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1 Introduction and summary

1.1 Weak and strong SUSY breaking in the landscape

Explicitly realizing de Sitter vacua in string theory is a long-standing challenge. The most
popular approaches [1, 2] start with an AdS solution with stabilized moduli and promote it
to a de Sitter vacuum by a so-called ‘uplift’. In 4d supergravity language, such effects are
classified as F -term or D-term uplifts (see e.g. [3–18] and [19–25] respectively). All known
models share a certain degree of complexity, which has lead to fundamental criticism [26]
and the proposal of corresponding no-go theorems [27–29]. If string theory really has a prob-
lem with de Sitter, one may wonder whether the SUSY-breaking uplift is its true source.

In particular, the anti-D3-brane uplift of KKLT [1] tends to be uncomfortably high
compared to the depth of the underlying AdS vacuum [30]. It has been argued that a
potentially fatal ‘singular-bulk problem’ results [31].1 Combining these observations with
a possible general unease about SUSY-breaking uplifts, one might suspect more concretely
that parametrically small SUSY breaking is problematic in string theory compactifications.
In this work, we will try to construct such small uplifts using the tuning power of the
complex-structure landscape.

1We do not enter the interesting debate about the 10d description of KKLT (see e.g. [30, 32–37]) since
we believe that this is not going to invalidate the construction. We also note but do not discuss further the
recently considered issues of throat-instabilities [38–40] and tadpole constraints [41] (see however [42]). Yet
another line of attack is [43].
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Before describing our approach, let us briefly consider existing and suggest some further
Swampland constraints relevant in this context. First, the non-SUSY AdS conjecture
states that no stable non-supersymmetric (4d) AdS exists in string theory [44, 45]. This is
interesting for us since a small SUSY-breaking uplift on the basis of a SUSY AdS vacuum
might provide a counterexample.

A logically possible, much stronger conjecture would be one forbidding metastable non-
SUSY AdS.2 One may call this ‘Absolute non-SUSY AdS Conjecture’. In such a strong
formulation this conjecture is in conflict with the constructions of [46, 48–51].3 It then
remains an interesting question whether some softened form of such a conjecture has a
chance of being true. Most naively, one may think of flux compactifications where AdS
and KK scale coincide, RAdS ∼ RKK. If SUSY is broken by the compactification, one
additionally expects M���SUSY ∼ R−1

KK. It may then turn out to be difficult or impossible to
escape the prediction that SUSY-breaking and AdS scale are related.4

Concretely, one might expect that metastable non-SUSY AdS with M���SUSY � R−1
AdS

is forbidden. Let us call this the ‘Strong-SUSY-Breaking Conjecture’. If this conjecture
were false and the Swampland dS conjecture true, then a natural place for observers like us
to find themselves in would be universes with a small negative cosmological constant. In
other words, the ‘Strong-SUSY-Breaking Conjecture’ removes an anthropically interesting
part of the multiverse.5

By contrast, one can also consider a conjecture stating that metastable non-SUSY
AdS with M���SUSY � R−1

AdS is forbidden. This could be called the ‘Weak-SUSY-Breaking
Conjecture’. It is motivated by the difficulty, mentioned above, to make the anti-D3-uplift
of KKLT as small as desired. We will see below that our proposal applied to the DGKT
vacuum [57] may provide a counterexample to the latter (‘Weak’) but not to the former
(‘Strong’) SUSY-Breaking Conjecture.

Clearly, all of the above is strongly affected if one takes the existence of the LVS AdS
vacuum for a fact, even if this vacuum were only metastable. The ‘Strong-SUSY-Breaking
Conjecture’ then immediately falls and it is likely that, through an appropriate uplift (for
example the one proposed in this paper), the dS conjecture also fails. If the Winding Uplift
we suggest turns out not to work, the ‘Weak-SUSY-Breaking Conjecture’ may coexist with
LVS AdS vacua.

We also note that a conjecture against the separation of KK and AdS scale [58] (see
also [33]) would, if true, change much of the discussion above. We dismiss this for the
purpose of this paper, expecting the KKLT AdS vacuum with the standard fine tuning of
W0 [59] (or its specific realization in [60]) to provide a counterexample.

2By metastable we mean that the local decay rate satisfies Γ � R−1
AdS. In spite of the fact that global

metastable AdS decays instantaneously [46, 47], a patch of such a metastable AdS might nevertheless exist,
e.g. as a cosmologically created bubble.

3The recent discussions of [50, 51] (based on [52]) suggest that their solutions are stable. However, it is
not clear to us to which extent non-perturbative instabilities can be excluded.

4We should remind the reader of the possibility of meta-stable AdS compactifications of non-SUSY
string theories (the super-critical or the O(16)2 heterotic string, see e.g. [53–55] and refs. therein). If such
a compactification can be realized and if the AdS and string scale can be parametrically separated, our
motivation for M���SUSY ∼ R−1

KK fails.
5While our world appears not to belong to this part, even this is not entirely certain [56].
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1.2 Weak SUSY breaking from a winding uplift

Let us now turn to the description of our technical work. We follow the original proposal
by Saltman and Silverstein [3] to realize an uplift by finding metastable local minima
in the complex-structure scalar potential. We will use the tuning-power of the complex-
structure-based flux landscape to ensure that the corresponding F -term is small and the
SUSY breaking is controlled. Our method of choice are the multi-cosine-shaped axion
potentials, in the spirit of [61]. Specifically, several cosine terms are superimposed if a long
winding trajectory of a ‘complex-structure axion’ appears in the large-complex-structure
limit of a Calabi-Yau orientifold. This has been studied in the inflationary context as
‘Winding Inflation’ [62] (see also [63–66]), but the potential of this method for realizing
weak SUSY breaking with long lifetimes has not been analyzed in detail. We will comment
on the technically related uplifting suggestions of [67–69] in a moment.

We consider type-IIB CY orientifold compactifications with the complex structure
moduli u and v at large-complex-structure, i.e. Im u , Im v � 1. In this limit, the Kähler
potential does not depend on Re u and Re v, such that a shift symmetry arises. It is only
broken by the flux superpotential. We may choose fluxes M and N in such a way that only
the linear combination Mu + Nv appears in the superpotential. As a result, one linear
combination of Re u and Re v is left unstabilized. We parameterize this direction in field
space by ϕ ≡ Re v.

The leading corrections to the large-complex-structure expressions for Kähler and su-
perpotential are of the form exp(iu) and exp(iv). Both terms depend on the unstabi-
lized axion ϕ and their magnitude is governed by the stabilized values of the saxions:
exp(iu) ∝ exp(−Imu0 − iN/M ϕ) and exp(iv) ∝ exp(−Im v0 + iϕ). We may tune the sax-
ion values Im u0 and Im v0 in such a way that the two terms are comparable, suppressed by
an expansion parameter ε ≡ exp(−Imu0) ∼ exp(−Im v0)� 1. Their relative magnitude is
then measured by a parameter α ∝ exp(Imu0 − Im v0) = O(1).

The resulting F -term scalar potential of the axion is, schematically, of the simple form

V (ϕ) = gs
V2 ε

2 [cos(ϕ)− α cos(N/M ϕ)]2 . (1.1)

Here, we introduced the string coupling gs and the CY volume V as they usually appear
in an F -term potential. Without loss of generality, we assume M/N < 1. In the regime
M2/N2 . α . 1, the F -term potential develops non-trivial local minima, e.g. at some
ϕ = ϕ∗ (cf. figure 1). The value of the potential at the minimum takes the form V (ϕ∗) ∼
gsε

2γ2/V2, where for ϕ∗ = 0 we define γ ≡ 1 − α. This can be tuned small if, as we will
discuss in the paper, α is scanned sufficiently finely in the landscape such that γ � 1
can be realized. The height of the potential barrier separating the metastable from the
global minimum is Vwall ∼ gsε2/V2. This remains sizable even at very small γ. Hence, the
uplifting height ∆V and the height of the barrier Vwall can be separated parametrically.

Let us turn to possible applications of the mechanism just described in concrete set-
tings: it is straightforward to apply it in the large volume scenario. Tuning the value of
εγ against the value of the LVS AdS cosmological constant, one may consistently uplift
the vacuum to de Sitter. By contrast, uplifting a KKLT SUSY-AdS vacuum using the
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Vwall

−π/2 0 π/2
∆V

V (ϕ)

ϕ

Figure 1. The axion potential (1.1) for N/M = 3. There is a minimum at ϕ∗ = 0 with ∆V ≡
V (0) ∝ gsε

2γ2/V2, γ � 1, while the potential scales as gsε
2/V2 in general.

minimal setup just discussed is problematic. The difficulties one encounters are related
to the smallness of the superpotential W0, which is required for 10d supergravity control
in KKLT. This smallness spoils the stabilization of the saxions as discussed above. The
situation is not hopeless if one goes to the boundary of parametric control or involves more
than two axions, but we have to leave a detailed study to future work. Finally, we consider
supersymmetric AdS vacua in type IIA as studied by DGKT [57]. This setting natu-
rally gives rise to unstabilized axions in an otherwise fully supersymmetrically stabilized
background. Only a single linear combination of RR axions is fixed. The superpotential
resulting from non-perturbative corrections directly realizes our winding scenario with mul-
tiple axions [70]. We expect there is in general enough tuning power in this setting to find
low-lying local minima protected by parametrically high barriers. While these uplifts are
necessarily small, they may provide a way to turn DGKT solutions into stable non-SUSY
AdS vacua.

Before closing our introduction, let us comment in more detail on earlier related work.
First, we note that ‘instantonic’ terms have been used in various approaches to constructing
de Sitter vacua, e.g., in racetrack or STU models [71–78]. In some cases, these are one-step
constructions, without the separation in AdS stabilization and uplift. A distinguishing
feature of our approach is the complex-structure origin of the instantonic uplifting effect.
This may allow a fully explicit implementation of our scenario, along the lines of the
approach of [60] to constructing a small superpotential from the interplay of instantonic
terms. We also note that combining a periodic and a linear potential for a complex-
structure axion was suggested as an uplifting mechanism in [67]. Moreover, the interplay
of different periodic terms in axion potentials has recently been discussed in other contexts:
the ‘drifting monodromies’ scenario in compactifications involving multi-throat systems [68]
gives rise to a superpotential of the same form as we use in this work. There, the particular
no-scale form of the Kähler potential prevents a direct application to uplifting.6 A closely
related but slightly more speculative uplifting idea nevertheless arises in the setting of [68].
The authors of [69] give a pure IR argument on how the QCD pion potential at general

6Due to the no-scale structure only the holomorphic part of the F -term enters the scalar potential.
This leads to the same issues of implementing our mechanism as will be discussed in section 3.2. No-scale
breaking effects may resolve this problem.
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θ-angle generates a multi-cosine-shaped scalar potential which possesses non-zero minima.
They discuss how this may naturally uplift the IR theory.

Our paper is organized as follows. Section 2 presents the SUSY-breaking mechanism
just discussed in detail, including a short introduction to the winding idea, a discussion
of all relevant sub-leading corrections and an analysis of the axion potential induced. We
describe how this may be used to uplift AdS vacua of various origins (LVS, KKLT and
DGKT) in section 3. Finally, we conclude in section 4.

2 The uplifting potential

2.1 Winding setup

Let us briefly introduce the winding scenario of [62]. It is formulated in a region of moduli
space where two distinguished complex structure moduli u and v are ‘at large complex
structure’: Im u, Im v � 1. The Kähler potential is then approximately independent of
Reu and Re v, leading to a shift symmetry. Such approximate complex-structure shift
symmetries have been studied in the inflationary context in many papers, see e.g. [79–87].

In the winding scenario, this shift symmetry is broken by the flux superpotential in
such a way that a single axion-like field emerges. This field corresponds to a long, winding
trajectory on the torus parameterized by (Reu ,Re v). Concretely, a flux choice is made
such that the complex-structure superpotential and the full Kähler potential take the form

Wcs = W̃0(z) + f(z)(Mu+Nv) +Wsub(z, u, v) ,
K = KV − ln(k(z, z, Imu, Im v)) +Ksub(z, z, u, u, v, v) .

(2.1)

Here, KV is the Kähler moduli Kähler potential. The variable z represents the axio-dilaton
together with all complex structure moduli, except for u and v. Correspondingly, − ln(k)
is the sum of axio-dilaton and complex-structure Kähler potential.7 The expressions Wsub
and Ksub stand for terms that are sub-leading w.r.t.

W0(z, u, v) ≡ W̃0(z) + f(z)(Mu+Nv) , (2.2)

and
K0 ≡ KV − ln(k) . (2.3)

These sub-leading terms are suppressed by factors exp(iu) or exp(iv) and arise as correc-
tions to the periods

∫
Ω of the large-complex-structure geometry. We will specify these

sub-leading terms in section 2.2. Crucially, by our flux choice u and v appear in W0 only
in the linear combination Mu+Nv, where M and N are integer flux numbers. Note that
we do not require large hierarchies in fluxes as will become clear later. Thereby, we avoid
any potential issues arising in winding scenarios with large flux hierarchies [70, 87].

7To be more explicit about the axio-dilaton τ , one could replace {z} → {τ, z}, such that

− ln(k(z, z, Imu, Im v)) → − ln(−2 Im τ)− ln
(
k̃(z, z, Imu, Im v)

)
.
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To analyze the leading-order F -terms F0,i ≡ (∂i +K0,i)W0, it is convenient to change
variables from u, v to

ψ ≡Mu+Nv , φ ≡ v . (2.4)

The F -term conditions then read

F0,z = (∂zK0)W0 + ∂zW̃0 + (∂zf)ψ = 0 ,
F0,ψ = (∂ψK0)W0 + f = 0 ,
F0,φ = (∂φK0)W0 = 0 .

(2.5)

While the equations for z and ψ are in general complex, the equation for φ is real (up to
an overall phase). The SUSY conditions F0,i = 0 therefore fix

z = z0 , ψ = ψ0 , Imφ = Imφ0 (2.6)

while Reφ remains unstabilized. As a result, the imaginary parts of the original fields u
and v are also fixed,

Imu = Imu0 , Im v = Im v0 , (2.7)

while only one linear combination of their real parts is stabilized. It will prove convenient
to redefine the fields z, ψ and φ according to

z → z0 + z , ψ → ψ0 + ψ , φ → φ0 + φ , (2.8)

such that z = ψ = Imφ = 0 in the leading-order vacuum. (We set Re φ0 ≡ 0, that is
we do not shift the unstabilized field.) Since we do not apply this shift to u and v, the
relations (2.4) must be appropriately corrected:

ψ ≡Mu+Nv − ψ0 , φ ≡ v − φ0 . (2.9)

2.2 Sub-leading terms

Sub-leading terms stabilize Re φ and correct the vacuum values of the other fields. For the
complex-structure superpotential, we have [88]8

Wcs = W0 +Wsub = W0(z, u, v) +A(z)eiu +B(z)eiv + . . . (2.10)

= W0(z, ψ) +A(z)e−Imu0eiReψ0/Mei(ψ−Nφ)/M +B(z)e−Im v0eiφ + . . . (2.11)

= W0(z, ψ) + ε
[
A(z, ψ, Imφ) e−iNϕ/M + B(z, Imφ) eiϕ

]
+O(ε2) , (2.12)

where
ε ≡ e−Imu0 and ϕ ≡ Reφ . (2.13)

8In fact, the underlying structure of corrections to the large-complex-structure expressions for periods
holds both in the 3-fold and the 4-fold case. Thus, our discussion immediately applies to the more general
F-theory setting. Note that prefactors like A(z) may be viewed as arising from a full resummation of terms
suppressed by exp(inz), n ∈ N.
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In (2.11), we have simply applied the field definitions from (2.9). Then, in (2.12), we have
absorbed all factors depending on fields that are stabilized in leading order in the two
coefficients

A(z, ψ, Imφ) = A(z)eiReψ0/Meiψ/M+NImφ/M ,

B(z, Imφ) = B(z)eImu0−Im v0e−Imφ .
(2.14)

As a result, our expression for Wsub in (2.12) is manifestly a sum of two exponentials with
different periodicities in the light axionic variable ϕ. While this is now somewhat hidden,
Wsub of course remains holomorphic in φ.

The large complex structure regime implies ε � 1. Furthermore, we assume that by
landscape-tuning

Imu0 ' Im v0 or |B(0)/A(0)| ∝ eImu0−Im v0 = O(1) , (2.15)

such that the two sub-leading terms in (2.12) are comparable. We will specify the required
O(1)-ratio more precisely below.

We also add the relevant corrections to the Kähler potential:

K = K0 +Ksub = K0(z, z, Imu, Im v) +Ksub(z, z, φ, φ, ψ, ψ) ,

Ksub =
(
Ã(z, z, Imu, Im v)eiu + B̃(z, z, Imu, Im v)eiv + c.c.

)
+ . . .

= ε
[
Ã(z, z,Reψ, Imψ, Imφ) e−iNϕ/M

+B̃(z, z, Imψ, Imφ) eiϕ + c.c.
]

+O(ε2) .

(2.16)

Here Ã and B̃ are defined similarly to A and B. Note that our treatment of Ksub as a
sub-leading correction relies on the fact that the prefactors Ã and B̃ depend on Imu and
Im v only polynomially [88].

2.3 The axion potential

We now turn to the scalar potential induced by the sub-leading terms. Our analysis of the
back-reaction on the leading-order solution simplifies the discussion presented in [62]. This
will be useful for the generalization to small W0 required later on.

It will be convenient for the moment to include φ and ψ in the set of complex structure
moduli denoted by zi, i = 1, . . . , n. So the index ‘i’ now runs over all complex structure
moduli and the axio-dilaton. We also shift all fields such that the leading-order vacuum is
at zi = 0 for all i.

Using the no-scale structure of the Kähler sector, the scalar potential takes the form9

V = eKKiFiF  , (2.17)
9To be precise, for this simple expression to be correct the 2-form-axion superfields (associated with

non-zero h1,1
− ) have to be set to zero. In general, these fields appear in the Kähler moduli Kähler potential

in combination with the axio-dilaton, which is one of our zi. For non-zero 2-form axions, this affects the
relevant Fi. Eventually, the potential is nevertheless independent of these 2-form axions because of their
shift symmetry and an associated special no-scale cancellation [89, 90].

– 7 –
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where at zeroth order in ε we have F0,i = 0 at zi = 0 (2.5). At linear order in ε, Fi receives
a correction δFi coming both from corrections to K and W :

δFi = ∂iK0Wsub + ∂iKsubW0 + ∂iWsub . (2.18)

But it would be too naive to simply replace Fi in (2.17) by δFi. The reason is that the zi

back-react. This back-reaction is small, zi ∼ ε, since δFi ∼ ε. We may thus Taylor expand
in zi and evaluate (2.17) with the replacement

Fi −→ Fijz
j + Fiz

 + δFi . (2.19)

Here, Fij = ∂F0,i/∂z
j and similarly for Fi. Since we are only interested in calculating V at

the order ε2, the zi dependence of exp(K) and Ki in (2.17) may be disregarded. Moreover,
the dependence of the small quantities δFi on the small parameters zi is irrelevant since it
gives sub-leading terms in the ε-expansion.

In fact, the last statement comes with a crucial exception: namely, our light axion ϕ

is now simply the real part of one of the zi, and this field is not stabilized at leading order.
Hence, in contrast to what was assumed about the generic zi above, this particular field
excursions can take O(1) values. However, ϕ appears in δFi and only there. Thus, our
final result is (2.17) with the replacement (2.19) and the extra prescription that δFi should
be evaluated in full precision w.r.t. ϕ while keeping all other fields at their leading-order
vacuum value, zi = 0.

To proceed, let us view (2.17) as the length squared of the complex vector Fi. At the
expense of doubling the index range and appropriately redefining the metric, we may view
this as the length squared of a real vector:

V = Gabfafb with fa = kabx
b + δfa(x1) and zi = x2i−1 + ix2i . (2.20)

Here, we set x1 ≡ ϕ such that the vector ka1 vanishes by leading-order shift symmetry.
The index range is a, b = 1, . . . , 2n. The quantities Gab, fa, δfa and kab follow from (2.17)
and (2.19) by a simple rewriting in real and imaginary components.

Our potential as a function of x1 follows from (2.20) by integrating out x2, . . . , x2n,
which is straightforward: the first term in fa generically takes values in a (2n−1)-
dimensional subspace of the R2n in which fa and δfa live. This is a result of ka1 vanishing.
Let us call the unit vector orthogonal to that ‘allowed’ subspace êa. In this we use the
inner product defined by Gab. The vector fa can now be decomposed as the sum of its
projection on êa and its orthogonal projection. The potential is the sum of the squares of
these two vectors:

V = |Pê(f)|2 + |P⊥ê(f)|2 . (2.21)

When minimizing in x2, . . . , x2n at fixed x1 the vector kabxb will take the value − (P⊥ê(δf))a
such that the second term in (2.21) vanishes. By contrast, the êa-subspace is not accessible
to kabxb, so one is simply left with the square of the projection of δfa on that subspace:

V = |Pê(f)|2 = |Pê(δf)|2 =
(
êa δfa(x1)

)2
. (2.22)
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The elements of êa = Gabêb may be calculated in terms of the vacuum values of K0 andW0.
Given the form of δFi in (2.18), we see that the expression for the potential only contains
sine and cosine terms in ϕ with periodicity 2π and 2πM/N as inherited from the complex
exponentials in Wsub and Ksub. We may hence choose to parameterize the potential as

V (ϕ) = eK0 κ ε2 [cos(ϕ+ δ1)− α cos(Nϕ/M + δ2)]2 . (2.23)

Here κ and α are generically O(1) coefficients and δ1,2 are phases arising in the transition
from the complex to the real parameterization.10 It will be crucial that all the above
coefficients and in particular α are tunable if a dense discretuum of vacua on the space
parameterized by the zi exists. For example, α can be tuned using the ratio of exponentials
of u0 and v0 in (2.15).

Finally, we express the Kähler potential K0 through string coupling gs and CY volume
V. Absorbing numerical as well as τ -independent terms in k(0) in the prefactor κ, we
arrive at

V (ϕ) = gs
V2 κ ε

2
[
cos(ϕ+ δ1)− α cos

(
N

M
ϕ+ δ2

)]2
. (2.24)

Without loss of generality we assume a flux ratio N/M > 1.
To see that this potential possesses non-zero, local minima for tuned values of α and δi,

we consider the tuning δ1 = δ2 = 0. One easily finds that the potential has an extremum
at ϕ = 0 with

V (0) = gs
V2 κ ε

2 γ2 , V ′′(0) = 2 gs
V2 κ ε

2 γ

[
N2

M2α− 1
]
. (2.25)

Here we have defined γ ≡ (1− α). The extremum is a minimum for 1 > α > M2/N2 and
we may tune its potential value to be small by choosing γ � 1, see figure 2. While also
the second derivative becomes small, it goes to zero much more slowly: only linearly in γ.

The decay constant and mass of ϕ are given by

f2
ϕ = Kφφ = O(1) ,

m2
ϕ = V ′′(0)/f2

ϕ = O(1) gs
V2 ε

2 γ

[
N2

M2α− 1
]
.

(2.26)

Here we disregard the fact that, strictly speaking, Kφφ is parametrically small by being
suppressed by some power of Im u0 = ln(1/ε). Such minor effects are not essential in
our context. Note that small flux ratios, N/M − 1 � 1, suppress the mass of ϕ. For
γ � N2/M2 − 1 the potential well around the minimum remains deep however.

It is clear that an imperfect tuning, δi ' 0, will not endanger our ability to adjust α
and still realize a positive minimum at parametrically small potential value. There will

10To be precise, the perturbations δFi(ϕ) in complex notation contain periodic terms ∝ e−iNϕ/M with
coefficients ∂ziK0A, iNA/M , ∂ziA,W0iNÃ/M andW0∂ziÃ as well as periodic terms ∝ eiϕ with coefficients
∂ziK0B, iB, ∂ziB, W0iB̃ and W0∂zi B̃. These coefficients are generically O(1) when we are in the regime
specified by (2.15). Due to the projection on ê, the final result also depends on further (second) derivative
terms of the leading-order Kähler and superpotential evaluated in zi = 0.
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Figure 2. The F -term ∝ [cos(ϕ) − α cos(3ϕ)] (upper panels) and corresponding scalar potential
V0[cos(ϕ)− α cos(3ϕ)]2 (lower panels) for α = 1.2 , 1 , 0.8 , 0.1 from left to right. By tuning α we
find local minima at arbitrarily small positive value (third column). If α becomes too small the
minima disappear (fourth column).

also be qualitatively distinct, deep minima for different values of δi. One could pursue their
analytic study, but this does not appear necessary at present. For what follows, we will
shift the field ϕ such that the non-zero minimum remains at ϕ = 0.

With this we have arrived at one of our main technical results: we have provided an
F -term uplift which, given enough tuning power in the complex structure landscape, can
be extremely small and, in particular, small relative to the barrier protecting it from decay
to supersymmetric minima.

Before closing this subsection and turning to generalizations and applications, let us
summarize what our tuning requirements are precisely: first, we need a flux choice realizing
the winding scenario, cf. the second term on the r.h. side of (2.2). For such a flux choice
to exist, certain conditions have to be met by the integers which define the periods in the
large complex structure limit (cf. eq. (6.6) of [88]). For example, terms of the type ziu and
ziv have to be present. The relevant integers are mostly the triple-intersection numbers
of the dual 3-fold. Second, the Kähler and superpotential have to be such that Im u and
Im v are stabilized at an appropriately large value (at large complex structure). One might
be concerned that this is a strong constraint since one linear combination of these moduli
does not appear in W , where most of the tuning power resides. We note however that
K = K(u − u, v − v, z), if viewed as a function of Im u and Im v, depends in detail on
the values at which all the variables zi are stabilized. Hence the function K(u− u, v − v)
can be tuned through tuning the vacuum values of the zi. We then expect to have the
full tuning power of the complex-structure landscape at our disposal. Third, we need to
tune the uplift potential, specifically the constants α and δ1,2 in (2.24). Explicitly writing
these constants in terms of K, W and their derivatives would be cumbersome, but we have
provided enough details above such that, in principle, such expressions can be derived for
any given model. As explained previously for the tuning of Im u and Im v, everything will
depend on whether the flux landscape, viewed as a discrete set of points in the zi-space, is
dense enough. The seminal analysis of [59] and subsequent work appear to support this.
Moreover, the very recent explicit analysis of [91] provides promising results concerning
specifically the setup discussed in the present paper.
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2.4 Winding in a multi-axion field space

We may generalize to situations where multiple complex structure moduli ui (i = 0, . . . ,m)
are in the large-complex-structure limit and appear in W only linearly at leading order. A
possible superpotential that can arise in this case is

W0(z, ui) = W̃0(z) + f(z)
(

m∑
i=0

Niu
i

)
. (2.27)

This is in fact similar to what happens generically in the type-IIA case to be discussed
below.

Now, defining

ψ ≡
m∑
i=0

Niu
i and φi ≡ ui for i = 1, . . . ,m , (2.28)

we find the leading-order F -term conditions

F0,ψ = (∂ψK0)W0 + f(z) = 0 , F0,φi = (∂φiK0)W0 = 0 . (2.29)

By the same reasoning as in section 2.1 all imaginary parts are stabilized, Im ui = Imui0.
By contrast, only one of the real parts is fixed, Reψ = Reψ0. The remaining m ax-
ions are massless at leading order. Shifting the fields ψ and φi as in (2.8), the corrected
superpotential takes the form

Wcs = W0 +A0 e
−Imu0

0 e
i

Reψ0
N0 e

−i
∑m

i=1

(
Ni
N0

φi
)

+
m∑
i=1

Aie
−Imui0 eiφ

i + . . .

≡W0 + ε

[
A0 e

−i
∑m

i=1

(
Ni
N0

ϕi
)

+
m∑
i=1
Ai eiϕ

i

]
+O(ε2) ,

(2.30)

with the Ai defined as in section 2.2. The Kähler potential is of a similar form. As long
as all coefficients e−Imui0 (i = 0, . . . ,m) are of the same order ε, the resulting F -terms
may be tuned to behave analogously to figure 2. Of course, this now occurs over a higher-
dimensional field space.

Another, maybe more interesting generalization arises if the superpotential of (2.27)
involves different z-dependent prefactors [87]. We illustrate this using the 3-axion case by
assuming a superpotential of the form

W0(z, ui) = W̃0(z) + f(z)
( 3∑
i=1

Miu
i

)
+ g(z)

( 3∑
i=1

Niu
i

)
. (2.31)

A natural parameterization is now provided by

ψ1 ≡
3∑
i=1

Miu
i , ψ2 ≡

3∑
i=1

Niu
i , φ ≡ u3 . (2.32)

Crucially, only a single axion, ϕ ≡ Reφ, remains unstabilized [87]. Repeating the exercise
of adding sub-leading corrections results in a superpotential

Wcs = W0 + ε

[
A1 e

−iM3N2−M2N3
M1N2−M2N1

ϕ +A2 e
−iM3N1−M1N3

M2N1−M1N2
ϕ +A3 e

iϕ
]

+O(ε2) . (2.33)
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This may be generalized further to m+1 fields ui appearing in m linear combinations in
the leading-order superpotential. After integrating out heavy fields, the resulting F -term
potential will be a periodic function of a single axion, but with many tunable parameters
Ai. We will discuss the possible importance of this extra tuning freedom in the application
to KKLT below.

Finally, we may combine the previous generalizations by considering m + 1 axions
appearing in the superpotential in n linear combinations (with 1 ≤ n ≤ m). The result
will be a sub-leading potential for m− n+ 1 axions.

3 Uplifting AdS vacua

In this section, we finally turn to our main goal: the uplifting of known AdS vacua to higher-
lying AdS and dS solutions. Our interest is in testing conjectures against non-SUSY AdS
and dS models [28, 29, 44, 45].

Before turning to explicit scenarios, we want to highlight the key feature of our
complex-structure F -term scalar potential (2.24): let ∆V = Vf − Vt ∝ gsε

2γ2/V2 be
the difference between the non-zero false-vacuum value Vf in the minimum (2.25) and the
true, global minimum at Vt = 0. This ∆V is tunable via the complex structure, which
we characterize by the potentially very small parameter γ. When including non-trivial
effects of Kähler moduli, both Vf and Vt will change. Nevertheless, we expect that ∆V
will remain small if γ was tuned to a tiny value. By contrast, the potential barrier between
Vf and Vt as well as the field distance ∆ϕ between vacua is independent of γ. This allows
for a high degree of stability against false vacuum decay via Coleman-de Luccia bubble
nucleation [92].11

We now turn to explicit scenarios of uplifting.

3.1 Large volume scenario

The axion potential (2.24) was derived assuming |W0| = O(1). This is consistent with the
large volume scenario for Kähler moduli stabilization [2]. Thus, we may straightforwardly
apply our method. Of course, many studies dedicated to uplifting the LVS exist [13, 14,
24, 25, 73, 77, 95–97]. Moreover, the warped anti-D3-brane uplift of KKLT [1] is also
applicable to the LVS. However, our approach stands out because it is truly minimal: it
only uses ingredients which are already present in the LVS AdS vacuum, employing the
tuning power of the flux-landscape rather then extra features like matter sectors or throats.

We want to highlight [97] which is based on [98, 99]. There, a general uplift mechanism
in the continuous flux approximation is presented: in the LVS fluxes are chosen such that
the complex-structure F -terms do no longer vanish, Fi = εW0fi 6= 0. Here, fi is a unit-
vector in the complex-structure moduli space and ε � 1 may be tuned such that the
corresponding scalar potential V = gsε

2 |W0|2 /V2 uplifts the LVS AdS vacuum. It is
shown that the assumed structure of Fi necessarily implies that one real direction of the

11We have not investigated the possibility that decays to bubbles of nothing [93] affect our non-SUSY
vacuum [94]. While we do not see how this would happen in our setting, a more careful study may be
warranted.
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complex-structure moduli space remains light. While the idea of uplifting via small SUSY-
breaking F -terms at the cost of an additional light field is as in our mechanism, we do not
require the assumption of continuous fluxes to achieve the required tuning.

The LVS requires (at least) two Kähler moduli Tb and Ts. Since the stabilization
will eventually realize a hierarchy of the corresponding four-cycle volumes, τb ≡ ReTb �
ReTs ≡ τs, only the dominant non-perturbative correction Wnp ∝ e−asTs needs to be
considered. In addition, the leading perturbative α′-effect [100] is essential. It corrects the
Kähler potential according to −2 ln(V) → −2 ln(V + ξ). Here, V = τ

3/2
b − cτ3/2

s and, for
our purposes, ξ ∼ g−3/2

s is a constant that can be tuned by choosing the stabilized value of
gs. The resulting F -term scalar potential has a minimum in τs, which we hence integrate
out. One is then left with a potential for V ≈ τ3/2

b , which we parameterize as

VLVS(V) = A
gsξ |W0|2

V3 −B gs |W0|2

V3 ln(V)3/2 +O
(
gs ln(V)1/2

V3

)
, (3.1)

where A and B are positive O(1)-coefficients. This potential has an AdS minimum at

VAdS = −O(1)gs |W0|2 ln(V)1/2

V3 , (3.2)

with V ∼ exp(asτs) and τs ∼ ξ2/3. There is a mass hierarchy mτb � mτs , justifying a
posteriori the procedure just described. To be precise, from (3.1) and the Kähler potential
we find

mτb = O(1)gs |W0|2 ln(V)1/2

V3 . (3.3)

The above assumed a vanishing complex-structure F -term scalar potential. Our main
point is in relaxing this assumption and adding the complex-structure uplift of section 2.3:

V (V, ϕ) = VLVS(V) + gsκε
2

V2 f(ϕ) . (3.4)

Here f(ϕ) is a non-negative periodic function (cf. (2.24)) with supersymmetric minima at
f = 0 and a SUSY-breaking minimum at f(0) = γ2. We choose to tune

κε2γ2 = O(1) |W0|2 ln(V)1/2

V
, (3.5)

where V is the LVS value of the volume. This tuning corresponds to an uplift to a
Minkowski, shallow AdS or low-lying dS vacuum. One easily checks that such an up-
lift does not destabilize V and that a mass hierarchy mτs � mτb ,mϕ is obeyed. We hence
do not need to reconsider the step of integrating out τs.

The potential (3.4) describes a 2-field model with a mass ratio mτb/mϕ ∼
√
γ

(cf. (2.26) and (3.3)). The condition (3.5) may be realized with either γ � 1 or γ = O(1).
In the first case, the complex-structure axion is lighter than the volume modulus, in the
second case they have similar masses.

Note that, while the possibility of an extremely small uplift due to a tuning γ � 1 is
a distinguishing feature of our approach, this is not required for the LVS uplift. Indeed,
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in the present case, a value γ = O(1) does not spoil the longevity of the vacuum: while
the potential barrier between true AdS and false dS vacuum is not parametrically high
compared to ∆V , the distance ∆ϕ between vacua remains sufficiently large. In summary,
if the tuning we assumed can be explicitly realized, our mechanism could challenge the dS
conjecture [28, 29].

The analysis of this section is built on the very reasonable expectation that the SUSY-
breaking AdS vacuum of the LVS approach is long-lived. It is in fact even possible that this
vacuum is stable and therefore in conflict with the non-SUSY AdS conjecture [101, 102].
In either case, i.e. both for a long-lived and for a stable LVS AdS vacuum, the possibility of
our small uplift to a higher-lying AdS does not improve its usefulness as a counterexample
to the non-SUSY AdS conjecture. Therefore, we do not pursue this further.

Before closing the present section, we should comment on a geometric consistency issue
related to the large-complex-structure limit. In this limit, the CY can be thought of as a
T 3-fibration over an S3 with the fiber volume becoming singular [103–105]. Assigning a
typical radius R to the torus-fiber and a radius L to the base three-sphere, the imaginary
parts of the complex-structure moduli (in the conventions of this paper) scale as L/R in
the limit L/R → ∞ (cf. [80]). Since CY 2-cycles scale as L · R and since R > 1 in string
units is required for supergravity control, a lower bound on the volume is obtained, V & L3.
To be precise, the moduli we assumed to be at large complex structure are u and v. We
then have Imu ∼ Im v ∼ L/R and find the condition

ReTb ∼ V2/3 & (Imu)2 ∼ (Im v)2 . (3.6)

This is easily consistent with the tuning requirement (3.5). Indeed, since ε = exp(−Imu),
our volume is exponentially large in Imu. It becomes even larger if γ � 1 or |W0| � 1. For
the small 4-cycle, a condition analogous to (3.6) is not obeyed so easily since Re Ts grows
only like lnV. It may still hold if γ is tuned sufficiently small. But, most importantly,
we expect that we do not even need to implement a geometric consistency condition like
ReTs � (L/R)2 because our large-complex-structure limit is only partial: all the complex
structure moduli zi apart from u and v are not required to be at large complex structure.
Hence, we may focus on geometries where the blow-up cycle governed by Ts is geometrically
separated from the specific shrinking 3-cycles related to u and v. In such geometries, we
expect that supergravity control is straightforwardly compatible with the partial large-
complex-structure limit we require.

3.2 The KKLT AdS vacuum

So far we considered non-tuned flux-superpotentials: |Wcs| ' |W0| & O(1). Let us now
turn to uplifting the supersymmetric type-IIB KKLT vacuum [1] which relies on the tuning
|Wcs| � 1. Note that our convention differs from [1] in that we denote the complex-
structure superpotential by Wcs and reserve the symbol W0 for the contribution that is
leading at large complex structure: Wcs ≡W0 +Wsub. After including the Kähler modulus
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superpotential12

Wnp(T ) = AK e
−aT , (3.7)

the modulus T is stabilized at a value where e−aReT ∼ |Wcs|.
We notice that there is a problem in implementing the simple mechanism as described

in section 2.3: if we consider a CY at the large-complex-structure point, we are subject
to (3.6). For the realization of the KKLT scenario in type IIB, this implies

|Wcs| = |W0 +Wsub| ∼ e−aReT � e−Imu ∼ ε . (3.8)

Therefore, the perturbative analysis of section 2 relying on ε� |W0| breaks down.
There are two possibilities to proceed: first, one may try to find a flux choice such that

|W0 + Wsub| � ε. Since generically Wsub ∼ ε, this requires a W0 of the same magnitude.
This means that our calculational approach, which treats Wsub as a small correction, is at
the boundary of control and becomes unreliable. Nevertheless, one may hope that there
are concrete models in which the qualitative features of our uplifting method survive.

Second, one may try to implement a hierarchy |Wsub| � |W0| � ε. This requires a
fine-tuned cancellation between O(ε)-terms within Wsub. The advantage is that one can
hope to maintain the method of treating Wsub as a small correction to W0.

In either case, the whole superpotential W = Wcs(φ) +Wnp(T ) is small, which implies
that not just the real component but the whole superfield φ remains light. We expect a
consistent supergravity description to exist for the light moduli φ and T with

W = W0 +Wsub(φ) +Wnp(T ) , K = −3 ln(ReT )− ln(k(Imφ)) (3.9)

and
V = eK

[
KTT |DTW |2 +Kφφ |DφW |2 − 3 |W |2

]
. (3.10)

The lightness of Imφ follows from the fact that it enters V only via the small superpotential
Wsub or through the prefactors Kφ, Kφφ and eK , which multiply small quantities. Note
also that corrections to K are not relevant for sufficiently small W .

We proceed on the basis of the supersymmetric minimum at DTW = 0 and DφW = 0.
Given our assumptions, this minimum is characterized by [1]

|Wcs| ∼ |AK | e−aReT , VAdS ∼ − |Wcs|2 . (3.11)

Following our previously defined strategy, we can now check the F -term potential of φ for
nearby minima with DφW 6= 0. Such minima may lead to higher-lying AdS vacua of (3.10)
or even to metastable de Sitter. For this, we consider

DφW = Kφ(Imφ)W (φ, T ) + ∂φWsub(φ) . (3.12)

12We disregard the dependence of AK on the complex structure moduli zi and u/v since the former are
stabilized at a high scale and the latter enter only in a subdominant way, i.e. as eiu/v with Imu/v � 1.
This last statement follows from analyticity and periodicity in the real direction, as is briefly mentioned
in [60] and may also be established rigorously [106].
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If we choose the first of the two tuning options described above, where Wsub ∼ ε and
|W0 +Wsub| � ε, a fundamental obstacle arises. Namely, in this regime generically |W | �
|∂φWsub(φ)|, such that the first term on the r.h. side of (3.12) is negligible. But the second
term is holomorphic in φ. Hence, by the minimum modulus principle, its absolute value
cannot have a non-zero local minimum. To overcome this obstacle, a further tuning is
required: we need to ensure |∂φWsub(φ)| � |Wsub(φ)| at the relevant point in φ-space.
Then one may hope that an interplay of the non-holomorphic first and the holomorphic
second term on the r.h. side of (3.12) produces the desired local minimum.

If we choose the second of the two tuning options described earlier, |Wsub| � |W0| � ε,
then it would naively appear that (2.33) can produce a non-trivial local minimum of
the F -term potential along the lines of section 2. However, things are not that sim-
ple: the extraordinary smallness of |Wsub| comes from a compensation between different
terms (e.g. the two exponentials in (2.12)), and this cancellation does in general not ex-
tend to ∂φWsub. A further tuning for small ∂φWsub is required. Still, the present tun-
ing option may be advantageous since the first term on the r.h. side of (3.12) simplifies:
Kφ(Imφ)W (φ, T ) ' Kφ(Imφ) (W0 +Wnp(T )). This might allow us, similar to the scenario
of section 2, to stabilize Imφ independently of Reφ.

Our preliminary investigation suggests that, employing either of the tuning options as
discussed in the last two paragraphs, it is not straightforward to uplift KKLT. We expect
that a sufficient amount of tuning freedom becomes available only if one has three or more
exponential terms at one’s disposal, cf. (2.33). Moreover, even after successfully engineering
an F -term with a (Reφ)-dependence as in figure 1, one is not yet finished. Namely, since
the whole superfield φ is very light one must check the non-trivial additional requirement
that the full potential eK

(
Kφφ |DφW |2 − 3 |W |2

)
has a local φ-minimum. Analyzing these

problems is beyond the scope of this work. It would lead us too far away from our basic goal
of highlighting the immediate applications of the winding potential (2.24) to the challenge
of uplifting.

3.3 DGKT-type vacua

While we derived the winding-uplift potential with a type-IIB compactification in mind, it
is also possible and interesting to implement it in a type-IIA Calabi-Yau orientifold with
fluxes. Specifically, we will consider DGKT vacua [57],13 following the notation of [70, 112].
In type IIA, the Kähler moduli T i as well as the axio-dilaton S = s+ iσ and the complex
structure moduli Uλ = uλ + iνλ appear in the perturbative flux superpotential:

Wflux = WK(T i) +Wcs(S,Uλ) . (3.13)

HereWcs combines the dilaton and complex-structure contributions, both involving 3-cycle
data. It takes the explicit form

Wcs(S,Uλ) = −ih0S − iqλUλ , (3.14)
13Recent work includes generalizations [107, 108] as well as checks of consistency [109–111], as triggered

in particular by the AdS distance (or scale separation) conjecture [58].

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
2
8
4

where h0 and qλ are independent H3-flux numbers. Concerning WK , it is sufficient to note
that it involves terms up to cubic order in the 2-cycle variables T i (not to be confused with
the 4-cycle Kähler moduli of type IIB, which we denoted by T or Tb, Ts). The fluxes in
WK come from Ramond-Ramond 0-, 2-, 4- and 6-form field strengths.

The Kähler potential is given by

K = − ln(8V)− ln(S + S)− 2 ln(V ′) , (3.15)

where V(ImT i) is the type-IIA CY volume. The quantity V ′, which one may call the dual
volume, is a function of the complex structure moduli Uλ. At large complex structure, it
is defined implicitly by

V ′ ≡ dλρσ
6 vλvρvσ with uλ = ∂vλV ′ . (3.16)

One may think of the vλ as 2-cycle volumes of the mirror dual type-IIB compactifica-
tion [113], with uλ = ImUλ characterizing the corresponding type-IIB 4-cycles. The dλρσ
are triple intersection numbers of the mirror Calabi-Yau. We see that V ′ is a homogeneous
function of degree 3

2 in uλ.
The vanishing-F -term conditions for S and Uλ read

2h0s = −ImW , (3.17)

Kuλ = − qλ

h0s
, (3.18)

h0σ + qλνλ = −ReWK . (3.19)

We do not display the corresponding SUSY equations for the Kähler moduli. Suffice
it to say that the volume V may be considered a free parameter as it depends on the
unconstrained 4-form fluxes appearing in WK . In particular, one may go to large volume,
where the following scaling behavior is found:

|W0| ∼ ImWK ∼ V , eK ∼ V−5

⇒ VAdS ∼ −eK |W0|2 ∼ −V−3 .
(3.20)

We conclude two important facts about flux-stabilized type-IIA solutions and specifi-
cally (3.17)–(3.19): first, all the real parts uλ of complex structure moduli and the dilaton
field s are stabilized by fluxes. In particular, the ratios ∂uλV ′/∂uρV ′ are determined by
H3-flux ratios qλ/qρ. The overall scale is set by s, which is in turn fixed by (3.17). Taking
into account the in general rather complicated functional relation between the variables
∂uλV ′ and uλ, one may expect a flux discretuum like in type IIB [59]. By this we mean
that the lattice of allowed flux choices translates in a sufficiently dense and random set
of points on the field space parameterized by s and the uλ. Note that the 3-form fluxes
h0 and qλ are subject to the h2,1

+ + 1 tadpole cancellation conditions m0h0 + Q0
D6 = 0,

m0q
λ + QλD6 = 0, where m0 is the Romans mass [57, 70]. Thus, it needs to be checked

whether in a given model the flux discretuum is dense enough for our purposes.
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Second, according to (3.19) only a single linear combination of imaginary parts (the
axions σ and νλ) is fixed. This ensures that a set of axions stays light, such that the
winding proposal of [62] is automatically part of the DGKT setting [70].

Following [70], we now include non-perturbative corrections to (3.14):

Wcs → Wcs = W0 +
∑
I

AI exp
(
−aI0S −

∑
λ

aIλUλ

)
. (3.21)

Here I runs over all E2-instantons and the coefficients aI0/aIλ specify the cycles wrapped
by instanton I. Assuming that we are at large s and uλ and that the dominant instantons
contribute, this simplifies to

W = W0 +A0 e
−s e−iσ +

∑
λ

Aλ e
−uλ e−iνλ + . . . (3.22)

We see that, including also the constraint of (3.19), this takes exactly the form of the
superpotential (2.30) from our previous type-IIB analysis. The following identifications
make this explicit:

uλ ←→ Imui0 for i = λ = 1, . . . ,m
s ←→ Imu0

0

νλ ←→ ϕi for i = λ = 1, . . . ,m

σ = −ReWK −
m∑
λ=1

qλ

h0
νλ ←→ Reu0 = Reψ0

N0
−

m∑
i=1

Ni

N0
ϕi .

(3.23)

Thus, we may now think in terms of the multi-axion potential as displayed in the last line
of (2.30) and discussed at length in section 2. A key point for our uplifting application was
the smallness of ε and the tunability of the coefficients A0 and Ai. Both is ensured if, as
discussed above, an appropriate discretuum in the field space of s and uλ exists.

A difference to our type-IIB analysis is that here we automatically have many light
axions. In section 2, a special flux choice was needed to keep one complex-structure axion
light. Having several of them required more assumptions. We expect that there is nothing
wrong with realizing our winding uplift in the type-IIA case in a multi-axion situation. But,
as discussed in [70], it is also easy to return to the single-axion case analyzed in detail before.

First, we can choose a CY with a small number of complex structure moduli. This
may however not be the optimal path since it is expected that in such models the flux
discretuum is also smaller.

Second, we can choose fluxes implementing a hierarchy in the saxion values. If, for
example, s, u1 � uλ for λ > 1, we find Ai � 1 for i = 2, . . . ,m. As a result, all νλ for
λ > 1 are stabilized (supersymmetrically) at a higher scale. Only the lightest axion(s), in
our case a linear combination of σ and ν1, will remain relevant, experiencing an effective
winding potential which follows from (2.30). It can be recast in the simpler form (2.24),
which we have studied in great detail.

As a result, we expect that non-zero minima of the complex-structure F -term potential
arise for appropriate choices of CY and flux. As discussed in the beginning of this section,
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we should be able to parametrically separate the potential difference between false and
true vacuum, ∆V ∼ eKε2γ2, and the potential barrier ∼ eKε2. In our regime of parametric
control, ε� |W0|, the uplift remains small compared to the depth eK |W0|2 of the DGKT
AdS vacuum. So, consistently with the no-go theorem of [114, 115], dS is out of reach.

However, due to the parametric separation between uplift and potential barrier, the
brane tension T between true and false vacuum may be too large for a bubble of true
vacuum to nucleate, T/MP >

√
4/3(

√
|Vt| −

√
|Vf |) [47, 48, 116]. The resulting non-SUSY

AdS vacuum would be absolutely stable against the Coleman-de Luccia decay [92] to the
underlying SUSY AdS vacuum. If no other decay path exists, and we see no obvious
candidate in the present setting, this would provide a counterexample to the non-SUSY
AdS conjecture. Crucially, given the minimalist set of ingredients in our construction,
it may actually be possible to study the type-IIA flux landscape in concrete models and
establish, using e.g. the technology developed in [60], that the small uplifts we propose
really exist.

4 Conclusion

We have presented a mechanism for metastable SUSY breaking in the landscape. Based on
the winding scenario of [62], we have described how the interplay of multiple periodic terms
in the complex-structure super- and Kähler potential can lead to an F -term scalar potential
with non-trivial local minima. Crucially, we have argued that the tuning power of the
complex-structure landscape can be used to ensure that these minima are at parametrically
small value of the potential, resulting in long-lived vacua. As applications, we discussed
the uplift of LVS, DGKT and KKLT AdS vacua.

KKLT is the most difficult case. Here, the requirement of a small perturbative super-
potential W0 inhibits the straightforward application of our simplest setup from section 2.
The problem is that not only an axionic component Re(φ), but the full complex field φ

remains light. While we described how our mechanism may still work, using a specific
tuning of W0 and of the additional periodic terms, we had to leave the explicit calculation
of the minimum value and stability of the Im(φ)-component for future work.

For supersymmetric DGKT AdS vacua, our SUSY breaking mechanism appears to be
very robust. Compared to KKLT, the construction requires less tuning. In fact, the DGKT
setting naturally gives rise to a multi-axion potential which also comes with more tunable
parameters. As a remark of caution, we note that the tuning power of the type-IIA complex
structure landscape is less established than its type-IIB counterpart. (A brief discussion
of how the necessary tuning could be implemented appears below (3.20).) Assuming that
this concern can be dispelled, we may have found stable non-supersymmetric AdS solutions
serving as counterexamples to the non-SUSY AdS conjecture [44].

Finally, we showed that the application of our winding uplift in the LVS context is
straightforward. Of course, in this case one is working on the basis of a non-supersymmetric
AdS solution, which may in itself already be in conflict with the non-SUSY AdS conjecture
(cf. the discussion in [102]). If the LVS AdS vacuum exists, our uplift provides a new route
to metastable dS vacua, challenging the de Sitter conjecture [29]. The strong point of this
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uplift is its conceptual and technical simplicity, allowing in principle for the computerized
search for a completely explicit example. A summary of the main tuning requirements that
have to be met appears at the end of section 2.3. We want to highlight the very recent
work of [91] where the parameters α and ε of (2.24) were made explicit in a CICY setup.
Unfortunately this CICY construction does not allow for an implementation of the LVS,
so some more work needs to be done.

Before closing, we recall that we started our work with a discussion of possible extended
swampland conjectures against non-SUSY AdS. We do not want to repeat this discussion
but only emphasize one possible landscape-skeptical scenario: if the LVS AdS vacuum and
the KKLT uplift (by our or other methods) fail, then our only application is DGKT. Here,
our uplift to non-SUSY AdS may work, but it appears difficult to raise the F -term scale far
above the AdS scale. Such a situation would support a ‘Strong-SUSY-Breaking Conjecture’,
excluding non-SUSY AdS vacua (stable or metastable) with an F -term scale parametrically
above the AdS scale. This conjecture is interesting as it rules out a type of cosmology which
would otherwise be perfectly consistent with most of the swampland conjectures and with
observers like us: namely, a universe just like ours but where the late stages of cosmology are
governed by a tiny negative cosmological constant. If one takes the landscape/multiverse
view on fundamental physics seriously (see [117] for a recent review), the existence or
non-existence of such cosmologies in string theory represents an important question.
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