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1 Introduction

One of the great modern scientific mysteries is the abundance of matter over antimat-
ter. Cosmic matter-antimatter asymmetry arises in the framework of elementary parti-
cle physics through baryogenesis models, which offer mechanisms for obtaining matter-
antimatter asymmetry from an initially symmetric Universe [1]. It is well established that
baryogenesis requires three crucial ingredients [2]: (i) baryon number violation, (ii) viola-
tion of C (particle-antiparticle) symmetry and the combination CP of C and P (left-right
or parity) symmetries and (iii) departure from thermal equilibrium.

In the Standard Model (SM) the matter-antimatter asymmetry of the Universe is cred-
ited to CP violation (CPv), although experimental evidence has systematically shown that
it may not be sufficient to explain this imbalance [3, 4]. CPv has been observed in various
weak decays involving strange and beauty quarks, being recently confirmed by the LHCb
collaboration for the charmed D meson [5]. The main sources of CPv in the SM are (i) the
quark sector, involving the Cabibbo-Kobayashi-Maskawa (CKM) matrix, (ii) the strong
interaction and, (iii) the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix in the lepton
sector [6]. The CKM matrix has been observed experimentally and can only account for
a small portion of the CPv required to explain the matter-antimatter asymmetry. The
failure, until now, to observe the electric dipole moment of the neutron in experiments
suggests that any CPv in the strong sector is also too small to account for the necessary
matter-antimatter asymmetry in the early Universe. In the case of neutrinos being Ma-
jorana fermions, for example, the PMNS matrix could have two additional CP -violating
Majorana phases, which would lead to a new source of CPv in the framework of the SM in
the lepton sector. Alternatively, CPv in the lepton sector could result, experimentally, to
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be too small to account for matter-antimatter asymmetry, but additional sources of CPv
could arise from some still unknown physics beyond the SM.

In general, CP -violating observables are computed from decay amplitudes, decay rates,
or quantities derived from these, such as a particle’s lifetime, which is obtained from the
decay rates and is regarded as one of its inherent and characteristic properties. It is well
known since the seminal work of Fulling, Davies and Unruh [7–9] in quantum field theory
in curved spacetimes (QFTCS) that a uniformly accelerated detector moving through the
usual flat spacetime vacuum of a conventional quantum field theory responds as though it
were in a thermal bath of temperature

T = }a
2πkBc

, (1.1)

where a is the acceleration (this is often referred to as the Unruh effect). One may, thus,
expect that the acceleration would causes a modification of particle lifetimes with respect
to their own proper time, i.e., in their accelerated rest frame, much as a thermal bath
would do to a particle in an inertial frame. This is indeed the case — as was shown by
Müller [10] and Vanzella and Matsas [11, 12] in their investigation of the decay rates of
accelerated particles — and the objective of this paper is to investigate the impact of these
non-inertial effects on CP -violating observables, i.e., we are interested in the non-inertial
factor of the following heuristic equation,

CPv = (imbalance)× (non-inertial modification). (1.2)

Specifically, we investigate these effects on the decay rates and in a CPv parameter in
neutral kaons.

We may envisage a connection between the cosmological processes responsible for the
existence of matter-antimatter asymmetry and non-inertial effects by noting the similarities
between different effects arising from QFTCS, particularly those concerning the thermo-
dynamical phenomena stemming from the existence of event horizons in certain space-
times [13, 14], along with the observation that the temperature of the Universe is tied to
particle creation due to its expansion [15, 16]. In what follows, we argue that investigations
of mechanical phenomena such as the ones alluded above can play an important role in
understanding thermodynamical effects, given this connection.

Throughout this work we use natural units 8πG = c = } = kB = 1, unless stated
otherwise, and the (−,+,+,+) convention for the metric signature.

2 CP violation in the K-system

We start by briefly reviewing the basic ideas related to CPv in the kaon system [17, 18].
In order to understand the unusual properties of neutral kaons, we first observe that, since
both K0 and K0 decay in two pions,

K0 ←→ 2π ←→ K
0
, (2.1)
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they are not independent particles with respect to the weak interaction. Charge conjuga-
tion C and parity P operations on kaon and pion states result in

CP |K0〉 = − |K0〉 , CP |ππ〉 = + |ππ〉 , CP |πππ〉 = − |πππ〉 . (2.2)

From these equations we see that the CP operation does not leave the kaon states invariant,
K0 CP−−→ −K0 and K0 CP−−→ −K0, therefore K0 → 2π and K0 → 2π decays appear to be
prohibited for CP -symmetric processes.

If CP symmetry is to be restored, we may consider, alternatively, linear combinations
of theses states resulting in CP eigenstates,

|K1〉 = 1√
2
(
|K0〉 − |K0〉

)
, |K2〉 = 1√

2
(
|K0〉+ |K0〉

)
. (2.3)

Using eq. (2.2) one obtains

CP |K1〉 = + |K1〉 , CP |K2〉 = − |K2〉 . (2.4)

According to eq. (2.2) and (2.4), K1 (K2) can only decay into a state with eigenvalue
CP = +1 (CP = −1). Hence, we have only two possible decay channels: K1 → 2π and
K2 → 3π. Furthermore, a CP projection operator can be defined,

P+ = 1
2(1 + CP ), P− = 1

2(1− CP ), (2.5)

such that
P+ |K1〉 = |K1〉 , P− |K2〉 = |K2〉 , P− |K1〉 = P+ |K2〉 = 0. (2.6)

To accommodate CPv in weak processes, the following mass eigenstates are introduced:

|KS〉 = 1√
1 + |q|2

(
|K0〉 − q |K0〉

)
, |KL〉 = 1√

1 + |q|2
(
|K0〉+ q |K0〉

)
, (2.7)

where the (complex) mixing parameter q characterizes the strength of the CPv. There is
a measurable difference in the lifetimes (with τS < τL) and masses (with mKS < mKL) of
these eigenstates, justifying the “S” (referring to the short-lived or small state) and “L”
(referring to the long-lived or large state) labels. We note that

P+ |KS〉 = ψ(+q) |K1〉 , P− |KS〉 = ψ(−q) |K2〉 ,
P+ |KL〉 = ψ(−q) |K1〉 , P− |KL〉 = ψ(+q) |K2〉 ,

(2.8)

with
ψ(±q) = 1√

2
1± q√
1 + |q|2

, (2.9)

which shows that the states in eq. (2.7) are mixtures of CP = +1 and CP = −1 eigenstates.
If q = 1, the system is CP -symmetric and the projections in eq. (2.8) reduce to those of
eq. (2.6). The lifetimes of the states in question are [6]

τS = 8.954(4)× 10−11 s, τL = 5.116(21)× 10−8 s, (2.10)
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Figure 1. Schematic view of the Cronin-Fitch experiment.

with characteristic distances

cτS = 2.684 cm, cτL = 15.3 m. (2.11)

In figure 1 we see a schematic representation of the Cronin-Fitch experiment [19], the first
experimental result to provide clear evidence, from kaon decays, that CP symmetry could
be broken. An initially mixed beam of KS and KL is injected into a tube. The KS particles
traverse only their characteristic distance cτS (region 1), decaying rapidly to 2π. The beam
that emerges in region 2 is composed solely of KL particles. Therefore, if CP is a conserved
symmetry (i.e., if q = 1) one should only observe the decay to 3π in this region. CPv occurs
because decays of type KL → 2π, are also observed, implying that the weak eigenstates do
not correspond to the CP eigenstates.

The CPv that occurs in the transition K → 2π can be studied by defining an observ-
able η that relates the transition amplitudes A of the KS and KL species:

η00 := A(KL → π0π0)
A(KS → π0π0) , η+− := A(KL → π+π−)

A(KS → π+π−) . (2.12)

Then, putting η = η00 = η+− and using eq. (2.8) one obtains

η = 〈ππ|P+|KL〉
〈ππ|P+|KS〉

= 1− q
1 + q

. (2.13)

It must be noted that the experimental data suggests a difference between the absolute
values of η00 and η+− [6]:

|η00| = 2.220(11)× 10−3, |η+−| = 2.232(11)× 10−3. (2.14)

In fact, setting η+− = ε + ε′ and η00 = ε − 2ε′, the value of ε′ is nonzero but three orders
of magnitude smaller then the value of ε [18]. Alternatively, |η|2 is given in terms of the
decay rates Γ by

|η|2 = Γ(KL → ππ)
Γ(KS → ππ) , (2.15)

which we shall use in the subsequent analysis.
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3 Acceleration and CP -violating decays

The Unruh effect (see [20] for a review) states that accelerated observers perceive the
inertial vacuum as a thermal bath of particles.1 It seems, then, that accelerated particles
should have increased proper decay rates, as they would if immersed in a thermal bath. This
is in fact the case, as was show for scalar fields by R. Müller in [10] and for spinorial fields
by D.A.T. Vanzella and G.E.A. Matsas in [11, 12]. These results also show a dependence
of the rate of the increase on the mass of the decaying particle. Given the relationship
between CPv and the kaon decays described above, we seek to investigate the impact that
non-inertial effects have on CPv in the K-system with a model for the decay of accelerated
kaons (related investigations, probing CPv in the lepton sector, can be found in [21–23]).
Such a model, based on the ones introduced by Müller, is presented below and used to
evaluate the behavior of the decay rates and of the CPv parameter η, the latter of which
being possible due the difference in the masses of KS and KL.

3.1 Model for accelerated decays

We consider the following interaction Lagrangian,

LI(x) = GΓΦ(x)φ1(x)φ2(x), (3.1)

where Φ is a scalar field of mass M , φ1 and φ2 are scalar fields of mass m and GΓ is
the coupling parameter of the interaction. Although kaons and pions are described by
pseudoscalar fields, it is assumed that scalar fields provide approximate descriptions of
their behavior. The decay rate may then be obtained from the decay amplitude, namely
the transition amplitude for the process Φ→ φ1φ2, given, up to first order in GΓ, by

A(k1,k2) = 〈k1,k2| ⊗ 〈0|S |i〉 ⊗ |0〉 = GΓ

∫
d4x 〈0|Φ(x)|i〉

2∏
j=1
〈kj |φj(x)|0〉 , (3.2)

where the final state consists of two particles with momenta k1 and k2. The decay proba-
bility can be computed from the amplitude,

P =
∫

d3k1 d3k2 |A(k1,k2)|2

= G2
Γ

∫
d4x d4x′ 〈0|Φ(x)|i〉 〈i|Φ(x′)|0〉

2∏
j=1
〈0|φ†j(x)

∫
d3kj |kj〉 〈kj |φj(x′)|0〉

= G2
Γ

∫
d4x d4x′ f∗(x)f(x′)

2∏
j=1
〈0|φ†j(x)φj(x′)|0〉 ,

(3.3)

where f(x) is the mode associated to the initial state |i〉 and 〈0|φ†j(x)φj(x′)|0〉 is the Wight-
man function of φj .

1More precisely, it is the observation that the vacuum state of a quantum field theory constructed with
the time translation vector in Minkowski spacetime as a preferred direction corresponds, non-unitarily, to
a Kubo-Martin-Schwinger (KMS) state in a quantum field theory for which the preferred direction vector
is the Killing vector generating Lorentz boosts.
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Choosing a frame in Minkowski spacetime where x = x′ and assuming t > t′ (with
x = (t,x) and x′ = (t′,x′)), the Wightman function of a complex scalar field φ with massm,
for timelike separations of x and x′, reads

〈0|φ†(x)φ(x′)|0〉 = 1
(2π)3 〈0|

∫
d3k

1√
2ω(k)

(
b(k)eikLx

L + a†(k)e−ikLx
L
)

×
∫

d3k′
1√

2ω(k′)

(
a(k′)eik′Lx′L + b†(k′)e−ik′Lx′L

)
|0〉. (3.4)

It is straightforward to show that the function above reduces to

〈0|φ†(x)φ(x′)|0〉 = 1
(2π)3

∫
d3k

1
2ω(k)e

−iω(t−t′) = 1
(2π)2

∫ ∞
m

dω
√
ω2 −m2e−iω(t−t′)

= i
m

8π
H

(2)
1 (m∆s)

∆s ,

(3.5)

where H(2)
1 is a Hankel function of the second kind and ∆s is the spacetime interval of the

timelike separated events x and x′.
Assuming that f is peaked over a trajectory x(τ) parameterized by its proper time τ ,

i.e., over the trajectory of a particle, we can write it as

f(x) = h(x(τ))e−iMτ (3.6)

in the instantaneous rest frame. Assuming, furthermore, that the decay products do not
deviate much from this trajectory, the decay probability can be written as

P = G2
Γκ

∫ ∞
−∞

∫ ∞
−∞

dτ dτ ′ eiM(τ−τ ′)
2∏
j=1
〈0|φ†j(t(τ),x(τ))φj(t′(τ ′),x′(τ ′))|0〉

= −G
2
Γκ

64π2m
2
∫ ∞
−∞

∫ ∞
−∞

dτ dτ ′ eiM(τ−τ ′)
[
H

(2)
1 (m∆s)

]2
|∆s2|

,

(3.7)

where κ is given by κ = |
∫

d3xh(x)|2. A change of variables of the form v := τ −τ ′ leads to

P = −G
2
Γκ

64π2m
2
∫ ∞
−∞

∫ ∞
−∞

dv dτ eiMv

[
H

(2)
1 (m∆s)

]2
|∆s2|

. (3.8)

Since the Wightman function depends only on the difference x− x′, the integral over τ is
trivial (and infinite). We make use, thus, of the proper decay rate

Γ = −G
2
Γκ

64π2m
2
∫ ∞
−∞

dv eiMv

[
H

(2)
1 (m∆s)

]2
|∆s2|

, (3.9)

i.e., the decay probability by unit of proper time.
A uniformly accelerated particle’s trajectory may be parameterized in terms of the

proper time as

t(τ) = 1
a

sinh(aτ), x(τ) = 1
a

cosh(aτ), y(τ) = 0, z(τ) = 0, (3.10)
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MeV/c2 mK0

mK0 497.611(13) 1
mπ0 134.9770(5) 0.271250
mπ± 139.57061(24) 0.280481

mKL −mKS 3.484(6) × 10−12 7.001 × 10−15

Table 1. Values for the masses of the pions π0, π± and the neutral kaon K0 and the mass difference
between KL and KS [6].

where a is the magnitude of the proper acceleration. The squared spacetime interval ∆s2

at certain values τ and τ ′ of the proper times is given by

∆s2 = −[t(τ)− t′(τ ′)]2 + [x(τ)− x′(τ ′)]2 = − 4
a2 sinh2

(
a

2
(
τ − τ ′

))
. (3.11)

If we substitute ∆s2 from (3.11) into (3.9), after introducing the variable
u = a(τ − τ ′)/2 = av/2, we are led to

Γ = − G2
Γκ

128π2m
2a

∫ ∞
−∞

du ei2Mu/a

{
H

(2)
1 [2m sinh(u)/a]

}2

sinh2(u)
, (3.12)

which is the decay rate for uniformly accelerated scalar particles.

3.2 Results and analysis

The experimental data relevant to the computation of eq. (3.12) can be found in table 1,
with the correspondences M = mK0 ≈ mKS ≈ mKL , m = mπ0 ≈ mπ± .2 Besides the
values in units of MeV/c2, table 1 also includes values in units of the kaon mass in order to
perform numerical computations. For the same reason, Γ is given in units of G2

Γκ/(128π2).
The integral appearing in eq. (3.12) presents several computational challenges which

are discussed in appendix A. The results of the aforementioned task, computed for varying
values of the acceleration, are summarized in figure 2, which also includes the graph of the
function

Γfit(a) = c1 + c2a
2 + c3f(a) + c4af(a) + c5a

2f(a), (3.13)

where c1 = −7.00723, c2 = 0.329318, c3 = 7.28669, c4 = 0.0929348, c5 = 0.390045 and

f(a) =
(
1− e−2π/a)−1; (3.14)

the parameters ci, i = 1, . . . , 5, were obtained by fitting the curve to the numerical data.
The form of Γfit is based on the singular parts of the integral in eq. (3.12) (given in
eqs. (A.19)).

These results clearly indicate that the decay rate for this process grows as the accelera-
tion increases, as expected from the results of previous analyses. It is also evident that this

2Although the difference in the masses of π0 and π± is not negligible, the results of the analysis are
qualitatively the same for both cases.
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Figure 2. Numerical results for the decay rate Γ as a function of the acceleration a and fitted curve.

effect would only be detectable at extremely high energies, given that the acceleration is
displayed in units of the kaon mass, which corresponds to accelerations of over 1032 m/s2.
For comparison, the Texas Petawatt Laser, capable of accelerating electrons up to energies
of E = 2 GeV over distances of the order of ∆x = 1 cm [24], reaches an acceleration aTPL
given, at best, by

aTPL ≈
E

me∆x
≈ 3.5× 1022 m/s2. (3.15)

There is also the problem of accelerating neutral particles, for which there is no obvious
solution (see section 4 for a discussion on why a cosmological setting may be better suited
for the observation of effects of this kind).

To investigate the behavior of η it is sufficient, having eq. (2.15) in mind, to com-
pute Γ for the two values of M corresponding to the KS and KL masses and take their
ratio. Since the difference between these values is very small, we take mKS ≈ mK0 and
mKL ≈ mK0 + (mKL −mKS). A small inconvenience for this computation is the fact that
GΓ(KS → ππ) and GΓ(KL → ππ) must be different to account for the considerable dif-
ference in the magnitudes of Γ(KS → ππ) and Γ(KL → ππ). This may be remedied by
considering a rescaled CPv parameter η′, given by

η = βη′, β = GΓ(KL → ππ)
GΓ(KS → ππ) . (3.16)

The numerical results for |η′|2− 1, as well as a plot of an approximation of it obtained
from the singular parts of eq. (3.12) (see appendix A for more details), can be found in
figure 3. While they point to a variation of |η|2 with increasing acceleration, which implies
that CPv is sensitive to non-inertial effects, it is a decrease — which indicates that the
contribution of these kaon decays to CPv is smaller at very high acceleration scales — of
the order of 10−13|η|2 (currently impossible to detect, even at extremely high accelerations,
given that the experimental uncertainty for η is of at least 0.4%). The tiny fluctuations of
the numerical data at small acceleration scales can be attributed to errors in the numerical
calculation of the integral for the decay rate.
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Figure 3. Numerical results for |η′|2 − 1 as a function of the acceleration a and plot of an approx-
imation obtained from singular integrals.

Further investigation of the behavior of η′ using the singular parts of the decay rate
integrals leads to an interesting relationship between the amplitude of the variation of η′

and the value of the relative mass difference between the two species modeled by the field Φ.
As an example of the kind of physics this would entail, consider, in place of KS and KL,
two species Φ(1) and Φ(2) with masses (in units of mK0) M1 = 1 + (M1 −M2) > 1 and
M2 = 1, respectively. Using the singular integral approximation mentioned above, the
computation of

η′ =
GΓ
(
Φ(2) → φ

(2)
1 φ

(2)
2
)

GΓ
(
Φ(1) → φ

(1)
1 φ

(1)
2
) Γ
(
Φ(1) → φ

(1)
1 φ

(1)
2
)

Γ
(
Φ(2) → φ

(2)
1 φ

(2)
2
) , (3.17)

where φ(j)
i are scalar fields of mass m = mπ0/mK0 , for different values of M1 −M2 yields

the results show in figure 4. They indicate a roughly linear relation between the mass
difference and the amplitude of the fluctuation of |η′|2 − 1, from which one may infer that
the scale of the effect is given by the relative mass difference (M1−M2)/M2 (or, in the case
of the kaon decays, (mKL − mKS)/mK0). It seems reasonable to infer that for a species
with M1 < M2 there should be an increase in the magnitude of η, still proportional to
the mass difference M2 − M1. This is the case for KS → 3π processes, which are also
CP -violating [6], though a model for decays of this kind would be slightly different. The
nature of the results on the KS → 3π channel is, nevertheless, expected to be the same
as for the KL → 2π channel (see [10] for a comparison of computations using the method
discussed above for different models).

4 Cosmological effects

An intimate relationship between non-inertial and cosmological effects exists in QFTCS: the
presence of an event horizon is correlated to the existence of non-Hilbert-Schmidt Bogoli-
ubov transformations, i.e., QFT constructions that are not unitarily equivalent, which man-
ifest themselves as correspondences between vacuum and thermal (KMS) states (see [25]
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(c) M1-M2=10-4

Figure 4. Plot of |η′|2 − 1 for different values of the mass difference: (a) 10−10mK0 , (b) 10−7mK0

and (c) 10−4mK0 .

for an overview). This is the case for the aforementioned Unruh effect, the well known
Hawking effect for black holes [13] and the Gibbons-Hawking effect in de Sitter space-
time [14], all of which present Killing horizons. A similar effect is that of particle creation
in expanding universes, first described by Parker in [15, 16], which predicts a thermal sig-
nature for particles created by the expansion of a Friedmann-Lemaître-Robertson-Walker
(FLRW) universe. This section seeks to draw parallels between these effects and to encour-
age further research on the impact of phenomena stemming from QFTCS on other areas of
physics by discussing the extension of the predictions of section 3 to cosmological settings.

A direct connection between the Unruh effect and the Gibbons-Hawking effect is estab-
lished by noting that both are due to the presence of a Killing horizon. The Killing fields
generating these horizons are the Lorentz boost generators for the Unruh effect and boost-
like generators for the Gibbons-Hawking effect (in fact, these vector fields can be lifted
to Lorentz boost generators on a 5-dimensional Minkowski spacetime where the de Sitter
spacetime can be embedded). The surface gravity κ of these horizons is related to the
temperature of the KMS state by

T = κ

2π , (4.1)

with κ = a for the Unruh effect and κ =
√

Λ/3 for the Gibbons-Hawking effect, where Λ is
the cosmological constant. One may then wonder if CP -violating processes in de Sitter
spacetime would behave like those of accelerated particles: would an observer also mea-
sure the difference in the behaviour of the observables discussed above when compared
to measurements by an inertial observer in Minkowski spacetime? This seems reasonable
(so long as a =

√
Λ/3), given that both the accelerated observer in Minkowski spacetime

and the observer in de Sitter spacetime perceive KMS states of the same temperature. A
computation of decay rates of particles in a thermal bath is discussed in [26, 27], as is the
relationship between it and the results obtained in [11, 12], which firmly establishes the
complementarity of the non-inertial and thermal effects.

With respect to particle creation in expanding universes (i.e., in FLRW universes), the
connection is more tenuous: though there exists a kind of horizon in solutions in this class,
it is not (in general) a Killing horizon but a particle horizon. Nevertheless, the prediction

– 10 –
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of QFTCS is that the expansion leads to particle creation at a temperature

T ≈ 1√
2π

S1
S(t) , (4.2)

where S(t) is the scale factor and S1 is some lower bound for the scale factor (see [16]
for more details). This allows one to draw the same conclusion as above (so long as
a ≈

√
2πS1/S). More realistic cosmological models, such as the ΛCDM model, present

both particle and event horizons (the latter being closely related to the de Sitter event
horizon, given the presence of the cosmological constant), leading to a combination of
effects, though the Gibbons-Hawking component is very small for our Universe, since
Λ = 7.15(19)× 10−121 [28] (compare to a2

TPL ≈ 10−60).
In the context of the thermal history of the Universe, kaons freeze-out near the

QCD crossover, at a temperature TQCD ≈ 155 MeV/kB [29], the moment at which the
CP -violating processes discussed above are expected to contribute to the observed matter-
antimatter asymmetry. Inverting the expression for the Unruh temperature allows the de-
termination of the acceleration scale corresponding to the crossover temperature,
aQCD = 2πTQCD ≈ 2mK0 . Figure 3 then allows us to infer that, at the crossover, η would
be near to its lowest value, implying a lower amplitude of CPv when compared to current
values and diminished matter-antimatter asymmetry.

5 Conclusions

The model introduced above for theK → 2π decays allows for the computation of the decay
rate over accelerated trajectories, corroborating the results of ref. [10]. The subsequent
analysis of the behaviour of the CPv parameter η leads to the conclusion that its squared
magnitude |η|2 decreases very slightly with increasing acceleration (around three parts in
1014 for an acceleration a ≈ 2mK0 ≈ 4× 1032 m/s2). We have shown that the amplitude of
the decrease is proportional to the mass difference between the weak eigenstates (for the
kaons, (mKL −mKL)/mK0 ≈ 10−14).

The discussion on the relationship between the Unruh effect, the Gibbons-Hawking
effect and the phenomenon of particle creation in accelerating universes led to the argu-
ment that, given the complementarity between non-inertial and thermal effects, a similar
conclusion may hold for fields in de Sitter and FLRW universes (though the proper com-
putations still need to be executed to fully justify this affirmation): CPv contributions of
this nature are smaller at higher temperatures in these spacetimes.

Further research on the connection between the results presented in this work and
those on the thermal dependence of CPv in the quark sector is in progress. A decrease in
the effectiveness of CP -violating processes in this sector with increasing temperature has
been shown in [30], but the relation between it and our result is not immediately clear.
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A Numerical treatment of the decay rate

In this appendix, the numerical treatment of the decay rate, eq. (3.12), is presented. The
integral appearing in this expression is

I =
∫ ∞
−∞

du ei2Mu/a

{
H

(2)
1 [2m sinh(u)/a]

}2

sinh2(u)
. (A.1)

It is difficult to tackle this expression analytically, so the numerical approach is favored.
Problems in the implementation of the numerical methods appear due to singularities in
this expression, which means that the singular parts of the integral must be separated into
an integral I0 and treated analytically, so that I can be computed as

I = (I − I0)︸ ︷︷ ︸
treated

numerically

+ I0︸︷︷︸
treated

analytically

. (A.2)

The singular part of I can be determined using the power series of the Bessel functions
of first and second kind, J1 and Y1, given in equations 10.2.2 and 10.8.1 of ref. [31], up to
third order to determine the singular parts of the Hankel function of second kind H(2)

1 :

H
(2)
1 (z) = J1(z)− iY1(z)

= 2i
πz
− 3iz3

32π +
(
z − z3

8

){1
2 −

i

π

[
ln
(z

2
)
− 1

2 + γ

]}
+O(z4),

(A.3)

where γ is the Euler-Mascheroni constant. Since this function appears squared in the
expression for the decay rate and also involves a division by a second order polynomial on
the argument of function, 2m sinh(u)/a, the following expression is computed:[

H
(2)
1 (2mz/a)

]2
z2 = 2

[
i

π
+ 2
π2

(
γ − 1

2

)] 1
z2 −

a2

π2m2
1
z4 + 4

π2
1
z2 ln

(
m

a
z

)
+ 2m2

π2a2 (1− 4γ − 2iπ) ln
(m
a
z
)
− 4m2

π2a2 ln2
(
m

a
z

)
+O(1).

(A.4)

The integral I0 of the singular parts is then given by

I0 =
5∑
j=1
Ij , (A.5)

where

I1 := − a2

π2m2

∫ ∞
−∞

du ei2Mu/a

sinh4(u)
, (A.6a)

I2 := 2
[
i

π
+ 2
π2

(
γ − 1

2

)] ∫ ∞
−∞

du ei2Mu/a

sinh2(u)
, (A.6b)

I3 := 4
π2

∫ ∞
−∞

du ei2Mu/a

sinh2(u)
ln
(
m

a
sinh(u)

)
, (A.6c)

I4 := 2m2

π2a2 (1− 4γ − 2iπ)
∫ ∞
−∞

du ei2Mu/a ln
(
m

a
sinh(u)

)
, (A.6d)

I5 := − 4m2

π2a2

∫ ∞
−∞

du ei2Mu/a ln2
(
m

a
sinh(u)

)
. (A.6e)
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The integrals I1 and I2 can be calculated using the residue theorem,

I1 ∝
8πM
3a3

a2 +M2

1− e−2πM/a
, (A.7)

I2 ∝ −
4πM
a

1
1− e−2πM/a

. (A.8)

Of note is that the contributions of I1 and I2 to the decay rate correspond to the decay
rates of the processes Ψ→ ψ1ψ2 and Ψ→ ψ1 respectively, where Ψ is a massive scalar field
and ψ1 and ψ2 are massless scalar fields, since the Wightman function of a massless scalar
field over an accelerated trajectory is proportional to 1/ sinh2(u) (see [10] for an explicit
calculation involving massless fields). The integrals I4 and I5 can be approximated by
integrals I ′4 and I ′5 with similar singularity structures,

I ′4 = 2m2

π2a2 (1− 4γ − 2iπ)
∫ ∞
−∞

du e−2M |u|/a ln
(
m

a
|u|
)

= − 2m2

π2aM
(1− 4γ − 2iπ)

[
γ + ln

(2M
m

)]
,

(A.9)

I ′5 = − 4m2

π2a2

∫ ∞
−∞

du e−2M |u|/a
[
ln2
(
m

a
|u|
)

+ 2iπθ(−u) ln
(
m

a
|u|
)]

= − 4m2

π2aM

{
π2

6 +
[
γ + ln

(2M
m

)]2
− iπ

[
γ + ln

(2M
m

)]}
.

(A.10)

Solving these integrals makes use of the parity of the integrands and equations 4.331-1
and 4.335-1 of ref. [32].

Computing I3 can be achieved using the following identity for the logarithm,

ln(z) = lim
w→0

zw − 1
w

. (A.11)

Then,

I3 = 4
π2

∫ ∞
−∞

du ei2Mu/a ln
(
m

a
sinh(u)

)[ 1
u2 −

1
3 +O(u)

]
. (A.12)

This implies that I3 can be approximated by two other integrals, as in eqs. (A.9) and (A.10),

I ′3 = 4
π2

∫ ∞
−∞

du e
i2Mu/a

u2 ln
(
m

a
u

)
, (A.13)

I ′′3 = − 4
3π2

∫ ∞
−∞

du e−2M |u|/a ln
(
m

a
u

)
. (A.14)

The solution for the integral I ′′3 follows directly from eq. (A.9),

I ′′3 = 4a
3π2M

[
γ + ln

(2M
m

)]
, (A.15)

while the one for I ′3 requires the use of eq. (A.11):

I ′3 = 4
π2

∫ ∞
−∞

du e
i2Mu/a

u2 ln
(
m

a
u

)
∝ lim

w→0

∫ ∞
−∞

du e
i2Mu/a

u2
(mu/a)w − 1

w

∝ lim
w→0

(−i)w−2

w

(
m

a

)w ∫ ∞
−∞

du ei2Mu/a(iu)w−2 − lim
w→0

(−i)−2

w

∫ ∞
−∞

du e
i2Mu/a

(iu)2 .

(A.16)
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The solutions to the integrals appearing above can be found in equations 3.382-6 and
3.382-7 of ref. [32]. Therefore,

I ′3 ∝ − lim
w→0

1
w

(
− im
a

)w (2M
a

)1−w 2π
Γ (2− w) + lim

w→0

1
w

2M
a

2π
Γ (2)

∝ −4πM
a

lim
w→0

1
w

(
− im

2M

)w
[1 + (1− γ)w] + lim

w→0

1
w

4πM
a

∝ −4πM
a

lim
w→0

{ 1
w

[(
− im

2M

)w
− 1

]
+
(−im

2M

)w
(1− γ)

}
∝ −4πM

a

[
ln
(
− im

2M

)
+ 1− γ

]
= −4πM

a

[
ln
(
m

2M

)
− iπ

2 + 1− γ
]
,

(A.17)

where it was used that 1/Γ(2− w) = 1 + (1− γ)w.
The strategy introduced at the beginning of this appendix can now be executed, but

the singular integral I0 must be substituted by

I ′0 =
2∑
j=1
Ij +

5∑
j=3
I ′j + I ′′3 , (A.18)

where

I1 = − 8M
3πam2

a2 +M2

1− e−2πM/a
, (A.19a)

I2 = −8πM
a

[
i

π
+ 2
π2

(
γ − 1

2

)] 1
1− e−2πM/a

, (A.19b)

I ′3 = −16M
πa

[
ln
(
m

2M

)
− iπ

2 + 1− γ
]
, (A.19c)

I ′4 = − 2m2

π2aM
(1− 4γ − 2iπ)

[
γ + ln

(2M
m

)]
, (A.19d)

I ′5 = − 4m2

π2aM

{
π2

6 +
[
γ + ln

(2M
m

)]2
− iπ

[
γ + ln

(2M
m

)]}
, (A.19e)

I ′′3 = 4a
3π2M

[
γ + ln

(2M
m

)]
, (A.19f)

so that I can be computed as

I = (I − I ′0)︸ ︷︷ ︸
treated

numerically

+ I ′0︸︷︷︸
treated

analytically

. (A.20)

The integral (I − I ′0) is highly oscillatory with a rapidly decaying integrand, requiring
special techniques to be used in its computation. The dominant contribution to Γ comes
from I ′0, especially for high values of a (see eq. (A.4)). The results also present very small
imaginary parts (at their largest, 2 orders of magnitude smaller than their real parts) that
can be attributed to numerical errors.
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