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1 Introduction

Since the discovery of supersymmetry in the late 1960’s and early 1970’s1 there has been
tremendous progress in the development of supersymmetric theories which undoubtedly
influenced a big part of theoretical physics. For 4D higher spin theories, early develop-
ments led to the supersymmetric extension of free, massless, irreducible representations
with on-shell supersymmetry and their Lagrangian description [4, 5]. The off-shell, super-
space description of such representations was found first in [6–8] and later developments
are [9–11]. Furthermore, various consistent interactions among massless higher spin super-
multiplets have been discovered recently [12–22].

However, after five decades of intensive investigations, the seemingly simple ques-
tion of finding the superspace action principle for free, massive, arbitrary superspin, irre-
ducible representation of 4D,N = 1 super-Poincaré group still remains unanswered. This
is a very important and necessary first step in order to even consider exploring mani-
festly supersymmetric interactions among massive arbitrary spin supermultiplets. The
non-supersymmetric Lagrangian description of massive irreducible representations of the
Poincaré group was found in [23, 24] almost forty years after the theory of higher spins was
first undertaken by Dirac [25]. It was demonstrated that massive higher spins carry a very
interesting and rich off-shell structure, because they require a (double) tower of auxiliary
bosonic (fermionic) fields of increasing rank.

For the case of supersymmetry such a description and understanding of the off-shell
structure of arbitrary higher spin supermultiplet is lacking, nevertheless there has been
some progress towards that direction. In [26–30] a Lagrangian description of on-shell
massive higher spin supermultiplets was found. This description follows the viewpoint of

1The dramatic story of the discovery of supersymmetry and its early years can be found in [2, 3].
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perceiving the on-shell massive spin degrees of freedom as a collection of on-shell mass-
less helicities2 and thus, by stitching together a tower of on-shell, massless supermulti-
plets with increasing spin, one can find a description for the on-shell massive higher spin
supermultiplet. However, because the supermultiplets considered only have on-shell super-
symmetry, this approach provides no clues regarding the additional auxiliary structures a
manifestly supersymmetry description may require. Manifestly supersymmetric descrip-
tions of massive irreducible representations do exist [1, 31–35] but unfortunately not for
higher spin supermultiplets.

Nevertheless, the theory constructed in [1] corresponds to the massive extension of
one of the formulations of linearized supergravity which can be extended to arbitrary half-
integer superspin theories. In this paper we construct the superspace Lagrangian for a
4D, N = 1 super-Poincaré irreducible representation of mass m and arbitrary superspin
Y = s + 1/2. We find that in addition to the real bosonic superfield Hα(s)α̇(s) which
carries the propagating, on-shell degrees of freedom of this representation, the super-
space Lagrangian description requires a tower of pairs of auxiliary, fermionic superfields
χα(q)α̇(q−1), uα(q)α̇(q−1) with 1 ≤ q ≤ s. This is in agreement with the results found in [1]
for the special case of s = 1 and also is consistent with the structures required by the
non-supersymmetric results [23, 24]. The explicit form of the Lagrangian is found by de-
manding that all these auxiliary superfields vanish on-shell, in the free theory limit and
the appropriate constraints on Hα(s)α̇(s) are generated in order to describe the irreducible
representation Y = s+ 1/2.

The paper is organized as follows. In section 2 we review basic features of irreducible
representations of the 4D, N = 1 super-Poincaré group. In section 3 we construct the
superspace action that provides the off-shell description of these irreducible representa-
tions for the arbitrary half-integer superspin supermultiplet. In section 4 we illustrate the
richness of the off-shell structure, by counting the number of off-shell degrees of freedom
of this theory.

2 Massive and massless irreducible representations of 4D super-Poincaré

Often in physics we consider some symmetry (super) group and then ask about its (irre-
ducible) representations. For the majority of the cases, the answer about their existence
and their classification almost certainly already exists somewhere in mathematical litera-
ture. However, for many applications in physics this is not enough, because we do not just
blindly look for any representations but for locally realizable representations that can have
a (super) field theoretic description. This tension between knowing the representation and
realize it in a field theoretic framework is responsible for the richness of many theories.

In this case we consider the 4D,N = 1 super-Poincaré group but in order to have
a finite number of propagating degrees of freedom we focus on its stabilizer, the super-

2The 2s+1 on-shell degrees of freedom of a massive spin j = s can be viewed as a collection of the −j,+j
on-shell helicities for massless spins j = 0, 1, . . . , s if s is integer or j = 1/2, 3/2, . . . , s if s is half-integer.
Moreover, if one trust this analogy to hold off-shell, then one will precisely discover the (double) tower of
auxiliary symmetric (spinor) tensor fields appearing in the off-shell Lagrangian description of [23, 24].
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Little group.3 The diagonalization of its two Casimir operators and its Cartan subalgebra
determines (i) the type of superfield (number of indices and their symmetries) which realizes
the representation and (ii) the type of constraints it must satisfy in order to be irreducible.
For a massive, half-integer superspin (Y = s+ 1/2) representation one must consider a real
bosonic superfield Hα(s)α̇(s), with s dotted and undotted indices which are independently
symmetrized and satisfies the following conditions

�Hα(s)α̇(s) = m2Hα(s)α̇(s) , DαsHα(s)α̇(s) = 0 . (2.1)

These constraints kill most of the components of superfield Hα(s)α̇(s) but allow the prop-
agation of the physical degrees of freedom of four massive spins, j = s + 1, j = s + 1/2,
j = s + 1/2, j = s. Describing an irreducible representation this way is an on-shell state-
ment, since it refers to the physical degrees of freedom. A natural question to ask is what
is the off-shell description of this representation. This can be given in terms of an ac-
tion which will generate equations of motion that give raise to the desired constraints. In
this paper, we will answer this question for the case of an arbitrary half-integer superspin
supermultiplet described by (2.1). We will show that the answer includes a hierarchy of
pairs of auxiliary, fermionic, superfields χα(q)α̇(q−1), uα(q)α̇(q−1) for q = 1, 2, . . . , s.

For a massless, half-integer superspin supermultiplet, the on-shell propagating degrees
of freedom are described by the superfield strength Wα(2s+1). This is a chiral, fermionic
superfield with 2s+ 1 symmetrized undotted indices which must satisfy the constraints

Dα2s+1Wα(2s+1) = 0, D̄β̇Wα(2s+1) = 0 . (2.2)

This is analogous to the description of the massless spin one representation by the field
strength Fmn. It is the field strength that carries the physical degrees of freedom, since if we
do an experiment we will measure the electric and magnetic fields. Fmn must satisfy on-shell
the constraints ∂mFmn = 0, ∂[kFmn] = 0. One of them we call the dynamical equations
of motion and the other we call the Bianchi identity. In order to construct the off-shell,
Lagrangian description of the theory we solve the Bianchi identity in terms of a gauge vector
field. The fact that the off-shell description of the theory is given in terms of the gauge
vector field, allows for a smooth transition between the Lagrangian description of a massive
spin one (Proca action) and the Lagrangian description of a massless spin one (Maxwell’s
theory) by taking the massless limit of the Proca action. The discontinuity on the on-
shell degrees of freedom is recovered from the emergence of the redundancy of the vector
field in the massless limit. This approach can be applied to the case of massless irreducible
representations of the super-Poincaré group (see [9]). Briefly, the second constraint in (2.2)
can be solved by expressing superfield strength Wα(2s+1) in terms of a real prepotential
superfield which has the same index structure as the superfield that describes the massive
theory (and thus making the transition from massive action to massless one smooth)

Wα(2s+1) ∝ D̄2D(α2s+1∂α2s
α̇s . . . ∂αs+1

α̇1Hα(s))α̇(s) . (2.3)

3For a detailed review see [9, 36–41].
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The prepotential Hα(s)α̇(s), is now a gauge superfield because it acquires a redundancy,
which leaves the superfield strength invariant

δHα(s)α̇(s) = 1
s! D(αsL̄α(s−1))α̇(s) −

1
s! D̄(α̇sLα(s)α̇(s−1)) . (2.4)

Using the above redundancy as a guiding principle, one can find the superspace Lagrangian
description for this supermultiplet. The result is that there are two different off-shell formu-
lations of the same theory based on (2.4) [6, 9, 11]. Both of them require the presence of an
additional, unconstrained, compensating superfield. The one relevant for our discussion4

is the non-minimal description given by the following action principle

S(Y=s+1/2)=
∫
d8z Hα(s)α̇(s)DγD̄2DγHα(s)α̇(s) (2.5)

−2 Hα(s)α̇(s)D̄α̇sD2χα(s)α̇(s−1) + c.c.

−s+ 1
s

χα(s)α̇(s−1)D2χα(s)α̇(s−1) + c.c.

+2 χα(s)α̇(s−1)DαsD̄
α̇s
χ̄α(s−1)α̇(s)

where the unconstrained compensator has the redundancy

δχα(s)α̇(s−1) = D̄2
Lα(s)α̇(s−1) + Dαs+1Λα(s+1)α̇(s−1) . (2.6)

The equations of motion of the above action will generate the desired condition (2.2) and
thus allow only the propagation of the helicities of spins j = s+ 1 and j = s+ 1/2.

3 Arbitrary half integer superspin supermultiplet action

The massive extension of S(Y=s+1/2), denoted as S(m, Y=s=1/2), must be such that

lim
m→0

[
S(m, Y=s+1/2)

]
= S(Y=s+1/2) + S(decoupled sector), (3.1)

δS(m, Y=s+1/2) = 0⇒ � Hα(s)α̇(s) = m2Hα(s)α̇(s), DαsHα(s)α̇(s) = 0 . (3.2)

For simple cases, like the vector supermultiplet (s = 0) the S(decoupled sector) is trivially
zero. However, in general we can allow such term. As an example, consider the theory of
linearized massive supergravity developed in [1]. It requires the presence of an additional
auxiliary superfield uα which in the massless limit decoupled from the theory. Similar
behavior is demonstrated in [23, 24] were the massless limit of the theory generates a
non trivial decoupled sector which can be ignored from the view point of the massless
theory. Condition (3.1) dictates that the most general interaction between the auxiliary
superfields in S(decoupled sector) and the superfields of massless theory must depend on the
mass parameter. Finally, the various numerical coefficients will be fixed by demanding that
all auxiliary superfields vanish on-shell and condition (3.2) is satisfied. This will fix the
on-shell spectrum of the theory to be the correct irreducible representation.

4We follow the conventions of Superspace [37].
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Motivated from the results in [23, 24] and [1], we propose the following coupling scheme:

Hα(s)α̇(s) χα(s)α̇(s−1)

uα(s)α̇(s−1)

χα(s−1)α̇(s−2)

uα(s−1)α̇(s−2)

χα(2)α̇

uα(2)α̇

χα

uα

∼ m ∼ m ∼ m ∼ m

DD̄,
D̄D

Massless theory S(Y=s+1/2)

DD̄,
D̄D∼ m2

Starting from the massless action S(Y=s+1/2) we introduce a double tower of auxiliary
superfields χα(q)α̇(q−1), uα(q)α̇(q−1) equipped with two types of interactions. The q-th level
superfields χ(q) and u(q) interact via a mass term (vertical dashed lines). This type of
interaction dissolves at the massless limit. The second type of interaction is between the
q-th level superfield u(q) and the (q− 1)-th level χ(q−1) superfield (solid diagonal lines) and
is persistent, in the sense that it survives the massless limit. Furthermore, in compliance
with the preliminary results of [1], superfield Hα(s)α̇(s) has its own mass term as expected,
but the auxiliary superfields χ(q), u(q) do not have their own mass term. The consistency of
this scheme with the massless limit is automatic, because the first vertical dashed line will
break, decoupling the entire χ, u sector, except χ(s) and thus recovers the correct massless
action S(Y=s+1/2). Also it is easy to check the consistency with the s = 1 results of [1]. In
that case there is only one level (q = 1) and thus, only the mass interaction between χα
and uα participates, exactly as found. The most general action that reflects this coupling
scheme is

S(m,Y=s+1/2) =
∫
d8z

{
Hα(s)α̇(s)DγD̄2DγHα(s)α̇(s)+m2Hα(s)α̇(s)Hα(s)α̇(s) (3.3)

−2 Hα(s)α̇(s)D̄α̇sD2χα(s)α̇(s−1)+c.c.

− s+1
s

χα(s)α̇(s−1)D2χα(s)α̇(s−1)+c.c.

+2 χα(s)α̇(s−1)DαsD̄
α̇s
χ̄α(s−1)α̇(s)

+m χα(s)α̇(s−1)uα(s)α̇(s−1)+c.c.

+c(s)
1 uα(s)α̇(s−1)D̄2

uα(s)α̇(s−1)+c.c.

+c(s)
2 uα(s)α̇(s−1)D2uα(s)α̇(s−1)+c.c.

+c(s)
3 uα(s)α̇(s−1)D̄α̇sDαs ūα(s−1)α̇(s)

+c(s)
4 uα(s)α̇(s−1)DαsD̄

α̇s
ūα(s−1)α̇(s)
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+
s−1∑
q=1

[
uα(q+1)α̇(q)

(
b

(q+1)
1 D̄α̇qDαq+1χα(q)α̇(q−1)+b(q+1)

2 Dαq+1D̄α̇qχα(q)α̇(q−1)
)
+c.c.

+d(q)
1 χα(q)α̇(q−1)D̄2

χα(q)α̇(q−1)+c.c.

+d(q)
2 χα(q)α̇(q−1)D2χα(q)α̇(q−1)+c.c.

+d(q)
3 χα(q)α̇(q−1)D̄α̇qDαq χ̄α(q−1)α̇(q)

+d(q)
4 χα(q)α̇(q−1)DαqD̄

α̇q
χ̄α(q−1)α̇(q)

+m χα(q)α̇(q−1)uα(q)α̇(q−1)+c.c.

+c(q)
1 uα(q)α̇(q−1)D̄2

uα(q)α̇(q−1)+c.c.

+c(q)
2 uα(q)α̇(q−1)D2uα(q)α̇(q−1)+c.c.

+c(q)
3 uα(q)α̇(q−1)D̄α̇qDαq ūα(q−1)α̇(q)

+c(q)
4 uα(q)α̇(q−1)DαqD̄

α̇q
ūα(q−1)α̇(q)

]}
.

The coefficient of the mass interaction between χ(q) and u(q) can be set to one by adjusting
the normalization of u(q). Similarly, one of the two b(q+1) coefficients can also be set to one
by adjusting the normalization of χ(q). The equations of motion generated by the above
action are

E(H)
α(s)α̇(s) =2DγD̄2DγHα(s)α̇(s)+2m2Hα(s)α̇(s)−

2
s! D̄(α̇sD

2χα(s)α̇(s−1)) (3.4)

+ 2
s! D(αsD̄

2
χ̄α(s−1))α̇(s)

E(χ,s)
α(s)α̇(s−1) =−2D2D̄α̇s

Hα(s)α̇(s)−2 s+1
s

D2χα(s)α̇(s−1) (3.5)

+ 2
s! D(αsD̄

α̇s
χ̄α(s−1))α̇(s)+m uα(s)α̇(s−1)

E(u,s)
α(s)α̇(s−1) =2c(s)

1 D̄2
uα(s)α̇(s−1)+2c(s)

2 D2uα(s)α̇(s−1)+ c
(s)
3
s! D̄α̇sD(αs ūα(s−1))α̇(s) (3.6)

+ c
(s)
4
s! D(αsD̄

α̇s
ūα(s−1))α̇(s)+m χα(s)α̇(s−1)+ b

(s)
1

s!(s−1)! D̄(α̇s−1D(αsχα(s−1))α̇(s−2))

+ b
(s)
2

s!(s−1)! D(αsD̄(α̇s−1χα(s−1))α̇(s−2))

and

E(χ,q)
α(q)α̇(q−1) = − b(q+1)

1 Dαq+1D̄α̇q
uα(q+1)α̇(q) − b

(q+1)
2 D̄α̇qDαq+1uα(q+1)α̇(q) (3.7)

+ 2d(q)
1 D̄2

χα(q)α̇(q−1) + 2d(q)
2 D2χα(q)α̇(q−1) + d

(q)
3
q! D̄α̇qD(αq χ̄α(q−1))α̇(q)

+ d
(q)
4
q! D(αqD̄

α̇q
χ̄α(q−1))α̇(q) +muα(q)α̇(q−1)

– 6 –
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E(u,q)
α(q)α̇(q−1) =2c(q)

1 D̄2
uα(q)α̇(q−1) + 2c(q)

2 D2uα(q)α̇(q−1) + c
(q)
3
q! D̄α̇qD(αq ūα(q−1))α̇(q) (3.8)

+ c
(q)
4
q! D(αqD̄

α̇q
ūα(q−1))α̇(q) +m χα(q)α̇(q−1)

+ b
(q)
1

q!(q − 1)! D̄(α̇q−1D(αqχα(q−1))α̇(q−2))

+ b
(q)
2

q!(q − 1)! D(αqD̄(α̇q−1χα(q−1))α̇(q−2))

for q = 1, 2, . . . , s−1. Our strategy is to use these equations of motion with an appropriate
choice of coefficients in order to show that on-shell all auxiliary superfields vanish and we
dynamically generate constraints (2.1):

uα = 0⇒χα = 0⇒·· ·⇒uα(q)α̇(q−1) = 0⇒χα(q)α̇(q−1) = 0⇒ . . . (3.9)
⇒uα(s)α̇(s−1) = 0⇒χα(s)α̇(s−1) = 0⇒DαsHα(s)α̇(s) = 0 , �Hα(s)α̇(s) =m2Hα(s)α̇(s).

We will do that in steps and recursively. For example, if we assume that u(r) = χ(r) = 0
for r = 1, 2, . . . , s then we can easily generate (2.1). If u(s) = χ(s) = 0 we get via (3.5) that
on-shell D2D̄α̇s

Hα(s)α̇(s) = 0. This will lead to DαsHα(s)α̇(s) = 0 based on DαsE(H)
α(s)α̇(s) = 0

and E(H)
α(s)α̇(s) = 0 will give �Hα(s)α̇(s) = m2Hα(s)α̇(s). The next step is to assume that

u(r) = χ(r) = 0 for r = 1, 2, . . . , s−1 and show that there is a choice of c(s) coefficients such
that u(s), χ(s) both vanish on-shell. We will show that this approach can be iterated until
we reach the bottom of the sequence (3.9) and in the process we determine all coefficients.
In every iteration we assume that all auxiliary superfields up to some level can be set to
zero and then prove that there is an appropriate choice of coefficients that will make the
next level auxiliary superfields vanish too.

Because the auxiliary superfields are required to vanish on-shell, one is allowed to con-
sider a linear redefinition of the auxiliary superfields û(q) = Au(q) + Bχ(q),
χ̂(q) = Cu(q) +Dχ(q) without affecting the outcome. Besides this redefinition being in-
vertible (AD − CB 6= 0), the coefficients (A,B,C,D) are arbitrary and can be used to
fix any four, q-level coefficients in the action. This freedom has already being used in the
ansatz (3.3).

A tool that will be used often in this method is the following. Notice that χ(q) superfield
appears algebraically in E(u,q). Hence, we can use this to eliminate all χ(q) dependence in
E(χ,q), for all values of q. One way of doing that is to define the following quantity:

I(q)
α(q)α̇(q−1) =mE(χ,q)

α(q)α̇(q−1)−2d(q)
1 D̄2E(u,q)

α(q)α̇(q−1)−2d(q)
2 D2Eu,q)α(q)α̇(q−1) (3.10)

− d
(q)
3
q! D̄α̇qD(αq Ē

(u,q)
α(q−1))α̇(q)−

d
(q)
4
q! D(αqD̄

α̇q Ē(u,q)
α(q−1))α̇(q) .

– 7 –
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Plugging in equations (3.7) and (3.8) we find that

I(q)
α(q)α̇(q−1) =−m b

(q+1)
1 Dαq+1D̄α̇q

uα(q+1)α̇(q)−m b
(q+1)
2 D̄α̇qDαq+1uα(q+1)α̇(q) (3.11)

+m2 uα(q)α̇(q−1)+
{
d

(q)
3 c

(q)
3

}
DγD̄2Dγuα(q)α̇(q−1)

+
{
−4d(q)

1 c
(q)
2 −d

(q)
3 c

(q)
4

}
D̄2D2uα(q)α̇(q−1)+

{
−4d(q)

2 c
(q)
1 −d

(q)
4 c

(q)
3

}
D2D̄2

uα(q)α̇(q−1)

+
{
−2d(q)

1 c
(q)
4 −2d(q)

3 c
(q)
2

} 1
q! D̄2D(αqD̄

α̇q
ūα(q−1))α̇(q)

+
{
−2d(q)

2 c
(q)
3 −2d(q)

4 c
(q)
1

} 1
q! D2D̄α̇qD(αq ūα(q−1))α̇(q)

+
{
d

(q)
3 c

(q)
4 −d

(q)
4

(
q+1
q

c
(q)
4 −c

(q)
3

)} 1
q! D(αqD̄

2Dβuβα(q−1))α̇(q−1)

+
{
q−1
q

d
(q)
3 c

(q)
3

} 1
(q−1)! D̄(α̇q−1D2D̄β̇

uα(q)β̇α̇(q−2))

+
{
−q−1

q
d

(q)
4 c

(q)
3

} 1
q!(q−1)! D(αqD̄(α̇q−1DβD̄β̇

uβα(q−1))β̇α̇(q−2))

+
{
−q−1

q
d

(q)
3 c

(q)
4

} 1
q!(q−1)! D̄(α̇q−1D(αqD̄

β̇Dβuβα(q−1))β̇α̇(q−2))

+
{
−2d(q)

1 b
(q)
2

} 1
q!(q−1)! D̄2D(αqD̄(α̇q−1χα(q−1))α̇(q−2))

+
{
−2d(q)

2 b
(q)
1

} 1
q!(q−1)! D2D̄(α̇q−1D(αqχα(q−1))α̇(q−2))

+
{
−d(q)

3 b
(q)
2 −d

(q)
4

(
b

(q)
1 −

q+1
q

b
(q)
2

)} 1
q! D(αqD̄

2Dαq−1χ̄α(q−2))α̇(q−1)

+
{
q−1
q

d
(q)
4 b

(q)
1

} 1
q!(q−1)! D(αqD̄(α̇q−1Dαq−1D̄γ̇

χ̄α(q−2))γ̇α̇(q−1))

+
{
q−1
q

d
(q)
3 b

(q)
2

} 1
q!(q−1)! D̄(α̇q−1D(αqD̄

γ̇Dαq−1χ̄α(q−2))γ̇α̇(q−1)) .

This expression holds for all values of q = 1, 2, . . . , s − 1.5 However, the validity of (3.10)
can be expanded to include the q = s case as well. In that case, expression (3.11) remains
valid if we assign to the d(s) constants the corresponding values coming from the massless
theory (2.5)

d
(s)
1 = 0 , d

(s)
2 = −s+ 1

s
, d

(s)
3 = 0 , d

(s)
4 = 2 (3.12)

5Note that for q = 1, there are no b(q=1)
1 and b(q=1)

2 coupling constants, as can be seen in (3.3). That
is because the lowest rank χ superfield is χ(1) and there is no χ(0). Hence for that case the last five lines
of (3.11)|q=1 drop out. To simplify, things we can keep using the same expression with the convention the
b

(q=1)
1 = b

(q=1)
2 = 0.
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and replace the first line with the correct Hα(s)α̇(s) terms

I(s)
α(s)α̇(s−1) =−2m D2D̄α̇s

Hα(s)α̇(s) (3.13)

+m2 uα(s)α̇(s−1)

+
{
−4d(s)

2 c
(s)
1 − d

(s)
4 c

(s)
3

}
D2D̄2

uα(s)α̇(s−1)

+
{
−2d(s)

2 c
(s)
3 − 2d(s)

4 c
(s)
1

} 1
s! D2D̄α̇sD(αs ūα(s−1))α̇(s)

+
{
−d(s)

4

(
s+ 1
s

c
(s)
4 − c

(s)
3

)} 1
s! D(αsD̄

2Dβuβα(s−1))α̇(s−1)

+
{
−s− 1

s
d

(s)
4 c

(s)
3

} 1
s!(s− 1)! D(αsD̄(α̇s−1DβD̄β̇

uβα(s−1))β̇α̇(s−2))

+
{
−2d(s)

2 b
(s)
1

} 1
s!(s− 1)! D2D̄(α̇s−1D(αsχα(s−1))α̇(s−2))

+
{
−d(s)

4

(
b

(s)
1 −

s+ 1
s

b
(s)
2

)} 1
s! D(αsD̄

2Dαs−1χ̄α(s−2))α̇(s−1)

+
{
s− 1
s

d
(s)
4 b

(s)
1

} 1
s!(s− 1)! D(αsD̄(α̇s−1Dαs−1D̄γ̇

χ̄α(s−2))γ̇α̇(s−1)) .

3.1 Linearized massive supergravity and s-th level auxiliary superfields

The term in the first line of (3.13) can also be generated by D2D̄α̇sE(H)
α(s)α̇(s) using the mass

term of Hα(s)α̇(s)

D2D̄α̇sE(H)
α(s)α̇(s) =−2 D2D̄2D2D̄α̇s

Hα(s)α̇(s) + 2m2 D2D̄α̇s
Hα(s)α̇(s) (3.14)

−2 s+ 1
s

D2D̄2D2χα(s)α̇(s−1) + 2
s! D2D̄2D(αsD̄

α̇s
χ̄α(s−1))α̇(s) .

Unfortunately, we also generate additional, unwanted H and χ(s) terms. However, no-
tice that all these additional terms can be canceled by D2D̄2E(χ,s)

α(s)α̇(s−1). If we consider
the combination

K(s)
α(s)α̇(s−1) = D2D̄α̇(s)E(H)

α(s)α̇(s) + f
(s)
1 D2D̄2E(χ,s)

α(s)α̇(s−1) (3.15)

=
{
−2− 2f (s)

1

}
D2D̄2D2D̄α̇s

Hα(s)α̇(s)

+
{
−2s+ 1

s
− 2s+ 1

s
f

(s)
1

}
D2D̄2D2χα(s)α̇(s−1)

+
{

2 + 2f (s)
1

} 1
s! D2D̄2D(αsD̄

α̇s
χ̄α(s−1))α̇(s)

+2m2 D2D̄α̇s
Hα(s)α̇(s) + f

(s)
1 m D2D̄2

uα(s)α̇(s−1)

then obviously the choice f
(s)
1 = −1 is the appropriate one because it cancels all the

unwanted terms and we are left with terms that are proportional to m and m2. These
cancellations are not an accident but a consequence of the gauge invariance of the massless

– 9 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
4

action (2.5). Because of (2.4) and (2.6) the massless theory equations of motion must
satisfy the following Jacobi identity

D̄α̇sE(H,m=0)
α(s)α̇(s) = D̄2E(χ,s,m=0)

α(s)α̇(s−1) (3.16)

hence, the specific combination K(s)
α(s)α̇(s−1) = D2D̄α̇(s)E(H)

α(s)α̇(s) − D2D̄2E(χ,s)
α(s)α̇(s−1) must in-

clude only terms proportional to m and m2 which identically vanish in the massless limit

K(s)
α(s)α̇(s−1) = 2m2 D2D̄α̇s

Hα(s)α̇(s) −mD2D̄2
uα(s)α̇(s−1) . (3.17)

Now we can combining (3.13) with (3.17) in order to cancel the common H-terms

J (s)
α(s)α̇(s−1) = 1

m
K(s)
α(s)α̇(s−1) + I(s)

α(s)α̇(s−1) (3.18)

=m2 uα(s)α̇(s−1)

+
{
−4d(s)

2 c
(s)
1 − d

(s)
4 c

(s)
3 − 1

}
D2D̄2

uα(s)α̇(s−1)

+
{
−2d(s)

2 c
(s)
3 − 2d(s)

4 c
(s)
1

} 1
s! D2D̄α̇sD(αs ūα(s−1))α̇(s)

+
{
−d(s)

4

(
s+ 1
s

c
(s)
4 − c

(s)
3

)} 1
s! D(αsD̄

2Dβuβα(s−1))α̇(s−1)

+
{
−s− 1

s
d

(s)
4 c

(s)
3

} 1
s!(s− 1)! D(αsD̄(α̇s−1DβD̄β̇

uβα(s−1))β̇α̇(s−2))

+
{
−2d(s)

2 b
(s)
1

} 1
s!(s− 1)! D2D̄(α̇s−1D(αsχα(s−1))α̇(s−2))

+
{
−d(s)

4

(
b

(s)
1 −

s+ 1
s

b
(s)
2

)} 1
s! D(αsD̄

2Dαs−1χ̄α(s−2))α̇(s−1)

+
{
s− 1
s

d
(s)
4 b

(s)
1

} 1
s!(s− 1)! D(αsD̄(α̇s−1Dαs−1D̄γ̇

χ̄α(s−2))γ̇α̇(s−1)) .

This gives an equation that depends only on u(s) and χ(s−1) and includes an algebraic term
for u(s). On-shell the left hand side of the equation vanishes, because J (s) is constructed by
equations of motions. Therefore by tuning the various coefficients we can use the algebraic
term in order to make u(s) vanish.

For the special case of s = 1 (linearized supergravity), the last three lines drop out
and the fourth one identically vanish

J (1)
α = m2 uα +

{
−4d(1)

2 c
(1)
1 − d

(1)
4 c

(1)
3 − 1

}
D2D̄2

uα (3.19)

+
{
−2d(1)

2 c
(1)
3 − 2d(1)

4 c
(1)
1

}
D2D̄α̇Dαūα̇

+
{
−d(1)

4

(
2 c(1)

4 − c
(1)
3

)}
DαD̄2Dβuβ .

Therefore, in order to have uα vanishing on-shell we must select the coefficients to satisfy

4 d(1)
2 c

(1)
1 + d

(1)
4 c

(1)
3 = −1

d
(1)
2 c

(1)
3 + d

(1)
4 c

(1)
1 = 0

2 c(1)
4 − c

(1)
3 = 0

⇒ c
(1)
1 = 1

6 , c
(1)
3 = 1

6 , c
(1)
4 = 1

12 . (3.20)
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These are precisely the results found in [1].
For the general case (arbitrary s), we assume that all auxiliary superfields of lower levels

vanish on-shell u(r) = χ(r) = 0 for r = 1, 2, . . . , s − 1. Then because of E(χ,s−1)
α(s−1)α̇(s−2) = 0,

superfield uα(s)α̇(s−1) will satisfy the following constraint

b
(s)
1 DαsD̄α̇s−1uα(s)α̇(s−1) + b

(s)
2 D̄α̇s−1Dαsuα(s)α̇(s−1) = 0 (3.21)

which leads to the identification of various terms in (3.18)

J (s)
α(s)α̇(s−1) =m2 uα(s)α̇(s−1)+

{
−4d(s)

2 c
(s)
1 −d

(s)
4 c

(s)
3 −1

}
D2D̄2

uα(s)α̇(s−1) (3.22)

+
{
−2d(s)

2 c
(s)
3 −2d(s)

4 c
(s)
1

} 1
s!D

2D̄α̇sD(αs ūα(s−1))α̇(s)

+
{
−d(s)

4

(
s+1
s
c

(s)
4 −c

(s)
3

)
− s−1

s
d

(s)
4 c

(s)
3
b

(s)
2

b
(s)
1

}
1
s! D(αsD̄

2Dβuβα(s−1))α̇(s−1) .

Therefore, in order to be able to make u(s) vanish on-shell we must choose the coefficients
such that

4 d(s)
2 c

(s)
1 +d(s)

4 c
(s)
3 = f

(s)
1 =−1

d
(s)
2 c

(s)
3 +d(s)

4 c
(s)
1 = 0

d
(s)
4

(
s+1
s c

(s)
4 −c

(s)
3

)
+ s−1

s d
(s)
4 c

(s)
3

b
(s)
2
b

(s)
1

= 0

⇒

c

(s)
1 = 1

4
s(s+1)
2s+1

c
(s)
3 = 1

2
s2

2s+1

c
(s)
4 = 1

2
s3

(s+1)(2s+1)

(
1− s−1

s
b

(s)
2
b

(s)
1

) (3.23)

Notice that as an input in the above system of equations are the d(s) and f (s)
1 coefficients

fixed by the massless action and Jacobi identity. This will be a repeating pattern that will
become explicit in section 3.3. Moreover, c(s)

2 remains arbitrary and irrelevant to u(s) = 0
which is consistent with the findings of [1], thus we can set it to zero. Also notice that the
coefficients b(s)

1 , b
(s)
2 have not being fixed yet, however they participate in the combination

b
(s)
2 /b

(s)
1 which demands b(s)

1 to be non-zero. Hence, using the freedom to normalize χ(s−1)

accordingly we can set it to one, b(s)
1 = 1. Finally, the vanishing of χ(s) on-shell follows

automatically from equation E(u,s) = 0.

3.2 Y = 5/2 supermultiplet and (s − 1)-th level auxiliary superfields

Now we repeat the process for (s − 1)-th level auxiliary superfields. The main goal is to
make u(s−1) vanish on-shell. If it does then, χ(s−1) will automatically follow as demon-
strated above. We start with (3.18) and use it to calculate DαsD̄α̇s−1J (s)

α(s)α̇(s−1) and
D̄α̇s−1DαsJ (s)

α(s)α̇(s−1) in order to generate the DαsD̄α̇s−1uα(s)α̇(s−1), D̄α̇s−1Dαsuα(s)α̇(s−1)
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terms that appear in I(s−1)
α(s−1)α̇(s−2).

6 After some algebra one can find that

DαsD̄α̇s−1J (s)
α(s)α̇(s−1)+b(s)

2 D̄α̇s−1DαsJ (s)
α(s)α̇(s−1) = (3.24)

=m2 DαsD̄α̇s−1uα(s)α̇(s−1)+m2 b
(s)
2 D̄α̇s−1Dαsuα(s)α̇(s−1)

+
{2s−1

s2 d
(s)
4 c

(s)
3

}
D2D̄2DβD̄β̇

uβα(s−1)β̇α̇(s−2)

+
(

1− s+1
s

b
(s)
2

){
−s−1

s
d

(s)
4 c

(s)
3

}
DβD̄2D2D̄β̇

uβα(s−1)β̇α̇(s−1)

+
(

1− s+1
s

b
(s)
2

){
−s−1

s
d

(s)
4 c

(s)
3 b

(s)
2

}
D̄β̇D2D̄2Dβuβα(s−1)β̇α̇(s−1)

+
{

(s−1)2

s2 d
(s)
4 c

(s)
3 b

(s)
2

}
1

(s−1)! D(αs−1D̄2DβD̄γ̇Dγuβγα(s−2))γ̇α̇(s−2)

+
(

1− s+1
s

b
(s)
2

){
s−2
s

d
(s)
4 c

(s)
3

} 1
(s−2)! D̄(α̇s−2D2D̄β̇DγD̄γ̇

uγα(s−1)β̇γ̇α̇(s−3))

+
{
−(s−2)(s−1)

s2 d
(s)
4 c

(s)
3

} 1
(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇DγD̄γ̇

uβγα(s−2))β̇γ̇α̇(s−3))

+
{

2 2s−1
s(s−1) d

(s)
2

}
D2D̄2D2χα(s−1)α̇(s−2)

+
{
−2s−1

s2 d
(s)
4

} 1
(s−1)! D2D̄2D(αs−1D̄β̇

χ̄α(s−2))β̇α̇(s−2)

+
(

1− s+1
s

b
(s)
2

)2
d

(s)
4

1
(s−1)! D̄β̇D2D̄2D(αs−1χ̄α(s−2))β̇α̇(s−2)

+
(

2 (s−1)2

s2 d
(s)
4

){
1− s+1

s−1 b
(s)
2

} 1
(s−1)! D(αs−1D̄2D2D̄β̇

χ̄α(s−2))β̇α̇(s−2)

+
(

1− s+1
s

b
(s)
2

){
−s−2

s
d

(s)
4

} 1
(s−1)!(s−2)! D̄(α̇s−2D2D̄β̇D(αs−1D̄γ̇

χ̄α(s−2))β̇γ̇α̇(s−3))

+
(

1− s+1
s

b
(s)
2

){
−s−2

s
d

(s)
4

} 1
(s−1)! D(αs−1D̄2Dαs−2D̄β̇Dβχ̄βα(s−3)))β̇α̇(s−2)

+
{
−2 s−2

s
d

(s)
2

} 1
(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇D2χβα(s−2))β̇α̇(s−3))

+
{

(s−2)2

s2 d
(s)
4

}
1

(s−1)!(s−2)! D(αs−1D̄(α̇s−2Dαs−2D̄β̇DγD̄γ̇
χ̄γα(s−3))β̇γ̇α̇(s−3)) .

Once again, besides the desired terms of the first line, we generated many more u(s) and
χ(s−1) terms. However, similarly to (3.14) and (3.15), all these terms can be absorbed
by appropriate use of E(χ,s−1) and leave only terms that depend on the mass parameter.

6That is equation (3.11) for q = s− 1.
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A careful examination ofthe terms in (3.24) suggests that we have to consider the following

K(s−1)
α(s−1)α̇(s−2) =DαsD̄α̇s−1J (s)

α(s)α̇(s−1)+b(s)
2 D̄α̇s−1DαsJ (s)

α(s)α̇(s−1)+f (s−1)
1 D2D̄2E(χ,s−1)

α(s−1)α̇(s−2)

+f (s−1)
2 DγD̄2DγE(χ,s−1)

α(s−1)α̇(s−2)+ f
(s−1)
3

(s−2)! D̄(α̇s−2D2D̄β̇E(χ,s−1)
α(s−1)β̇α̇(s−3))

+ f
(s−1)
4

(s−1)! D(αs−1D̄2DβE(χ,s−1)
βα(s−2))α̇(s−2)

+ f
(s−1)
5

(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇E(χ,s−1)
βα(s−2))β̇α̇(s−3)) (3.25)

for appropriate values of f (s−1)
1 , f

(s−1)
2 , f

(s−1)
3 , f

(s−1)
4 , f

(s−1)
5 . Notice, that many terms

in (3.24) cancel if we tune b(s)
2 such that

1− s+ 1
s

b
(s)
2 = 0⇒ b

(s)
2 = s

s+ 1 . (3.26)

With this choice, the contributions proportional to f (s−1)
2 , f

(s−1)
3 are not relevant anymore

and will be ignored (f (s−1)
2 = f

(s−1)
3 = 0)

K(s−1)
α(s−1)α̇(s−2) = (3.27)

=m2 DαsD̄α̇s−1uα(s)α̇(s−1)+m2 b
(s)
2 D̄α̇s−1Dαsuα(s)α̇(s−1)

+mf (s−1)
1 D2D̄2

uα(s−1)α̇(s−2)+m f
(s−1)
4

(s−1)! D(αs−1D̄2Dβuβα(s−2))α̇(s−2)

+m f
(s−1)
5

(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇
uβα(s−2))β̇α̇(s−3))

+
{2s−1

s2 d
(s)
4 c

(s)
3 −f

(s−1)
1

}
D2D̄2DβD̄β̇

uβα(s−1)β̇α̇(s−2)

+
{

(s−1)2

s2 d
(s)
4 c

(s)
3 b

(s)
2 −f

(s−1)
4 b

(s)
2

}
1

(s−1)! D(αs−1D̄2DβD̄γ̇Dγuβγα(s−2))γ̇α̇(s−2)

+
{
− (s−2)(s−1)

s2 d
(s)
4 c

(s)
3 −f

(s−1)
5

}
1

(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇DγD̄γ̇
uβγα(s−2))β̇γ̇α̇(s−3))

+
{

2 2s−1
s(s−1) d

(s)
2 +2f (s−1)

1 d
(s−1)
2

}
D2D̄2D2χα(s−1)α̇(s−2)

+
{
−2s−1

s2 d
(s)
4 +f (s−1)

1 d
(s−1)
4

} 1
(s−1)! D2D̄2D(αs−1D̄β̇

χ̄α(s−2))β̇α̇(s−2)

+
{

(s−1)(s−2)
s2 d

(s)
4 −

(s+1)(s−1)
s2 d

(s)
4 b

(s)
2 +f (s−1)

4

(
s

s−1 d
(s−1)
4 −d(s−1)

3

)
+f (s−1)

5 d
(s−1)
4

}
×

× 1
(s−1)! D(αs−1D̄2D2D̄β̇

χ̄α(s−2))β̇α̇(s−2)

+
{
s−2
s−1 f

(s−1)
4 d

(s−1)
3

} 1
(s−1)! D(αs−1D̄2Dαs−2D̄β̇Dβχ̄βα(s−3)))β̇α̇(s−2)

+
{
−2 s−2

s
d

(s)
2 +2f (s−1)

5 d
(s−1)
2

} 1
(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇D2χβα(s−2))β̇α̇(s−3))

+
{

(s−2)2

s2 d
(s)
4 + s−2

s−1f
(s−1)
5 d

(s−1)
4

}
1

(s−1)!(s−2)!D(αs−1D̄(α̇s−2Dαs−2D̄β̇DγD̄γ̇
χ̄γα(s−3))β̇γ̇α̇(s−3))
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In order to keep only the terms that depend on mass, we must select the three f (s−1) in
the following way

f
(s−1)
1 = 2s− 1

s2 d
(s)
4 c

(s)
3 (3.28)

f
(s−1)
4 = (s− 1)2

s2 d
(s)
4 c

(s)
3 (3.29)

f
(s−1)
5 = −(s− 1)(s− 2)

s2 d
(s)
4 c

(s)
3 (3.30)

and the d(s−1) parameters must satisfy

f
(s−1)
1 d

(s−1)
2 =− 2s−1

s(s−1) d
(s)
2

f
(s−1)
5 d

(s−1)
2 = s−2

s d
(s)
2

f
(s−1)
1 d

(s−1)
4 = 2s−1

s2 d
(s)
4

f
(s−1)
5 d

(s−1)
4 =− (s−1)(s−2)

s2 d
(s)
4

(s−1)(s−2)
s2 d

(s)
4 −

(s+1)(s−1)
s2 d

(s)
4 b

(s)
2 +f (s−1)

4

(
s
s−1 d

(s−1)
4 −d(s−1)

3

)
+f (s−1)

5 d
(s−1)
4 = 0

d
(s)
3 = 0



(3.31)

Equations (3.31) are all compatible with each other and have as a solution

d
(s−1)
2 = − s

s− 1
d

(s)
2

d
(s)
4 c

(s)
3
, d

(s−1)
3 = 0 , d

(s−1)
4 = 1

c
(s)
3
. (3.32)

The last step is to combine K(s−1)
α(s−1)α̇(s−2) with I

(s−1)
α(s−1)α̇(s−2) in order to cancel the u(s) term

and construct J (s−1)
α(s−1)α̇(s−2) = 1

m K
(s−1)
α(s−1)α̇(s−2) + I(s−1)

α(s−1)α̇(s−2)

J (s−1)
α(s−1)α̇(s−2) =m2uα(s−1)α̇(s−2)+

{
−4d(s−1)

2 c
(s−1)
1 −d(s−1)

4 c
(s−1)
3 +f (s−1)

1

}
D2D̄2

uα(s−1)α̇(s−2)

+
{
−4d(s−1)

1 c
(s−1)
2

}
D̄2D2uα(s−1)α̇(s−2)+

{
−2d(s−1)

1 c
(s−1)
4

} 1
(s−1)!D̄

2D(αs−1D̄β̇
ūα(s−2))β̇α̇(s−2)

+
{
−2d(s−1)

2 c
(s−1)
3 −2d(s−1)

4 c
(s−1)
1

} 1
(s−1)! D2D̄α̇s−1D(αs−1 ūα(s−2))α̇(s−1)

+
{
−d(s−1)

4

(
s

s−1 c
(s−1)
4 −c(s−1)

3

)
+f (s−1)

4

} 1
(s−1)! D(αs−1D̄2Dβuβα(s−2))α̇(s−2)

+
{
−s−2
s−1 d

(s−1)
4 c

(s−1)
3 +f (s−1)

5

} 1
(s−1)!(s−2)! D(αs−1D̄(α̇s−2DβD̄β̇

uβα(s−2))β̇α̇(s−3))

+
{
−2d(s−1)

2 b
(s−1)
1

} 1
(s−1)!(s−2)! D2D̄(α̇s−2D(αs−1χα(s−2))α̇(s−3))

+
{
−2d(s−1)

1 b
(s−1)
2

} 1
(s−1)!(s−2)! D̄2D(αs−1D̄(α̇s−2χα(s−2))α̇(s−3))

+
{
−d(s−1)

4

(
b

(s−1)
1 − s

s−1 b
(s−1)
2

)} 1
(s−1)! D(αs−1D̄2Dαs−2χ̄α(s−3))α̇(s−2)

+
{
s−2
s−1 d

(s−1)
4 b

(s−1)
1

} 1
(s−1)!(s−2)! D(αs−1D̄(α̇s−2Dαs−2D̄γ̇

χ̄α(s−3))γ̇α̇(s−2)) . (3.33)
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This equation will determine all the c(s−1) coefficients in order to have u(s−1) vanishing
on-shell.

For s = 2, Y = 5/2 supermultiplet, the last four lines drop out and we are left with three
equations fixing the three unknowns. For the general case, we work under the assumption
that we have already set to zero all lower level auxiliary superfields (u(r) = χ(r) = 0 for
r = 1, 2, . . . , s − 2). Therefore, using E(χ,s−2) we find that u(s−1) on-shell will satisfy the
constraint

b
(s−1)
1 Dαs−1D̄α̇s−2uα(s−1)α̇(s−2) + b

(s−1)
2 D̄α̇s−2Dαs−1uα(s−1)α̇(s−2) = 0 (3.34)

forcing the collapse of various terms in (3.33)

J (s−1)
α(s−1)α̇(s−2) =m2uα(s−1)α̇(s−2)+

{
−4d(s−1)

2 c
(s−1)
1 −d(s−1)

4 c
(s−1)
3 +f (s−1)

1

}
D2D̄2

uα(q)α̇(q−1)

+
{
−4d(s−1)

1 c
(s−1)
2

}
D̄2D2uα(s−1)α̇(s−2)+

{
−2d(s−1)

1 c
(s−1)
4

} 1
(s−1)!D̄

2D(αs−1D̄β̇
ūα(s−2))β̇α̇(s−2)

+
{
−2d(s−1)

2 c
(s−1)
3 −2d(s−1)

4 c
(s−1)
1

} 1
(s−1)! D2D̄α̇s−1D(αs−1 ūα(s−2))α̇(s−1)

+
{
−d(s−1)

4

(
s

s−1 c
(s−1)
4 −c(s−1)

3

)
+f (s−1)

4 + b
(s−1)
2

b
(s−1)
1

(
−s−2
s−1d

(s−1)
4 c

(s−1)
3 +f (s−1)

5

)}
×

× 1
(s−1)!D(αs−1D̄2Dβuβα(s−2))α̇(s−2) . (3.35)

Hence we conclude that we must select coefficients c(s−1)
1 , c

(s−1)
3 , c

(s−1)
4 as follows

4 d(s−1)
2 c

(s−1)
1 +d(s−1)

4 c
(s−1)
3 = f

(s−1)
1 , (3.36a)

d
(s−1)
2 c

(s−1)
3 +d(s−1)

4 c
(s−1)
1 = 0 , (3.36b)

d
(s−1)
4

(
s

s−1 c
(s−1)
4 −c(s−1)

3

)
+ b

(s−1)
2

b
(s−1)
1

s−2
s−1 d

(s−1)
4 c

(s−1)
3 = f

(s−1)
4 + b

(s−1)
2

b
(s−1)
1

f
(s−1)
5 , (3.36c)

d
(s−1)
1 c

(s−1)
2 = 0 , (3.36d)

d
(s−1)
1 c

(s−1)
4 = 0 . (3.36e)

The solution of the above is

c
(s−1)
1 = 1

16
(s+ 1)s(s− 1)(2s− 1)

(2s+ 1)2 , c
(s−1)
3 = −1

8
s(s− 1)2(2s− 1)

(2s+ 1)2 , (3.37a)

c
(s−1)
4 = 1

8
(s− 1)3

2s+ 1

(
1− s− 2

s− 1
b

(s−1)
2

b
(s−1)
1

)
, d

(s−1)
1 = 0 , c

(s−1)
2 = arbitrary. (3.37b)

Equations (3.32) and (3.37) fix all the (s− 1)-level coefficients. Notice that c(s−1)
2 remains

arbitrary and not relevant to the on-shell vanishing of u(s−1). Similarly to 3.1 we adopt
the convention of setting it to zero (c(s−1)

2 = 0). However, in this case equation (3.36d)
offers an explanation for this freedom. Again the input for the determination of c(s−1)

are the d(s−1) and f (s−1) parameters. The conclusion is that the kinetic energy terms of
superfield χ(s−1) in (3.3) have the same structure as the kinetic energy terms of χ(s) which
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are dictated by the massless limit and gauge redundancy. This has the effect of matching
the kinetic energy terms of u(s−1) with those of u(s). Also, once again, coefficients b(s−1)

2
and b

(s−1)
1 appear only in the combination b

(s−1)
2 /b

(s−1)
1 , which demands b(s−1)

1 6= 0. By
using the normalization of χ(s−2) we can set it to one, b(s−1)

1 = 1. Finally, the vanishing of
χ(s−1) trivially follows from equation E(u,s−1) = 0.

3.3 Vanishing of q-th level auxiliary superfields

The above procedure can be iterated and step by step fix all coefficients such that all auxil-
iary superfields can be set to zero on-shell. Briefly, for the (s−2) level we start with (3.33)
and use it to find K(s−2) which will include only u(s−1) and u(s−2) terms proportional to
m2 and m respectively. Finding it fixes coefficients f (s−2) and d(s−2). Then we use it to
find J (s−2) = 1/m K(s−2) + I(s−2), which includes only u(s−2) and χ(s−3) terms. Going
on-shell, and assuming that χ(s−3) can be set to zero7 we can choose the c(s−2) coefficients
so u(s−2) = 0. This will also give χ(s−2) = 0.

Here we repeat it for the arbitrary q-th level. We will show that there is a consistent
choice of parameters such that if one assumes that all auxiliary superfields up to level
(q − 1) vanish then u(q) and χ(q) also vanish{

u(r) = χ(r) = 0 , r = 1, 2, . . . , q − 1
}
⇒ u(q) = 0⇒ χ(q) = 0 . (3.38)

This result holds for all values of q = 1, 2, . . . , s and can be used recursively. For the
special case of q = 1, our assumption (u(r) = χ(r) = 0) is trivially satisfied because there
are no such superfields,8 hence the on-shell statement u(1) = χ(1) = 0 does not rely on
any hypothesis and is a pure consequence of action (3.3) given the specific values of the
parameters. Hence, the assumption for the vanishing of u(2), χ(2) is justified and so on for
all higher auxiliary superfields. As a result, (3.38) can be applied to prove that all auxiliary
superfields indeed vanish on-shell. Moreover, based on the (s) and (s− 1) level results we
conjecture that

d
(q)
1 = 0, d

(q)
3 = 0 , c

(q)
2 = 0, b

(q)
1 = 1, b

(q)
2 = q

q + 1 , ∀q = 1, 2, . . . , s . (3.39)

Our staring point is the end result of level (q + 1). That means that
J (q+1)
α(q+1)α̇(q) = 1/m K(q+1)

α(q+1)α̇(q) + I(q+1)
α(q+1)α̇(q) depends only on u(q+1) and χ(q) superfields,

K(q+1)
α(q+1)α̇(q) has only terms proportional to m and m2 of the form

rlK(q+1)
α(q+1)α̇(q) =m2Dαq+2D̄α̇q+1uα(q+2)α̇(q+1) +m2 q + 2

q + 3D̄α̇q+1Dαq+2uα(q+2)α̇(q+1) (3.40)

+mf
(q+1)
1 D2D̄2

uα(q+1)α̇(q) +m
f

(q+1)
4

(q + 1)! D(αq+1D̄2Dβuβα(q))α̇(q)

+m
f

(q+1)
5

(q + 1)!q! D(αq+1D̄(α̇qD
βD̄β̇

uβα(q))β̇α̇(q−1))

7For the supermultiplet corresponding to s = 3 (Y = 7/2) no such assumption is needed.
8Recall that we encapsulated this information in our convention to assign the following values

(b(1)
1 = b

(1)
2 = 0) for an automatic drop out of these terms.
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and I(q+1) is given by (3.11) for q → q + 1, simplified by (3.39). The coefficients
f

(q+1)
1 , f

(q+1)
3 , f

(q+1)
4 and d

(q+1)
2 , d

(q+1)
4 have been determined by eliminating additional

u(q+2) and χ(q+1) terms. Also the coefficients c(q+1)
1 , c

(q+1)
3 , c

(q+1)
4 have been fixes such

that if χ(q) = 0 on-shell then J (q+1)
α(q+1)α̇(q) = 0⇒ u

(q+1)
α(q+1)α̇(q) = 0⇒ χ

(q+1)
α(q+1)α̇(q) = 0.

Now we use J (q+1) together with E(χ,q) in order to construct K(q)

K(q)
α(q)α̇(q−1) = Dαq+1D̄α̇qJ (q+1)

α(q+1)α̇(q)+ q+1
q+2 D̄α̇qDαq+1J (q+1)

α(q+1)α̇(q)+f (q)
1 D2D̄2E(χ,q)

α(q)α̇(q−1)

+ f
(q)
4
q! D(αqD̄

2DβE(χ,q)
βα(q−1))α̇(q−1)+ f

(q)
5

q!(q−1)! D(αqD̄(α̇q−1DβD̄β̇E(χ,q)
βα(q−1))β̇α̇(q−2))

=m2Dαq+1D̄α̇q
uα(q+1)α̇(q)+m2 q+1

q+2 D̄α̇qDαq+1uα(q+1)α̇(q)+mf (q)
1 D2D̄2

uα(q)α̇(q−1) (3.41)

+m f
(q)
4
q! D(αqD̄

2Dβuβα(q−1))α̇(q−1)+m f
(q)
5

q!(q−1)! D(αqD̄(α̇q−1DβD̄β̇
uβα(q−1))β̇α̇(q−2))

+
{

2q+1
(q+1)2 d

(q+1)
4 c

(q+1)
3 − 2q+1

q(q+1)f
(q+1)
5 −f (q)

1

}
D2D̄2DβD̄β̇

uβα(q)β̇α̇(q−1)

+
{

q2

(q+1)(q+2) d
(q+1)
4 c

(q+1)
3 − q

q+2f
(q+1)
5 − q+1

q+2f
(q)
4

}
1
q! D(αqD̄

2DβD̄γ̇Dγuβγα(q−1))γ̇α̇(q−1)

+
{
−q(q−1)

(q+1)2 d
(q+1)
4 c

(q+1)
3 + q−1

q+1f
(q+1)
5 −f (q)

5

}
×

× 1
q!(q−1)!D(αqD̄(α̇q−1DβD̄β̇DγD̄γ̇

uβγα(q−1))β̇γ̇α̇(q−2))

+
{

2 2q+1
q(q+1) d

(q+1)
2 +2f (q)

1 d
(q)
2

}
D2D̄2D2χα(q)α̇(q−1)

+
{
− 2q+1

(q+1)2 d
(q+1)
4 +f (q)

1 d
(q)
4

}
1
q! D2D̄2D(αqD̄

β̇
χ̄α(q−1))β̇α̇(q−1)

+
{
− q

q+1 d
(q+1)
4 + q+1

q
f
q)
4 d

(q)
4

}
1
q! D(αqD̄

2D2D̄β̇
χ̄α(q−1))β̇α̇(q−1)

+
{
−2 q−1

q+1 d
(q+1)
2 +2f (q)

5 d
(q)
2

}
1

q!(q−1)! D(αqD̄(α̇q−1DβD̄β̇D2χβα(q−1))β̇α̇(q−2))

+
{
q(q−1)
(q+1)2 d

(q+1)
4 +f (q)

5 d
(q)
4

}
1

q!q!(q−1)! D(αqD̄(α̇q−1DβD̄β̇D(βD̄γ̇
χ̄α(q−1)))β̇γ̇α̇(q−2)) .

Demanding the cancellation of all terms that do not depend on mass fixes f (q) s as follows

f
(q)
1 = 2q + 1

(q + 1)2

(
d

(q+1)
4 c

(q+1)
3 − q + 1

q
f

(q+1)
5

)
, (3.42a)

f
(q)
4 = q2

(q + 1)2

(
d

(q+1)
4 c

(q+1)
3 − q + 1

q
f

(q+1)
5

)
, (3.42b)

f
(q)
5 = −q(q − 1)

(q + 1)2

(
d

(q+1)
4 c

(q+1)
3 − q + 1

q
f

(q+1)
5

)
(3.42c)

and the d(q) s

d
(q)
2 =− 2q+1

q(q+1)
d

(q+1)
2

f
(q)
1

, d
(q)
4 = 2q+1

(q+1)2
d

(q+1)
4

f
(q)
1

. (3.43)

– 17 –



J
H
E
P
0
3
(
2
0
2
1
)
2
5
4

The last step is to construct J (q) = 1/m K(q) + I(q). The result is

J (q)
α(q)α̇(q−1) = m2 uα(q)α̇(q−1) +

{
−4d(q)

2 c
(q)
1 − d

(q)
4 c

(q)
3 + f

(q)
1

}
D2D̄2

uα(q)α̇(q−1) (3.44)

+
{
−2d(q)

2 c
(q)
3 − 2d(q)

4 c
(q)
1

} 1
q! D2D̄β̇D(αq ūα(q−1))β̇α̇(q−1)

+
{
−d(q)

4

(
q + 1
q

c
(q)
4 − c

(q)
3

)
+ f

(q)
4

} 1
q! D(αqD̄

2Dβuβα(q−1))α̇(q−1)

+
{
−q − 1

q
d

(q)
4 c

(q)
3 + f

(q)
5

} 1
q!(q − 1)! D(αqD̄(α̇q−1DβD̄β̇

uβα(q−1))β̇α̇(q−2))

+
{
−2d(q)

2

} 1
q!(q − 1)! D2D̄(α̇q−1D(αqχα(q−1))α̇(q−2))

+
{
q − 1
q

d
(q)
4

} 1
q!(q − 1)! D(αqD̄(α̇q−1Dαq−1D̄γ̇

χ̄α(q−2))γ̇α̇(q−2)) .

The above dictates that if we want to make u(q) vanish on-shell, assuming u(r) = χ(r) = 0,9

for r = 1, 2, . . . , q − 1, we must select coefficients c(q) s such that:

4 d(q)
2 c

(q)
1 +d(q)

4 c
(q)
3 = f

(q)
1

d
(q)
2 c

(q)
3 +d(q)

4 c
(q)
1 = 0

q+1
q d

(q)
4 c

(q)
4 − 2

q+1 d
(q)
4 c

(q)
3 = f

(q)
4 + q

q+1 f
(q)
5


⇒



c
(q)
1 =−f (q)

1
d

(q)
2

[d(q)
4 ]2−4 [d(q)

2 ]2

c
(q)
3 = f

(q)
1

d
(q)
4

[d(q)
4 ]2−4 [d(q)

2 ]2

c
(q)
4 = 2q

(q+1)2 c
(q)
3 + q

q+1
f

(q)
4
d

(q)
4

+ q2

(q+1)2
f

(q)
5
d

(q)
4

(3.45)

4 Off-shell degrees of freedom

The conclusion of section 3 is that the off-shell description of an arbitrary half-integer
superspin (Y = s+1/2) supermultiplet is given by the following superspace action principle

S(m,Y=s+1/2) =
∫
d8z

{
Hα(s)α̇(s)DγD̄2DγHα(s)α̇(s)+m2Hα(s)α̇(s)Hα(s)α̇(s) (4.1)

−2 Hα(s)α̇(s)D̄α̇sD2χα(s)α̇(s−1)+c.c.

+
s∑
q=1

[
d

(q)
2 χα(q)α̇(q−1)D2χα(q)α̇(q−1)+c(q)

1 uα(q)α̇(q−1)D̄2
uα(q)α̇(q−1)+c.c.

+d(q)
4 χα(q)α̇(q−1)DαqD̄

α̇q
χ̄α(q−1)α̇(q)+c(q)

3 uα(q)α̇(q−1)D̄α̇qDαq ūα(q−1)α̇(q)

+c(q)
4 uα(q)α̇(q−1)DαqD̄

α̇q
ūα(q−1)α̇(q)+m

(
χα(q)α̇(q−1)uα(q)α̇(q−1)+c.c.

)]

+
s−1∑
q=1

[
uα(q+1)α̇(q)

(
D̄α̇qDαq+1χα(q)α̇(q−1)+ q+1

q+2 Dαq+1D̄α̇qχα(q)α̇(q−1)

)
+c.c.

]}
9Besides dropping the last two terms of (3.44), it also imposes on u(q) the constraint

DβD̄β̇
uβα(q−1)β̇α̇(q−2) + q

q+1 D̄β̇Dβuβα(q−1)β̇α̇(q−2) = 0.
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where the coefficients d(q) and c(q) are given by the recursive relations (3.42), (3.43)
and (3.45) together with the initial conditions fixed by the massless limit of the theory

d
(s)
2 = −s+ 1

s
, d

(s)
4 = 2 , f

(s)
1 = −1 , f

(s)
4 = f

(s)
5 = 0 . (4.2)

The off-shell structure of this theory is extremely rich, since it requires the pres-
ence of two towers of auxiliary superfields with s members each of increasing rank
{u(r), χ(r)} r = 1, 2, . . . , s. By projecting the superspace action to components, we can
find the component structure of the theory. It will include the auxiliary fields required
by [23, 24] for the off-shell description of irreducible, arbitrary higher spins plus additional
auxiliary fields required by off-shell supersymmetry. Because all participating superfields
are unconstrained and there is no redundancy, all the components of every superfield will
participate in the off-shell component action.

It is straightforward to count the off-shell degrees of freedom of an unconstrained (n,m)
superfield Φα(n)α̇(m). The answer is 16(n+1)(m+1) bosons10 and equal number of fermions.
An exception is the case were we can impose a reality condition (Φ = Φ̄ ⇒ n = m). In
that case, the real superfield Φα(n)α̇(n) carries 8(n+ 1)2 bosons and equally many fermions.
Therefore the total number of off-shell degrees of freedom of this theory is

8(s+ 1)2 + 2×
s∑

n=1
16(n+ 1)n = 8

3 (s+ 1)(4s2 + 11s+ 3) . (4.3)

5 Summary

The supersymmetric Fierz-Pauli program of constructing superspace Lagrangians for
higher spin supermultiplets has been a long standing question since the birth of
supersymmetry. In this paper we answer this question for arbitrary half-integer
(Y = s+ 1/2) supermultiplets that on-shell describe the propagation of free massive
spins j = s+ 1, j = s+ 1/2, j = s+ 1/2, j = s. We find that the off-shell superspace ac-
tion description of this supermultiplet requires a tower of pairs of auxiliary superfields
uα(q)α̇(q−1), χα(q)α̇(q−1) with q = 1, 2, . . . , s and it has the form (4.1).

The coupling constants d
(q)
2 , d

(q)
4 and c

(q)
1 , c

(q)
3 , c

(q)
4 of (4.1) are given by the

recursive relations (3.42), (3.43) and (3.45) with initial conditions (4.2). They
have been determined such that on-shell (i) all auxiliary superfields vanish
(uα(q)α̇(q−1) = χα(q)α̇(q−1) = 0) (ii) we generate the appropriate constraints for superfield
Hα(s)α̇(s) (DαsHα(s)α̇(s) = 0, �Hα(s)α̇(s) = m2Hα(s)α̇(s)) which allow only the above men-
tioned spin degrees of freedom to propagate and (iii) the massless limit of the action gives
a smooth transition to the correct description of the arbitrary massless half-integer super-
spin supermultiplet by decoupling all auxiliary superfields with the exception of χα(s)α̇(s−1)
which becomes the compensator of Hα(s)α̇(s), as required by the gauge redundancy of the
massless theory.

10For details see [42].
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These recursion relations can be iterated systematically to extract the numerical value
of all coefficients. For example, as demonstrated by (3.23), (3.37) and (4.2), (3.32), (3.39)
the first two levels of coefficients, for arbitrary values of the parameter s, are:

c
(s)
1 = 1

4
s(s+1)
2s+1 , c

(s)
3 = 1

2
s2

2s+1 , c
(s)
4 = s3

(s+1)2(2s+1) , d
(s)
2 =−s+1

s
, d

(s)
4 = 2

(5.1)

c
(s−1)
1 = 1

16
(s+1)s(s−1)(2s−1)

(2s+1)2 , c
(s−1)
3 =−1

8
s(s−1)2(2s−1)

(2s+1)2 , (5.2)

c
(s−1)
4 = 1

4
(s−1)3

s(2s+1) , d
(s−1)
2 = (s+1)(2s+1)

s2(2s+1) , d
(s−1)
4 = 2 2s+1

s2

For the special case of s = 1, (5.1) give the numerical value of the coefficients required
for the description of massive Y = 3/2 supermultiplet and they are in agreement with the
findings of [1]. For s = 2 (5.1), (5.2) give the numerical value of coefficients required for
the description of massive Y = 5/2 supermultiplet.

Moreover, the coefficients d(q)
1 and d

(q)
3 vanish for all values of q. For q = s this is a

consequence of the gauge invariance of the massless action and it’s effect trickles down to
all other levels. As a result c(q)

2 drops out of all equations (for example (3.36d)), remains
undetermined and not relevant for the on-shell spectrum of the theory. For simplicity we
set it to zero.

A characteristic feature of the theory is that it requires the presence of
the ‘bare’ superfield χα(s)α̇(s−1). This means that the constrained superfield
(Γα(s−1)α̇(s−1) ∝ D̄α̇s

χ̄α(s−1)α̇(s)) approach of [6, 7] can not be used to generate this re-
sult. From the view point of the massive theory the unconstrained superfield approach
of [9, 10] seem to be the more appropriate variables that one should consider.

Due to the plethora of the auxiliary superfields, the off-shell structure of the theory is
extremely rich and the number of off-shell degrees of freedom scale as ∼ s3. Specifically, the
theory carries 8

3(s+1)(4s2 +11s+3) bosons and equal number of fermions. In contrast, the
on-shell degrees of freedom are just the 4(s+1) polarizations of bosonic spins j = s+1, j = s

and an equal number of states coming from the two j = s+ 1/2 fermionic spins.
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