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1 Introduction

Approaching physical systems by using effective field theories has proven to be quite suc-
cessful in order to describe their low-energy physical properties. The anomalous dimensions
γi play an important role in this approach, since they determine how the parameters of
the theory (the Wilson coefficients) vary with the energy scale at which the experiments
are carried out. Their calculation is therefore important to extract the relevant properties
of the systems, as shown in many examples in hadron physics, the SM or gravity.

Recently, there has been certain activity to show how to calculate anomalous dimen-
sions from on-shell methods [1–5], following the earlier work of [6–8]. These methods are
equivalent to the ordinary operator approach of effective field theories, since amplitudes
can be related one-to-one to higher-dimensional operators. Nevertheless, on-shell methods
have been shown to be simpler and more efficient, and also more manageable when going
beyond the one-loop order (see for example [2, 4, 9]).

In particular, in ref. [3] a simple formula was presented for computing anomalous di-
mensions from a product of tree-level amplitudes, integrated over some phase space. In
this paper, we will gain a deeper understanding of the properties of this formula by per-
forming a partial-wave decomposition of the amplitudes. This will allow us to effectively
capture the information contained in the conservation of angular momentum (see also [10]
for related work). As we will see in detail, angular-momentum analysis allows us to reduce
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the phase-space integrals in [3] to a product of two partial-wave coefficients, aJLaJR, summed
over the angular momenta J . The key observation is that, for contact interactions (in par-
ticular, those related to higher-dimensional operators), only one or a few Js contribute to
the decomposition, so that the sum over J has a reduced number of terms. In other words,
the non-trivial information necessary to obtain the anomalous dimension is contained in a
few partial-wave coefficients.

The traditional arena for using partial-wave analysis is two-to-two scatterings or, equiv-
alently, 4-point amplitudes, where the method is already quite developed [11]. In this ar-
ticle, we will restrict ourselves to these amplitudes, as they are also the important ones
in many theories of interest. The generalization to higher-point amplitudes can however
be easily obtained by following the lines of [10]. The presence of IR divergencies in the
renormalization of amplitudes will also be considered, and we will see that this requires a
regularization of the partial-wave coefficients.

We will present various applications of our results. First, we will consider the SM
EFT and calculate several anomalous dimensions. We will see that, in a class of 4-point
amplitudes with equal total helicity, the partial-wave coefficient which is needed to calculate
the one-loop mixings is essentially the same. After that, we will see that our approach also
allows us to obtain a generic formula for the anomalous dimensions of nonlinear sigma
models at any order in the energy expansion. Finally, we will show how the calculations in
gravity are even simpler than in the previous examples, and definitely much simpler than
in the ordinary Feynman approach.

2 Anomalous dimensions from partial-wave amplitudes

In this work, we follow the on-shell amplitude approach, and define a theory by its particle
content and scattering amplitudes. Higher-point amplitudes are constructed from lower-
point ones, with the ones with the least points playing the role of building-blocks of the
theory. In low-energy EFfective Theories (EFTs), the set of “building-block” amplitudes Ai
is constructed according to an expansion in E/Λ, where Λ is some UV cut-off of the EFT.
Here, we will be considering EFTs with only massless states, and follow the spinor-helicity
notation [12]. For scalars, fermions, gauge bosons and gravitons, the leading term in the
E/Λ expansion is given by 3-point amplitudes (which can in general be non-local) defined
at complex momenta. From these, one can build for example all amplitudes of gauge
theories. At higher order in E/Λ, the amplitudes Ai correspond to contact interactions,
which will be the subject of our interest. Among them, we will focus on 3-point and 4-point
amplitudes.

The independent coefficients of the building-block amplitudes Ai, which we denote as
Ci, are the “couplings” of the EFT, which must of course be determined experimentally.
They are renormalized at the loop level, receiving anomalous dimensions γi. We want to
show that these anomalous dimensions at the one-loop level can easily be determined from
products of partial-wave amplitudes.
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2.1 One-loop anomalous dimensions via on-shell amplitudes

Let us start by considering the case in which there are no IR divergencies. It was shown
in [3] that, in this situation, the one-loop anomalous dimension of an amplitude γi can be
written as a product of tree-level amplitudes under a phase-space integration. Defining
γi = dCi/d lnµ, we find for the particular case of 4-point amplitudes that [3]

γi
Ai(1,2,3,4)

Ci
=− 1

4π3

∫
dLIPS

∑
1′,2′

σ1′2′
[
AL(1,2, 2̄′, 1̄′)AR(1′,2′,3,4)

]
+(2↔ 3)+(2↔ 4) .

(2.1)
Here AL,R are 4-point tree-level amplitudes (with all states incoming), which are con-
structed using the building-block amplitudes Aj . Their exponent in 1/Λ, which we denote
as w, i.e. A ∝ 1/Λw, must satisfy

wi = wL + wR . (2.2)

The three terms in eq. (2.1) arise from 2-cuts of the one-loop amplitude in respectively
the s-, t- and u-channel.1 The sum

∑
1′,2′ in eq. (2.1) is taken over amplitudes AL,R with

all possible internal states 1′, 2′ (and over quantum numbers such as color or flavor). The
bar over a state (e.g. 1̄) indicates that it carries opposite-sign momentum, helicity and all
other quantum numbers with respect to the state without a bar (e.g. 1). When writing
down amplitudes in the spinor-helicity formalism (as we do here), one needs a prescription
for |−p〉 and |−p]. Here we take |−p〉 = i|p〉 and |−p] = i|p] [3]. In this convention, the
factor σ1′2′ is defined by σi1i2 ≡ (−i)Fi1i2 , where Fi1i2 counts the number of fermions in
the list {i1i2}. A factor 1/2 must be included in eq. (2.1) when the internal particles are
indistinguishable.

Before proceeding, let us point out simple generalizations of eq. (2.1) which we will
use in the examples of section 3. Firstly, it is quite common to have more than one
independent amplitude Ai with the same 4 external states. In this case, we have a sum
over the corresponding indices i on the l.h.s. of eq. (2.1). Secondly, the Ai in eq. (2.1)
does not necessarily have to be a building-block amplitude. Instead, it can be a 4-point
amplitude made from 3-point building-blocks. In this case, we will denote it as Âi. We will
see an example of this in the context of gravity, where we will study the renormalization
of the 3-point amplitude made of equal-helicity gravitons, AR3 , from the renormalization
of a 4-point amplitude containing it, which we call ÂR3 .

As a next step, we will perform a decomposition into the angular momenta J of the
internal state, the particle pair 1′, 2′ (and, similarly, decompose it according to its other
quantum numbers such as isospin). For a given J of the 1′, 2′-system, angular momentum
conservation implies that also the external states of AL,R must be in the same J , and the
same for Ai.

The interesting point is that, for contact interactions like Ai with wi > 0, only a few J-
channels contribute, as we will show with some examples. This means that the anomalous

1The external particles of the t-channel term are ordered as 1,3,2,4. If this reordering (starting from
1,2,3,4) implies an odd number of fermion exchanges, the t-channel term of eq. (2.1) has a minus sign.
Similarly for the u-channel.
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dimension in eq. (2.1) is determined by only a few J-channels, simplifying then its com-
putation. The purpose of the following analysis is to make these statements quantitative,
finding out explicitly what angular momenta J mediate the anomalous dimensions.

2.2 Partial-wave decomposition

In order to perform the angular-momentum decomposition of an amplitude A(1h1 , 2h2 ,
3h3 , 4h4), with hi denoting the helicity of particle i, it is convenient to specify the pair of
incoming and outgoing states. Let us for concreteness consider the s-channel, i.e. 1h1 , 2h2 →
3−h3 , 4−h4 . We define

A(1h1 , 2h2 → 3−h3 , 4−h4) ≡ σ34A(1h1 , 2h2 ,−4h4 ,−3h3) , (2.3)

where the factor σ34 when crossing fermions arises in our convention where |−p〉 = i|p〉
and |−p] = i|p]. Notice that, in terms of the ‘bar’ notation previously introduced, one
has for example (1h1) = −1−h1 . By going to the center-of-momentum frame and aligning
the z-axis with the direction of particles 1 and 2 (with ~p1 pointing downwards), we can
parametrize the direction of the outgoing particle 4 by the polar coordinates (θ, φ). The
amplitude can then be written as a function of the two polar angles and the Mandelstam
variable s:

A(1h1 , 2h2 → 3−h3 , 4−h4) = A(s, θ, φ) . (2.4)

When the amplitude is given in spinor-helicity notation, this frame corresponds to taking
(notice that here p1 + p2 = p3 + p4)

|3〉 = cθ/2|1〉 − sθ/2e−iφ|2〉
|4〉 = sθ/2e

iφ|1〉+ cθ/2|2〉
,

|3] = cθ/2|1]− sθ/2eiφ|2]
|4] = sθ/2e

−iφ|1] + cθ/2|2]
, (2.5)

where sθ/2 ≡ sin θ/2 and cθ/2 ≡ cos θ/2. Furthermore, we have 〈12〉 = [21] =
√
s, while the

Mandelstam variables t = −〈13〉[31] and u = −〈14〉[41] become

t = −s 1− cθ
2 , u = −s 1 + cθ

2 . (2.6)

To exploit the information contained in the conservation of angular momentum, we can
now perform a partial-wave decomposition of the initial and final states of A in eq. (2.4)
(on a basis having definite angular momentum, quantized along the z-axis). This gives [11]
(see details in appendix B)

A(s, θ, φ) = eiφ(h12−h43)
(√

s

Λ

)w∑
J

nJ d
J
h12h43(θ) aJ , (2.7)

where nJ = 2J+1, h12 = h1−h2 (and similarly for h43), and where dJhh′(θ) are the Wigner
d-functions. Notice that we have factored out the dependence of the amplitude on

√
s/Λ.

The partial-wave expansion, eq. (2.7), can be inverted to give the coefficients aJ for the
amplitude:

aJ = 1
2

(√
s

Λ

)−w∫ π

0
dθ sθ d

J
h12h43(θ)A(s, θ, φ = 0) , (2.8)
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where we have used the orthogonality of the Wigner d-functions (see eq. (B.6) in ap-
pendix B). The above derivation implicitly assumes the existence of well-defined coefficients
aJ , which is not always guaranteed, as we will see in section 2.3.

In the same way as for the s-channel, we can perform a partial-wave decomposition for
the t-channel 1, 3 → 2, 4 and the u-channel 1, 4 → 3, 2. This leads to the same expression
as eq. (2.7), with the replacements (2↔ 3) and (2↔ 4) respectively. In this case, the polar
angles give the direction of the outgoing pairs 2, 4 and 3, 2 respectively. The coefficients aJ ,
either derived in the s-, t- or u-channel, completely characterize the amplitude A(1, 2, 3, 4).
Depending on the problem under consideration, we can use one or another. We can also
write eq. (2.7) in a manifestly Lorentz-invariant form by inverting eq. (2.6), which leads to
cθ = (t − u)/s, while in the t- and u-channel we have cθ = (s − u)/t and cθ = (t − s)/u,
respectively.

Let us now consider the phase-space integrations in eq. (2.1), and apply a partial-
wave decomposition to AL and AR with respect to the J of the two external states. This
corresponds to decomposing AL,R in the first term of eq. (2.1) in the s-channel, specifically
1, 2 → 1′, 2′ and 1′, 2′ → 4̄, 3̄. Let us show in detail how this proceeds. We denote the
polar angles which give the 1′, 2′-direction as (θ′, φ′), and those for the 4̄, 3̄-direction as
(θ, φ). The phase-space integral for 1′, 2′ in eq. (2.1) then reduces to an angular integration
over the primed polar coordinates, that is

∫
dLIPS =

∫
dθ′sθ′dφ

′/8. Using eq. (B.3) of
appendix B, we find∫

dLIPS σ1′2′AL(1, 2, 2̄′, 1̄′)AR(1′, 2′, 3, 4)

=
∫
dLIPS AL(1, 2→ 1′, 2′)σ−1

34 AR(1′, 2′ → 4̄, 3̄)

= 1
8 σ
−1
34

(√
s

Λ

)wL+wR∫ π

0
dθ′sθ′

∫ 2π

0
dφ′

∑
J ′

nJ ′ e
iφ′(h12−h′12)dJ

′

h12h′12
(θ′) aJ ′L

×
∑
JM

nJ e
iφ(M−h34)dJMh34(θ)e−iφ′(M−h′12)dJMh′12

(θ′) aJR

= π

2 σ
−1
34 e

iφ(h12−h34)
(√

s

Λ

)wL+wR∑
J

nJ d
J
h12h34(θ) aJLaJR , (2.9)

where in the last step we have performed a trivial dφ′ integration and used the orthogonality
condition of the Wigner d-functions (eq. (B.6) of appendix B). Similarly, we can proceed
as above for the second and third term of eq. (2.1), which in this case must be decomposed
in the t- and u-channel respectively. Inserting the result in eq. (2.1), we obtain

γi
Ai
Ci

=− 1
8π2 σ

−1
34 e

iφ(h12−h34)
(√

s

Λ

)wL+wR∑
J

nJ d
J
h12h34(θ)

∑
1′2′

aJLa
J
R+t-channel+u-channel .

(2.10)
The sum over J can in principle be infinite. Nevertheless, 4-point amplitudes Ai with
w > 0 (which are contact interactions) have a finite number of partial waves (the incoming
states can only be in a few Js), implying that also the r.h.s. of eq. (2.10) consists of
a finite number of nonzero terms. In most of the cases this is true because only a few
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coefficients aJL or aJR are nonzero, which makes eq. (2.10) a very simple formula to calculate
anomalous dimensions. But this is not always the case. Indeed, it is still possible that an
infinite series in J appears on the r.h.s. of eq. (2.10). When this happens, a non-trivial
cancellation between the 3 different channels takes place, such that only a finite number
of J contributions remain on the r.h.s. as expected. This occurs however only in a few
circumstances, as we will discuss at the end of section 3.1.

Eq. (2.10) simplifies enormously in certain cases. For example, if there are only contri-
butions from one channel, say the s-channel, we can expand the amplitude Ai on the l.h.s.
of eq. (2.10) into partial waves in the same channel. From this we get

γi
aJi
Ci

= − 1
8π2

∑
1′2′

aJLa
J
R . (2.11)

When several Ai contribute on the l.h.s. of eq. (2.10), we instead have a sum over the
corresponding indices i on the l.h.s. of eq. (2.11), leading to a system of equations (obtained
by projecting on the corresponding quantum numbers of the Ai) that must be solved to
obtain the individual γi. We will see an example in section 3.2. We further note that σ−1

34
drops out in eq. (2.11).

A similar simplification arises when the contribution from each channel is indepen-
dently proportional to a single Ai.2 This occurs, for example, when each channel gives a
contribution that is parametrically independent from the others (because each depends on
different couplings). In this case, we can write

γi = γsi + γti + γui , (2.12)

where γs,t,ui is the contribution from the s-,t-,u-channel respectively. For the s-channel,
this contribution is given by

γsi
Ai
Ci

= − 1
8π2 σ

−1
34 e

iφ(h12−h34)
(√

s

Λ

)wL+wR∑
J

nJ d
J
h12h34(θ)

∑
1′2′

aJLa
J
R . (2.13)

After expanding Ai into partial waves in the s-channel, eq. (2.13) leads to

γsi = − Ci
8π2

∑
1′2′

aJLa
J
R

aJi
. (2.14)

In a similar way, we can proceed for the contributions from the other channels.
Although these particular cases could look very special, they are actually quite com-

mon. For example, in the SM EFT most of the renormalizations of 4-point amplitudes at
O(E2/Λ2) can only proceed through one partial wave in one channel, as we will see in the
examples of section 3.1. On the other hand, for EFTs of Goldstone bosons or gravitons,
we will have to add the three channels together as in eq. (2.10). Nevertheless, we will only
need to calculate the s-channel contribution, since the other channels are determined by
crossing symmetry.

2We stress that this does not always happen. In general, the r.h.s. of eq. (2.10) becomes proportional to
Ai only after adding the contributions from the 3 channels.
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2.3 IR divergencies

There are certain cases in which the dLIPS integral in eq. (2.1) is divergent and must be reg-
ulated. This is due to the singular behavior of either AL or AR in the limit θ → 0 or θ → π

(or both), with the amplitude going respectively like A ∼ s−2
θ/2 or c−2

θ/2 (or s−2
θ ). We will fo-

cus for the moment on the first case, and later on will comment on the last case. The second
case, with singularities only for θ → π, can always be excluded by a reordering of legs.

These singularities are intimately related to soft IR divergencies of the loop integral, as
explained in appendix A. There, we show that in the presence of θ → 0 soft IR divergencies,
eq. (2.1) must be corrected by adding the following expression:

∆γi
Ai(1a,2b,3c,4d)

Ci
=− 1

4π3

[
(T 12

soft)abâ b̂AR(1â,2b̂,3c,4d)
∫
dLIPS12

1
s2
θ′/2

+(T 34
soft)cdĉ d̂AL(1a,2b,3ĉ,4d̂)

∫
dLIPS34

1
s2
θ′/2

]
+(2↔ 3)+(2↔ 4) ,

(2.15)

where the dLIPSij integrals are over the i′j′-state phase space. Eq. (2.15) acts as a regulator
for the small-angle divergencies contained in eq. (2.1). The soft operator T ij

soft can in general
act on color/flavor indices a, b, c, d and contains couplings and powers of sij = (pi + pj)2.
In the simplest cases, like QED or gravity, it is diagonal in color/flavor, i.e. Tsoft ∝ δaâ δbb̂
(see appendix A for explicit expressions and the example at the end of section 3.1).

When an amplitude features small-angle singularities, its coefficients aJ are logarithmi-
cally divergent.3 Nevertheless, there is a natural generalization of eq. (2.8) which consists
in defining “regularized” partial-wave coefficients as

aJ |reg = 1
2

(√
s

Λ

)−w ∫ π

0
dθ sθ

(
dJh12h43(θ)A

(
1ah1 , 2

b
h2 → 3c−h3 , 4

d
−h4

)
|θ,φ=0 + (Tsoft)a bc d

s2
θ/2

)
.

(2.16)
In terms of these coefficients, the anomalous dimensions can still be written as in eq. (2.10).
Eq. (2.16) can be inferred in the following way. Let us assume that one of the amplitudes,
either AL or AR, has divergent coefficients aJ , while for the other one all partial-wave
coefficients are finite. Notice that the latter assumption is always fulfilled for contact
interactions like the EFT amplitudes Ai described above. For concreteness, we take AR
to have all coefficients finite. In this case, the dLIPS integrals of eq. (2.1), together with
those of eq. (2.15), can be written as∫
dLIPS

(
σ1′2′AL(1,2, 2̄′, 1̄′)AR(1′,2′,3,4)+ Tsoft

s2
θ′/2
AR(1,2,3,4)

)

= π

2 σ
−1
34 e

iφ(h12−h34)
(√

s

Λ

)wR∑
J

nJ d
J
h12h34(θ)aJR

1
2

∫ π

0
dθ′sθ′

(
dJh12h′12

(θ′)AL(s,θ′,0)+ Tsoft
s2
θ′/2

)

= π

2 σ
−1
34 e

iφ(h12−h34)
(√

s

Λ

)wR+wL∑
J

nJ d
J
h12h34(θ)aJR aJL|reg , (2.17)

3In particular, we have aJ ∼ limε→0
∫ π
ε
dθ/θ ∼ ln ε.
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where we have left color/flavor indices implicit. Eq. (2.17) gives the generalization of
eq. (2.9) when there are soft IR divergencies. In other words, when the coefficients aJ of
an amplitude are ill-defined, signaling the presence of soft IR divergencies, we can still use
eq. (2.10), but with the regularized coefficients given in eq. (2.16). We will see examples
in the next section.

We comment now on the possibility that amplitudes have singularities for both θ → 0
and θ → π, i.e. A ∼ 1/s2

θ, which happens when the particles 1′ and 2′ are identical. In this
case, the divergent integral

∫
s−2
θ′/2 in eq. (2.16) must be replaced by 2

∫
s−2
θ′ to make the

integrand well-behaved (see appendix A). Moreover, eq. (2.16) has to be evaluated only for
even J , since the coefficients aJ for odd J are zero4 and do not need a subtraction.

When also collinear IR divergencies are present in the one-loop amplitude, one must
add the extra contribution (see appendix A)

∆γi
Ai(1, 2, 3, 4)

Ci
= γcollAi(1, 2, 3, 4) . (2.18)

This is always diagonal in amplitude space and depends only on the external legs, so that
γcoll =

∑4
n=1 γ

(n)
coll, where the γ(n)

coll are given for example in [2, 5].

3 Applications

3.1 The Standard Model EFT

In refs. [2–5], several examples of the calculation of the anomalous dimensions in the SM
EFT via on-shell amplitude methods were presented.5 In particular, in [3] the renormal-
ization of the electron dipole operator was provided, and a similarity was shown in the
contributions to the anomalous dimension coming from very different Feynman diagrams.
As we will see, the angular-momentum analysis clarifies the origin of this similarity.

As a first example, let us consider the one-loop mixing between 4-point amplitudes of
total helicity h = −2 at O(E2/Λ2):

AWHle(1e, 2lj , 3Wa
−
, 4
H†i

) = CWHle

Λ2 〈31〉〈32〉(T a)ij ,

Aeluq,0(1e, 2li , 3u, 4qj ) = Celuq,0
Λ2 〈12〉〈34〉 εij ,

Aeluq,1(1e, 2li , 3u, 4qj ) = Celuq,1
Λ2

1
2 (〈23〉〈41〉+ 〈13〉〈42〉) εij ,

AW 2H2(1Wa
−
, 2Hj , 3W b

−
, 4
H†i

) = CW 2H2

Λ2 〈13〉2δabδij .

(3.1)

Notice that we have chosen Aeluq,0 (Aeluq,1) to be antisymmetric (symmetric) with respect
to 1 ↔ 2. As we will see, its only non-vanishing partial-wave component then has J = 0
(J = 1).6 In eq. (3.1) there are 3 types of amplitudes which differ by the number of fermions

4This is because A is even in [0, π], i.e. A(θ) = A(π− θ) while, for odd J , sθdJ00(θ) is odd. Nevertheless,
since A has singularities, the integral has to be performed carefully, by taking limε→0

∫ π−ε
ε

dθ sθ A(θ)dJ00(θ).
5Amplitude methods have also been applied at tree-level in the SM EFT [13–17].
6In [3], the basis was Alequ ∼ 〈12〉〈34〉 and Aluqe ∼ 〈23〉〈41〉.

– 8 –



J
H
E
P
0
3
(
2
0
2
1
)
2
8
7

involved, nF = 0, 2, 4. We will study the one-loop mixing between these 3 types. Although
from the ordinary Feynman approach the anomalous dimensions of eq. (3.1) arise from
very different diagrams, from on-shell methods we can easily understand that the different
mixings are in fact related. Indeed, from eq. (2.1) one can realize that the mixings between
amplitudes with different nF in eq. (3.1) can only proceed through the same type of SM
amplitude. This is given by [3]

ASM(1ψ̄R , 2ψ̄Li , 3W
a
−
, 4Hj ) = yψ g2 (T a)ij

〈13〉〈43〉
〈14〉〈12〉 , (3.2)

or its complex conjugate, where ψL (ψR) refers to the SM SU(2)L-doublet (singlet) lepton,
or to the up-type quark upon the replacement Hj → H†j and (T a)ij → (T a)ij′εj′j .

The partial-wave decomposition can tell us even more. First, we notice that the mixing
between amplitudes with different nF in eq. (3.1) proceeds only through the s-channel (no
product of amplitudes can be found in the t- and u-channel which can generate these
mixings). The only exception is the renormalization of AW 2H2 by AWHle, which occurs
through both the s- and the t-channel, but these are trivially related by the crossing of the
external W bosons. In the s-channel, the partial-wave coefficients of eq. (3.2) are given
(using eq. (2.5)) by

aJ=0
SM = 0 , aJ≥1

SM = yψg2(T a)ij
1
2

∫ π

0
dθsθ d

J
0,1(θ)

sθ/2
cθ/2

= yψg2(T a)ij√
J(J + 1)

, (3.3)

while for the amplitudes of eq. (3.1) we report them in table 1. Notice that Aeluq,0, having
only a J = 0 partial-wave component, cannot mix with the rest of the amplitudes which
have only J = 1 components (this angular momentum selection rule was already pointed
out in refs. [3, 10]). The other amplitudes of eq. (3.1) can mix among themselves, but
always through the J = 1 partial wave. Therefore all mixings are proportional to aJ=1

SM .
We can explicitly calculate these mixing using eq. (2.14). We obtain γWHle C

−1
WHlea

1
WHle

γeluq,1 C
−1
eluq,1a

1
eluq,1

γW 2H2 C−1
W 2H2a

1
W 2H2

 = − ã
J=1
SM
8π2

 × −Ncyu ye
−yu × 0
ye 0 ×


a

1
WHle

a1
eluq,1

a1
W 2H2

+ crossing , (3.4)

where we have defined aJSM = yψã
J
SM, and omitted the diagonal entries as they correspond

to self-renormalizations which we do not consider here. The crossing accounts for the
renormalization of AW 2H2 by AWHle in the t-channel. This can be easily obtained by just
interchanging W a ↔ W b as the kinematics turns out to be invariant under this crossing.
Therefore, in eq. (3.4), the matrix in the r.h.s. is trivially determined by color factors, signs
due to fermion permutations and different Yukawa couplings. The non-trivial part of the
one-loop calculation has gone into the product of the coefficients a1 of the amplitudes of
eq. (3.1) with that of the SM amplitude in eq. (3.2). By plugging the values of table 1 into
eq. (3.4), we obtainγWHle

γeluq,1
γW 2H2

 = g2
16π2

 × Ncyu −2ye
3
2yu × 0
−1

2ye 0 ×


CWHle

Celuq,1
CW 2H2

 . (3.5)
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J = 0 J = 1
ASM(1ψ̄R , 2ψ̄Li , 3Wa

−
, 4Hj ) 0 1√

2 × yψg2 (T a)ij

AI=0
SM (1H , 2H† , 3H† , 4H) −3

8 −3
2 × g2

2

AWHle(1e, 2lj , 3Wa
−
, 4
H†i

) 0 1
3
√

2 ×CWHle(T a)ij

Aeluq,0(1e, 2li , 3u, 4qj ) 1 0 ×Celuq,0 εij
Aeluq,1(1e, 2li , 3u, 4qj ) 0 1

6 ×Celuq,1 εij
AW 2H2(1Wa

−
, 2Hj , 3W b

−
, 4
H†i

) 0 1
3 ×CW 2H2δabδij

AB2H2(1B− , 2B− , 3Hi , 4H†i ) 1 0 ×CB2H2

Table 1. Values of the coefficients aJ in the s-channel for the different SM amplitudes (up to J = 1)
and SM EFT amplitudes at O(E2/Λ2) discussed in the text. For AI=0

SM we give the regularized
coefficient aJ |reg (see main text).

This property of all one-loop anomalous dimensions being proportional to the same co-
efficient aJSM occurs at O(E2/Λ2) for mixings between 4-point amplitudes with different
number of fermions nF and same total helicity h. Here, we have shown it for h = −2,
but the same is true for 4-point amplitudes with h = 0. In this case, the mixings between
amplitudes with different nF are proportional to the J = 1 partial wave of the SM ψψ̄HH†

amplitude.
Let us now consider an example in the SM EFT in which IR divergences are present.

In particular, let us calculate the self-renormalization of

AB2H2(1B− , 2B− , 3Hi , 4H†i ) = CB2H2

Λ2 〈12〉2 . (3.6)

We focus on the corrections proportional to g2, which arise purely from the s-channel.
The amplitude eq. (3.6) only contributes with J = 0 and SU(2)L isospin I = 0 in the
s-channel. When studying the contributions to the self-renormalization of eq. (3.6), we
therefore just need to consider the amplitude ASM(1H , 2H† , 3H† , 4H) projected into the
zero-isospin channel (due to isospin conservation). This reads

AI=0
SM (1H , 2H† , 3H† , 4H) = 3

4 g
2
2

(1
2 + u

t

)
. (3.7)

From eq. (2.6), we see that the last term of eq. (3.7), which comes from t-channel exchanges
of W s, has a θ → 0 singularity. Therefore, we have to use the regularized partial-wave
coefficients defined in eq. (2.16). Tsoft, once projected into the I = 0-channel, is given by

T I=0
soft = −3

4 g
2
2 . (3.8)

Plugging eqs. (3.7) and (3.8) into eq. (2.16), we get aJ=0
SM |reg = −3g2

2/8 and aJ≥1
SM |reg =

2HJT I=0
soft , with HJ being the J-th harmonic number. Using eq. (2.14) together with the
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collinear contributions in eq. (2.18), we obtain

γB2H2 = − 1
8π2 a

J=0
SM |reg CB2H2 + γcollCB2H2 = − 9

64π2 g
2
2 CB2H2 , (3.9)

where we have also used that γcoll = 2γHcoll = −3g2
2/16π2 [2, 5].

We finish by commenting on certain cases in the SM EFT in which the partial-wave
decomposition is not so useful, since the number of terms in the sum in eq. (2.10) is infinite.
This can occur in the calculation of the renormalization of a 4-point amplitude from a 3-
point amplitude. An example can be found in [3]: the renormalization of AWHle from
AW 3(1Wa

−
, 2W b

−
, 3W c

−
), given by the amplitudes shown in figure 8 of [3]. In this case, both

aJL and aJR are nonzero for infinitely many Js, a fact which is related to the presence of a
logarithm in each channel [3]. When the infinite sums of the different channels are added,
only the contribution from a few Js remains nonzero, while the rest cancels. This is due
to the fact that the logarithms cancel when adding all channels, leaving a constant term
proportional to AWHle. We therefore see that in this particular case, eq. (2.10) is not very
efficient to calculate the anomalous dimension.

3.2 Nonlinear sigma models

Let us now apply our methods to study the renormalization of nonlinear sigma models. Our
analysis will allow us to easily obtain a very general analytic expression for the anomalous-
dimension matrix.

From the amplitude perspective, the model is defined as an EFT of real scalars, trans-
forming under some symmetry group, and with amplitudes satisfying Adler’s zero con-
dition [18]: the amplitudes vanish in the limit in which any of the external momenta is
taken to zero. For definiteness, we focus on scalars in the fundamental representation of
SO(N), and only study 4-point amplitudes in an expansion in E/Λ. Any 4-point ampli-
tude involving (positive) powers of the external momenta automatically satisfies Adler’s
zero condition. Therefore, by starting at O(E2/Λ2), we can easily obtain the 4-point
amplitudes of this EFT by just requiring that they are invariant under SO(N). Higher-
point amplitudes can be constructed from these 4-point amplitudes by demanding proper
factorization. As shown in [19–21], imposing Adler’s zero condition on the higher-point
amplitudes then requires to introduce additional higher-point contact interactions whose
coefficients are completely fixed as a function of the Wilson coefficients Ci. In this sense
the 4-point amplitudes play the role of “building-blocks”.7

Notice that we have only specified the unbroken group SO(N) (and its representation)
but not the broken group of the nonlinear sigma model. Remarkably, information about
the coset structure can be obtained by studying the double soft limit of the amplitudes,
where two external momenta are taken to zero simultaneously [6, 22]. The relevant coset
in our case is SO(N + 1)/SO(N).

7We note that at O(E6/Λ6) and higher, n-point amplitudes with n > 4 exist which are also “building-
blocks” (having the property that they satisfy Adler’s zero condition already by themselves) [20, 21]. In the
Lagrangian description these amplitudes correspond to operators whose leading contact interactions involve
more than 4 fields. One needs to extend our approach to higher-point amplitudes to cover these cases.
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Let us find the building-block 4-point amplitudes for this EFT. To this end, we first
notice that any 4-point amplitude of N real scalars transforming in the fundamental rep-
resentation of SO(N) can be written as8

A(1i, 2j , 3k, 4l) = fs(t, u) δs + ft(u, s) δt + fu(s, t) δu , (3.10)

where s, t, u are the Mandelstam variables and i, j, k, l are flavor indices. The flavor-SO(N)
invariant tensors read

δs = δijδkl , δt = δikδjl , δu = δilδjk , (3.11)

and they transform under crossing like s, t and u, respectively. Imposing crossing invari-
ance, one finds that fs = ft = fu ≡ f , and that f is symmetric in its two arguments. We
can then obtain the set of all independent amplitudes at order w in E/Λ by finding all
linearly-independent functions f(t, u) which are symmetric in t and u and are polynomials
of degree w/2 in these variables (w is always even here). For later convenience, we choose
the basis for these functions as9

fwr(t, u) ≡ Pr

(
t− u
s

)
sw/2 (w = 2, 4, . . .) , (3.12)

where r = 0, 2, 4, . . . , w/2 (r = 0, 2, 4, . . . , w/2 − 1) if w/2 is even (odd). Pr is the r-th
Legendre polynomial. We then find that the building-block 4-point amplitudes for this
EFT are

Awr(1i, 2j , 3k, 4l) = Cwr
Fwπ

(
fwr(t, u) δs + fwr(u, s) δt + fwr(s, t) δu

)
, (3.13)

where Cwr are Wilson coefficients. We have traded the scale Λ for the pion decay constant
Fπ which is defined by fixing the Wilson coefficient of the leading amplitude at O(E2) to
one, i.e. C2 0 = 1.

We will perform a decomposition into angular momentum in the s-channel, which will
allow us to considerably simplify the computation. In the same spirit, it is also convenient
to perform an “isospin” decomposition of the amplitude:

Awr =
2∑
I=0
AIwr ∆I , (3.14)

with flavor structures defined as

∆0 ≡
δs
N
, ∆1 ≡

1
2 (δt − δu) , ∆2 ≡

1
2

(
δt + δu −

2
N
δs

)
. (3.15)

8Note that, for SO(4), another flavor structure with the right transformation properties is εijkl, which
gives rise to additional amplitudes. We will not consider this case further.

9To see that this is a basis, notice that alternatively we could consider fwr(t, u) = tr/2u(w−r)/2 +
t(w−r)/2ur/2 for the same range of r. This covers all symmetric polynomials in t and u of degree w/2 in
these variables. The number of these polynomials equals the number of polynomials in eq. (3.12). Since
Legendre polynomials are linearly independent, we see that eq. (3.12) forms indeed a basis.
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For N = 3, projecting to one of these basis elements corresponds to taking the initial
(and final) state with definite isospin I. For generic N , it amounts to choosing states in
singlet, anti-symmetric or traceless symmetric configurations of flavor, respectively. The
flavor basis is orthonormalized, in the sense that∑

i′j′

(∆I)iji′j′(∆I′)i′j′kl = δII′ (∆I)ijkl , (3.16)

where the orthogonality reflects the conservation of isospin.
After the decomposition according to isospin, we next decompose the amplitudes into

components with fixed angular momentum. Using eq. (2.7), we can write

Awr =
(
s

F 2
π

)w/2∑
IJ

nJ PJ(cθ) aIJwr ∆I , (3.17)

where we have used that dJ00(θ) = PJ(cθ) with PJ being the J-th Legendre polynomial.
Inverting this, the coefficients are given by

aIJwr = 1
2

(
s

F 2
π

)−w/2∫ π

0
dθ sθ PJ(cθ)AIwr . (3.18)

Obtaining AIwr from eq. (3.13) and eq. (3.14), and inserting it into eq. (3.18), we get

aIJwr = Cwr

(
2κJwr + N

nJ
δ0I δrJ

)
, (3.19)

if I, J are both even or both odd, and aIJwr = 0 otherwise. We have introduced

κJwr ≡
(−1)w/2+J [(w/2)!]2

(w/2− J)! (w/2 + J + 1)! 4F3

(
−r, 1 + r,−1− J − w

2 , J −
w

2 ; 1,−w2 ,−
w

2 ; 1
)
,

(3.20)
where 4F3 is a generalized hypergeometric function.10 We find that aIJwr = 0 for J > w/2.
This means that only a finite number of angular-momentum states contribute in Awr.

We now consider the one-loop correction involving amplitudes AwLrL on the left and
AwRrR on the right of eq. (2.10). Let us denote the resulting contribution to the anoma-
lous dimension of the amplitude Awr by ∆γr. We suppress the dependence of ∆γr on
wL, rL, wR, rR to avoid clutter. Since there are no IR divergencies, the total anomalous
dimension γr is obtained by summing the different ∆γr for all wL and wR such that
w = wL + wR and for the ranges of rL and rR as given below eq. (3.12).

The s-channel contribution to the anomalous dimensions follows from eq. (2.10), with
a factor 1/2 to account for the case of identical particles in the internal legs (this factor
is compensated by the sum over flavors if they are not identical). The t- and u-channel
contributions can be obtained from this by crossing. We then find that the anomalous
dimensions satisfy∑
r

∆γr
Awr
Cwr

= − 1
16π2

(
s

F 2
π

)w/2∑
IJ

nJ ∆I a
IJ
wLrL

aIJwRrR PJ

(
t− u
s

)
+ (s↔ t) + (s↔ u) .

(3.21)
10This can alternatively be written as κJwr =

∑r

k=0
(−1)w/2+J−k(r+k)! [(w/2−k)!]2

[k!]2(r−k)! (w/2+J+1−k)! (w/2−J−k)! .
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It is important to remark that the flavor structures ∆I also change under crossing, as follows
from eq. (3.15). Also note that the l.h.s. generically contains a sum over all amplitudes
of O(Ew).

In order to solve for the ∆γr, we next choose flavors such that δs = 1, δt = δu = 0.
Then, we act with

∫ π
0 dθsθ Pr(cθ) on both sides of eq. (3.21). This gives

∆γr = −CwLrLCwRrR16π2

(
N

nr
δrLr δrRr + 2 δrLr κrwRrR + 2 δrRr κrwLrL + 4

min(wL2 ,
wR

2 )∑
J=0

nJnr κ
J
wLrL

κJwRrRκ
r
wJ

)
,

(3.22)
where nr = 2r+1. Notice that in the chosen basis, the dependence on N only enters via the
contributions with rL = rR = r. The ∆γr therefore become very simple in the large-N limit.

As an application of eq. (3.22), we next present the anomalous dimensions for am-
plitudes up to O(E6). The two amplitudes at O(E4) are renormalized by the (single)
amplitude at O(E2), corresponding to wL = wR = 2 and rL = rR = 0 in eq. (3.22). This
gives (recall that C2 0 = 1)

γ0 =
17
9 −N
16π2 , γ2 = − 1

72π2 . (3.23)

Similarly, the two amplitudes at O(E6) receive corrections from the product of an ampli-
tude at O(E4) and the one at O(E2). The corresponding contributions to the anomalous
dimensions in eq. (3.22) either have wL = 2, wR = 4 with rL = 0 and rR = 0, 2, or
wL = 4, wR = 2 with rL = 0, 2 and rR = 0. Summing over all contributions we find

γ0 = C4 0

11
36 −N

8π2 − C4 2
325

288π2 ,

γ2 = −C4 0
5

288π2 − C4 2
65

288π2 ,

(3.24)

where C4 0 and C4 2 are the Wilson coefficients of the two amplitudes at O(E4). Using the
fact that SU(2)× SU(2)/SU(2) ∼ SO(4)/SO(3), we can compare our results for the case
N = 3 with existing calculations for pions. Upon translating to our basis eq. (3.12), we
find that the anomalous dimensions of [23] agree with the above results.

Let us also make an observation. Using eqs. (3.13) and (3.23), we find that

∑
r=0,2

γr
A2 r
C2 r

= − 1
48π2F 4

π

(
(3N − 7)s2 + 2t2 + 2u2

)
δs + (s↔ t) + (s↔ u) . (3.25)

For the case N = 3, this has the interesting property that the only linear combination
of A2 0 and A2 2 that is renormalized is crossing symmetric separately in kinematics and
flavor, A ∼ (s2 + t2 + u2)(δs + δt + δu).11

Finally, let us comment on the connection to the Lagrangian description of the nonlin-
ear sigma model with coset SO(N+1)/SO(N). The series of amplitudes necessary to satisfy
Adler’s zero condition discussed above are equivalent to the series of contact interactions in

11This was shown to also hold for any chiral SU(N), with flavor factor δs+δt+δu+N(ds+dt+du)/8, where
ds = dijmdklm, dt = dikmdjlm and du = dilmdjkl, dijk being the fully symmetric SU(N) constants [24].

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
2
8
7

the Lagrangian description that arise from expanding SO(N+1)-invariant operators in the
number of fields [20, 21]. Each 4-point amplitude is thus in a one-to-one correspondence to
an operator in the Lagrangian approach. Similarly, the anomalous-dimension matrix for
the 4-point amplitudes that we have determined is equivalent to the anomalous-dimension
matrix for the corresponding operators.

3.3 Gravity

We present here some examples of the use of eq. (2.10) to calculate anomalous dimensions in
the EFT of spin-2 states. Although these calculations are quite lengthy with an ordinary
Feynman-diagrammatic approach, with the help of eq. (2.10) this is as easy as for the
nonlinear sigma model (or even simpler, since there are no complications with flavor).

Following the same approach as in the previous examples, the EFT of gravitons is
defined by the building-block amplitudes obtained in an expansion of E/Λ. Einstein theory
(General Relativity) corresponds to the first possible amplitude in this expansion. This is
a 3-point graviton interaction, which is fully determined by the little group:

AGR(1−, 2−, 3+) = 1
MP

(
〈12〉3

〈13〉〈23〉

)2

. (3.26)

From this, we can calculate higher-point amplitudes. For example, the tree-level 4-point
amplitude, which we will use later, is given by

AGR+− ≡ AGR(1+, 2+, 3−, 4−) = 1
M2
P

[12]4〈34〉4

stu
. (3.27)

This can be determined just from little-group scaling and by demanding proper factor-
ization into the 3-point amplitudes in eq. (3.26). For the calculation of renormalization
effects, we will later also need an amplitude with all gravitons having the same helicity.
No such amplitude can be constructed from eq. (3.26) at tree-level. We must go to the
one-loop level, where we have [9]

AGR− ≡ AGR(1−, 2−, 3−, 4−) = r

16π2M4
P

〈12〉4〈34〉4

s2 + crossing = rT 2

16π2M4
P

(s2 + t2 + u2) ,

(3.28)
(and the corresponding complex conjugate), with r = (NF − NB)/240, NF,B being the
number of fermions and bosons in the loop. Furthermore, we have defined

T ≡ 〈12〉〈34〉
[12][34] . (3.29)

At higher order in E/Λ, going beyond Einstein theory, the first possible building-block
amplitude arises at order E5/Λ5. It is the 3-point amplitude

AR3(1−, 2−, 3−) = CR3

M5
P

〈12〉2〈23〉2〈31〉2 , (3.30)

where we have traded Λ for MP by redefining CR3 . We will do the same for the other
amplitudes in the following. In the field theory of gravity, eq. (3.30) arises from the R3
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higher-dimensional term, i.e. a contraction of three Riemann tensors. To get new contact
interactions, we have to go to order E8/Λ8. Indeed, at this order we can have two 4-point
amplitudes:

AR4(1−, 2−, 3−, 4−) = CR4

M8
P

〈12〉4〈34〉4 + crossing = CR4T 2

M8
P

(s4 + t4 + u4) , (3.31)

and
A′R4(1−, 2−, 3+, 4+) =

C ′R4

M8
P

〈12〉4[34]4 . (3.32)

We are now in a position to calculate the anomalous dimensions of the coefficients CR3 ,
CR4 and C ′R4 at leading order. We start with CR3 . Its renormalization will be obtained
from the renormalization of the 4-graviton amplitude with equal helicities which arises from
the 3-graviton amplitudes in eqs. (3.26) and (3.30) at O(E6/Λ6):

ÂR3(1−, 2−, 3−, 4−) = CR3

M6
P

T 2stu . (3.33)

By simple dimensional analysis, one can realize that this amplitude cannot be renormalized
at the one-loop level, since no products of tree-level amplitudes can generate an amplitude
of four gravitons of equal helicity at order E6/Λ6. Indeed, it was shown in [9] that the
leading nonzero contribution to the renormalization of eq. (3.33) arises from the product
of the one-loop amplitude in eq. (3.28) and the amplitude in eq. (3.27). The calculation
has IR divergencies which must be taken into account, as explained in section 2.3, by using
the regularized coefficients eq. (2.16). From eq. (2.10) we then get12

γR3ÂR3 = −CR3

8π2

(
s

M2
P

)3∑
J

nJ a
J
GR−a

J
GR+− |reg PJ

(
t− u
s

)
+ crossing , (3.34)

where the coefficients aJGR+−
|reg are defined in eq. (2.16), with Tsoft = −2s/M2

P and the
replacement

∫
s−2
θ/2 → 2

∫
s−2
θ due to the identical particles in the internal lines. Using

eq. (3.27), we find
aJGR+− |reg = −4HJ , (3.35)

where HJ is the J-th harmonic number. The values of the coefficients aJGR− and aJGR+−
|reg

are given in table 2, where we see that they are simultaneously nonzero only for J = 2.
We then get

γR3ÂR3 = CR3

4π2
r

16π2
s3

M6
P

P2

(
t− u
s

)
+ crossing . (3.36)

One can check that adding the crossed terms in eq. (3.36) makes the r.h.s. proportional to
ÂR3 , as it should be. Nevertheless, since we are only interested in the value of γR3 , it is

12Notice that the statistical factor 1/2 for identical particles in the internal lines is compensated in
eq. (3.34) by the factor 2 coming from the two equal contributions∫

AGR(1−, 2−, 2̄′−, 1̄′−)AGR(1′+, 2′+, 3−, 4−) and
∫
AGR(1−, 2−, 2̄′+, 1̄′+)AGR(1′−, 2′−, 3−, 4−).
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J = 0 J = 2 J = 4
AGR+− 0 −6 −25

3

AGR−
5
3

1
15 0 × r

16π2

ÂR3
1
6 − 1

30 0 ×CR3

AR4
7
5

4
35

1
315 ×CR4

Table 2. Values of the coefficients aJ in the s-channel for the different 4-graviton amplitudes
defined in the text. For the tree-level GR amplitude AGR+− = AGR(1+, 2+, 3−, 4−) we give the
regularized quantity defined in eq. (3.35) up to J = 4.

simpler to project both sides of eq. (3.36) into some specific kinematics, e.g. t = u = −s/2.
This gives

γR3 = r

16π4

(
P2(0)− 1

4P2(3)
)

= − 60r
(4π)4 . (3.37)

Although this result was already obtained in [9] by on-shell methods, our formula allows
us to understand the dependence of eq. (3.36) on the Mandelstam variables: this is indeed
determined by the fact that, in the s-channel, only internal states with J = 2 contribute
to γR3 .

Recycling the above result, we can easily obtain the anomalous dimension of CR4 . It
can again only arise from the partial waves of ÂR3 and AGR+− with J = 2, leading to

γR4AR4 = −CR4
5

8π2

(
s

M2
P

)4

aJ=2
R3 aJ=2

GR+− |reg P2

(
t− u
s

)
+ crossing . (3.38)

Using table 2, this gives
γR4 = −CR3

8π2 . (3.39)

At the one-loop level, we do not find any contribution to the anomalous dimension of C ′R4 ,
due to the helicities in A′R4 .

4 Conclusions

We have here exploited the power of angular-momentum analysis to reduce the computa-
tion of one-loop anomalous dimensions to a sum of products of partial-wave coefficients,
eq. (2.10). For the anomalous dimensions of contact interactions (higher-order amplitudes
in EFTs), the sum reduces to a few terms, making the calculation quite straightforward.
We have also shown that eq. (2.10) remains valid in the presence of IR divergencies, once
the partial-wave coefficients are regularized according to eq. (2.16).

The classification of the possible angular momenta J contributing to the renormaliza-
tion of the EFT amplitudes Ai has turned out to be useful since it tells us about the origin
of the anomalous dimensions γi, possible selection rules, and potential relations between
different γi, not only inside the same theory but also between different theories. In this
sense, the angular-momentum analysis has provided a rational for the “universality” of
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some anomalous dimensions, hinted at in [3, 5], which remains hidden when performing
calculations with ordinary Feynman diagrams.

We have shown this explicitly in several examples for the SM EFT, where a class of one-
loop mixings were found to be proportional to the same coefficient aJSM (see eq. (3.4)). We
have also analyzed the renormalization of nonlinear sigma models, and shown how to use
eq. (2.10) to easily calculate the anomalous dimensions of 4-point amplitudes at any order
in E/Λ. As a last example, we have applied eq. (2.10) to obtain anomalous dimensions
in the EFT of gravity, where the simplicity of the on-shell method has no competitor. In
particular, we have seen that only the J = 2 partial wave contributes to γR3 , explaining
the dependence of eq. (3.36) on the Mandelstam variables found in [9].

Similarly as for the angular momentum, it can also be useful to decompose the am-
plitudes according to other conserved quantum numbers. For the case of isospin, we have
already seen an example in the SM EFT in the renormalization of eq. (3.6), and another
one in nonlinear sigma models. This decomposition leads also to very useful selection rules,
as the amplitudes AL,R must have the same isospin as the one that they renormalize, Ai.

We have focused here on the one-loop renormalization of 4-point amplitudes. But
we do not see any obstacle to the extension of this method to higher-point amplitudes or
higher-loop order, since we have mainly relied on angular-momentum conservation and the
fact that the anomalous dimension can be obtained from the product of two amplitudes
γA ∼

∫
dLIPSALAR, obtained from cutting loop diagrams. These extensions are left for

the future.
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A IR divergencies in the Passarino-Veltman decomposition

The purpose of this appendix is to prove the validity of eq. (2.1) for computing anomalous
dimensions, corrected with eqs. (2.15) and (2.18) in the presence of IR divergencies. The
strategy consists in using the Passarino-Veltman (PV) decomposition. In particular, we
will discuss the structure of IR divergencies of one-loop amplitudes from the PV point of
view. For simplicity, we will only consider 4-point amplitudes.

A one-loop amplitude can be decomposed in the PV basis in the following way:

Aloop =
∑
a

C
(a)
2 I

(a)
2 +

∑
b

C
(b)
3 I

(b)
3 +

∑
c

C
(c)
4 I

(c)
4 +R , (A.1)
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where the scalar integrals I2,3,4, corresponding to bubbles, triangles and boxes respectively,
are defined e.g. in [3], and R is a rational term. In general, Aloop can contain IR diver-
gencies, which we want to subtract to obtain an IR-finite result. The IR-divergent part
of Aloop, which is well-known for gauge theories and gravity [25–27], has the following
structure:

AIR
loop =

∑
a

Ĉ
(a)
2 I

(a)
2 +

∑
b

Ĉ
(b)
3 I

(b)
3 . (A.2)

The difference

Aloop −AIR
loop =

∑
a

[
C

(a)
2 − Ĉ(a)

2

]
I

(a)
2 +

∑
b

[
C

(b)
3 − Ĉ

(b)
3

]
I

(b)
3 +

∑
c

C
(c)
4 I

(c)
4 +R , (A.3)

is then guaranteed to be IR safe. To compute anomalous dimensions γ at the one-loop
order, we need to extract the coefficient of the ε−1 UV-divergent part, which is simply
proportional to the sum over bubble coefficients:

γA = −2AUV
loop = − 1

8π2

∑
a

[
C

(a)
2 − Ĉ(a)

2

]
. (A.4)

For this purpose we follow the generalized unitarity method, which consists in performing
2-cuts of eq. (A.3):13

cut(a)
[
Aloop −AIR

loop

]
= −C

(a)
2 − Ĉ(a)

2
8π2 + cut(a)

[∑
b

C
(b)
3 |reg I

(b)
3 +

∑
c

C
(c)
4 I

(c)
4

]
, (A.5)

where C3|reg = C3 − Ĉ3. The terms involving 2-cuts of triangles and boxes are in general
different from zero, but it was shown in [3] that, for IR-safe amplitudes like eq. (A.3), they
cancel in the sum over all 2-cuts.14 We then obtain, by summing over all possible 2-cuts,∑

a

cut(a)
[
Aloop −AIR

loop

]
= γA . (A.6)

In the absence of IR divergencies (AIR
loop = 0), eq. (A.6) matches with eq. (2.1).

To treat the case in which IR divergencies are present, we need to know the explicit
form of AIR

loop. For definiteness, we first consider gauge theories, and comment later on the
case of gravity. By expanding the one-loop expressions given in [25, 26] on the PV basis,
we find nonzero bubble coefficients related to collinear IR divergencies:

Ĉ
(ij)
2 = −8π2 γ

(i)
coll

Ti · Tj
T 2
i

Atree + (i↔ j) , (A.7)

where the external legs i and j are as shown in figure 1(a), and we follow the color-space
notation usually adopted, with color/flavor indices left implicit [25, 26]. When we unfold
them, we have

Atree → Aabcdtree and Ti → (TAi )a′a , (A.8)
13We normalize the 2-cut as cut[I2] = −1/8π2 to make eq. (2.1) equal to the sum over the 2-cuts of Aloop.
14The proof in [3] can be easily readapted by substituting C3 → C3|reg.
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Figure 1. Bubble (a) and triangle (b) topologies which appear in the PV decomposition of AIR
loop

in gauge and gravity theories.

where the generator Ti is in the representation appropriate for particle i. The dot-product
is Ti · Tj ≡ TA

i TA
j (see e.g. [25] for more details). We then sum over all cut(ij) with i < j,

where the indices i, j label the two legs that are cut out from the rest of the states. The
bubble contributions then reduce to a sum over particle legs:

−
∑
i<j

cut(ij)
[
AIR

loop

]
|bubble = 1

8π2

∑
i<j

Ĉ
(ij)
2 =

∑
i

γ
(i)
collAtree = γcollAtree , (A.9)

thanks to the property of color/flavor conservation,
∑
j TjAtree = 0. This reproduces

eq. (2.18).
On the other hand, soft IR divergencies give contributions to 1-mass triangles, with

coefficients
Ĉ

(ij)
3 = −g2sij Ti · Tj Atree , (A.10)

where i and j label the external legs, as shown in figure 1(b). In this case, a 2-cut gives

cut(ij)
[
AIR

loop

]
|triangle = Ĉ

(ij)
3 cut

[
I

(ij)
3

]
= 1

4π3 g
2 Ti · Tj Atree

∫
dLIPS 1

s2
θ′/2

. (A.11)

In the last step, we could have equally well expressed the cut of the triangle as
∫
c−2
θ′/2, which

is the same after the substitution θ′ → (π − θ′), or as 2
∫
s−2
θ′ , obtained by symmetrization

over the interval [0, π]. We will use eq. (A.11) when either AL or AR is singular for θ → 0.
In this case we have AL,R ∼ s−2

θ/2, and the integrand in eq. (2.16) is well-behaved. When
AL,R ∼ s−2

θ , as it happens when the two incoming/outgoing particles are identical, we need
to replace

∫
s−2
θ′/2 in eq. (A.11) by 2

∫
s−2
θ′ , and similarly for eq. (2.16).

Using eq. (A.11) in eq. (A.6), we obtain eq. (2.15), with the identification T ij
soft =

g2 Ti · Tj . Notice that in QED we simply have T ij
soft = e2qiqj . For gravity, IR divergencies

have the same PV structure as for gauge theories, with γcoll = 0 and T ij
soft = −2sij/M2

P [27].
Soft singularities are also present in scalar amplitudes involving the exchange of a

massless scalar. The methods discussed here and in section 2.3 can be easily extended to
this case. Instead, 4-point amplitudes involving Yukawa interactions never feature θ → 0
singularities, as they go at worst like θ−1 (and the same for θ → π).

B Partial-wave decomposition

Let us consider the process 1, 2 → 3, 4, where the incoming pair 1, 2 lies in the direction
defined by the polar angles (ψ, ω) and the outgoing pair 3, 4 in the direction defined by the
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angles (θ, φ). By using the completeness of the angular momentum basis, the amplitude
can be written as

A(s, θ, φ;ψ, ω) ≡ 〈θφ;h3h4|T |ψω;h1h2〉

=
∑

JJ ′MM ′

〈θφ;h3h4|J ′M ′;h3h4〉〈J ′M ′;h3h4|T |JM ;h1h2〉〈JM ;h1h2|ψω;h1h2〉 . (B.1)

Due to angular momentum conservation, we have

〈J ′M ′;h3h4|T |JM ;h1h2〉 = δMM ′ δJJ ′

(√
s

Λ

)w
aJ . (B.2)

Applied to eq. (B.1), this gives

A(s, θ, φ;ψ, ω) =
(√

s

Λ

)w∑
JM

nJ e
iφ(M−h34)dJMh34(θ) e−iω(M−h12)dJMh12(ψ) aJ , (B.3)

where we have defined nJ = 2J + 1 and have introduced the Wigner d-functions

dJMh12(θ) = eiφ(M−h12)
√
nJ

〈JM ;h1h2|θφ;h1h2〉 . (B.4)

They can be expressed in terms of trigonometric functions as

dJMM ′(θ) =
[
(J +M)! (J −M)! (J +M ′)! (J −M ′)!

]1/2
×
∑
S

 (−1)M ′−M+S c 2J+M−M ′−2S
θ/2 s M ′−M+2S

θ/2
(J +M − S)!S! (M ′ −M + S)! (J −M ′ − S)!

 , (B.5)

where the sum is over all S such that the arguments of the factorials in the denominator
are nonnegative. The Wigner d-functions fulfil an orthogonality condition given by∫ π

0
dθ sθ d

J
MM ′(θ)dJ

′
MM ′(θ) = 2δJJ ′

nJ
. (B.6)

We always have the freedom to choose a frame such that ψ = ω = 0, giving

A(s, θ, φ) = eiφ(h12−h34)
(√

s

Λ

)w∑
J

nJ d
J
h12h34(θ) aJ , (B.7)

where we have used the property dJMM ′(0) = δMM ′ .
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