N̄(q2, s2) → X(p1)X̄(p2), in which the 4-momentum flows is shown in
figure 11.

There are two technical parts of computing this process. First, there is a UV divergence
coming from the scalar loop (the red semi-circle) in this diagram. We can absorb this UV
divergence by introducing a counterterm δλXS |X|2|S|2 into eq. (2.12). Second, we will
encounter loop integrals with a logarithmic function that needs a special trick to proceed
with the calculations.
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Now, we compute the amplitude of the one-loop process SS̄ → XX̄ in the two-loop
diagram with the counterterm as

M
SS̄→XX̄

(
p2) = δλXS + i

λ2
3

2

∫ ddk2
(2π)d

1
(k2

2 −m2
X + iε)

[
(k2 − p)2 −m2

X + iε
] , (B.1)

where ε = 0+ and p = k1 − p1 + q1. Using the Feynman parametrization and performing
the loop integration, one can obtain

M
SS̄→XX̄

(
p2) = δλXS −

λ2
3

2(4π)2

∫ 1

0
dz1

{
D − ln

[
m2
X − z1(1− z1)p2 − iε

]}
, (B.2)

where D = 2/(4− d)− γE + ln(4π) with d→ 4 and γE the Euler’s constant. Imposing the
renormalizable condition at zero momentum limit,

M
SS̄→XX̄

(
p2 = 0

)
= λXS , (B.3)

we can fix the counterterm δλXS and remove the divergence. Notice that the renormalization
condition (B.3) can be determined numerically only with experimental input from SS̄ → XX̄

scattering as usual. Then, the finite SS̄ → XX̄ amplitude at the one-loop is given by

M
SS̄→XX̄

(
p2) = λXS + λ2

3
2(4π)2

∫ 1

0
dz1 ln

[
m2
X − z1(1− z1)p2 − iε

m2
X

]
. (B.4)

In the following calculation, we will set the λXS equal to 0 as explained in section 5.13

With eq. (B.4), the amplitude of the two-loop induced process NN̄ → XX̄ is written by

M2-loop
NN̄→XX̄

= λ2
3y

2
N

2(4π)2

∫ 1

0
dz1

∫ d4k1
(2π)4

v(q2,s2)
(
/k1+mN

)
u(q1,s1)V

[
(k1−p1+q1)2](

k2
1−m2

N+iε
)[

(k1+q1)2−m2
S+iε

][
(k1−q2)2−m2

S+iε
] , (B.5)

where for convenience we define

V
(
p2) ≡ ln

[
m2
X − z1(1− z1)p2 − iε

m2
X

]
. (B.6)

Note that we do not have to introduce a counterterm for computing (B.5) which is definitely
UV finite since the effective interaction NN̄XX̄ corresponds to a dimension five operator.
Applying the Feynman parametrization again and using the equation of motions of the
spinors, /pu(p) = mu(p), v(p)/p = −mv(p), we get

M2-loop
NN̄→XX̄ = λ2

3y
2
N

(4π)2 v(q2, s2)
∫ 1

0
dz1

∫ 1

0
dz2

∫ 1−z2

0
dz3

[
mN (1− z2 − z3)J1 + /PJ2

]
u(q1, s1) ,

(B.7)
13Note that the nonzero λXS in the two-loop diagram produces a finite result without an additional

divergence, and so our arguments in the following paragraphs shall not be spoiled at all.
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where P = p1 − (1− z2)q1 − z3q2 , and

J1 =
∫ d4`

(2π)4
1(

`2 −∆ + iε
)3 V [(`− P )2] , (B.8)

J2 = 1
P 2

∫ d4`

(2π)4
` · P(

`2 −∆ + iε
)3 V [(`− P )2] (B.9)

with ∆ = m2
N (1− z2 − z3)2 +m2

S(z2 + z3)− (q1 + q2)2z2z3 , here the 4-momentum k1 has
been shifted as ` = k1 + (z2q1 − z3q2). To proceed the loop integrations with a logarithmic
function, we will consider the following parametrization,

ln
[
m2
X − z1(1− z1)p2 − iε

m2
X

]
=
∫ z1(1−z1)

0
dz4

p2

p2z4 −m2
X + iε

. (B.10)

Let us now use it to compute the J1 integral, which becomes

J1 =
∫ z1(1−z1)

0

dz4
z4

∫ d4`

(2π)4
`2[

(`+ P )2 −∆ + iε
]3(`2 −m2

X/z4 + iε
) . (B.11)

Here we have shifted the loop momentum `→ `+P . Next, utilizing the Feynman parameter
z5 ,

1
A3B

=
∫ 1

0
dz5

3z2
5[

z5A+ (1− z5)B
]4 , (B.12)

one can arrive at

J1 = 3
∫ z1(1−z1)

0

dz4
z4

∫ 1

0
dz5 z

2
5

∫ d4κ

(2π)4
κ2 + P 2z2

5
(κ2 −�+ iε

)4 , (B.13)

where � = P 2z2
5 −

(
Q2 +m2

X/z4
)
z5 +m2

X/z4 with Q2 = P 2 −∆, and the 4-momentum `

has been shifted as κ = `+ Pz5. Employing the formulas of the loop integrations, it yields

J1 = − i

(4π)2

∫ z1(1−z1)

0
dz4

∫ 1

0
dz5

z2
5
[
z4P

2z2
5 − 2

(
z4Q

2 +m2
X

)
z5 + 2m2

X

]
2
[
z4P

2z2
5 −

(
z4Q

2 +m2
X

)
z5 +m2

X

]2 . (B.14)

Using the same techniques, we can obtain the result of the J2 integration as

J2 = J1 + i

(4π)2

∫ z1(1−z1)

0
dz4

∫ 1

0
dz5

z3
5
[
2z4P

2z2
5 − 3

(
z4Q

2 +m2
X

)
z5 + 3m2

X

]
2
[
z4P

2z2
5 −

(
z4Q

2 +m2
X

)
z5 +m2

X

]2 . (B.15)

Taking the nonrelativistic limit, the P 2 and Q2 in the J1 and J2 reduce to

P 2 ≈ m2
X +m2

N (z2 − z3 + 1)(z2 − z3 − 1) , (B.16)
Q2 ≈ m2

X + 2m2
N (z2 + z3 − 1)−m2

S(z2 + z3) , (B.17)

here we have used the Mandelstam variables s = (q1 + q2)2 ≈ 4m2
N , t = (p1 − q1)2 ≈

m2
X −m2

N , and u = (p1 − q2)2 ≈ m2
X −m2

N in the CM frame of the initial particles.
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With these integration results, eq. (B.5) becomes

M2-loop
NN̄→XX̄ = v(q2, s2)

(
C1 /p1 + C2mN

)
u(q1, s1) , (B.18)

here we have used the equation of motions of the spinors once more, and

C1 = λ2
3y

2
N

(4π)2

∫ 1

0
dz1

∫ 1

0
dz2

∫ 1−z2

0
dz3 J2 , (B.19)

C2 = λ2
3y

2
N

(4π)2

∫ 1

0
dz1

∫ 1

0
dz2

∫ 1−z2

0
dz3 (1− z2 − z3)

(
J1 − J2

)
. (B.20)

The matrix element squared appearing in the Boltzmann equations is∣∣M2-loop
NN̄→XX̄

∣∣2 = 1
2
[
m2
Ns+ tu−

(
m2
N +m2

X

)2]|C1|2 + 1
2m

2
N

(
s− 4m2

N

)
|C2|2

+m2
N (t− u)Re

(
C∗1C2

)
, (B.21)

after taking the average over initial and final spins and including the appropriate symmetry
factors for identical particles in the initial or final states. Using the partial wave expansion,
the resultant 2→ 2 cross section up to the p -wave is given by

(σv)2-loop
NN̄→XX̄ = m2

X

16π

√
r2
N − 1
rN

[(
r2
N − 1

)
|C1|2 +

(
11− 2r2

N

)
|C1|2 + 6r2

N |C2|2

24 v2
]
. (B.22)

Finally with the redefinitions, P 2 → P 2/z4 and Q2 → Q2/z4 −m2
X , one can define the

two-loop functions given in eq. (3.11) associated with the C1 and C2 after some algebra,
and then derive eq. (3.9) by taking a thermal average of the above result.

Lastly, the procedure for computing the two-loop induced process XX̄ → NN̄ is almost
the same as the one we have demonstrated so far. On the other hand, the calculation with
nonzero λXS is straightforward. Thus, we do not show these details here.

Open Access. This article is distributed under the terms of the Creative Commons
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