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1 Introduction

Relativistic string theory is governed by the most general classically marginal 2d relativistic
quantum field theory (QFT) with Poincaré symmetry realized as a global symmetry acting
on the worldsheet fields: the nonlinear sigma model [1]. In the presence of a boundary,
additional marginal vertex operators supported on the boundary can be turned on, which
describe a condensate of open strings ending on D-branes [2]. The coupling constants of the
2d QFT emerge as spacetime fields, and their properties are determined by the structure
of the 2d QFT. In particular, relativistic strings propagate on a Lorentzian Riemannian
manifold, and in the presence of n D-branes, on a background U(n) vector bundle.1 The cel-
ebrated field equations describing the propagation of massless particles of various helicities
emerge from relativistic string theory at low energies by demanding quantum consistency

1Not all string theory backgrounds have a straightforward geometric interpretation (e.g. asymmetric
orbifolds). They are nonetheless consistent classical string vacua as long as the 2d QFT is a CFT.
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of the 2d QFT on the string worldsheet, that is, by imposing quantum conformal invariance
of the bulk and boundary couplings. These include the Einstein, Rarita-Schwinger, Yang-
Mills and Dirac equations. For a single D-brane, conformal invariance leads to a nonlinear
theory for the curvature of the U(1) connection: the Dirac-Born-Infeld (DBI) action [2, 3].

Nonrelativistic string theory in flat spacetime was formulated in [4] as a 2d relativistic
QFT on the worldsheet with a nonrelativistic global symmetry, known as string Newton-
Cartan symmetry, acting on the string world sheet fields.2 Realizing the string Newton-
Cartan symmetry requires introducing additional worldsheet fields, which give nonrela-
tivistic string theory some of its most salient features [4]. Nonrelativistic string theory is
governed by the most general classically marginal 2d relativistic QFT with string Newton-
Cartan symmetry acting on the worldsheet fields. The target space geometry induced by
the 2d QFT couplings is the string Newton-Cartan geometry [7] (see also [8–12]),3 which
is to nonrelativistic string theory what Lorentzian Riemannian geometry is to relativistic
string theory. The equations of motion that determine the closed string backgrounds in
which nonrelativistic strings can consistently propagate were derived in [14]. These are to
nonrelativistic string theory what the (super)gravity equations of motion are to relativistic
closed string theory.

In this paper, we study nonrelativistic open string theory in open and closed string
backgrounds.4 We determine the open string background fields in nonrelativistic open
string theory by studying the space of open string vertex operators, and derive the back-
grounds in which nonrelativistic open string theory can be consistently defined quantum
mechanically. Our analysis leads to interesting gauge theories with nonrelativistic symme-
try living on the D-branes on which nonrelativistic open strings end.

We derive from a worldsheet analysis a nonlinear U(n) Yang-Mills action with Galilean
symmetry5 in flat spacetime,

SYM = 1
g2
YM

∫
dX0 dXA′ tr

(1
2 D0N D0N − EA′DA′N − 1

4FA
′B′FA′B′

)
, (1.1)

where EA′ and FA′B′ are gauge covariant electric and magnetic fields and N is a scalar in
the adjoint representation. The theory for n = 1 living on a single D-brane is quadratic
and reduces to Galilean Electrodynamics [18–20]. The gauge theory (1.1) describes the
most general open string background with vanishing winding number to lowest order in
the α′ expansion.

We determine the spacetime effective gauge theory describing open string fields with
nontrivial winding number. In spite that winding introduces inherent nonlocalities in string
theory, we show that the nonlocality can be tamed by introducing an additional spacetime

2The nonrelativistic spectrum was first obtained by taking a limit of relativistic string theory in [5] (see
also [6]).

3For nonrelativistic geometries from null reduction of relativistic string theory see [13] and section 3.1.
4Nonrelativistic open string theory corresponds to choosing a Dirichlet boundary condition along the

longitudinal spatial direction [15] while a Neumann boundary condition [4] leads to noncommutative open
string theory [16, 17]. See section 2.

5More precisely, Bargmann symmetry. See section 2.
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dimension on the D-brane, which has the physical interpretation as the coordinate con-
jugate to winding number. We derive the equations of motion describing the background
fields coupling to wound vertex operators and show that the effective action we derive in
one higher dimension beautifully reproduces the spectrum and mass shell condition of the
corresponding excitations of nonrelativistic open string theory.

Finally, we couple nonrelativistic string theory to an arbitrary closed and open string
background. By imposing quantum mechanical conformal invariance on the open string
couplings, we find a nonlinear system of equations of motion describing the open string
fields. We show that these equations of motion can be derived from a nonlinear local field
theory which has Galilean symmetry and which we dub Galilean DBI.

The plan for the rest of the paper is as follows. In the first half of section 2, we introduce
nonrelativistic string theory in flat spacetime and classify the open string vertex operators.
In the second half of section 2, we determine the nonrelativistic gauge theories living on
D-branes by requiring that the open string vertex operators be conformally invariant at the
quantum level. In section 3, we study nonrelativistic string theory in an arbitrary closed and
open string background and derive the one-loop beta-functions for the boundary coupling
constants in the corresponding Dirichlet sigma model. In section 4, we put forward the
Galilean DBI action whose equations of motion reproduce the vanishing beta-functions. In
section 5, we conclude our paper.

2 Flat spacetime

2.1 Nonrelativistic open string theory

The worldsheet action of nonrelativistic string theory with flat target spacetime in confor-
mal gauge is [4]

Sflat = 1
4πα′

∫
Σ
d2z

(
2 ∂zXA′

∂zX
A′ + λ ∂zX + λ ∂zX

)
, (2.1)

where
X = X0 +X1 , X = X0 −X1 , (2.2)

and
z = σ + iτ , z = σ − iτ . (2.3)

It follows that
∂z = 1

2
(
∂σ − i ∂τ

)
, ∂z = 1

2
(
∂σ + i ∂τ

)
. (2.4)

The worldsheet fields are the worldsheet scalars parametrizing the spacetime coordinates
Xµ = (XA , XA′), with A = 0, 1 and A′ = 2 , · · · , d − 1, where d denotes the spacetime
dimension, and two additional one-form fields λ and λ. The fields XA parametrize longitu-
dinal coordinates and XA′ transverse coordinates. The Riemann surface Σ is parametrized
by the Euclidean coordinates σα = (τ, σ). The critical dimension is d = 26 and d = 10 for
bosonic and supersymmetric nonrelativistic string theory.
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Let us consider open string theory by analyzing the boundary conditions for the world-
sheet fields on a surface Σ with a boundary ∂Σ at σ = 0. Taking variations with respect
to the worldsheet fields in (2.1) and requiring the bulk equations of motion,

∂zX = ∂zX = 0 , (2.5a)
∂zλ = ∂zλ = 0 , (2.5b)

∂z∂zX
A′ = 0 , (2.5c)

to hold, we find the following boundary contribution:

δSflat = 1
2πα′

∫
∂Σ
dτ

[
δXA′

∂σX
A′ + 1

2(λ+ λ) δX0 + 1
2(λ− λ) δX1

]
. (2.6)

We impose a Dirichlet boundary condition in the longitudinal spatial X1-direction [15]6

X1
∣∣∣
σ=0

= X1
0 , (2.8)

where X1
0 is constant. This implies δX1|σ=0 = 0. Furthermore, varying with respect to X0

gives rise to the following boundary condition for the one-form fields

λ+ λ
∣∣∣
σ=0

= 0 . (2.9)

The equations of motion of X and X imply that X0 obeys a Neumann boundary condition

∂σX
0
∣∣∣
σ=0

= 0 , (2.10)

and that7

∂σX
1 + i ∂τX

0
∣∣∣
σ=0

= 0 . (2.11)

The transverse coordinates behave the same as in conventional string theory, and henceforth
we consider Neumann boundary conditions for the transverse coordinates XA′

∂σX
A′
∣∣∣
σ=0

= 0 . (2.12)

These boundary conditions preserve conformal invariance since (2.8) and (2.10) implies
that (∂zX + ∂zX)

∣∣
σ=0 = 0, which with (2.9) and (2.12) says that (T − T )

∣∣
σ=0 = 0.8 These

boundary conditions define the open string theory on a D(d−2)-brane that is transverse to
the longitudinal spatial X1-direction.

6We can also consider boundary conditions in the presence of a constant longitudinal B-field

1
4πα′

∫
Σ
d2σ εαβ ∂αX

A ∂βX
B εAB = − 1

2πα′

∫
∂Σ
dτ X0 ∂τX

1 . (2.7)

This term is a total derivative and it vanishes when the Dirichlet boundary condition in (2.8) is introduced,
but otherwise leads to [4] noncommutative open string theory [16, 17] on a spacetime-filling brane.

7Equation (2.11) relates the derivatives ∂σX1 and ∂τX
0 at the boundary of the worldsheet, and will

play an important role in section 2.3 when studying the space of open string vertex operators.
8See (2.34) for the formula for the worldsheet stress energy tensor T .
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The worldsheet theory (2.1) with these boundary conditions defines nonrelativistic
open string theory in flat spacetime, which has an open string spectrum with a Galilean
invariant dispersion relation. The nonrelativistic open string energy spectrum is [15]

p0 = α′
pA′pA′

2wR + Nopen
2wR , (2.13)

where the X1-direction is taken to be a circle of radius R.9 We denote the winding number
along X1 as w, the open string excitation number as Nopen, and the transverse spacetime
momentum as pA′ . Since the spectrum (2.13) is singular when w = 0, all asymptotic states
must necessarily have nonzero winding (unless pA′ = 0). However, off-shell states in the
zero winding sector play the role of intermediate states that mediate an instantaneous elec-
tromagnetic force between winding strings, akin to closed string states with zero winding
mediating instantaneous gravitational forces.

One can nevertheless deform the worldsheet theory (2.1) with open string vertex oper-
ators with w = 0. This changes the background fields in which nonrelativitsic open strings
propagate. In this paper, we determine the open string backgrounds on which nonrela-
tivistic string theory can be consistently defined. In the following, we mostly focus on the
zero winding sector. We will discuss nonzero windings in section 2.6.

2.2 Bargmann symmetry on D-brane

Now, we discuss the global symmetries of the nonrelativistic action in flat space (2.1).
When the surface Σ has no boundary, the action (2.1) is invariant under the following
infinitesimal global symmetry transformations:

δXA′ = gA
′(X) + gA

′(X)− ΛA′
B′XB′

, (2.14a)

δX = f(X) , δλ = −λ ∂Xf(X)− 2 ∂XgA′(X) ∂XA′
, (2.14b)

δX = f(X) , δλ = −λ ∂
X
f(X)− 2 ∂X gA′(X) ∂XA′

. (2.14c)

These transformations form the so-called “extended Galilean symmetry algebra”, which
contains two copies of the Witt algebra [21]. This symmetry algebra reduces to the string
Newton-Cartan algebra when coupling nonrelativistic string theory to general background
fields (see section 3.1).

Let us now determine the symmetries preserved by a D(d − 2)-brane. This requires
finding the transformations (2.14) that preserve the boundary conditions (2.8)−(2.12) on
the boundary of the worldsheet. First, these conditions impose that

∂Xg
A′(X) = ∂

X
gA

′(X) , ∂Xf(X) = ∂
X
f(X) (2.15)

for arbitrary X and X. This implies that gA′
, gA

′
, f and f are functions at most linear

in their arguments. Moreover, imposing that the transformation preserves the Dirichlet
9We can also consider open strings stretched between D-branes separated by a distance L in the X1

direction. Then wR in (2.13) must be replaced with L/(2π).
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boundary condition along X1 correlates the constant part of f with that of f . Thus, the
infinitesimal symmetry transformations of nonrelativistic open string theory are:

δXA′ = ΞA′ + ΛA′
X0 −ΛA′

B′XB′
, (2.16a)

δX0 = Ξ0 + ΘX0, δλ = −Θλ− 2ΛA′∂zX
A′
, (2.16b)

δX1 = ΘX1, δλ = −Θλ− 2ΛA′∂zX
A′
. (2.16c)

Evaluated on the worldsheet boundary, we have

δλ = −δλ = −Θλ+ iΛA′∂τX
A′
. (2.17)

The conserved charges associated to the different transformations are:

time translation Ξ0 : H =
∫
dσ π0 , (2.18a)

transverse translation ΞA′ : PA′ =
∫
dσ πA′ , (2.18b)

Galilean boost ΛA′ : GA′ =
∫
dσ

(
X0 πA′ − i

2πα′ X
A′
∂σX

1
)
, (2.18c)

transverse rotation ΛA′
B′ : JA′B′ =

∫
dσ
(
−XA′

πB′ +XB′
πA′

)
, (2.18d)

longitudinal dilatation Θ : D =
∫
dσXA πA , (2.18e)

where we defined the conjugate momentum for X0, X1 and XA′ as

π0 = i

4πα′
(
λ− λ

)
, π1 = i

4πα′
(
λ+ λ

)
, πA′ = 1

2πα′ ∂τX
A′
. (2.19)

Using the equal-τ Poisson brackets,

[XA(σ1) , πB(σ2)] = δAB δ(σ1 − σ2) , [XA′(σ1) , πB′(σ2)] = δA
′

B′ δ(σ1 − σ2) , (2.20)

we find that the generators H, PA′ , GA′ and JA′B′ satisfy the Bargmann algebra,

[H,GA′ ] = −PA′ , [PA′ , JB′C′ ] = δA′B′ PC′ − δA′C′ PB′ , (2.21a)
[PA′ , GB′ ] = δA′B′ Z , [GA′ , JB′C′ ] = δA′B′ GC′ − δA′C′ GB′ , (2.21b)

[JA′B′ , JC′D′ ] = δB′C′JA′D′ − δA′C′JB′D′ + δA′D′JB′C′ − δB′D′JA′C′ , (2.21c)

where
Z = i

2πα′
∫
dσ ∂σX

1 (2.22)

is the central charge in the Bargmann algebra. Note that Z measures the winding number
of strings along X1. The appearance of the Bargmann algebra here is expected, as the
open string theory defines a QFT living on the D-brane, which describes dynamics of
nonrelativistic gauge fields that we will elaborate on in the rest of the section.

This symmetry algebra is further extended by the longitudinal dilatation generator
in (2.18e), which satisfies the following Lie brackets:

[D ,H ] = H , [D ,GA′ ] = −GA′ , [D ,Z] = −Z . (2.23)

– 6 –
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Note that the compactified circle in X1 is rescaled under the dilatation transformation.
This rescaling can be compensated when a dilaton is included. Consequently, as we will
see later at the end of section 2.4, the dilatation is only a symmetry of the spacetime
equations of motion instead of the spacetime action, unless a dilaton background field
is present. Also note that the dilatation generator in (2.18e) gives rise to the dilaton
background in string theory when the algebra is gauged.10

2.3 Open string vertex operators

Our next goal is to consider the most general deformation of nonrelativistic open string
theory in flat spacetime by perturbing around the free action (2.1) with open string vertex
operators. We consider here vertex operators with zero winding along X1. Turning on
these vertex operators changes the background fields in which nonrelativistic open strings
propagate.

In order to classify the open string vertex operators that can be added to the sigma
model action (2.1), we first consider all possible (1, 0) and (0, 1) forms in the bulk,

λ , ∂zX , ∂zX
A′ ; λ , ∂zX , ∂zX

A′
. (2.24)

In section 2.1, we derived the boundary conditions in nonrelativistic open string theory
with a flat target space (and with zero open string background fields), which we collect
as follows:

Dirichlet: ∂τX
1
∣∣∣
σ=0

= 0 , (2.25a)

Neumann: ∂σX
0
∣∣∣
σ=0

= ∂σX
A′
∣∣∣
σ=0

= 0 , (2.25b)

and

λ+ λ
∣∣∣
σ=0

= ∂σX
1 + i ∂τX

0
∣∣∣
σ=0

= 0 . (2.26)

Therefore, the independent one-forms in (2.24) are

∂τX
0, ∂τX

A′
, λ . (2.27)

The most general deformation created by an open string vertex operator with zero
winding is

V =
∫
∂Σ
dτ
[
:Nλ : + i

(
:A0 ∂τX

0 : + :AA′ ∂τX
A′:
)]
. (2.28)

The worldsheet couplings N , A0 and AA′ are functions of X0 and XA′ and have a spacetime
interpretation as background open string fields on the D(d− 2)-brane worldvolume. Here,
A0 and AA′ are the components of a U(1) gauge field. The vertex operator (2.28) is
invariant under the U(1) gauge transformation

δεA0 = ∂0ε , δεAA′ = ∂A′ε . (2.29)
10See [12] for relevant discussion of the analogue of this dilatation generator in string Newton-Cartan

algebra.
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The coupling N = N(X0, XA′), which is invariant under the U(1) gauge symmetry, has a
geometrical interpretation as the Nambu-Goldstone boson that perturbs around the soli-
tonic D(d− 2)-brane, which breaks the translational symmetry along the X1 direction.

The vertex operator (2.28) is invariant under the global spacetime symmetry algebra
we derived in the previous section when supplementing the worldsheet transformations
in (2.16) with the following infinitesimal transformations of the background fields :

δN = −ξ0 ∂0N − ξA
′
∂A′N + ΘN , (2.30a)

δA0 = −ξ0 ∂0A0 − ξA
′
∂A′A0 −A0 ∂0ξ

0 −AA′∂0ξ
A′
, (2.30b)

δAA′ = −ξ0 ∂0AA′ − ξB′
∂B′AA′ −A0 ∂A′ξ0 −AB′∂A′ξB

′ − ΛA′N , (2.30c)

where
ξ0 ≡ Ξ0 + ΘX0 , ξA

′ ≡ ΞA′ + ΛA′
X0 − ΛA′

B′XB′
. (2.31)

In particular, the transformations under the Galilean boost symmetry are

δGN = −ΛA′
X0 ∂A′N , (2.32a)

δGA0 = −ΛA′
X0 ∂A′A0 − ΛA′

AA′ , (2.32b)

δGAA′ = −ΛB′
X0 ∂B′AA′ − ΛA′N . (2.32c)

These transformations realize on the background fields (A0, AA′ , N) the Bargmann algebra
(with the additional dilatation symmetry) that is preserved by the D-brane. The expression
in (2.28) is the most general open string vertex operator with zero winding respecting these
symmetries.

Our goal is to determine the open string backgrounds in which nonrelativistic open
strings in flat spacetime can propagate on.

2.4 Galilean electrodynamics from nonrelativistic open string theory

Requiring that the open string vertex operator in (2.28) is BRST invariant imposes con-
straints on the couplings (A0, AA′ , N). These conditions are the linearized spacetime equa-
tions of motion that the background fields (A0, AA′ , N) must satisfy for a self-consistent
nonrelativistic open string theory.

The (holomorphic) BRST charge of nonrelativistic string theory (2.1) is

Q =
∫

dz

2πi

[
:c Tm(z) : + :b c ∂zc : + 3

2 :∂2
zc :
]
, (2.33)

where the matter stress energy tensor is

Tm(z) = − 1
2α′

(
2 ∂zXA′

∂zX
A′ + λ ∂zX

)
. (2.34)

Our goal is to calculate the BRST transformation of the most general open string vertex
operator (2.28).

Calculating the BRST transformation requires computing operator product expansions
(OPEs). Using the Neumann boundary condition (2.12) for XA′ , we find

XA′(z, z)XB′(z′, z′) ∼ −1
2 α
′ δA

′B′( ln |z − z′|2 + ln |z + z′|2
)
. (2.35)

– 8 –
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Moreover, the OPEs for the holomorphic fields λ = λ(z) and X = X(z), and the anti-
holomorphic fields λ(z) and X(z) are

λ(z)X(z′) ∼ − 2α′

z − z′
, λ(z)X(z′) ∼ − 2α′

z − z′
. (2.36)

We decompose the worldsheet field Xµ into its left- and right-moving parts as

Xµ(z , z) = Xµ
L(z) +Xµ

R(z) . (2.37)

In doing so, the (anti-)holomorphic equations of motion ∂X = ∂X = 0 implies

X(z) = 2X0
L(z) = 2X1

L(z) , X(z) = 2X0
R(z) = −2X1

R(z) . (2.38)

In what follows, we focus on the left-moving modes XA′
L (z), X0

L(z), and λ(z), with

XA′
L (z)XB′

L (z′) ∼ −1
2 α
′ δA

′B′ ln(z − z′) , λ(z)X0
L(z′) ∼ − α′

z − z′
. (2.39)

In terms of the holomorphic fields and the holomorphic coordinate z, we write the
open string vertex operator V in (2.28) as

V =
∫
∂Σ
dz VL(z)−

∫
∂Σ
dz VR(z) . (2.40)

For open strings, the holomorphic and anti-holomorphic parts are related to each other by
the boundary conditions, so it is sufficient to focus on either one of them. In what follows,
we will study the holomorphic part,

VL =
∫
∂Σ
dz VL(z) , (2.41)

with
VL(z) = 1

2 :N λ(z) : − :A0 ∂zX
0
L(z) : − :AA′ ∂zX

A′
L (z) : . (2.42)

It then follows that the BRST transformation of VL is

[Q ,VL(z)] = :∂zWL(z) : −α
′

4 :∂zc(z) E(z) : , (2.43)

where

WL(z) = c(z)VL(z) + α′

4 ∂zc
(
∂A

′
AA′ − ∂0N

)
, (2.44a)

E(z) = 1
2 ∂

A′
∂A′N λ−

(
∂2

0N − ∂A
′
EA′

)
∂X0 −

(
∂0∂A′N + ∂B

′
FB′A′

)
∂XA′

, (2.44b)

and we have introduced the gauge invariant electric and magnetic fields,

EA′ = ∂0AA′ − ∂A′A0 , FA′B′ = ∂A′AB′ − ∂B′AA′ . (2.45)

– 9 –
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Requiring that VL in (2.41) is BRST invariant implies that [Q,VL(z)] must be a total
derivative, which requires that E = 0. This sets the couplings in front of the operators λ,
∂X0 and ∂XA′ in (2.44b) to zero separately,

∂A
′
∂A′N = 0 , (2.46a)

∂2
0N − ∂A

′
EA′ = 0 , (2.46b)

∂A′∂0N + ∂B
′
FB′A′ = 0 . (2.46c)

Therefore, when the background fields (A0, AA′ , N) satisfy the linearized equations of mo-
tion (2.46), nonrelativistic open string theory can be consistently defined.

The linearized background field equations in (2.46) arise from varying the following
action with respect to N , A0 and AA′ ,

S = 1
g2

∫
dX0 dXA′

(1
2 ∂0N ∂0N − EA′∂A′N − 1

4FA
′B′FA′B′

)
, (2.47)

where g2 = eΦ0 , with Φ0 the dilaton expectation value. This theory is known as Galilean
Electrodynamics in the literature, which was historically discovered by considering a null
reduction of Maxwell theory in [18], and later reproduced as a nonrelativistic limit of
Maxwell theory with a free massless scalar in [19, 20].11 The action (2.47) is invariant
under the Bargmann symmetry, and if we appropriately shift the dilaton, also under the
dilatation symmetry (2.18e), that is, dilatation transformations are a symmetry of the
equations of motion but not of the action (2.47).

As mentioned earlier, in the zero winding sector, there are no propagating degrees of
freedom. Nevertheless, strings with no winding can appear as intermediate states that
mediate instantaneous electromagnetic forces between winding strings. The fact that open
strings with no winding do not have propagating degrees of freedom is realized in the
absence of propagating modes in the Galilean Electrodynamics action (2.47).

In section 3, we generalize the Galilean Electrodynamics result in (2.46) to its DBI
analogue in arbitrary open and closed background fields.

2.5 Galilean Yang-Mills theory from nonrelativistic open string theory

Our next goal is to derive the low energy effective action that determines the consistent open
string backgrounds on a stack of n coincident D(d − 2)-branes. This requires introducing

11In [20], a finite Galilean boost transformation was introduced, under which (2.47) is invariant. In
the worldsheet formalism we are working with, if one takes the boost transformation XA → XA and
XA′

→ XA′
+ ΛA

′
X0 in (2.16) to be a finite transformation, then, by requiring the nonrelativistic string

action (2.1) to be invariant, the boost transformation of the one-form fields λ and λ gain a term quadratic
in ΛA′ ,

λ→ λ− ΛA′∂XA′
− 1

2 ΛA′ ΛA
′
∂X0 , λ→ λ− ΛA′∂XA′

− 1
2 ΛA′ ΛA

′
∂X0 . (2.48)

Requiring the open string vertex operator (2.28) to be invariant under these transformations gives

N ′(X ′) = N(X) , A′
0(X ′) = A0(X)− ΛA

′
AA′ (X) + 1

2 ΛA′ ΛA
′
N(X) , (2.49a)

A′
A′ (X ′) = AA′ (X)− ΛA

′
N, (2.49b)

which derives the finite boost transformations given in [20].
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U(n) Chan-Paton bundles. The most general open string vertex operator with vanishing
winding number is described by the Wilson line like insertion

W = trP exp
{∫

∂Σ
dτ
[
:Nλ : +i

(
:A0 ∂τX

0 : + :AA′ ∂τX
A′:
)]}

, (2.50)

where the path-ordering operator P orders terms such that higher values of τ stand to the
left. We defined the adjoint fields

A0 = Am0 Tm, AA′ = AmA′ Tm, N = Nm Tm, (2.51)

where Tm are generators in the fundamental representation of U(n). There are n2 genera-
tors Tm, each of which is a hermitian n × n matrix. The fields in (2.51) transform under
U(n) gauge transformations as follows:

A0 → UA0 U
† + i U(∂0U

†) , (2.52a)
AA′ → UAA′ U † + i U(∂A′U †) , (2.52b)
N → UN U † , (2.52c)

where
U(X0, XA′) = exp [i αm(X0, XA′)Tm] . (2.53)

These leave the vertex operator (2.50) invariant. N is therefore a field in the adjoint
representation of U(n). The gauge-covariant field strengths are

EA′ = ∂0AA′ − ∂A′A0 − i [A0 , AA′ ] , (2.54a)
FA′B′ = ∂A′AB′ − ∂B′AA′ − i [AA′ , AB′ ] . (2.54b)

We define the covariant derivatives D0 and DA′ , which act on the adjoint scalar N as

D0N = ∂0N − i [A0, N ] , DA′N = ∂A′N − i [AA′ , N ] . (2.55)

We would like to derive the Yang-Mills analogue of the Galilean Electrodynamics equations
of motion in (2.46), which involves keeping track of terms up to the third order in the
background fields in (2.50) in the following expansion:

W = tr
[
1 +

∫ ∞
−∞

dτ V (τ) +
∫ ∞
−∞

dτ V (τ)
∫ τ

−∞
dτ ′ V (τ ′)

+
∫ ∞
−∞

dτ V (τ)
∫ τ

−∞
dτ ′ V (τ ′)

∫ τ ′

−∞
dτ ′′ V (τ ′′) + · · ·

]
, (2.56)

where
V =:Nλ :+ i

(
:A0 ∂τX

0 : + :AA′ ∂τX
A′:
)
. (2.57)

In principle, the gauge covariant equations of motion can be derived by requiring the BRST
invariance of W order by order, which in practice is quite complicated. We will therefore
use a slightly different method to extract higher-order contributions of the gauge fields to
the equations of motion, following closely [14, 22].
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We start with introducing an Einbein field e(s) with dτ = ds e(s) in the measure of the
boundary action. This field transforms under Weyl symmetry as δW e = δω e. Moreover, the
one-form field also transforms nontrivially under the Weyl symmetry, with δWλ = −δω λ.
Then, the scalar-coupled Wilson line can be written as

W = trP exp
{∫

∂Σ
ds e

[
Nλ+ i

e

(
A0 ∂sX

0 +AA′ ∂sX
A′)]}

, (2.58)

which is Weyl invariant classically. However, the renormalization of a classically Weyl
invariant operator may lead to a Weyl anomaly. To see this, we define a renormalized
operator [O(τ)]r for a given boundary operator O(τ),

[O]r = exp
[
α′
∫
ds1 ds2 ln d(s1, s2) P̂ (s1 , s2)

]
O , (2.59)

where
P̂ (s1 , s2) = δ

δXA′(s1)
δ

δXA′(s2) − 2ie−1∂s1
δ

δλ(s1)
δ

δX0(s2) . (2.60)

Here, d(s1 , s2) =
∫ s2
s1
dτ is the distance between τ(s1) and τ(s2) on ∂Σ, which transforms

nontrivially under the Weyl symmetry, satisfying the following coincidence limits [22]:

δW ln d(s , s′)
∣∣
s′=s = δω(s) , δW ∂s ln d(s , s′)

∣∣
s′=s = 1

2 ∂τδω(s) , · · · (2.61)

At the lowest order of the field strength and N , we find

δW [W ]r = α′
∫
∂Σ
ds e

[(
λ δWN + ie−1( δWA0 ∂sX

0 + δWAA′ ∂sX
A′)+ · · ·)W ]

r , (2.62)

where

δWN = δωDA′DA′
N, (2.63a)

δWA0 = δω
(
D2

0N −DA′
EA′

)
, (2.63b)

δWAA′ = δω
(
D0DA′N +DB′

FB′A′

)
. (2.63c)

Setting δW [W ]r to zero at the lowest order in the field strength gives rise to the equations
of motion12 of a U(n) Yang-Mills theory with nonrelativistic symmetry

DA′DA′
N = 0 , (2.64a)

D2
0N −DA′

EA′ = 0 , (2.64b)

D0DA′N +DB′
FB′A′ = 0 . (2.64c)

These equations of motion can be derived from the following nonrelativistic Yang-Mills
action:

SYM = 1
g2
YM

∫
dX0 dXA′ tr

(1
2 D0N D0N − EA′DA′N − 1

4FA
′B′FA′B′

)
. (2.65)

This nonlinear, nonabelian gauge theory has Bargmann symmetry. The corresponding
equations of motion, but not the action, are invariant under the dilatation transforma-
tion (2.18e).

12See [23] for other versions of Yang-Mills theories with distinct nonrelativistic symmetry.
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2.6 Winding open string backgrounds

We now consider turning on open string vertex operators with nonzero winding number.
This introduces novel and interesting elements in the discussion, like an emergent coordi-
nate conjugate to the winding number, that leads to a mild nonlocality in the spacetime
equations of motion, which now describe propagating degrees of freedom.

We first analyze vertex operators with a fixed winding number w. Focusing on the
holomorphic part, the open string vertex operator (2.42) is

V w
L (z) = :

[1
2N

wλ(z)−Aw0 ∂zX0
L(z)−AwA′∂zX

A′
L (z)

]
eiq
∫ z
dz′λ(z′) : , (2.66)

where q encodes the winding number w,

q = wR

2α′ , (2.67)

with R the radius of the compactified X1-direction. The new worldsheet couplings Nw,
Aw0 , and AwA′ are related to N , A0, and AA′ by a “Fourier transform”

N(X0, XA′
, λ) =

∑
w

Nw(X0, XA′) eiq
∫ z
dz′λ(z′), (2.68a)

A0(X0, XA′
, λ) =

∑
w

Aw0 (X0, XA′) eiq
∫ z
dz′λ(z′), (2.68b)

AA′(X0, XA′
, λ) =

∑
w

AwA′(X0, XA′) eiq
∫ z
dz′λ(z′). (2.68c)

The integrated vertex operator VwL = −2
∫
∂Σ dz V

w
L (z) is invariant under the U(1) gauge

transformations

δεN
w = −2iq ε , δεA

w
0 = ∂0ε , δεA

w
A′ = ∂A′ε . (2.69)

We note that winding number endows Nw with a nontrivial U(1) transformation. This
fact has a simple interpretation if we introduce a novel spacetime coordinate conjugate
to winding (see (2.75)). This suggests that the dynamics of wound open strings is more
naturally formulated in an extended spacetime, as we shall now see.

The nonrelativistic spacetime transformations also act on Nw, Aw0 , and AwA′ differently
from the way they act on N , A0, and AA′ in (2.30). For example, the boost transformation
parametrized by ΛA′ in (2.30) is now modified to be

δGN
w = 2iqΛA′XA′

N − ΛA′
X0 ∂A′N , (2.70a)

δGA
w
0 = 2iqΛA′XA′

A0 − ΛA′
X0 ∂A′A0 − ΛA′

AA′ , (2.70b)

δGA
w
A′ = 2iqΛB′XB′

AA′ − ΛB′
X0 ∂B′AA′ − ΛA′N . (2.70c)

The BRST transformation of V w
L (z) is given by

[Q ,V w
L (z)] = :∂zWw

L (z) : −α
′

4 :∂zc(z) Ew(z) eiq
∫ z
dz′λ(z′) : , (2.71)
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with

Ww
L (z) = c(z)V w

L (z) + α′

4 ∂zc
(
∂A

′
AwA′ − ∂0N

w + 2iqAw0
)
eiq
∫ z
dz′λ(z′), (2.72a)

Ew(z) = 1
2
(
∂A

′
∂A′Nw + 2iq ∂0N

w + 2iq ∂A′
AwA′ − 4q2Aw0

)
λ

−
(
∂2

0N
w − ∂A′

EwA′ + 2iq ∂0A
w
0

)
∂X0

−
(
∂0∂A′Nw + ∂B

′
FwB′A′ + 2iq ∂0A

w
A′ + 2iqEw

A′

)
∂XA′

, (2.72b)

where we have defined wound electric and magnetic fields

EwA′ = ∂0A
w
A′ − ∂A′Aw0 , FwA′B′ = ∂A′AwB′ − ∂B′AwA′ . (2.73)

It is useful to consider the vertex operator obtained by summing over all windings,

VL =
∑
w

VwL . (2.74)

Demanding that VL =
∑
w VwL is BRST invariant sets

∑
w Ew = 0, with Ew given in (2.71).

It is enlightening to define an auxiliary coordinate,

Xr(z) ≡ 1
2

∫ z

dz′λ(z′) , (2.75)

and introduce the “spacetime” coordinates XA= (Xr,X0,XA′). This is reminiscent of a
spacetime doubling as in double field theory [24]. Using (2.71), we find that

∑
w Ew = 0 gives

rise to a system of equations of motions that admits the following simple representation:

GBC∂BFCA = 0, (2.76)

where FAB = ∂AAB − ∂BAA, with AA =
(
−N,A0, AA′

)
, and

GAB =

0 1 0
1 0 0
0 0 δA

′B′

 . (2.77)

Here, N , A0 and AA′ are functions of the extended spacetime coordinates XA.
The equations of motion for the open string fields with winding (2.76) can be derived

by varying the following action:

S = − 1
4g2

∫
dXr dX0 dXA′

FABG
ACGBDFCD . (2.78)

We note that we have been able to write down an action by introducing an auxiliary
coordinate Xr, conjugate to winding number. The explicit dependence on the extended
directionXr rather than only the local coordinatesX0 andXA′ signatures nonlocality. This
nonlocal feature is expected as the winding sector is inherently nonlocal. This nonlocality
is, however, of a rather tame form, as we are able to write down explicitly the spacetime
action (2.78) in terms of the auxiliary coordinate Xr.
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In contrast to Galilean Electrodynamics, which is non-dynamical, and which describes
the sector with vanishing winding, the gauge theory in (2.78) has d−2 propagating degrees
of freedom with a nonrelativistic dispersion relation,

p0 = α′
pA′pA′

2wR . (2.79)

This beautifully realizes the nonrelativistic open string dispersion relation in (2.13) with
the open string excitation number Nopen set to zero.

The compact form of the equations of motion in (2.76) finds a simple interpretation if
one performs a T-duality transformation along the longitudinal spatial X1-direction, which
is compactified on a circle of radius R. After performing this longitudinal spatial T-duality
transformation in nonrelativistic open string theory, we find relativistic open string theory
on a spacetime-filling brane background, with the following duality dictionary [25]: the
X1-direction is dual to a lightlike direction X̃1 = Xr on the brane, the Goldstone boson
N and the gauge component A0 are dual to the lightlike components of the relativistic
U(1) gauge field, and the winding number w is dual to the discrete momentum along the
lightlike circle.

This concludes our analysis of nonrelativistic open string theory in flat spacetime.

3 Curved backgrounds

In this section, we consider the nonrelativistic string nonlinear sigma model in an arbi-
trary string Newton-Cartan geometry, B-field, U(1) gauge field, and dilaton background
in presence of a D(d − 2)-brane. Our goal is to compute the beta-functions for the open
string couplings, which define the spacetime equations of motion of nonrelativistic open
string theory. We focus our discussion to the zero winding sector. We start with a brief
review of the nonrelativistic closed string nonlinear sigma model, and then move on to
the construction of the Dirichlet nonlinear sigma model that couples nonrelativistic open
strings to a closed string background geometry.

3.1 Closed strings on a string Newton-Cartan background

The appropriate closed string background geometry for nonrelativistic string theory is
string Newton-Cartan geometry, which is a non-Lorentzian and non-Riemannian geome-
try. We give a short review of the definition of string Newton-Cartan geometry, following
closely [12].

Let Tp be the tangent space attached to a point p in the spacetimeM. We decompose
Tp into a longitudinal sector with an index A = 0, 1 and a transverse sector with an index
A′ = 2, · · · , d−1. We introduce a longitudinal Vielbein field τµA and a transverse Vielbein
field EµA

′ . The invertibility conditions are

τµA τµ
B = δBA , τµ

A τνA + Eµ
A′
EνA′ = δνµ , (3.1a)

EµA′ Eµ
B′ = δB

′
A′ , τµAEµ

A′ = EµA′ τµ
A = 0 . (3.1b)
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In addition, there is an additional gauge field mµ
A, associated with a noncentral extension

in the string Newton-Cartan algebra.
The string Newton-Cartan geometry realizes the string Newton-Cartan algebra [12]

as a gauge symmetry acting on the target space that we will define momentarily. This
string Newton-Cartan algebra is a finite subalgebra of the extended Galilean symmetry
algebra discussed in section 2.2 for the flat spacetime free action in (2.1) in the absence
of a boundary. Turning on an arbitrary closed string background breaks the infinite-
dimensional extended Galilean symmetry algebra to the finite-dimensional string Newton-
Cartan symmetry algebra,13 whose generators consist of a longitudinal translation HA, a
transverse translation PA′ , a longitudinal Lorentz rotationM , a string Galilean boost GAA′ ,
a transverse rotation JA′B′ , and noncentral extensions ZA and ZAB, with ηABZAB = 0 and
ηAB the Minkowski metric. The string Newton-Cartan gauge fields transform under the
string Newton-Cartan symmetry as [12, 26]

δτµ
A = Λ εAB τµB , δEµ

A′ = −ΛAA
′
τµ
A + ΛA′

B′Eµ
B′
, (3.2a)

δmµ
A = Dµσ

A + Λ εABmµ
B + ΛAA′

Eµ
A′ − τµB σAB , (3.2b)

where σAB is traceless with σABηAB = 0 and Dµσ
A = ∂µσ

A− εAB σB Ωµ with Ωµ the spin
connection associated with the longitudinal Lorentz rotation. The Levi-Civita symbol εAB
is defined by ε01 = −ε10 = 1, and the A index can be raised by the Minkowskian metric
ηAB. Here, the Lie group parameter Λ is associated with M , ΛAA′ is associated with
GAA′ , ΛA′B′ is associated with JA′B′ , σA is associated with ZA, and σAB is associated with
ZAB. Here, we omitted the symmetry transformations under translations and, instead,
require that all gauge fields transform as covariant vectors under diffeomorphisms. These
generators satisfy the string Newton-Cartan algebra with the following Lie brackets:

[HA, GBA′ ] = ηABPA′ , [HA, Z] = εA
BZB , (3.3a)

[GAA′ , PB′ ] = δA′B′ZA , [HA, ZBC ] = 2 ηACZB − ηBCZA , (3.3b)
[GAA′ , GBB′ ] = δA′B′Z[AB] . (3.3c)

Here, we omitted the Lie brackets that involve the longitudinal and transverse rotational
generators MAB = M εAB and JA′B′ , which act on the A and A′ indices in a standard way,
for example, as in (2.21).

Next, we consider the nonlinear sigma model in a string Newton-Cartan background.
For now, we set the worldsheet to be flat and thus omit the dilaton field. We will return
to the dilaton contribution at the end in section 3.5. The nonlinear sigma model of non-
relativistic closed string theory in an arbitrary string Newton-Cartan background with a
Kalb-Ramond field Bµν is

Sclosed = 1
4πα′

∫
d2σ

(
∂αX

µ ∂αXνHµν + λ ∂Xµ τµ + λ ∂Xµ τµ − i εαβ ∂αXµ ∂βX
νBµν

)
,

Hµν = Eµ
A′
Eν

A′ +
(
τµ
Amν

B + τν
Amµ

B
)
ηAB , (3.4)

13The string Newton-Cartan algebra can be further extended by including a longitudinal dilatation gen-
erator, similarly as in (2.23) for the Bargmann algebra. See [12] for discussion on this dilatational generator.
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where ∂ = ∂σ − i∂τ and ∂ = ∂σ + i∂τ and the Levi-Civita symbol εαβ is defined by
ετσ = −εστ = 1. The B-field transforms under an U(1) gauge symmetry

δεBµν = ∂µεν − ∂νεµ . (3.5)

The two-tensor Hµν is invariant under the string Galilean boost but not the ZA extension.
For Sclosed to be invariant under the ZA symmetry that acts on mµ

A as in (3.2), it is
required that a hypersurface orthogonality condition is satisfied,

D[µ τν]
A = 0 . (3.6)

With the condition (3.6) taken into account, the action (3.4) is invariant under the gauge
transformations (3.2) and (3.5). The ZA gauge symmetry we consider here prohibits the
λλ operator from being generated at the quantum level in the string action (3.4). Turning
on such a λλ term would drive the nonlinear sigma model towards the one that describes
relativistic string theory. See [14, 27] for details.14

Sometimes it is useful to rewrite the string action using the field redefinitions [7]

λ′ = C−1
(
λ− ∂XµCµ

)
, λ

′ = C
−1(

λ− ∂XµCµ
)
, (3.7a)

and

τ ′µ = C τµ , H ′µν = Hµν −
(
Cµ

A τν
A + Cν

A τµ
B
)
ηAB , (3.7b)

τµ = C τµ , B′µν = Bµν +
(
Cµ

A τν
B − CνA τµB

)
εAB . (3.7c)

This can be thought of as a Stueckelberg symmetry in (3.4). Here, Cµ = Cµ
0 + Cµ

1 and
Cµ = Cµ

0 − Cν1. The parameters C, C and CµA are arbitrary functions of Xµ satisfying
the condition EµA′ ∂µ

(
CC

)
= 0. The dilaton field Φ, when included, will also receive a

redefinition,
Φ′ = Φ + 1

2 ln
(
CC

)
. (3.8)

3.2 Dirichlet sigma model for nonrelativistic open strings

We now consider nonrelativistic string theory defined by the worldsheet action (3.4) with a
boundary ∂Σ at σ = 0 on the worldsheet Σ and the boundary conditions corresponding to
a D(d− 2)-brane, described by a codimension-one submanifold N embedded in the target
spaceM. In a curved spacetime, we take

Xµ
∣∣∣
σ=0

= fµ(Y i) , (3.9)

14Note that Bµν is taken to be invariant under the ZA gauge transformation here. In [13], a different
spacetime gauge symmetry group is proposed, in which there is a different ZA symmetry transformation
that acts nontrivially on both mµ

A and Bµν , and the condition (3.6) is not imposed classically. In this latter
case, a λλ term in the sigma model will in general be generated by quantum corrections [14]. However, it
is possible to relax the condition (3.6) to be EµA′EνB′D[µτν]

A = 0 without generating a λλ operator at
all loops in the two-dimensional worldsheet sigma model (which can be shown, for example, by using the
method in [27]). The condition EµA′EνB′D[µτν]

A = 0 is related to the twistless torsion conditions explored
in [28]. There is no known symmetry reasoning for this type of twistless torsion conditions to hold from
the worldsheet perspective.
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where Y i, i = 0, 1, · · · , d − 2 are coordinates in the submanifold N . The function fµ

in (3.9) describes how the D(d − 2)-brane is embedded in the d-dimensional spacetime.
The d conditions in (3.9) imply that

δXµ
∣∣∣
σ=0

= δY i ∂if
µ(Y ) , (3.10)

i.e., δXµ
∣∣
∂Σ is tangent to N . The boundary condition (3.9) generalizes the Dirichlet

boundary condition (2.8) in flat spacetime.

Unbroken phase. The D-brane submanifoldN spontaneously breaks the string Newton-
Cartan symmetry group generated by (3.3) to the Bargmann symmetry group generated
by (2.21). This theory can be studied in the unbroken and broken phase. The Nambu-
Goldstone boson associated with this spontaneous symmetry breaking is the massless mode
associated with perturbing the shape of the brane, which can be thought of as part of fµ

by allowing the brane to fluctuate. This defines the unbroken phase of the theory.
In the unbroken phase, we introduce the background fields for open strings on the

D-brane by exponentiating the vertex operator in (2.28), which modifies the closed string
action (3.4) to be

S = 1
4πα′

∫
Σ
d2σ

(
∂αX

µ ∂αXνHµν + λ ∂Xµ τµ + λ ∂Xµ τµ − i εαβ ∂αXµ ∂βX
νBµν

)
+ 1

2πα′
∫
∂Σ
dτ

[1
2N(Y )

(
λ− λ

)
+ i Ai(Y ) ∂τY i

]
. (3.11)

The definitions of the boundary background fields N and Ai here are the same as in flat
spacetime up to a rescaling factor 2πα′. Varying λ and λ on the boundary sets

N(Y ) = 0 . (3.12)

Furthermore, using (3.9) and varying the total action with respect to the coordinates Y i

on the brane, we find d − 1 boundary conditions that generalize the Neumann boundary
conditions (2.10) and (2.12) in flat spacetime,

∂if
µHµν ∂σX

ν + iFij ∂τXj + 1
2 ∂if

µ
(
λ τµ + λ τµ

)
= 0 , (3.13)

where Fij ≡ bij + Fij , with bij ≡ ∂if
µBµν ∂jf

ν and Fij ≡ ∂iAj − ∂jAi. Finally, the
Lagrange multipliers λ and λ impose the bulk equations of motion

∂Xµ τµ = 0 , ∂Xµ τµ = 0 , (3.14)

which upon restricting to the boundary give the boundary conditions

∂σX
µ τµ

A = i εAB ∂τY
i ∂if

µ τµ
B . (3.15)

In the unbroken phase, we choose to expand around the reference configuration defined
by the boundary conditions (3.12)–(3.15) with N = 0, and N decouples from any further
calculation on the beta-functions. However, there will still be counterterms generated for
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N , which will give rise to a nontrivial beta function β(N). This is similar to the situation
in relativistic open string theory [2].

The full string Newton-Cartan symmetry in (3.2) is preserved by the boundary con-
ditions (3.12)–(3.15) in this unbroken phase, provided that λ, λ transform on the brane
as [12]

δλ
∣∣
σ=0 = Λλ+ ∂Xµ

[
Dµ(σ0 − σ1) + τµ(σ00 − σ(01))

]
, (3.16a)

δλ
∣∣
σ=0 = −Λλ+ ∂Xµ

[
Dµ(σ0 + σ1) + τµ(σ00 + σ(01))

]
, (3.16b)

and that Ai transforms as
δAi = −εAB σA ∂ifµ τµB . (3.17)

The Stueckelberg symmetry in (3.7), with a trivial action on Ai, is also preserved by the
boundary conditions (3.12)–(3.15).

Broken phase. Next, we consider the uniformly broken phase where the vacuum expec-
tation value for fµ is

〈fµ(Y i)〉 = fµ0 (Y i) , (3.18)

with fµ0 a fixed embedding function that contains no massless excitations. Define a coordi-
nate system Xµ = (y, Y i) adapted to the submanifold specified by the embedding function
fµ0 (Y i), with

fy0 = y0 , f i0 = Y i, (3.19)

where y0 is a fixed location in the y direction that determines where the brane is. We only
need this set of adapted coordinates to be defined in a neighborhood of the submanifold.
In nonrelativistic open string theory, we need to take the boundary values

τy
0 = Ey

A′ = 0 , τy
1 6= 0 , (3.20)

which naturally generalize the requirement that the submanifold is transverse to the X1-
direction in flat spacetime. It is convenient to rescale λ and λ in (3.11) to normalize τy1 = 1
on the boundary. Applying these prescriptions to the invertibility conditions in (3.1), we
find on the boundary that

τy1 = 1 , τ i1 = 0 , τy0 = −τ i0 τi1, EyA′ = −EiA′ τi
1, (3.21)

and

τ i0 τi
0 = 1 , τi

0 τ j0 + Ei
A′
EjA′ = δji , (3.22a)

EiA′ Ei
B′ = δB

′
A′ , τ i0Ei

A′ = EiA′ τi
0 = 0 . (3.22b)

Now, we consider the massless excitation that perturbs around the vacuum expectation
value fµ0 (Y i). We parametrize fµ(Y i) as

fy(Y i) = y0 + π(Y i) , f i(Y i) = Y i, (3.23)
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where π(Y i) is the Nambu-Goldstone boson that perturbs around the brane. In nonrela-
tivistic open string theory, it is possible to take a change of variables that is discontinuous
on the boundary, under which π(Y i) contributes a (λ − λ)-term to the boundary action
in (3.11) and thus gives rise to a nonzero N = π.15

The chosen vacuum expectation value of fµ preserves the time translation generated
by H0, the transverse spatial translation generated by PA′ , the Galilean boost generated by
G0A′ , and the transverse rotation generated by JA′B′ . These generators form the Bargmann
algebra in (2.21).16 In contrast, the translational symmetry generated by H1, the longitu-
dinal Lorentz rotation generated byM , and the part of the string Galilean boost symmetry
generated by G1A′ are broken on the boundary. This can be seen by requiring the trans-
formations in (3.2) (with translations included) to preserve the boundary values in (3.20).

In the following, we will proceed with the calculation of the beta-functions for the
Dirichlet nonlinear sigma model (3.11). We will mostly focus on the unbroken phase
formalism, where the calculation is simpler. The broken phase formalism will be useful
later when we vary the worldvolume DBI-like action to derive the equations of motion on
the brane.

3.3 Covariant background field method

In the rest of the section, we compute the beta-functions of the coupling Ai and N in the
2d QFT (3.11) around the classical configuration N(Y ) = 0. We start with rewriting (3.11)
by using the field redefinition (3.7) with A′i = Ai, C = C = 1 and CµA = mµ

A, which gives
rise to the following equivalent action:

S = 1
4πα′

∫
Σ
d2σ

(
∂αX

µ ∂αXνEµν + λ∂Xµ τµ + λ ∂Xµ τµ − i εαβ ∂αXµ ∂βX
νBµν

)
+ 1

2πα′
∫
∂Σ
dτ

[1
2 N(Y )

(
λ− λ

)
+ i Ai(Y ) ∂τY i

]
, (3.24)

where
Eµν = Eµ

A′
Eν

A′
, Bµν = Bµν +

(
mµ

A τν
B −mν

A τµ
B
)
εAB . (3.25)

In this way of rewriting, Eµν is invariant under the ZA symmetry but not invariant un-
der the boost symmetry. This action is supplemented with the classical boundary condi-
tions (3.12)–(3.15), which after the field redefinitions become

N = 0 , τµ
A ∂σX

µ = i εAB ∂τY
i ti

B , (3.26a)

Eµ
A′
∂σX

µ = −eiA′

[
iFij ∂τY

j + 1
2
(
λ− λ

)
ti

1
]
, (3.26b)

1
2
(
λ+ λ

)
= −t i 0

[
iFij ∂τY

j + 1
2
(
λ− λ

)
ti

1
]
. (3.26c)

Here, we defined the projections

ti
A = ∂if

µ τµ
A , ei

A′ = ∂if
µEµ

A′
, Fij = ∂if

µ Bµν ∂jf
ν + Fij , (3.27)

15See similar discussions for relativistic open string theory in [2, 29]. Also see [25] for further details.
16The central charge Z will be generated by commuting PA′ and G0A′ .
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where Fij = ∂iAj − ∂jAi. The inverse Vielbeine fields eiA′ and ti0 are defined via the
invertibility conditions on the brane,

ti0 ti
0 = 1 , ti

0 tj0 + ei
A′
ejA′ = δji , (3.28a)

eiA′ ei
B′ = δB

′
A′ , ti0 ei

A′ = eiA′ ti
0 = 0 . (3.28b)

Comparing with (3.1), we find the consistency conditions

τµ0 = ∂if
µ ti0 , EµA′ = ∂if

µ eiA′ . (3.29)

Next, we expand the sigma model (3.24) with respect to quantum fluctuations using
the background field method, around a covariant background that satisfies the classical
configurations (3.12)–(3.15).

Consider a sufficiently small neighborhood OM of a point Xµ
0 in the target space

M. For an arbitrary point Xµ in OM, there exists a unique geodesic in M interpolating
between Xµ

0 and Xµ, parametrized by Xµ
u , with an affine parameter u ∈ [0, 1], such that

d2Xµ
u

du2 + Γµρσ
dXρ

u

du

dXσ
u

du
= 0 . (3.30)

We require Xu=0 = Xµ
0 and Xu=1 = Xµ. Here, Γµρσ is the Christoffel symbol in string

Newton-Cartan geometry.17 Define the covariant quantum fluctuation

ξµ = dXµ
u

du

∣∣∣∣
u=0

, (3.31)

which is the tangent vector to the geodesic at u = 0. Similarly, consider a sufficiently small
neighborhood ON of a point Y i

0 in the submanifold N . For an arbitrary point Y i in ON ,
there exists a unique geodesic in N interpolating between Y i

0 and Y i, parametrized by Y i
v ,

with an affine parameter v ∈ [0, 1], such that

d2Y i
v

dv2 + Γijk
dY j

v

dv

dY k
v

dv
= 0 . (3.32)

We require Yv=0 = Y i
0 and Yv=1 = Y i. Here, Γijk is the Christoffel symbol in Newton-

Cartan geometry on the brane. Define the covariant quantum fluctuation

ζi = dY i
v

dv

∣∣∣∣
v=0

, (3.33)

which is the tangent vector to the geodesic at v = 0. The tangent vector ζi(Y ) on the
brane submanifold N is related to the tangent vector ξµ(X) inM as follows [2]:

ξµ
∣∣
σ=0 = ζi ∂if

µ + 1
2 ζ

i ζj Kµ
ij + · · · , (3.34)

where Kµ
ij is the extrinsic curvature of the brane submanifold, defined by

Kµ
ij = ∇i∇j fµ + Γµρσ ∂ifρ ∂jfσ . (3.35)

17The explicit form of Γµρσ is given in [10] but with mµ
A set to zero, since the dependence on mµ

A has
been relocated to be in Bµν .
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Here, ∇i is a Newton-Cartan covariant derivative in the submanifold N and Γµρσ is the
Christoffel symbol in string Newton-Cartan geometry, with

Γµρσ
∣∣
σ=0 = τµA ∂(ρτσ)

A + EµA′

[
∂(ρEσ)

A′ − Ω(ρ
A′B′

Eσ)
B′ − Ω(ρ

0A′
τσ)

0
]
, (3.36)

where Ωµ
AA′ is the spin connection associated with the string Galilean boost and Ωµ

A′B′

is the spin connection associated with the transverse rotation. We used that Ωµ
AB
∣∣
σ=0 =

Ωµ
1A′ ∣∣

σ=0 = 0 since they are associated with spontaneously broken symmetries, where
Ωµ

AB is the spin connection associated with the longitudinal Lorentz boost. In the adapted
coordinates (3.23), we also have the boundary conditions Ωy

0A′ ∣∣
σ=0 = Ωy

A′B′ ∣∣
σ=0 = 0. It

then follows that, on the boundary,

Eµ
A′
Kµ

ij = τµ
0Kµ

ij = 0 , τµ
1Kµ

ij = ∇i tj1 = ∇j ti1 . (3.37)

A covariant expansion with respect to ξµ(X) for the closed string action, i.e. the bulk
part in (3.24), has been put forward in [27], where λ and λ are also split into a classical
and quantum part as

λ = λ0 + ρ , λ = λ0 + ρ . (3.38)
By incorporating a covariant expansion with respect to ζi(Y ) for the boundary action
in (3.24), in a similar way as in [2], we find the expanded action to be

S[λ , λ ,X , Y ] = S(0) + S(1) + S(2) +O(ρ , ρ , ξ , ζ)3, (3.39)

where S(0) = S[λ0 , λ0 , X0 , Y0] and

S(1) = 1
4πα′

∫
Σ
d2σ

{
ξρ
[
∂αX

µ
0 ∂

αXν
0∇ρEµν − 2∇α(∂αXµ

0 Eρµ)− i εαβ∂αXµ
0 ∂βX

ν
0 Hµνρ

−∇(λ0 τρ)−∇
(
λ0 τρ

)]
+ ρ ∂Xµ

0 τµ + ρ ∂Xµ
0 τµ

}
+ 1

2πα′
∫
∂Σ
dτ

{
ξµ
[
∂σX

ν
0 Eµν + i ∂τY

i
0 Bµi + 1

2
(
λ0 τµ + λ0 τµ

)]
+ i ζi∂τY

j
0 Fij

}
,

S(2) = 1
4πα′

∫
Σ
d2σ

{
∇αξµ∇αξν Eµν − ξµ

[
∇(ρ τµ) +∇(ρ τµ)

]
+ 2 ξρ∇αξσ

(
∂αXµ

0 ∇[ρEσ]µ −
i

2 ε
αβ ∂βX

µ
0 Hµρσ

)
+ 1

2 ξ
ρξσ ∂αX

µ
0 ∂βX

ν
0

[
δαβ(∇ρ∇σEµν − 2∇µ∇ρEσν)− i εαβ ∇ρHσµν

]
+ ξρξσ

[
∂αX

µ
0 ∂

αXν
0 EµλR

λ
ρσν + 1

2
(
λ0 ∂X

µ
0 τκ + λ0 ∂X

µ
0 τκ

)
Rκρσµ

]}
+ 1

4πα′
∫
∂Σ
dτ
[
i ξµ∇τξνBµν + i ζi∇τζjFij + ρ ξµ τµ + ρ ξµ τµ

+ ζiζj
(
∂σX

ρ
0 ∂if

µ ∂jf
ν ∇µEνρ + i ∂τY

k
0 ∇iFjk

)]
.

It is understood that all the couplings are evaluated at X = X0 and Y = Y0. The
background fields are required to satisfy the boundary conditions in (3.26) and therefore
N(Y0) = 0. Here, Fij is defined in (3.27) and

Hµνρ = ∂µBνρ + ∂ρBµν + ∂νBρµ . (3.40)

The Riemann tensor is defined with respect to the Christoffel symbol Γµρσ.
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To proceed to quantum calculations, it is convenient to change variables from ξµ to
(ξA, ξA′) and from ζi to ζI = (ζ0, ζA

′), with

ξA = τµ
A ξµ , ξA

′ = Eµ
A′
ξµ , ζ0 = ti

0 ζi , ζA
′ = ei

A′
ζi . (3.41)

In terms of these new variables, we have a simple propagator that is diagonalized.
From (3.39), we find that the free part of the quadratic action is

Sfree = 1
4πα′

∫
Σ
d2σ

(
∂αξ

A′
∂αξA

′ + ρ ∂ξ + ρ ∂ξ
)
, (3.42)

with ξ = ξ0 + ξ1 and ξ = ξ0 − ξ1. At the zeroth order in quantum fluctuations, ξA, ξA′ , ρ
and ρ satisfy the boundary conditions (2.8)–(2.11) , with

∂τξ
1 ∣∣
σ=0 = ∂σξ

0 ∣∣
σ=0 = ∂σξ

A′ ∣∣
σ=0 = ρ+ ρ

∣∣
σ=0 = 0 , ∂σξ

1 + i ∂τξ
0 ∣∣
σ=0 = 0 . (3.43)

It follows from [27] that

∇αξµ
∣∣
σ=0 = τµA ∂αξ

A + EµA′

[
∂αξ

A′ −
(
Ων

0A′
ξ0 + Ων

A′B′
ξB

′)
∂αX

ν
0

]
. (3.44)

There is ambiguity in identifying the covariant quantum fluctuation in (ρ− ρ)
∣∣
σ=0 that one

should integrate out on the boundary. It will prove to be useful to introduce the following
decomposition of ρ− ρ on the boundary:

1
2 (ρ− ρ)

∣∣
σ=0 = r − i

2 ωA
′ ζA

′ − i

2 ∂τ
(
ωA′B′ ζA

′
ζB

′)+O(ζ3) . (3.45)

We will show that ωA′ and ωA′B′ are fixed by requiring that the one-loop effective action
is gauge covariant. Using (3.34) that relates the bulk quantum field ξµ to the boundary
quantum field ζi, in terms of the new variables (3.41) which satisfy the free field boundary
conditions (3.43), we read off the terms in (3.39) that are quadratic in quantum fields as

S2 = − i

2πα′
∫

Σ
d2σ ξI∂τξ

JWIJ

+ 1
4πα′

∫
∂Σ
dτ
(
ζI ζJMIJ + i ζI∂τζ

JFIJ + 2 r ζI tI1
)
, (3.46)

where

WIJ = WIJ + iΩµIJ ∂τX
µ
0 , MIJ = MIJ +MΩ

IJ , (3.47)

with

Mij = i ∂τY
k

0

[
∇(iFj)k +

(
Kµ

ij ∂kf
ν +Kν

k(i ∂j)f
µ
)

Bµν

]
+ 1

2
(
λ− λ

)
Kµ

ij τµ
1,

MΩ
00 = −iΩτ

0A′
F0A′ , Wµν = 1

2 Hµνρ ∂σX
ρ
0 ,

MΩ
0A′ = MΩ

A′0 = − i2
(
Ωτ

0B′
FA′B′ − Ωτ

A′B′
F0B′ + ωA′ t0

1
)
,

MΩ
A′B′ = i

[
Ωτ(A′

C′
FB′)C′ − ∂τY

i
0 ti

1
(
EνA′ Ων

0B′ − ωA′B′

)
− ω(A′ tB′)

1
]
.
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The boundary conditions in (3.26) have been applied to derive (3.46). Note that WIJ is
Wµν projected by τµ0 and EµA′ . Moreover,MIJ , tI

1 and FIJ areMij , ti
1 and Fij projected

by ti0 and eiA′ , respectively. We also defined Ωτ
IJ = ∂τY

k
0 ∂kf

µ Ωµ
IJ . Here, we only kept

terms that will give rise to nontrivial contributions to the one-loop boundary effective
action. To derive (3.46), we used the following identities:

∇τ ξµ
∣∣
σ=0 = ∂if

µ∇τζi + ζiKµ
ij ∂τY

j
0 +O(ζ2) , (3.48a)

τµ0 Ωµ
0A′ = 0 , Eµ

A′ Ωµ
0
B′ = EµB′ Ωµ

0
A′ . (3.48b)

In the next subsection, we compute the one-loop effective action by integrating out the
quantum fluctuations in the path integral associated with the action (3.46).

3.4 Beta-functions for open string couplings

From the free action (3.42), we read off the propagators, which are already given in (2.35)
and (2.36),

〈ξA′(τ , σ) ξB′(τ ′ , σ′)〉 = 2πα′
[
∆(τ − τ ′, σ − σ′) + ∆(τ − τ ′, σ + σ′)

]
, (3.49a)

〈ρ(τ , σ) ξ(τ ′, σ′)〉 = 4πα′ ∂∆(τ − τ ′, σ − σ′) , (3.49b)
〈ρ(τ , σ) ξ(τ ′, σ′)〉 = 4πα′ ∂∆(τ − τ ′, σ − σ′) , (3.49c)

where we defined

∆(τ, σ) = − 1
4π ln

(
τ2 + σ2) =

∫
dω dk

(2π)2
ei(ω τ+k σ)

ω2 + k2 . (3.50)

Since we are focusing on the boundary one-loop effective action, we are mostly interested in
the boundary propagators with σ = 0. Because ρ , ρ and ξA only appear as boundary fields
in the contributions we are interested in, we can set ρ(τ, 0) = −ρ(τ, 0) ∼ r(τ) in (3.49). It
follows that the boundary-boundary propagators are

〈ξA′(τ, 0) ξB′(τ ′, 0)〉 = 4πα′∆(τ − τ ′, 0) , (3.51a)
〈r(τ) ξ0(τ ′, 0)〉 = −4πi α′∂τ∆(τ − τ ′, 0) , (3.51b)
〈r(τ) ξ1(τ ′, 0)〉 = 0 . (3.51c)

Introducing the index A = (r , I), we write the boundary-boundary propagator as

∆AB(τ − τ ′, 0) = 2πα′
 0 −i ∂τ 0
i ∂τ 0 0
0 0 δA

′B′

∆(τ − τ ′) , (3.52)

where we defined
∆(τ) ≡ 2∆(τ, 0) =

∫
dω

2π
ei ω τ

|ω|
= − 1

π
ln
∣∣∣∣∣ ττIR

∣∣∣∣∣ , (3.53)

with τIR an infrared regulator. Moreover, using a sharp-cutoff regularization in the fre-
quency space, we find

∆(0) = 1
π

log
(Λ
µ

)
, (3.54)
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with Λ the ultraviolet cutoff and µ the infrared cutoff of the frequency. We introduced a
prefactor 2 in the definition (3.53) of ∆(τ), such that∫

dτ ′′∆−1(τ − τ ′′) ∆(τ ′′ − τ ′) = δ(τ − τ ′) , ∆−1(τ, τ ′) ≡ ∂τ∂τ ′∆(τ − τ ′) . (3.55)

From the quadratic action (3.46) that collects terms relevant to the one-loop boundary
effective action, we read off the following Feynman rules for different vertices:

VWAB(τ, σ ; τ ′, σ′) = i

πα′

(
0 0
0 WIJ(τ , σ) ∂τ

)
δ(τ − τ ′) δ(σ − σ′) , (3.56a)

V F
AB(τ, τ ′) = − 1

2πα′

(
0 tJ

1

tI
1 iFIJ(τ) ∂τ

)
δ(τ − τ ′) , (3.56b)

VMAB (τ, τ ′) = − 1
2πα′

(
0 0
0 MIJ

)
δ(τ − τ ′) . (3.56c)

The loop calculation is very similar to the procedure discussed in [2, 30]. All the one-loop
diagrams are collected below,

ΓFn = ×
V F

××
V F

×
V F

σ=0

︸ ︷︷ ︸
n

ΓMn = ×
V M

××
V F

×
V F

σ=0

︸ ︷︷ ︸
n

(3.57)

and

ΓWn = ×
V F

××
V F

×
V F

×
W

σ=0

︸ ︷︷ ︸
n

(3.58)

where the thick horizontal lines represent the boundary line σ = 0, and the thin curved lines
represent the propagator in (3.49). In particular, a propagator connecting two boundary
vertices is given in (3.52). All the boundary vertices reside on the σ = 0 boundary line in
the diagrams. Similarly to the case of relativistic string theory in [30], the above diagrams
in the sum are only nonzero when n is even. A careful analysis shows that the sums of the
Feynman diagrams in (3.57) give

∞∑
n=0

ΓF
n = − i2 ∆(0)

∫
dτ JrI(τ) ∂τ tI1(τ) + finite , (3.59)

and
∞∑
n=0

ΓMn = −1
2 ∆(0)

∫
dτ JIJ(τ)MIJ(τ) + finite . (3.60)
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With the definition A = {r, I}, we have

JAB =
(
Jrr JrJ

JIr JIJ

)
(3.61)

which is defined to be the inverse of

JAB = GAB −FAC G
CDFDB , (3.62)

where

GAB =

0 1 0
1 0 0
0 0 δA

′B′

 , FAB =
(

0 tJ
1

−tI1 FIJ

)
, (3.63)

and GAB is the inverse of GAB. In our calculation that leads to (3.59), the total deriva-
tives in (3.59) are dropped. This is consistent with that the one-loop effective action is
defined up to total derivative terms. However, the full expression of JrI in (3.59) is needed
for maintaining the gauge invariance when the beta-functions are concerned. See related
discussions for the closed string beta-functions in [27].

Similarly, the sum of the Feynmann diagrams in (3.58) gives

∞∑
n=0

ΓWn = −1
2 ∆(0)

∫
dτ JIA(τ)WIJ(τ, 0) F J

A(τ) + finite, (3.64)

where, by definition, F J
B = GJAFAB. We have taken a Taylor expansion of WIJ(τ, σ)

around σ = 0 and only kept the zeroth order term WIJ(τ, 0) in this calculation.
Summing (3.59), (3.60) and (3.64), and using (3.29) to convert the indices 0 and A′

back to i, we find the one-loop boundary effective action,

Sbdry
1-loop = −1

2 ∆(0)
∫
∂Σ
dτ

[
iJri∇τ ti1 + J ijMij −

1
2 J

iaFa
j ∂if

µ ∂jf
νHµνρ ∂σX

ρ
0

]
− i

2 ∆(0)
∫
∂Σ
dτ
[
JA

′I(Ωτ
0A′−ωA′

)
tI

1 − JA′B′(
EµA′ Ωµ

0B′− ωA′B′
)
tτ

1
]
, (3.65)

where Hµνρ is evaluated at σ = 0 and Mij is given in (3.46); Jab with a = (r, i) is defined
to be the inverse of

Jab = Gab −Fac F c
b . (3.66)

Here,

Gab =
(

0 tj
0

ti
0 eij

)
, Fab =

(
0 tj

1

−ti1 Fij

)
, (3.67)

and we defined eij = ei
A′
ej
B′ , with eiA

′ defined in (3.27). The lower indices can be raised
by Gab, which is the inverse of Gab,

Gab =
(

0 tj0
ti0 eij

)
, (3.68)
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where eij = eiA′ejB′ , with eiA′ defined by (3.28). The gauge covariance of S1-loop in (3.65)
requires in (3.45)

ωA′ = Ωτ
0A′
, ωA′B′ = EµA′ Ωµ

0B′
. (3.69)

Applying the boundary conditions (3.26), we rewrite (3.65) as

S1-loop = − 1
2α′ ∆(0)

∫
∂Σ
dτ

[1
2(λ− λ)β(N) + i ∂τY

k βk(A)
]
, (3.70)

where

β(N) = α′
(
J ij Kµ

ij τµ
1 + 1

2J
iaFa

j ∂if
µ ∂jf

ν HµνρE
ρ
A′ tA′1

)
+O(α′)2, (3.71a)

βk(A) = α′
{
Jri∇k ti1 −

1
2 J

ia Fa
j ∂if

µ ∂jf
νHµνρ

(
εAB τ

ρ
A tk

B − EρA′FA′k

)
+ J ij

[
∇iFjk + (Kµ

ij ∂kf
ν +Kν

ki ∂jf
µ) Bµν

]}
+O(α′)2 (3.71b)

are the beta-functions for the couplings N and Ak in (3.24).

3.5 Contribution from the dilaton

Finally, we discuss the contribution from including a dilaton field in the sigma model action,
which is only at the classical level when the lowest order of α′ is concerned [2]. On a curved
worldsheet equipped with a metric hαβ , α, β = 1, 2, we have the dilaton term in the action,

SΦ = 1
4π

∫
d2σ
√
hR[h] Φ[x] , (3.72)

where R[h] is the worldsheet Ricci scalar and Φ[x] is the dilaton field. This dilaton term van-
ishes identically in the flat worldsheet limit, but it contributes nontrivially to the boundary
stress energy tensor

TΦ = −∂σΦ
∣∣
σ=0

= 1
2(λ− λ) tA′1EµA′ ∂µΦ− i ∂τY k ∂µΦ

(
εAB τ

µ
A tk

B − EµA′FA′k

)
. (3.73)

The trace of the boundary stress energy tensor is related to the boundary beta-functions
β(N) and βk(A) by

T = − 1
α′

[1
2(λ− λ)β(N) + i ∂τY

kβk(A)
]
. (3.74)

Therefore, the beta-functions in (3.71) are modified to be

β(N) = α′
(
J ij Kµ

ij τµ
1 + ΘρE

ρ
A′ tA′1

)
+O(α′)2, (3.75a)

βk(A) = α′
{
Jri∇k ti1 + J ij

[
∇iFjk + (Kµ

ij ∂kf
ν +Kν

ki ∂jf
µ) Bµν

]
−Θρ

(
εAB τ

ρ
A tk

B − EρA′FA′k

)}
+O(α′)2, (3.75b)
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where
Θρ = 1

2J
iaFa

j ∂if
µ ∂jf

νHµνρ − ∂ρΦ . (3.76)

Setting the beta-functions β(N) and βk(A) to zero gives rise to the equations of motion that
determine the backgrounds on which nonrelativistic open string theory can consistently
propagate. Note that the beta-functions of the closed string background fields are not
affected at this lowest order in α′.

4 Nonrelativistic Dirac-Born-Infeld effective theory

In this section, we introduce a DBI-like action that is invariant under the Bargmann sym-
metry, which describes the effective field theory living on the D-brane. We will show
that the classical equations of this DBI action are equivalent to the vanishing one-loop
beta-functions in (3.75).

4.1 Galilean DBI action from a nonrelativistic limit

To determine the brane action, we start with the relativistic worldvolume DBI action on a
D(d− 2)-brane,

Ŝbrane = Td−2

∫
dd−1Y e−Φ̂

√
− det

(
ĝij + F̂ij

)
, (4.1)

where ĝij = ∂if
µ ∂jf

ν Ĝµν , F̂ij = ∂if
µ ∂jf

ν B̂µν + Fij . Here, fµ is the embedding function
that describes how the D-brane is embedded in a d-dimensional spacetime. Consider the
following expansions with respect to a large parameter c [12]:18

Ĝµν = c2 τµν +Hµν , B̂µν = −c2 τµ
A τν

B εAB +Bµν , Φ̂ = Φ + ln |c| . (4.2)

Then, (4.1) becomes

Ŝbrane = Td−2

∫
dd−1Y e−Φ

√
−c−2 det (hij + Fij − c2 ti tj) , (4.3)

where tiA = τµ
A ∂if

µ, hij = ∂if
µ ∂jf

ν Hµν , and Fij = ∂if
µ ∂jf

ν Bij +Fij . We also defined
ti = ti

0 + ti
1 and ti = ti

0 − ti1. Using the identities19

det
(
Oij − c2 ti tj

)
=
(
1− c2 tmO

mn tn
)

detOk` , (4.4a)

det
(

0 tj
ti Oij

)
= (−tmOmn tn) detOk` , (4.4b)

with Oij the inverse of Oij ≡ hij + Fij , we find

lim
c→∞

Ŝbrane = Sbrane , (4.5)

18Note that this is different from the Dp-brane limit considered in [4, 9, 11, 31, 32], which involves the
RR charges. In the Dp-brane limit, there are no light strings left.

19These expressions are non-singular in the limit mi
A → 0 and Fij → 0 [12].
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where20

Sbrane = Td−2

∫
dd−1Y e−Φ

√√√√− det
(

0 tj
ti hij + Fij

)
. (4.6)

The action (4.6) is invariant under the string Newton-Cartan gauge symmetries (3.2), sup-
plemented with the transformation of Ai in (3.17). This action is also invariant under the
Stückelberg transformations (3.7), under which the gauge field Ai remains invariant. The
invariance under the string Newton-Cartan gauge symmetry and the Stückelberg transfor-
mations can be shown by using the identity

det
(

0 tj
ti Oij + ai tj + bj ti

)
= det

(
0 tj
ti Oij

)
, (4.7)

for arbitrary Oij , ai and bi.

4.2 Equations of motion

To derive the equations of motion of the brane action (4.6), we start with performing a
field redefinition using (3.7) with CµA = mµ

A, and rewrite (4.6) as

Sbrane = Td−2

∫
dd−1Y e−Φ

√
− det (Gab + Fab) , (4.8)

with Gab and Fab defined in (3.67). To extract the appropriate equations of motion
from (4.8) to compare with the vanishing beta-functions in (3.75), it is useful to use the
adapted coordinates introduced in the “broken phase” in section 3.2, where the string
Newton-Cartan symmetry is broken to the Bargmann symmetry, with Xµ = (y , Y i) and

fy = y0 +N, f i = Y i. (4.9)

Varying the action (4.8) with respect to N and Ai, we find

δSbrane = −Td−2

∫
dd−1Y e−Φ

√
− det (G+ F )

×
{
E(A)
a JakδAk +

[
E(N) + E(A)

a

(
Jar + JaiBiy

)]
δN
}
, (4.10)

where a = (r, i) and

E(A)
r = −J ij ∇i tj1 − tA′1 eiA′ θi , (4.11a)

E(A)
k = J ir∇i tk1 + J ij

[
∇iFjk + Bµν (Kµ

ij ∂kf
ν +Kν

ik ∂jf
µ)
]
+ θi F

i
k , (4.11b)

E(N) = 1
2J

aiFa
j ∂if

µ ∂jf
νHµνy − ∂yΦ = Θy . (4.11c)

Here, the definition of Θy matches the one in (3.76). We also defined

θk = 1
2J

aiFa
j ∂if

µ ∂jf
ν ∂kf

ρHµνρ − ∂kf
µ∂µΦ . (4.12)

20A related worldvolume action for D-branes has been considered in [33, 34], where the embedding space-
time is taken to be torsional Newton-Cartan spacetime extended with a periodic space direction [26, 35].
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By the definition ti1 = ∂if
µ τµ

1, we have ti1 = τi
1 + ∂iN . Comparing (4.12) with (3.76), it

follows that
θi = Θi + Θy ∂iN. (4.13)

Requiring δSbrane = 0 gives

E(A)
a Jai = 0 , E(N) + E(A)

a Jar = 0 . (4.14)

Using the definitions JacJcb = δab and Jab = Gab −FacF c
b in (3.66), we find that (4.14) is

equivalent to

E(A)
r =

(
E(A)
a Jai

)
Jir +

(
E(A)
a Jar

)
Jrr = −E (N) tA′1 tA′1, (4.15a)

E(A)
k =

(
E(A)
a Jai

)
Jik +

(
E(A)
a Jar

)
Jrk = −E (N)

(
tk

0 − t01 tk
1 − tA′1FA′k

)
. (4.15b)

Plugging (4.11) into (4.15), we find

0 = J ij ∇i tj1 + tA′1
[
eiA′ (Θi + Θy ∂iN)− tA′1 Θy

]
, (4.16a)

0 = J ir∇i tk1 + J ij
[
∇iFjk + Bµν (Kµ

ij ∂kf
ν +Kν

ik ∂jf
µ)
]

+ (Θi + Θy ∂iN) F i
k + Θy

(
tk

0 − t01 ti
1 − tA′1 FA′k

)
. (4.16b)

In order to show that the equations of motion in (4.16) match with the vanishing
beta-functions in (3.75), we need to use the identities in (3.21) and (3.37), with

τ i1 = 0 , τy0 = −τ i0 τi1, EyA′ = −EiA′ τi
1, τµ

1Kµ
ij = ∇i tj1 = ∇j ti1. (4.17)

Moreover, using the prescriptions in (3.21) and (3.22), together with the invertibility con-
dition in (3.28), we find

τ i0 = ti0 , EiA′ = eiA′ . (4.18)

Applying (4.17) and (4.18) to (4.16), we find

0 = J ij Kµ
ij τµ

1 + tA′1EρA′ Θρ , (4.19a)

0 = J ir∇k ti1 + J ij
[
∇iFjk + Bµν (Kµ

ij ∂kf
ν +Kν

ik ∂jf
µ)
]

−Θρ

(
εAB τ

ρ
A tk

B − EρA′FA′k

)
. (4.19b)

These are precisely the same equations from setting the beta-functions in (3.75) to zero.

4.3 Galilean electrodynamics on a Newton-Cartan background

It is interesting to consider the worldvolume action (4.6) in a simple case where we assume
that y is an isometry direction and take the following specifications on the boundary:

τi
1 = mi

1 = my
1 = my

0 = Bµν = Φ = 0 . (4.20)

We therefore consider a zero B-field and dilaton background. Then, the worldvolume
action (4.6) reduces to

Sbrane = Td−2

∫
dd−1Y

√
− det(Gab + Fab) , (4.21)
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where
Gab =

(
0 τj

0

τi
0 Hij

)
, Fab =

(
0 ∂jN

−∂iN Fij

)
, (4.22)

and Hij = Eij −
(
mi

0 τj
0 + mj

0 τi
0), with Eij = Ei

A′
Ej

B′ . The action in (4.21) can be
further rewritten as

Sbrane = Td−2

∫
dd−1Y

√
−G

√
det
(
δab + G acFcb

)
, (4.23)

where G is the determinant of Gab and G ab is the inverse of Gab, with

G = −
(
τk

0Hk`τ`
0) detHij , G ab =

(
2φ T j0
T i0 Eij

)
, (4.24)

where Eij = EiA′EjB′ . Note that G is independent of mµ
0. We also defined

φ = mi
0 τ i0 + 1

2 mi
0Eijmj

0, T i = τ i0 + Eikmk
0. (4.25)

Here, φ is related to the Newton potential. At the quadratic order in fields, (4.23) gives
Galilean Electrodynamics on a Newton-Cartan background,

SGED = 1
4g2

∫
d25Y

√
−G G abFbcG cdFda

= 1
g2

∫
d25Y

√
−G

[1
2
(
T iT j−2φEij)∇iN∇jN+Eik

(
T `∇iN−

1
4E

j`Fij

)
Fk`

]
. (4.26)

Alternatively, we can also start with the equivalent worldvolume action (4.8), which
now reduces to

Sbrane = Td−2

∫
dd−1Y

√
− det (Gab + Fab) , (4.27)

where
Gab =

(
0 τj

0

τi
0 Eij

)
, Fab =

(
0 ∂jN

−∂iN Fij

)
, (4.28)

and Fij = Fij +mi ∂jN −mj ∂iN , or, equivalently,

Fij = ∂iAj − ∂jAi +N
(
∂imj

0 − ∂jmi
0
)
, Ai = Ai −mi

0N . (4.29)

At the quadratic order in fields, (4.27) gives an alternative form of Galilean Electrodynamics
on a Newton-Cartan background,

SGED = 1
4g2

∫
d25Y

√
−GGabFbcG

cdFda

= 1
g2

∫
d25Y

√
−G

[1
2τ

i
0 τ

j
0∇iN ∇jN + Eik

(
τ `0∇iN −

1
4E

j`Fij

)
Fk`

]
, (4.30)

which is equivalent to (4.26). Here, G is the determinant of Gab and G = G .
The equivalent actions (4.26) and (4.30) coincide with the actions considered in [20].

In the flat spacetime limit, with τi0 = δ0
i , EiA

′ = δA
′

i and mi
0 = 0, both (4.26) and (4.30)

reduce to the action of Galilean Electrodynamics in (2.47).
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5 Conclusions

In this paper, we have studied the Dirichlet nonlinear sigma model that describes non-
relativistic open strings ending on D-branes in the string Newton-Cartan geometry, Kalb-
Ramond and dilaton closed string background. Having a nonrelativistic open string spec-
trum requires the D-branes to be transverse to the longitudinal spatial direction in the
string Newton-Cartan geometry background. We have computed the beta-functions for
the open string vertex operators on a single D(d − 2)-brane, transverse to the longitudi-
nal spatial direction. Self-consistency of nonrelativistic open string theory requires setting
these beta-functions to zero, which gives rise to the equations of motion that govern the
dynamics of the D-brane. We also showed that the same set of equations of motion arise
from an action principle in (4.6), which is the worldvolume nonrelativistic DBI action of
the D-brane. In a companion paper [25], we will consider T-duals of nonrelativistic open
string theory.

At leading order in α′ and in the flat closed string background, the DBI action in (4.6)
gives rise to Galilean Electrodynamics (GED). GED is a non-dynamical U(1) gauge theory
that is invariant under a Galilean boost transformation, and has been studied at the clas-
sical level in [18–20, 36]. In [37], the one-loop beta-functions of Galilean electrodynamics
coupled to a Schrödinger scalar in 2 + 1 dimensions are computed, where the renormal-
ization of the dynamical Schrödinger scalar receives highly nontrivial contributions from
interactions with the non-dynamical gauge sector. There is an extra scalar in addition
to the U(1) gauge field in GED, which finds a natural interpretation in nonrelativistic
open string theory as the Nambu-Goldstone boson from spontaneously breaking the string
Newton-Cartan symmetry algebra to the Bargmann symmetry algebra.

We also considered the low energy effective action on n coincident D-branes, where our
worldsheet analysis has led to a novel nonrelativistic U(n) Yang-Mills theory. Finally, we
have shown how to incorporate open string winding modes and demonstrated that in spite
of the nonlocal features of wound open strings that the nontrivial dynamics and spectrum of
open strings is neatly captured by a gauge theory in one higher dimension, and interpreted
the additional dimension as conjugate to winding number.
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