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1 Introduction

Theoretical investigation of the DIS structure function FL(x,Q2) (and other DIS structure
functions) in the context of perturbative QCD began with calculations in the fixed orders
in αs. First, there were calculations in the Born approximation, then more involved first-
loop and second-loop calculations (see refs. [1–19]) followed by the third-order results(see
ref. [20]). All fixed-order calculations showed that FL decreases at small x. Alternative
approach to study FL was applying all-order resummations. In the first place, FL was
studied with DGLAP(see refs. [21–24]) and its NLO modifications. In addition, there are
approaches where DGLAP is combined with BFKL(see refs. [25–29]), see e.g. refs. [30, 31].
Besides, there are calculations in the literature based on the dipole model, see refs. [34, 35].
This approach was used in the global analysis of experimental data in ref. [36]. Let us notice
that ref. [37] contains detailed bibliography on this issue.

– 1 –



J
H
E
P
0
3
(
2
0
2
1
)
2
7
4

Applying DGLAP to studying FL is model-independent. However according to ref. [37],
neither LO DGLAP nor the NLO DGLAP modifications ensure the needed rise of FL at
small x and disagree with experimental data at small Q2, which sounds quite natural
because DGLAP by definition is not supposed to be used in the region of small Q2. The
modifications of DGLAP in refs. [30, 31] are based on treating BFKL as a small-x input
for the DGLAP equations. The approach of ref. [32] treats the Pomeron intercept as a
parameter fixed from experiment.

In this paper we present an alternative approach to calculate FL: total resummation
of double-logarithmic (DL) contributions to FL, accounting for both logarithms of x and
Q2. The method we use is self-consistent and does not involve any models. We modify
the approach which we used in ref. [38] to calculate F1 in the Double-Logarithmic Approx-
imation (DLA). This approach has nothing in common with the BFKL equation and its
ensuing modifications. Indeed, instead of summing leading logarithms, i.e. the contribu-
tions ∼ (1/x) (αs ln(1/x)), we sum the DL contributions ∼ αs ln2(1/x) as well as the DL of
Q2. Because of the absence of the factor 1/x such contributions were commonly neglected
by the HEP community for a long time. However, it has recently been proved in ref. [38]
that the DL contribution to Pomeron is not less important than the BFKL contribution.

We calculate FL in DLA with constructing and solving Infra-Red Evolution Equations
(IREEs). As is well-known, the IREE approach was suggested by L.N. Lipatov in refs, [39–
42]. It proved to be a simple and efficient instrument (see e.g. the overviews in refs. [43, 44])
for calculating many objects in QCD and Standard Model. Constructing and solving
IREEs, we obtain general solutions. In order to specify them one has to define the starting
point (input) for IREEs. Conventionally in the IREE technology the Born contributions
have been chosen as the inputs. However, FL = 0 in the Born approximation, so the input
has to be chosen anew. We suggest that the second-loop expression for FL can play the
role of the input and arrive thereby to explicit expressions for perturbative components of
FL. We demonstrate that the total resummation of DL contributions together with the
factor 1/x appearing in the α2

s-order provide FL with the rise at small x.
We start with considering FL in the large-Q2 kinematic region

Q2 > µ2, (1.1)

with µ being a mass scale. Then we present a generalization of our results to small Q2.
The scale µ is often associated with the factorization scale. The value of µ is arbitrary1

except the requirement µ > ΛQCD to guarantee applicability of perturbative QCD.
Our paper is organized as follows: in section 2 we introduce definitions and notations,

then remind how to calculate FL through auxiliary invariant functions. Calculations of FL
in the α2

s-order are considered in section 3. We represent them in the way convenient for
analysis of contributions from higher loops. Then we explain how to realize our strategy:
combining the non-logarithmic results from the α2

s-order with double-logarithmic (DL)
contributions from higher-order graphs. Total resummation of DL contributions to FL is
done in section 4 through constructing and solving IREEs. IREEs control both x and Q2

1For specifying µ on basis of Principle of Minimal Sensitivity (defined in ref. [45]) see refs. [43, 44].
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-evolutions of FL from the starting point. Specifying the input is done in section 5. In
section 6 we present explicit expressions for leading small-x contributions to perturbative
components of FL. To make clearly seen the rise of FL at small x we present the small-
x asymptotics of FL. After that we compare our results for FL at small-x with the ones
predicted by approaches involving BFKL. Then we consider the generalization of our results
on FL in region defined by eq. (1.1) to the small-Q2 region. Finally, section 7 is for
concluding remarks.

2 Calculating FL through auxiliary amplitudes

The most convenient way to calculate F1,2 and FL in Perturbative QCD is the use of aux-
iliary invariant amplitudes. Below we remind how this approach works. The unpolarized
part of the hadronic tensor describing the lepton-hadron DIS is

Wµν(p, q) =
(
−gµν + qµqν

q2

)
F1 + 1

pq

(
pµ − qµ

pq

q2

)(
pν − qν

pq

q2

)
F2 (2.1)

and each of F1, F2 depends on Q2 and x = Q2/w, with Q2 = −q2 and w = 2pq.

−A ≡ gµνWµν = 3F1 + F2
2x +O(p2), (2.2)

B ≡ pµpν
pq

Wµν = − 1
2xF1 + 1

4x2F2 +O(p2), (2.3)

where we use the standard notatons x = −q2/w = Q2/w, w = 2pq. Neglecting terms ∼ p2,
we express F1,2 through A and B:

F1 = A

2 + xB, (2.4)

F2 = 2xF1 + 4x2B,

so that
FL = F2 − 2xF1 = 4x2B. (2.5)

Each of F1, F2 includes both perturbative and non-perturbative contributions. Accord-
ing to the QCD factorization concept, these contributions can be separated. In scenario
of the single-parton scattering, F1, F2 can be represented in any available form of QCD
factorization through the following convolutions (see figure 1):

F1 = F
(q)
1 ⊗ Φ(q) + F

(g)
1 ⊗ Φ(g), F2 = F

(q)
2 ⊗ Φ(q) + F

(g)
2 ⊗ Φ(g), (2.6)

where Φ(q,g)
1,2 stand for initial parton distributions whereas F (q,g)

1 , F
(q,g)
2 are perturbative

components of the structure functions F and F2 respectively. The superscripts q(g) in
Eq, (2.6) mean that the initial partons in the perturbative Compton scattering are quarks
(gluons). The DIS off the partons is parameterized by the same way as eq. (2.1):

W (q,g)
µν (p, q) =

(
−gµν + qµqν

q2

)
F

(q,g)
1 + 1

pq

(
pµ − qµ

pq

q2

)(
pν − qν

pq

q2

)
F

(q,g)
2 , (2.7)
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F (q)

Φ(q)

F (g)

Φ(g)

Figure 1. QCD factorization for DIS structure functions. Dashed lines denote virtual photons.
The upper blobs describe DIS off partons. The straight (waved) vertical lines denote virtual quarks
(gluons). The lowest blobs correspond to initial parton distributions in the hadrons. F (q,g) is a
generic notation for perturbative components of F (q,g)

1 , F (q,g)
2 and F (q,g)

L .

with p denoting the initial parton momentum. Throughout the paper we will neglect
virtualities p2, presuming the initial partons to be nearly on-shell. Introducing the auxiliary
amplitudes A(q,g) and B(q,g) similarly to eqs. (2.2), (2.3), one can express F (q,g)

1 and F (q,g)
2

in terms of A(q,g) and B(q,g) so that

F
(q,g)
L = F

(q,g)
2 − 2xF (q,g)

1 = 4x2B(q,g), (2.8)

with
B(q,g) = pµpν

pq
W (q,g)
µν . (2.9)

Applying (2.8), (2.9) to W
(q,g)
µν in the Born and the first-loop approximation yields

(see refs. [1]–[19]) that F (q)
L = F

(g)
L = 0 in the Born approximation whereas the first-loop

results are: (
F

(q)
L

)
(1)

= 2αs
π
CFx

2,
(
F

(g)
L

)
(1)

= 4αs
π
nfx

2(1− x). (2.10)

Eq. (2.10) suggests that FL should decrease ∼ x2 at x→ 0. However, the second-loop
results exhibit a slower decrease.

3 Leading contributions to B in the second-loop approximation

The second loop brings a radical change to the small-x behaviour of B compared to the
first-loop result. Namely, there appear contributions ∼ 1/x in contrast to logarithmic
dependence of B in the first loop. Such contributions were calculated in ref. [14]. Never-
theless, we prefer to repeat these calculations in order to represent the results in the way
convenient for applying to the total resummation of higher loops in DLA.

In the first place we consider ladder graphs contributing to B, The ladder graphs
contributing toWµν in the α2

s-order are depicted in figure 2. Graphs (a) and (b) correspond
to DIS off quarks whereas graphs (c) and (d) are for DIS off gluons. Calculations in the
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(a) (b) (c) (d)

q q q q

p p p p

k1 k1 k1 k1

k2 k2 k2 k2

Figure 2. Ladder graphs for F (q,g)
1 , F (q,g)

2 and F (q,g)
L in the second-loop approximation. Graphs

(a) and (b) correspond to DIS off quarks and graphs (c) and (d) are for DIS off gluons.

small-x kinematics are simpler when the Sudakov variables (see ref. [46]) are used. In terms
of them, momenta ki of virtual partons are parameterized as follows:

ki = αiq
′ + βip

′ + ki⊥, (3.1)

where q′ and p′ are the massless (light-cone) momenta made of momenta p and q:

p′ = p− q(p2/w) ≈ p, q′ = q − p(q2/w) = q + xp. (3.2)

In eq. (3.2) q denotes the virtual photon momentum while p is momentum of the initial
parton. We remind that we presume that p2 is small, so we will neglect it throughout the
paper. Invariants involving ki looks as follows in terms of the Sudakov invariants:

k2
i = wαiβi − k2

i⊥ = w(αiβi − zi), 2pki = wαi, 2qki = w(βi − xαi), (3.3)
2kikj = w(αi − αj)(βi − βj)− k2

i⊥ − k2
j⊥ = w ((αi − αj)(βi − βj)− zi − zj) .

We have introduced in eq. (3.3) dimensionless variables zi,j defined as follows:

zi = k2
i⊥/w. (3.4)

3.1 Contributions to B for DIS off quarks

We start with calculating the second-loop contribution B(a)
q of the two-loop ladder graph

(a) in figure 2 to B for DIS off quarks. It is given by the following expression:

B(2a) = C(2b)
q χ2w

∫
dα1,2dβ1,2dk

2
1,2⊥

N (2a)

k2
1k

2
1k

2
2k

2
2
δ
(
(q + k2)2

)
δ
(
(k1 − k2)2

)
δ
(
(p− k1)2

)
,

(3.5)
where C(2b)

q = C2
F ,

χ2 = α2
s

8π (3.6)

– 5 –



J
H
E
P
0
3
(
2
0
2
1
)
2
7
4

and

N (2a) = 1
2Tr

[
p̂γλ1 k̂1γλ2 k̂2p̂(q̂ + k̂2)p̂k̂2γλ2 k̂1γλ1

]
(3.7)

= 2k2
1Tr

[
k̂2(k̂1 − p̂)k̂2p̂(q̂ + k̂2)p̂

]
= 2k2

1(w + 2pk2)Tr
[
k̂2(k̂1 − p̂)k̂2p̂

]
.

We represent it as the sum of N (2a)
1 and N (2a)

2 :

N (2a) = N
(2a)
1 +N

(2a)
2 (3.8)

with
N

(2a)
1 = −4k2

1

(
(2pk2)3 + w(2pk2)2

)
(3.9)

and

N
(2a)
2 = 4k2

1

[(
k2

1 + k2
2

) (
(2pk2)2 + w(2pk2)

)
− k2

1k
2
2(2pk2)− wk2

1k
2
2

]
, (3.10)

In eqs. (3.9), (3.10) we have used the quark density matrix

ρ̂(p) = 1
2 p̂ (3.11)

and made use of the δ-functions of eq. (3.5). They yield that 2k1k2 = k2
1 + k2

2 and
2pk1 = k2

1. It turns out that the leading contributions comes from N2a
1 , so first of all we

consider it. Throughout the paper we will use dimensionless variables z1,2 instead of k2
1,2⊥:

z1 = k2
1⊥/w , z2 = k2

2⊥/w , z = z1 + z2. (3.12)

It is also convenient to use the variable l defined as follows:

l = β1 − β2. (3.13)

Using the δ-functions to integrate (3.5) over α1,2 and β2 and replacing N (2a) by N (2a)
1

we are left with three more integrations:

B(2a) ≈ 4C2
Fχ2

∫ 1

λ

dz1
z1

∫ 1

λ

dz2
z2

2

∫ 1

z
dl

[
− z3

l2(l + η)2 + z2

l(l + η)2

]
, (3.14)

with η defined as follows:
η = z(x+ z2)

z2
. (3.15)

Details of calculation in eq. (3.14) can be found in appendix A. Let us remind that
throughout this paper we focus on the small-x region. The most important contributions
in eq. (3.14) at small x are ∼ 1/x. Retaining them only and integrating (3.14) with
logarithmic accuracy, we arrive at

B(2a) ≈ C(2a)
q γ(2) x−1, (3.16)

– 6 –
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with
γ(2) = 4χ2ρ ln 2, (3.17)

where χ2 is defined in (3.6) and
ρ = ln(w/µ2), (3.18)

with µ being an infrared cut-off. Contribution to B of graph (b) in figure 2 is given by the
following expression:

B(2b) = C(2b)
q χ2w

∫
dα1,2dβ1,2dk

2
1,2⊥

N (2b)

k2
1k

2
1k

2
2k

2
2
δ
(
(q + k2)2

)
δ
(
(k1 − k2)2

)
δ
(
(p− k1)2

)
,

(3.19)
where C(2b)

q = nfCF and

N (2b) = pµpνTr
[
γν
(
q̂ + k̂2

)
γµk̂2γλ′

(
k̂1 − k̂2

)
γσ′ k̂2

]
(pλ′k1σ′ + k1λ′p1σ′) . (3.20)

Apart from the color factor CF /2, the integrand in eq. (3.19) coincides with the inte-
grand of eq. (3.5), so we obtain the same leading contribution:

B(2b) ≈ C(2b)
q x−1γ(2) , (3.21)

where γ(2) is given by eq. (3.17) and C(2b)
q = CF /2. Our analysis of non-ladder graphs shows

that they do not bring the factor 1/x because they do not contain (k2
2)2 in denominators.

Therefore, the total leading contribution B(2)
q to Bq in the second loop is

B(2)
q =

(
C(2a)
q + C(2b)

q

)
γ(2) x−1 ≡ C(2)

q γ(2) x−1. (3.22)

Now let us consider some important technical details concerning eqs. (3.16) (the same
reasoning holds for eq. (3.21)). This result stems from the terms in eq. (3.7) where momenta
k2 are coupled with the external momenta p and q. The other terms in eq. (3.7) (i.e. the
ones ∼ k2

2, k1k2) either cancel k2
2 in the denominator of eq. (3.5), preventing appearance

of the factor 1/x, or cancel 1/k2
1, killing lnw. Hence, the first step to calculate the trace

in eq. (3.7) can be reducing the trace down to Tr[p̂k̂2p̂k̂2]. Obviously, it corresponds to
neglecting the factor 2pk1 in k̂1p̂k̂1:

k̂1p̂k̂1 = 2pk1k̂1 − k2
1 p̂ ≈ −k2

1 p̂ . (3.23)

This observation allows us to develop a strategy to select most important contributions
to B in arbitrary orders in αs. In other words, the non-singlet component of FL can be
calculated in DLA in the straightforward way, without evolution equations.

3.2 Contributions to B for DIS off gluons

The second-loop contributions to the DIS off the initial gluon correspond to the ladder
graphs (c,d) in figure 2. We calculate their joint contribution Bg to FL. Obviously, the
contribution of graph (c) is

B(2c) = C(2)
g χ(2)

∫
dz1,2dβ1,2dα1,2

N (2c)

k2
1k

2
1k

2
2k

2
2
δ
(
(p− k1)2

)
δ
(
(k1 − k2)2

)
δ
(
(q + k2)2

)
,

(3.24)
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where χ(2) is defined in eq. (3.6) and C
(2)
g = nfN . The numerator N (2c) is defined as

follows:
N (2c) = pµpνTr

[
γν
(
q̂ + k̂2

)
γµk̂2γλ′

(
k̂1 − k̂2

)
γσ′ k̂2

]
Hλ′σ′ , (3.25)

with
Hλ′σ′ = Hλ′σ′λσρλσ . (3.26)

In eq. (3.26) the notation Hλ′σ′λσ stands for the ladder gluon rung while ρλσ denotes
the gluon density matrix for the initial gluons which we treat as slightly virtual:

Hλ′σ′λσ = − [(2k1 − p)λgλ′τ + (2p− k1)λ′gλτ + (−k1 − p)τgλ′λ] (3.27)
[(2k1 − p)σgσ′τ + (2p− k1)σ′gστ + (−k1 − p)τgβσ] .

The terms ∼ pλ, pσ in eq. (3.27) can be dropped because of the gauge invariance. We
use the Feynman gauge for the initial gluons:

ρλσ = −1
2gλσ . (3.28)

As a result we obtain

Hλ′σ′ = 8pλ′pσ′ − 4(pλ′k1σ′ + k1λ′pσ′) + 2k1λ′k1σ′ + 3gλ′σ′k2
1. (3.29)

We have used in the last term of eq. (3.29) that 2pk1 ≈ k2
1. DL contributions to the gluon

ladder come from the kinematics where λ′ ∈ RL, σ′ ∈ RT or vice versa (the symbols RL
and RT denote the longitudinal and transverse momentum spaces respectively). Therefore,
the leading term in eq. (3.27) in DLA is

HDL
λ′σ′ = −4 (pλ′k1σ′ + k1λ′pσ′) (3.30)

while 2k1λ′k1σ′ brings corrections to it. The first term in eq. (3.29) contain the longitudinal
momenta only and the last term vanishes at λ′ 6= σ′. Substituting eq. (3.30) in eq. (3.25)
we obtain

N (2c) = Tr
[
p̂
(
q̂ + k̂2

)
p̂k̂2p̂

(
k̂1 − k̂2

)
k̂1⊥k̂2

]
+ Tr

[
p̂
(
q̂ + k̂2

)
p̂k̂2k̂1⊥

(
k̂1 − k̂2

)
p̂k̂2

]
≈ Tr

[
p̂q̂p̂k̂2p̂

(
k̂1 − k̂2

)
k̂1⊥k̂2

]
+ Tr

[
p̂q̂p̂k̂2k̂1⊥

(
k̂1 − k̂2

)
p̂k̂2

]
= wTr

[
p̂k̂2p̂

(
k̂1 − k̂2

)
k̂1⊥k̂2

]
+ wTr

[
p̂k̂2k̂1⊥

(
k̂1 − k̂2

)
p̂k̂2

]
= w2pk2Tr

[
p̂
(
k̂1 − k̂2

)
k̂1⊥k̂2

]
+ w2pk2Tr

[
p̂k̂2k̂1⊥

(
k̂1 − k̂2

)]
(3.31)

Retaining in eq. (3.31) the terms ∼ (pk2)2 and ∼ (pk2)3, we obtain the leading contri-
bution to NDL

g :
N (2c) ≈ 4(w + 2pk2)(2pk2)2k2

1⊥ (3.32)

which coincides with N (2a)
1 . Substituting N c

g in eq. (3.24), representing Bg as

B(2c) = C(2)
g χ(2)Ig (3.33)

– 8 –
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and then integrating over α2, we arrive at

I(c)
g =

∫ 1

λ

dz1
z1

∫ 1

λ

dz2
z2

2

∫ 1

z
dl

[
− z3

l2(l + η)2 + z2

l(l + η)2

]
(3.34)

with z, z1,2, l and η defined in eqs. (B.2) and (3.15) respectively. The integral in eq. (3.34)
coincides with the integral bringing the leading contribution to B(2a)

q in eq. (3.14). obtained
for the quark ladder graph and calculated in appendix A. So, we arrive at the leading
contribution to B:

B(2c) ≈ C(2)
g x−1γ(2), (3.35)

with γ(2) defined in eq. (3.17).
Now we calculate contribution B(2d) to Bg of graph (d) in figure 2. It is given by the

following expression:

B(2d) = −C2
Fχ2

∫
dz1,2dβ1,2dα1,2

N
(2d)
g

k2
1k

2
1k

2
2k

2
2
δ
(
(p− k1)2

)
δ
(
(k1 − k2)2

)
δ
(
(q + k2)2

)
,

(3.36)
where χ2 is defined in eq. (3.6) and C(2d)

g = nfCF .

N (2d) = 1
2Tr

[
p̂
(
q̂ + k̂2

)
γρk̂1γλ

(
k̂1 − p̂

)
γλk̂1γρk̂2

]
(3.37)

= 2 (w + 2pk2) Tr
[
p̂k̂2k̂1

(
k̂1 − p̂

)
k̂1k̂2

]
,

where we have used the gluon density matrix of eq. (3.28). Retaining the terms with pk2
and neglecting other terms containing k2, we obtain

N (2d) ≈ 2 (w + 2pk2) k2
1Tr

[
p̂k̂2p̂k̂2

]
= 4 (w + 2pk2) (2pk2)2k2

1 . (3.38)

Substituting eq. (3.38) in eq. (3.36), introducing variables l, z1,2, then accounting for the
δ-functions, we arrive at

B(2d) ≈ C(2d)
g χ2

∫ 1

λ

dz1
z1

∫ 1

λ

dz2
z2

∫ 1

z

dl

(l + η)2

[
−z

3

l2
+ z2

l

]
, (3.39)

with η defined in eq. (3.15). Comparison of eq. (3.39) with eq. (3.14) shows that the leading
contribution, B(2d)

L to B coincides with B(2a)
q :

B(2d) = C(2d)
g x−1γ(2) . (3.40)

Therefore, the total leading contribution B(2)
g to Bg in the second loop is

B(2)
g =

(
C(2c)
g + C(2d)

g

)
γ(2) x−1 ≡ C(2)

g γ(2) x−1. (3.41)

Eqs. (3.16), (3.21), (3.35) and eq. (3.40) demonstrate explicitly that the only differ-
ence between leading contributions of all ladder graphs in figure 2 is different color factors.
Combining eqs. (3.22), (3.41) with eq. (2.9) we demonstrate that FL in the α2

s-order de-
creases at x→ 0 slower than the first-order result of eq. (2.10). Nevertheless, there are no
growth of FL in the α2

s-order and in the α3
s-order as shown in ref. [20]. It suggests that

only all-order resummations can provide FL with some growth.
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3.3 Remark on the scale of αs
The factor γ(2) defined in eq. (3.17) involves the QCD coupling αs treated as a constant
because of complexity of the two-loop calculations. However, one cannot implement the
expressions for B(2)

q,g in eqs. (3.22), (3.41) until the scale of αs has been specified. The ade-
quate parametrization of αs for processes in the Regge kinematics was obtained in ref. [47]
but it cannot be used in B

(2)
q,g because the leading contributions come the kinematics of

virtual partons which is closer to the DGLAP one than to the multi-Regge kinematics. For
this reason, we suggest using in B(2)

q,g the standard DGLAP parametrization αs = αs(Q2).

3.4 Remark on leading contributions of the ladder graphs in higher loops

Contribution B
(n)
q of the quark ladder graph to B in the nth order of the perturbative

expansion can be written as follows:

B(n)
q = χnC

n
Fw

n−1
∫
dk2

1⊥ . . . dk
2
n⊥dα1 . . . dαndβ1 . . . dβn

N
(n)
q

k2
1k

2
1k

2
2 . . . k

2
n

(3.42)

δ
(
(q + kn)2

)
δ
(
(kn − kn−1)2

)
. . . δ

(
(p− k1)2

)
,

with
χn = 2e2

(
− αs

2π2
π

2

)n
= 2e2

(
−αs4π

)n
. (3.43)

and

N (n)
q = 1

2Tr
[
γλ1 k̂1 . . . γλn−1 k̂n−1γλn−1 k̂nγλn k̂np̂(q̂ + k̂n)p̂k̂nγλn k̂n−1γλn−1 . . . k̂1γλ1 p̂

]
= −(w + 2pkn)Tr

[
k̂1 . . . γλn−1 k̂n−1γλn−1 k̂nγλn k̂np̂k̂nγλn k̂n−1γλn−1 . . . k̂1p̂

]
. (3.44)

We have used in here the quark density matrix given by eq. (3.11). We are going to
calculate B(n)

q in DLA. In order to select appropriate contributions in the trace in eq. (3.44),
we generalize the approximation of eq. (3.23) to ki, with i = 1, 2, . . . , n− 1:

k̂ip̂k̂i = 2pkik̂i − k2
i p̂ ≈ −k2

i p̂. (3.45)

Doing so we arrive at the DL contribution NDL
q :

NDL
q = (−2)n−1k2

1 . . . k
2
n−1(w + 2pkn) Tr[p̂k̂np̂k̂n] (3.46)

≈ 2n−1k2
1⊥ . . . k

2
n−1⊥Tr[p̂k̂np̂k̂n] .

Substituting eq. (3.44), we arrive at B(n)
q in DLA. The integration region in DLA was

found in ref. [48]:

β1 � β2 � . . .� βn , (3.47)

k2
1⊥
β1
� k2

2⊥
β2
� . . .�

k2
n−2⊥
βn−2

.

Integrations over momenta k1, . . . , kn−2 in the region defined by eq. (3.47) yield DL
contributions whereas integration over kn, kn−1 yields the factor 1/x. Integration over
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kn, kn−1 is not restricted by eq. (3.47) but runs over the whole phase space. As is known
(see ref. [51]), contributions of non-ladder graphs cancel each other in DLA. Such a straight-
forward approach is comparatively simple for purely quark ladders (e.g., for the non-singlet
structure functions) but becomes too complex for calculating singlets where the quark
rungs are mixed with gluon ones. It is more practical to implement evolution equations in
this case.

3.5 Remark on contributions of non-ladder graphs

Our analysis of the non-ladder graphs ∼ α2
s shows that they do not yield the factor 1/x

and because of that they can be neglected. Technically, the reason of their smallness is
that they do not contain (k2

2)2 in denominators. At the same time, non-ladder graphs are
essential in higher loops (∼ αns , with n > 2). They should be accounted for because they
bring DL contributions. However, as long as αs is treated as a constant, DL contributions
of the non-ladder graphs cancel each other(see ref. [51]) and therefore they are essential at
running αs only.

4 Calculating Bq and Bg in DLA

We calculate Bq and Bg with constructing and solving IREEs for it. Constructing IREEs
in the DIS context was explained in many our papers. For instance, IREEs for the DIS
structure function F1 can be found in [38]; the overview of the technical details can be found
in ref. [43]. The essence of this approach is first to introduce a IR cut-off µ to regulate IR
divergences of the graphs contributing to Bq,g in higher loops.2 Once such cut-off has been
introduced, amplitudes Bq,g become µ-dependent and tracing their evolution with respect
to µ allows one to construct IREEs. The IREE technology involves the IR cut-off which
restricts from below transverse momenta of virtual partons and exploits the fact that DL
contributions of the partons with minimal k⊥ can be factorized.

The IREEs for Bq,g take a simpler form when the Mellin transform has been used. We
are going to calculate dependence of Bq,g on both w and Q2 but the standard parametriza-
tion Bq,g = Bq,g(x,Q2/µ2) leaves the w-dependence to be µ-independent, so as a result
we cannot trace it within the IREE technology. Because of that we replace x with the
µ-dependent argument w/µ2, arriving at the parametrization Bq,g = Bq,g

(
w/µ2, Q2/µ2).

We stress that this replacement is purely technical detail and the standard parametrization
will be restored automatically in final expressions for Bq,g. For the present, we write the
Mellin transform for Bq,g as follows:

Bq,g
(
w/µ2, Q2/µ2

)
=
∫ ı∞

−ı∞

dω

2πı
(
w/µ2

)ω
fq,g(ω,Q2/µ2). (4.1)

As usually, the integration line in eq. (4.1) runs to the right of the rightmost singularity
of fq,g. The transform inverse to eq. (4.1) is

fq,g(ω,Q2/µ2) =
∫ ∞
µ2

dw

w

(
w/µ2

)−ω
Bq,g

(
w/µ2, Q2/µ2

)
. (4.2)

2We use the mass scale µ of eq. (1.1) as an IR cut-off for simplicity reason, in order to avoid introducing
extra parameters.
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Throughout the paper we will address fq,g as Mellin amplitudes. The same form for
Mellin transforms we used in ref. [38] for the structure function F1. It is convenient to
use beyond the Born approximation the logarithmic variables ρ defined in eq. (3.18) and y
defined as follows:

y = ln
(
Q2/µ2

)
. (4.3)

IREEs for amplitudes Aq,g were obtained in ref. [38] and IREEs for amplitudes Bq,g
are absolutely the same, so we do not derive them here and only briefly comment on them.
IREEs for Bq,g in the ω-space look as follows:

∂fq(ω, y)/∂y = [−ω + hqq(ω)] fq(ω, y) + fg(ω, y)hgq(ω), (4.4)

∂fg(ω, y)/∂y = fq(ω, y)hqg(ω) + [−ω + hgg(ω)] fg(ω, y),

with hqq, hgq, hqg, hgg being auxiliary amplitudes describing parton-parton scattering in
DLA. They can be found in ref. [38]. In addition, explicit expressions for hik (with i, k =
q, g) can be found in appendix B. One can see that eqs. (4.4) exhibit a certain similarity to
the DGLAP equations. Indeed, the l.h.s. of eqs. (4.4) are the derivatives with respect to
lnQ2. Very soon we will demonstrate that the role of the terms ∼ ω in the r.h.s. of (4.4)
is to convert the factor

(
w/µ2)ω into x−ω. The remaining difference between eqs. (4.4)

and DGLAP equations is that all anomalous dimensions hik in eqs. (4.4) are calculated in
DLA, i.e. they contain contributions ∼ α1+n

s /ω1+2n to all orders in αs whereas the DGLAP
equations operate with the anomalous dimensions calculated in several fixed orders in αs.
For instance, the most singular terms in the LO DGLAP they are ∼ αs/ω while NLO
DGLAP involves more singular terms. General solution to eq. (4.4) also looks similar to
DGLAP expressions:

fq(ω, y) = e−ωy
[
C(+)e

Ω(+)y + C(−)e
Ω(−)y

]
, (4.5)

fg(ω, y) = e−ωy
[
C(+)

hgg − hqq +
√
R

2hqg
eΩ(+)y + C(−)

hgg − hqq −
√
R

2hqg
eΩ(−)y

]
,

This similarity is especially clear as one notices that the overall factor e−ωy =
(
µ2/Q2)ω

in eq. (4.5) converts the factor
(
w/µ2)ω of eq. (4.1) into the standard DGLAP factor x−ω,

when eq. (4.5) is combined with (4.1). The factors C(±)(ω) are arbitrary factors whereas
Ω(±) are expressed through hik:

Ω(±) = 1
2
[
hgg + hqq ±

√
R
]
, (4.6)

with
R = (hgg + hqq)2 − 4(hqqhgg − hqghgq) = (hgg − hqq)2 + 4hqghgq . (4.7)

The next step is to specify coefficient functions C(±)(ω) and we notice that similarity
of our approach and DGLAP ends at this point. Indeed, calculating coefficient functions
is beyond the scope of DGLAP whereas we continue to apply the IREE approach. Before
doing it, let us make use of matching Bq,g and amplitudes B̃q,g which describe the same
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process in the kinematics where the external photons are (nearly) on-shell, i.e. with virtu-
alities Q2 ≈ µ2. It means that B̃q,g do not depend on y. It is worth mentioning that our
strategy here is to some extent similar to the one of the BFKL-induced models where the
BFKL Pomeron is used as an input. In the ω-space the matching is

fq(ω, y)|y=0 = f̃q , fg(ω, y)|y=0 = f̃g , (4.8)

where f̃q,g are related by the Mellin transform (4.1) to amplitudes B̃q,g which describe
the same process, however with the external photons being (nearly) on-shell, i.e. with
virtualities Q2 ≈ µ2. It means that f̃q,g do not depend on y. Combining eqs. (4.8) and (4.5)
lead us to the algebraic system:

f̃q = C(+) + C(−), (4.9)

f̃g = C(+)
hgg − hqq +

√
R

2hgq
+ C(−)

hgg − hqq −
√
R

2hgq
2hqg ,

which makes possible to express C(±) through f̃1,2:

C(+) =
−f̃q

(
hgg − hqq −

√
R
)

+ f̃g2hqg
2
√
R

, (4.10)

C(−) =
f̃q
(
hgg − hqq +

√
R
)
− f̃g2hqg

2
√
R

.

Now we have to calculate f̃q,g. We do it with constructing and solving appropriate
IREEs. These IREEs are

ωf̃q(ω) = gq + hqq(ω)f̃q(ω) + hgq(ω))f̃g, (4.11)

ωf̃g(ω) = gg + hqg(ω)f̃q(ω) + hgg(ω)f̃g(ω),

where inhomogeneous terms gq,g stand for the inputs. We remind that, by definition, the
inputs cannot be obtained with evolving some simpler objects. We will specify gq,g in the
next section Solution to eq. (4.11) is

f̃q = −gq(hgg − ω) + gghqg
∆ , (4.12)

f̃g = gqagq − gq(hqq − ω)
∆ ,

where
∆ = (ω − hqq)(ω − hqq)− hqghgq . (4.13)

Substituting eq. (4.12) in eq. (4.10) allows us to represent C(±) through hik and inputs
gq,g. We write C(±) in the following form:

C(+) = gqG
(+)
q + ggG

(+)
g , (4.14)

C(−) = gqG
(−)
q + ggG

(−)
g ,
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where

G(+)
q =

(hqg − ω)
(
hgg − hqq −

√
R
)

+ 2hqghgq
2∆
√
R

, (4.15)

G(+)
g =

−hqg
(
hgg − hqq −

√
R
)
− 2hqg(hqq − ω)

2∆
√
R

,

G(−)
q =

−(hqq − ω)
(
hgg − hqq +

√
R
)
− 2hqghgq

2∆
√
R

,

G(−)
g =

hqg
(
hgg − hqq +

√
R
)

+ 2hqg(hqq − ω)

2∆
√
R

.

Combining eqs. (4.15), (4.14) and (4.5) leads to expressions for fq,g in terms of hik and
gq,g. We remind that explicit expressions for hik can be found in appendix B. They are
known in DLA for both spin-dependent DIS structure function g1 (see ref. [43]) and for
F1 as well (see ref. [38]). Let us compare eq. (4.11) for f̃q,g(ω) and eq. (4.4) for fq,g(ω, y).
The first difference between them is that eq. (4.11) does not contain the derivative ∂/∂y
because f̃q,g do not depend on y. The second difference is the presence of inhomogeneous
terms gq and gg in eq. (4.11). These terms stand for the inputs, i.e. for the starting point
of the evolution. Specifying them is necessary for obtaining explicit expressions for fq,g.
Below we consider this issue in detail.

5 Specifying inputs gq and gg for amplitudes Bq,g

Specifying inputs gq and gg is the key point of our paper because it is here that we de-
viate from the routine IREE technology. We remind that throughout the history of the
IREE approach the inputs have always been defined as the Born contributions whereas
contributions of higher loops were obtained with evolving the Born amplitudes. However,
this technology cannot apply to calculating amplitudes Bq,g. Indeed, the Born values for
both Bq and Bg are zeros, so substituting them in eq. (4.11) would lead to the system of
algebraic homogeneous equations without an unambiguous solution. The next option is to
choose the first-loop amplitudes as the inputs. Technically it is possible: they are non-zero
(see eq. (2.10)) and evolving them one can obtain Bq,g in DLA. However, in this case the
important second-loop contributions B(2)

q and B
(2)
g , each ∼ 1/x (see eqs. (3.22), (3.41)),

would be left unaccounted because the IR-evolution controls logarithms and cannot gen-
erate the factors 1/x. In section 3.4 we presented the scenario where B(2)

q and B(2)
g were

chosen as the inputs and demonstrated that higher loops cannot change this factor. In-
stead, they can generate DL contributions. Now we implement this scenario in IREEs and
choose Bq,g as the inputs. To this end, we should express B(2)

q,g in the ω-space. In the first
place we represent B(2)

q,g in the following form:

B(2)
q = ρB̃(2)

q (5.1)
B(2)
g = ρB̃(2)

g ,

with ρ = ln(w/µ2) (see eq. (3.17)). Notice that ρ corresponds to 1/ω2 in the ω space (see
eq. (4.1)). Then, remembering that the Mellin transform does not affect 1/x, we write B(2)

q,g
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in the ω-space and obtain the Mellin amplitudes ϕq,g conjugated to B(2)
q,g :

ϕq = B̃
(2)
q

ω2 =
(
γ(2)C

(2)
q

x

)
1
ω2 ≡

γ(2)b
(2)
q (ω)
x

, (5.2)

ϕg = B̃
(2)
g

ω2 =
(
γ(2)C

(2)
g

x

)
1
ω2 ≡

γ(2)b
(2)
g (ω)
x

.

Finally, we specify the inputs gq and gg of eq. (4.14) as follows:

gq = ϕq = γ(2)b(2)
q /x, (5.3)

gg = ϕg = γ(2)b(2)
g /x.

We remind that choosing these inputs takes us out of the standard form of DLA, where
Born amplitudes were considered as the starting point of evolution.

6 Explicit expressions for FL in DLA

Substituting gq,g of eq. (5.3) in (4.12) and combining the result with eqs. (4.10), (4.5), (4.1),
we obtain explicit expressions for Bq,g. Then, using eq. (2.8) drives us to expressions for
F

(q,g)
L . As the obtained expressions are linear in gq,g, we can factorize from them the overall

factor γ(2)/x. To this end we introduce C ′±:

C± = γ(2)x−1C ′± . (6.1)

Using eq. (6.1) allows us to represent expressions for F (q,g)
L as follows:

F
(q)
L = 4γ(2)x

∫ ı∞

−ı∞

dω

2πıx
−ω
[
C ′(+)e

Ω(+)y + C ′(−)e
Ω(−)y

]
, (6.2)

F
(g)
L = 4γ(2)x

∫ ı∞

−ı∞

dω

2πıx
−ω
[
C ′(+)

hgg − hqq +
√
R

2hqg
eΩ(+)y + C ′(−)

hgg − hqq −
√
R

2hqg
eΩ(−)y

]
.

The overall factor 4x at eq. (6.2) is the product of the factor 4x2 of eq. (2.8) and
the factor 1/x from the inputs gq,g. Eq. (6.2) includes the contributions to F

(q,g)
L most

essential at small x. It does not include the first-loop contribution and other contributions
decreasing at small x (see eq. (2.10)). On the contrary, both F (q)

L and F (g)
L of eq. (6.2) rise

when x is decreasing, albeit this does not look obvious. In order to make it seen clearly we
consider below the small-x asymptotics of F (q,g)

L , which look much simpler than the parent
expressions in eq. (6.2).

6.1 Small-x asymptotics of FL

At x → 0, F (q,g)
L can be approximated by their small-x asymptotics which we denote

(F (q,g)
L )AS . Technology of calculating the asymptotics is based on the saddle-point method

and the whole procedure is identical to the one for F1. So, we can use the appropriate
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results of ref. [38]. After the asymptotics of F (q,g)
L have been calculated and convoluted

with the parton distributions Φq,g (see eq. (2.6)), the small-x asymptotics of FL is obtained:

(FL)AS ∼
Π

ln1/2(1/x)
x1−ω0

(
Q2/µ2

)ω0/2
, (6.3)

where the factor Π includes both numerical factors of perturbative origin and values of the
quark and gluon distributions in the ω-space at ω = ω0. In any form of QCD factorization
Π does not contain any dependency on Q2 or x (see ref. [38] for detail). Then, ω0 is
the Pomeron intercept calculated with DL accuracy. This intercept was first calculated
in ref. [38]. We remind that it has nothing in common with the BFKL intercept. It is
convenient to represent ω0 as follows:

ω0 = 1 + ∆(DL) . (6.4)

Numerical estimates for ∆(DL) depend on accuracy of calculations. When αs is as-
sumed to be fixed,3

∆(DL)
fix = 0.29 (6.5)

and
∆(DL) = 0.07 , (6.6)

when the αs running effects are accounted for. Substituting either eq. (6.5) or eq. (6.6)
in eq. (6.3), one easily finds that FL ∼ x−∆(DL) at x → 0. The asymptotics of F1 was
calculated in ref. [38] showed that asymptotically F1 ∼ x−ω0 and therefore FL ∼ 2xF1.

The growth of FL and xF1 at small x is caused by the Pomeron behaviour of the
parton-parton amplitudes fik = 8π2hik ∼ x−ω0 . Amplitudes fgg and fgq, being convoluted
with Φg and Φq, form the gluon distribution in the initial hadron, which we denote Gh:

Gh = hgg ⊗ Φg + hgq ⊗ Φq . (6.7)

So, at small x
FL ∼ xGh . (6.8)

Another interesting observation following from eq. (6.3) is that

2∂ lnFL
∂ lnQ2 + ∂ lnFL

∂ ln x → 1 (6.9)

at x → 0. We think that it would be interesting to check this relation with analysis of
available experimental data. To conclude discussion of the asymptotics, we notice that the
asymptotics as eq. (6.3) should be used within its applicability region, otherwise one should
use the expressions of eq. (6.2). The estimate obtained in ref. [38] states that eq. (6.3) can
be used at x ≤ 10−6.

3We use here the value αs = 0.24 according to prescription of ref. [47].
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6.2 Comparison with approaches involving BFKL

Let us start this comparison with considering the second-order graphs (b) and (c) in fig-
ure 2, each with a pair of virtual gluons propagating in the t-channel. In section 3 we
used the DL configuration, where one of the gluons is longitudinally polarized while polar-
ization of the other gluon is transverse In contrast, contributions to BFKL coming from
these graphs involve the kinematics where the both ladder gluons bear longitudinal polar-
izations. Accounting for these polarizations immediately leads to the following behavior of
contributions B(2b)

LL and B(2c)
LL (the subscripts LL refer to the longitudinal polarizations):

B
(2b)
LL ∼ B

(2c)
LL ∼

1
xλ
, (6.10)

with λ = µ2/w. Therefore, B(2b,2c)
LL are greater than the considered in section 3 contri-

butions B(2)
q,g (we remind that B(2)

q,g ∼ 1/x). Convoluting graphs (b,c) in figure 2 with a
hadron and using appropriate hadron impact factors turns the factor λ into x, so the sin-
gular factor in eq. (6.10) is now 1/x2. This factor cancels the factor x2 relating B(2b,2c)

LL to
FL (see eq. (2.8)). Then, accounting for the impact of higher loops brings the Regge factor
x−∆BFKL , with ∆BFKL being the intercept of the BFKL Pomeron. Thus we obtain that the
BFKL contribution to FL is

FL ∼ x−∆BFKL , (6.11)
where ∆BFKL is used in either LO or NLO. In contrast to eq. (6.11), the contribution (6.3)
has the extra factor x and because of it (6.11) may look more important than (6.3). How-
ever, the leading singularity ω0 in eq. (6.3) is large, ω0 > 1 (see eq. (6.4)), so it cancels
the factor x and after that FL ∼ x−∆DL . Thus the small-x behaviour of FL predicted by
eq. (6.3), and the one predicted by eq. (6.11) become very much alike. Indeed, the intercepts
of Pomerons in the both approaches are pretty close to each other: ∆(DL)

fix of eq. (6.5) is
close to the intercept of the LO BFKL Pomeron and ∆(DL) of eq. (6.6) practically coincides
with the NLO BFKL Pomeron intercept.

On the contrary, the Q2-dependence predicted by eq. (6.3) differs from predictions
given by all other approaches: they do not satisfy eq. (6.9). It means that studying the x-
dependence of experimental data for FL with using Regge fits cannot unambiguously deduce
which of these two Pomerons is involved. In order to do it, one should investigate the Q2-
dependence of the data. To conclude this section, we once more stress that these approaches
deal with different logarithmic contributions and cannot be related to each other.

6.3 Remark on FL at arbitrary Q2

The expressions in eq. (6.2) are valid in the kinematic region (1.1) where Q2 is large.
However, it is easy to generalize eq. (6.2) to small Q2. It was proved in refs. [38, 43] and
used for the structute function F1 in ref. [52] that such a generalization is achieved with
replacement of Q2 by Q2 + µ2. When this shift has been done, F (q)

L and F (q)
L of eq. (6.2)

depend on new variables x̄, Q̄2:

Q̄2 = Q2 + µ2, x̄ = Q̄2/w. (6.12)

Thus, one can universally use the expressions for F (q,g)
L in eq. (6.2) at arbitrary Q2

providing the arguments of F (q,g)
L are x̄ and Q̄2.
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7 Conclusions

Our results predict that FL grows at small x despite the very small factor x2 at B in
eq. (2.5). First, we re-calculated with logarithmic accuracy the available in the literature
second-loop contributions B(2)

q and B(2)
g , each contains the large power factor 1/x in con-

trast to the Born and first-loop contributions. This calculation allowed us to conclude
that 1/x will be present in higher-loop expressions and cannot disappear or be replaced
by another power factor. We demonstrated that most important contributions coming
from higher orders are double logarithms. Accounting for DL contributions to all orders
in αs, we calculated the x and Q2 -evolution of B(2)

q,g in DLA. This evolution proved to be
similar to the evolution of the structure function F1. Eventually we obtained eq. (6.2) for
the partonic components F (q)

L and F
(q)
L of FL. The both these components rise at small

x though complexity of expressions in eq. (6.2) prevents to see the rise. To make the rise
be clearly seen, we calculated the small-x asymptotics of FL, which proved to be of the
Regge type. The asymptotics make obvious that the synergic effect of the factor 1/x and
the total resummation of double logarithms overcomes smallness of the factor x2 at B in
eq. (2.5) and ensures the rise of FL at small x, see eq. (6.3). Then in eq. (6.8) we noticed
that the rise of FL and the gluon distributions in the hadrons at small x are identical.
We also suggested in eq. (6.9) the simple relation between derivatives of logarithm of FL.
This relation could be checked with analysis of experimental data, so such check could
test correctness of our reasoning. The explicit expressions for FL obtained in section 5 are
valid at Q2 ≥ µ2. In section 6 we obtained the extension of those expressions to the region
Q2 < µ2. Confronting our results on the asymptotics of FL with the ones based on BFKL
Pomeron, we demonstrated that they predicted the similar small-x behavior and widely
different Q2-dependence.

A Integration in eq. (3.14)

We write eq. (3.14) in the following form:

B2a ≈ 4C2
Fχ2

[
I2a

1 + I2a
2

]
, (A.1)

with I2a
1,2 defined as integrals over the transverse momenta z1:

I2a
1 =

∫ 1

λ

dz1
z1
J2a

1 , (A.2)

I2a
2 =

∫ 1

λ

dz1
z1
J2a

2 ,

where J2a
1,2 involve integration over z2:

J2a
1 =

∫ 1

λ
dz2

z3

z2
2
J̃2a

1 , (A.3)

I2a
2 =

∫ 1

λ
dz2

z2

z2
2
J̃2a

2 .

– 18 –



J
H
E
P
0
3
(
2
0
2
1
)
2
7
4

Integrals J̃2a
1,2 deal with integration over the longitudinal variable l:

J̃2a
1 = −

∫ 1

z

dl

l2(l + η)2 , (A.4)

J̃2a
2 =

∫ 1

z

dl

l(l + η)2 ,

with η defined in eq. (3.15). Integration over l in eq. (A.4) yields

J̃2a
1 = 1

η2

(
1− 1

z

)
− 2
η3 ln

(1 + η

z + η

)
+ 1
η3

[ 1
1 + η

− 1
z + η

]
, (A.5)

J̃2a
2 = 1

η2

[
− ln(1 + η)− ln ((z + η)/z) + η

1 + η
− η

z + η

]
and therefore

J2a
1 =

∫ 1

λ
dz2

[
z − 1

(z2 + x)2 −
z2

(z2 + x)3 lnU(z, z2) (A.6)

+ z2
(z2 + x)3 ln(2z2 + x) + z2

(z2 + x)3U(z, z2) −
z2

(z2 + x)3(2z2 + x)

]
J2a

2 =
∫ 1

λ
dz2

1
(z2 + x)2

[
ln(2z2 + x)− lnU(z, z2)− z2

U(z, z2) + z2
2z2 + x

]
,

where
U(z, z2) = z2 + z(z2 + x) . (A.7)

It is convenient to perform integration in eq. (A.6), using the variable y = 1/(z2 + x)
instead of z2. The most essential contributions in eq. (A.6) at small x are the ones ∼ 1/x.
Accounting for them only, we obtain

J2a
1 = x−1[ln 2− 1/2] , (A.8)
J2a

2 = x−1(1/2) .

Substituting this result in eq. (A.2), we obtain

I2a
1 + I2a

2 = (ρ ln 2) x−1 . (A.9)

B Expressions for hik

hqq = 1
2

[
ω − Z − bgg − bqq

Z

]
, hqg = bqg

Z
, (B.1)

hgg = 1
2

[
ω − Z + bgg − bqq

Z

]
, hgq = bgq

Z
,

where
Z = 1√

2
√
Y +W , (B.2)

with
Y = ω2 − 2(bqq + bgg) (B.3)
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and

W =
√

(ω2 − 2(bqq + bgg))2 − 4(bqq − bgg)2 − 16bgqbqg , (B.4)

where the terms brr′ include the Born factors arr′ and contributions of non-ladder
graphs Vrr′ :

brr′ = arr′ + Vrr′ . (B.5)

The Born factors are (see refs. [43, 44] for detail):

aqq = A(ω)CF
2π , aqg = A′(ω)CF

π
, agq = −A

′(ω)nf
2π . agg = 2NA(ω)

π
, (B.6)

where A and A′ stand for the running QCD couplings as shown in ref. [47]:

A = 1
b

[
η

η2 + π2 −
∫ ∞

0

dze−ωz

(z + η)2 + π2

]
, A′ = 1

b

[1
η
−
∫ ∞

0

dze−ωz

(z + η)2

]
, (B.7)

with η = ln
(
µ2/Λ2

QCD

)
and b being the first coefficient of the Gell-Mann- Low function.

When the running effects for the QCD coupling are neglected, A(ω) and A′(ω) are replaced
by αs. The terms Vrr′ approximately represent the impact of non-ladder graphs on hrr′

(see ref. [43] for detail):

Vrr′ = mrr′

π2 D(ω) , (B.8)

with

mqq = CF
2N , mgg = −2N2 , mgq = nf

N

2 , mqg = −NCF , (B.9)

and

D(ω) = 1
2b2

∫ ∞
0

dze−ωz ln
(
(z + η)/η

)[ z + η

(z + η)2 + π2 −
1

z + η

]
. (B.10)

Let us note that D = 0 when the running coupling effects are neglected. It corresponds
the total compensation of DL contributions of non-ladder Feynman graphs to scattering
amplitudes with the positive signature as was first noticed in ref. [51]. When αs is running,
such compensation is only partial.
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