
J
H
E
P
0
3
(
2
0
2
1
)
2
4
9

Published for SISSA by Springer

Received: January 15, 2021
Accepted: February 23, 2021

Published: March 26, 2021

On duality of color and kinematics in (A)dS
momentum space

Soner Albayrak,a Savan Kharelb and David Meltzerc
aDepartment of Physics, Yale University,
New Haven, CT 06511, U.S.A.

bDepartment of Physics, University of Chicago,
Chicago, IL 60637, U.S.A.

cWalter Burke Institute for Theoretical Physics, California Institute of Technology,
Pasadena, CA 91125, U.S.A.
E-mail: soner.albayrak@yale.edu, skharel@uchicago.edu,
dmeltzer@caltech.edu

Abstract: We explore color-kinematic duality for tree-level AdS/CFT correlators in mo-
mentum space. We start by studying the bi-adjoint scalar in AdS at tree-level as an
illustrative example. We follow this by investigating two forms of color-kinematic duality
in Yang-Mills theory, the first for the integrated correlator in AdS4 and the second for
the integrand in general AdSd+1. For the integrated correlator, we find color-kinematics
does not yield additional relations among n-point, color-ordered correlators. To study
color-kinematics for the AdSd+1 Yang-Mills integrand, we use a spectral representation of
the bulk-to-bulk propagator so that AdS diagrams are similar in structure to their flat
space counterparts. Finally, we study color KLT relations for the integrated correlator
and double-copy relations for the AdS integrand. We find that double-copy in AdS nat-
urally relates the bi-adjoint theory in AdSd+3 to Yang-Mills in AdSd+1. We also find a
double-copy relation at three-points between Yang-Mills in AdSd+1 and gravity in AdSd−1
and comment on the higher-point generalization. By analytic continuation, these results
on AdS/CFT correlators can be translated into statements about the wave function of the
universe in de Sitter.

Keywords: AdS-CFT Correspondence, Conformal Field Theory, Scattering Amplitudes,
Gauge-gravity correspondence

ArXiv ePrint: 2012.10460

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2021)249

mailto:soner.albayrak@yale.edu
mailto:skharel@uchicago.edu
mailto:dmeltzer@caltech.edu
https://arxiv.org/abs/2012.10460
https://doi.org/10.1007/JHEP03(2021)249


J
H
E
P
0
3
(
2
0
2
1
)
2
4
9

Contents

1 Introduction 1

2 Bi-adjoint scalar 3
2.1 Test case: AdS6 4
2.2 Generalization to AdSd+1 8

3 Yang-Mills theory 9
3.1 Test case: AdS4 10
3.2 Generalization to AdSd+1 12

4 Color KLT and double copy 15

5 Conclusion 18

A Bi-adjoint, five point correlators 19

1 Introduction

The study of scattering amplitudes and on-shell observables in quantum field theory has
revealed new mathematical structures and symmetries which are obscured in off-shell,
Lagrangian formulations [1]. The duality between color and kinematics, and the associated
double-copy relations, are prominent examples that give fundamentally new insights into
the perturbative structure of quantum field theory [2]. These ideas indicate that the
dynamics of gauge theories and gravity, when they are both weakly coupled, are governed
by the same kinematical building blocks. Additionally, these ideas have lead to novel
computations for loop-level graviton amplitudes, gravitational wave patterns, and string
theory amplitudes. Color-kinematic duality and double-copy have also been applied to
theories with seemingly no relation to gauge or gravity theories. We refer the reader to [3]
for a recent, comprehensive review of these topics.

Concurrent to these advances in flat space scattering amplitudes, there has also been an
intense focus on the study of holographic correlators. The most concrete example of holog-
raphy has been formulated in asymptotically anti-de Sitter (AdS) spacetimes [4]. While
there is no notion of an S-matrix in AdS, one can consider AdS scattering experiments
that are dual to the correlation functions of a conformal field theory (CFT) living on its
boundary. In this context, the terms “AdS amplitude” and “CFT correlator” are typically
used interchangeably. There are now a variety of methods to compute holographic correla-
tors, including ideas from Mellin space [5–7], the conformal bootstrap [8, 9], and harmonic
analysis in AdS [10, 11]. In this work, we will build on recent developments concerning
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CFT correlation functions in momentum space [12, 13, 13–36] in order to understand how
ideas from flat space amplitudes can be imported to curved spacetimes.

One motivation to study holographic correlators in momentum space comes from their
close connection to the wave function of the universe [37–39], which can be used to compute
late-time cosmological correlators. Inspired by the modern amplitudes program, there is an
ongoing systematic program to compute de Sitter invariant correlators, which is known as
the cosmological bootstrap [40–46]. Interestingly, holographic and cosmological correlators
possess a total energy singularity when the norms of all the momenta sum to zero. The
coefficient of this singularity is exactly the scattering amplitude for the same process in
flat space [29, 47]. In other words, holographic and cosmological correlators contain within
them information about flat space amplitudes.

It is then natural to wonder if one can generalize the rich structure of color-kinematic
duality and double-copy to AdS and cosmological correlators. Color-kinematic duality
implies that flat space scattering amplitudes can be arranged in such a way that the kine-
matic numerators of the scattering amplitude have the same algebraic properties as the
color factors. That is, whenever the color factors of an amplitude obey a Jacobi identity, the
corresponding kinematic factors can also be chosen such that they obey the same relation.
The double-copy construction, which relates Yang-Mills amplitudes to gravity, then cor-
responds to replacing the color factors of a Yang-Mills amplitude with the corresponding,
color-kinematic obeying numerators. Since color-kinematics has lead to computational and
conceptual advances in flat space scattering amplitudes, it is natural to hope that similar
advances can be made for curved space correlators.

In this work, we take the initial steps in generalizing and testing color-kinematic duality
for AdS/CFT correlators, or equivalently for the cosmological wave function. We will
propose two different formulations of color-kinematics in AdS momentum space. The first
method corresponds to imposing this duality on the full, integrated correlator. In the
examples considered here, we find it is always possible to choose a set of numerators such
that color-kinematics holds for the integrated correlator. The second method corresponds
to imposing color-kinematics directly on the AdS integrand. This is inspired by recent work
on scattering in a plane-wave background [48] and on the study of celestial amplitudes [49].
We also comment on its connection to double-copy.

This note is organized as follows. In section 2 we will study the scalar bi-adjoint theory
in AdS at tree-level. This will serve as a simple example to illustrate how color-kinematics
works in AdS and how the BCJ relations are modified. In section 3, we study color-
kinematics for Yang-Mills four-point functions in AdS, both at the level of the integrated
correlator and the integrand. Finally, in section 4 we comment on the color KLT rela-
tions, which connect the bi-adjoint and Yang-Mills theories, and the double-copy relations
between Yang-Mills and gravity at three and four-points in AdS.

Note added. After this work was completed, [50] appeared which partially overlaps with
our results.
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2 Bi-adjoint scalar

To start, let us recall that the bi-adjoint scalar theory consists of scalars φaA which are
charged under two different SU(N) global symmetries (see [51–53] and references therein).
We will use lowercase and capital Latin letters to distinguish the two groups. The action
for this theory is simple and takes the following form:

Sbi-adjoint = −
∫
dd+1x

√
g

(1
2(∇µφaA)(∇µφaA)

+ ξR

2 φaAφ
aA − λfabcfABCφaAφbBφcC

)
,

(2.1)

where R is the Ricci scalar. We have added the Ricci scalar with an arbitrary ξ to be
general and will later fix it so the scalar is conformally coupled. In AdS,1 the metric g for
the Poincaré patch is

ds2 = dz2 + ηµνdx
µdxν

z2 . (2.2)

Here we take ηµν to be the mostly plus, flat space metric. The scalar φaA is dual to a
boundary operator2 OaA with conformal dimension ∆ = d/2 + ν where

ν = 1
2

√
d(d− 4(d+ 1)ξ) . (2.3)

A particularly simple case to study is the conformally coupled scalar, which corresponds to,

ξc = d− 1
4d , (2.4)

or ν = 1/2.
Next, we need the bulk-to-bulk propagator for scalars in AdS:

Gsc
ν (k, z1, z2) = −i(z1z2)

d
2

∞∫
0

dp2

2
Jν(pz1)Jν(pz2)

k2 + p2 − iε
, (2.5)

where J is the modified Bessel function of the first kind and k ≡ |k| =
√

k2 is the norm of
the boundary momenta k. When computing correlators, we will always take the external
momenta to be spacelike. When we set ν = 1/2, the p integral can be computed in closed
form, but we find the p integral representation of the propagator simplest for practical
computations. By taking one point to the boundary, we find the scalar bulk-to-boundary
propagator:

Ksc
ν (k, z) = −i 1

2νΓ(1 + ν)z
d
2 kνKν(kz) , (2.6)

where K is the modified Bessel function of the second kind. Finally, to each interaction
vertex we have the factor iλfabcfABC (see figure 1 for Feynman rules).

1We will focus on AdS computations for concreteness in the rest of the note, although our results can
equally be interpreted in terms of the dS wave function with suitable analytic continuation [37].

2The bulk theory does not include gravity, so the boundary theory does not have a stress-tensor and
will be non-local.
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z1 z2
k = Gsc(k, z1, z2) = iλ

Figure 1. AdS Feynman rules for φ3 theory.

2.1 Test case: AdS6

In this section we will compute tree-level Witten diagrams for the bi-adjoint theory in
AdS6. For simplicity we will study the conformally-coupled scalar, i.e. we set ν = 1/2. The
conformally-coupled, bi-adjoint theory in AdS6 is particularly simple because at tree-level
it is conformally invariant.

It is convenient to introduce a set of AdS Mandelstam-like invariants. First, from
Lorentz invariance we know a general n-point correlation function will depend on n(n−1)/2
dot products of the momenta, ki · kj , where i, j = 1, . . . , n − 1.3 We then define the AdS
Mandelstam invariants to be:

s̃i1...im ≡
(

m∑
a=1

kia +
∣∣∣∣∣
m∑
a=1

kia

∣∣∣∣∣
)(

n∑
a=m+1

kia +
∣∣∣∣∣
m∑
a=1

kia

∣∣∣∣∣
)
. (2.7)

Our definition of the AdS Mandelstams is motivated by their connection to the usual
Mandelstam invariants in the flat space limit. To see this, we first construct a null, (d+1)-
dimensional momentum by appending the norm k to the vector itself,

k̂ ≡ (ik,k). (2.8)

We then define the flat space invariants,

si1...im ≡
(

m∑
a=1

k̂ia

)
·
(

m∑
a=1

k̂ia

)
. (2.9)

At four-points we use the standard notation s = s12, t = s23, and u = s13. Finally, we recall
that the flat space limit in AdS momentum space [29] is defined by analytically continuing
in the norms ki such that the total “energy” ET → 0. Here ET is the sum of all the norms,

ET ≡
n∑
i=1

ki . (2.10)

In this limit the AdS Mandelstam invariants go exactly to the corresponding flat space
invariants if we identify the flat space null momenta as k̂:

s̃i1...in
flat space limit−−−−−−−−−→ si1...in . (2.11)

3Conformal invariance imposes additional constraints on the functional form of the correlation function,
but we will not use them.
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k2

k1

k3

k4

k1 + k2

k2 k4

k1 k5

k3

k1 + k2 k4 + k5

Figure 2. Four and five point exchange diagram for bi-adjoint scalars.

Now we turn to computing Witten diagrams for the full, color-dressed correlator.
To set the notation, we will use M(1, 2, 3, 4) to denote the color-dressed correlator and
A(1, 2, 3, 4) for the color-ordered correlator. To keep the expressions compact, we will
suppress the global symmetry indices. The exchange diagram for conformally coupled
scalars in figure 2 has been computed — in [54] for the dS wave function and in [35] for an
AdS/CFT correlator — so we will quote the final answer here:

M sc(1, 2, 3, 4) = (iλ)2

ET

(
nscs
s̃

+ ntct
t̃

+ nucu
ũ

)
, (2.12)

where we use similar conventions as in flat space:

s̃ = s̃12 , t̃ = s̃23 , ũ = s̃13 . (2.13)

The s-channel color and “kinematic” factors are

cs = fA1A2BfA3A4B, (2.14a)
ns = fa1a2bfa3a4b, (2.14b)

with repeated indices summed. The t and u-channel factors are defined by performing the
following replacements:

ntct = nscs

∣∣∣∣
1→2→3→1

, (2.15a)

nucu = nscs

∣∣∣∣
1→3→2→1

. (2.15b)

As a consistency check, the AdS four-point function reduces to the familiar flat space
amplitude when we take the residue at ET = 0:

M sc(1, 2, 3, 4) flat space limit−−−−−−−−−→ (iλ)2
(
nscs
s

+ ntct
t

+ nucu
u

)
. (2.16)

For the bi-adjoint theory, we have made an arbitrary split between the color and
kinematic factors. Both ni and ci are by definition the group theory factors for SU(N) and
therefore obey the Jacobi identities:

ns + nt + nu = 0 , (2.17a)
cs + ct + cu = 0 . (2.17b)
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While this example is trivial in terms of deriving a color-kinematics duality, it does
demonstrate in a simple way how this duality will differ between AdS and flat space. To
see this, we use the color relation ct = −cs − cu to write the color-dressed correlator as a
sum of color-ordered correlators:

M sc(1, 2, 3, 4) = (iλ)2
(
Asc(1, 2, 3, 4)cs −Asc(1, 3, 2, 4)cu

)
, (2.18)

where

Asc(1, 2, 3, 4) = 1
ET

(
ns
s̃
− nt

t̃

)
, (2.19a)

Asc(1, 3, 2, 4) = 1
ET

(
nt
t̃
− nu

ũ

)
. (2.19b)

We can further reduce this expression by using the identity nt = −ns − nu to find the
following linear relations:

Asc(1, 2, 3, 4) = 1
ET

(
ns

(1
s̃

+ 1
t̃

)
+ nu

t̃

)
, (2.20a)

Asc(1, 3, 2, 4) = − 1
ET

(
nu

(1
ũ

+ 1
t̃

)
+ ns

t̃

)
. (2.20b)

In flat space it is impossible to invert these equations and solve for the numerators directly
in terms of the color-ordered amplitudes. This degeneracy implies a further identity among
the color-ordered amplitudes, which are known as the BCJ relations. In flat space this
degeneracy follows from the fact s + t + u = 0 for massless scalars. However, in AdS we
have s̃+ t̃+ ũ 6= 0 and we find:

ns = ET
s̃(ũAsc(1, 3, 2, 4) + (t̃+ ũ)Asc(1, 2, 3, 4))

s̃+ t̃+ ũ
, (2.21a)

nu = −ET
ũ(s̃Asc(1, 2, 3, 4) + (s̃+ t̃)Asc(1, 3, 2, 4))

s̃+ t̃+ ũ
. (2.21b)

In the limit ET → 0 the explicit factor of ET cancels against the pole in the color-ordered
correlator, while the sum in the denominator vanishes, s̃ + t̃ + ũ → 0. Therefore, the
kinematic numerators naïvely diverge in the flat space limit.4 To avoid this, we impose the
following relation on the flat space amplitude:

sAsc
flat(1, 2, 3, 4) + (s+ t)Asc

flat(1, 3, 2, 4) = 0 , (2.22)

which one can recognize as the four-point BCJ relation. Alternatively, one can note that
in the flat space limit eq. (2.20) becomes the standard flat space relations between the
color-ordered amplitudes and the numerators. If we take the same combination of color-
ordered AdS correlators as what appears in the BCJ relation, we see the right hand side is
non-zero, but vanishes in the flat space limit:

s̃Asc(1, 2, 3, 4) + (s̃+ t̃)Asc(1, 3, 2, 4) = − nu
ET

s̃+ t̃+ ũ

ũ
. (2.23)

4When defining the numerators, we pulled out an overall power of E−1
T , so while the full correlator

diverges as ET → 0, the numerators should remain finite.
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The observation that color-kinematics does not always yield BCJ relations has also
been made in flat space. For example, color-kinematic duality for massive, flat space
amplitudes does not necessarily imply additional linear relations among the color-ordered
amplitudes [55, 56]. Instead, requiring that the BCJ relations hold — or that there are only
(n− 3)! linearly independent, color-ordered amplitudes at n-points — imposes constraints
on the masses of the particles. These constraints proved important in constructing valid
examples of massive double-copy. Similar observations about color-kinematics and BCJ
relations have also been made for ABJM [57, 58] and for amplitudes in the flat space
bi-adjoint theory with off-shell momenta [51].

Finally, it is straightforward to generalize our results to higher points. For example,
using the results of [35], we find that the five-point, color-dressed correlator is:

M sc(1, 2, 3, 4, 5) = −(iλ)3

ET

n
(5)
s c

(5)
s

s̃12s̃123

(
1 + ET

ET + ω−12 + ω−45

)
+ crossed channels , (2.24)

where for brevity we defined

ω±i1...im ≡
m∑
a=1

kia ±
∣∣∣∣∣
m∑
a=1

kia

∣∣∣∣∣ . (2.25)

These objects are related to Mandelstam variables by

ω+
i1...im

= s̃i1...im − si1...im
ET

,

ω−i1...im = ET si1...im
s̃i1...im − si1...im

.
(2.26)

In particular, si1...im = ω+
i1...im

ω−i1...im . Finally, n
(5)
s and c(5)

s are contractions of color struc-
tures which are defined explicitly in appendix A.

One can also see that the AdS expression has the correct pole structure in the flat
space limit:

M sc(1, 2, 3, 4, 5) flat space limit−−−−−−−−−→ −(iλ)3n
(5)
s c

(5)
s

s12s123
+ crossed channels . (2.27)

In appendix A, we give the expansion of the five-point, color-dressed correlator in
terms of the color-ordered correlators. Color-kinematics in the bi-adjoint theory is trivial
at all points and we find again that there is a square, non-degenerate matrix relating the
color-ordered AdS correlators and the numerators. That is, if we organize the correlators
and numerators into vectors, Aα and nβ , we have the linear relation,

Aα =
∑
β

Sαβnβ , (2.28)

where the matrix S is invertible. Therefore, the 5-point numerators can be written as a
linear combination of color-ordered correlators. In the flat space limit, detS → 0 and one
instead finds BCJ relations among the color-ordered, flat space amplitudes.
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2.2 Generalization to AdSd+1

In this section we will study the bi-adjoint theory in general dimensions. The immediate
difficulty one faces is that in generic dimensions, the exchange Witten diagrams for φ3

theory do not take a simple form, even for conformally coupled scalars. For example, in
AdS4 the exchange Witten diagrams already involve dilogarithms [35, 59, 60]. On the
other hand, in flat space the tree-level amplitudes take a simple form in all dimensions,
with poles corresponding to particle exchange. Therefore, for general AdSd+1, it may not
be clear how to identify the “numerators” which should obey the color-kinematic relations.

One remedy for this is to simply define a numerator ni as the overall coefficient of a tree-
level exchange diagram whose color-factors have been removed. If we consider conformally-
coupled, bi-adjoint scalars in AdS6, this gives the same definition of the numerators as
before, up to a factor of ET . Since we will not need the explicit form of the integrated
diagram, in this section we will let the boundary scalars have a generic conformal dimension.

The color-dressed correlator for bi-adjoint scalars is

M sc(1, 2, 3, 4) = nscsWs + ntctWt + nucuWu , (2.29)

where the s-channel exchange Witten diagram, with the color-factors removed, is:

Ws(ki) = (iλ)2
∫

dz1dz2
(z1z2)d+1K

sc
ν (k1, z1)Ksc

ν (k2, z1)

Gsc
ν (|k1 + k2|, z1, z2)Ksc

ν (k3, z2)Ksc
ν (k4, z2) . (2.30)

The t and u-channel diagrams are defined by the same permutations as before.
At this point we can repeat the analysis of the previous section with minor changes.

Everywhere we see a factor of (ET s̃)−1 we replace it with Ws(ki), and similarly for the
t and u-channel exchanges. Once again, we can use the color and kinematic relations to
rewrite the d-dimensional color-ordered correlators in terms of the numerators, and then
invert this relation. Suppressing the momentum arguments for compactness, we find:

ns = W−1
s

W−1
s +W−1

t +W−1
u

[
W−1
u Asc(1, 3, 2, 4) + (W−1

t +W−1
u )Asc(1, 2, 3, 4)

]
, (2.31)

and

nu = W−1
u

W−1
s +W−1

t +W−1
u

[
W−1
s Asc(1, 2, 3, 4) + (W−1

s +W−1
t )Asc(1, 3, 2, 4)

]
. (2.32)

Similarly, the BCJ relation in AdS becomes:

W−1
s Asc(1, 2, 3, 4) + (W−1

s +W−1
t )Asc(1, 3, 2, 4) = −nu

W−1
s +W−1

t +W−1
u

W−1
u

. (2.33)

In general dimensions, we do not have the explicit form of Ws,t,u in AdS momentum space,
although there do exist results in Mellin space [5, 6]. In our context, all we need is that
in the flat space limit each Witten diagram becomes a flat space exchange diagram, e.g.
W−1
s → s. We therefore see that the AdS BCJ relation has a non-zero right hand side

which vanishes in the flat space limit.
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Alternatively, we can define numerators by using the p integral representation of the
bulk-to-bulk propagator inside the Witten diagram,

Ws(ki) = −i
∫

dz1dz2
(z1z2)d+1

∞∫
0

dp2

2 Ksc
ν (k1, z1)Ksc

ν (k2, z1)

(z1z2)
d
2Jν(pz1)Jν(pz2)

(k1 + k2)2 + p2 − iε
Ksc
ν (k3, z2)Ksc

ν (k4, z2) . (2.34)

With this representation, we can use the flat space language and identify the numer-
ators ni as multiplying certain poles in the momenta. The only difference is that in AdS
we have a continuum of poles which depend on p. This reflects the well-known fact that in
CFTs the generator of time translations has a continuous spectrum [61]. For the bi-adjoint
theory, the introduction of an integrand is not necessary since by definition the kinematic
factors are independent of p. However, this representation will be useful once we turn to
Yang-Mills in general dimensions.

3 Yang-Mills theory

In this section we will study color-kinematics for Yang-Mills in AdS. The study of Yang-
Mills in AdS4 will mirror exactly the analysis of the bi-adjoint scalar theory in AdS6. In
both cases the theories are conformal at tree-level, and the correlators take similar forms.
Then we will study Yang-Mills in general AdSd+1 and propose how color-kinematics is
manifested at the integrand level.

Throughout this section, we will take the axial gauge, Az = 0. With this choice, the
propagators are [28, 62]:

GYM
µν (k, z1, z2) = −i

∞∫
0

dp2

2 (z1z2)
d−2

2 J d−2
2

(pz1) Tµν(k, p)
k2 + p2 − iε

J d−2
2

(pz2) , (3.1)

and
KYM(k, z) = −i

Γ(d/2)2d/2−1 (kz)d/2−1K d−2
2

(kz) , (3.2)

where the tensor Tµν(k, p) = ηµν+ kµkν
p2 . Technically, the bulk-to-boundary propagator also

comes with the tensor structure Tµν(k,
√
−k2), but this simply projects onto polarization

vectors transverse to k. Throughout this section we assume the polarizations are transverse,
and therefore drop the projector.

The interaction terms in the axial gauge have the same momentum dependence as in
flat space:

V abc
µνρ(ki) = gfabc(ηµν(k1 − k2)ρ + ηνρ(k2 − k3)µ + ηρµ(k3 − k1)ν) ,

and

V abcd
µνρσ = −ig2

[
cs(ηµρηνσ − ηµσηνρ) + cu(ηµσηρν − ηµνηρσ) + ct(ηµνησρ − ηµρησν)

]
,

– 9 –



J
H
E
P
0
3
(
2
0
2
1
)
2
4
9

a, µ b, ν
k

z1 z2 = δabG
YM
µν (k, z1, z2)

b, ν

c, ρ

a, µ

k1

k2

k3
= z4V abc

µνρ(k1,k2,k3)

b, ν

a, µ

c, ρ

d, σ

= z4V abcd
µνρσ

Figure 3. Feynman rules for Yang-Mills theory in AdS.

where the color factors are defined as before. To keep expressions compact, we will define:

V abc
123 (k1,k2,k3) = εµ1

1 εµ2
2 εµ3

3 V abc
µ1µ2µ3(k1,k2,k3) , (3.3)

for the transverse polarization vectors εµii , and similarly for the quartic interaction. We
also raise and lower the µ, ν indices using the flat space metric ηµν . To take into account
that we are studying a theory in the Poincaré patch, we also need a factor of z4 for each
interaction vertex. We summarize the Feynman rules in figure 3.

3.1 Test case: AdS4

As we mentioned above, the advantage of studying Yang-Mills in AdS4 is that the theory
is conformal at tree-level. For example, the s-channel exchange diagram in figure 4 has
been computed in both AdS [32, 33] and dS [42] and takes the following simple form:5

WYM
s (ki) = −ig

2cs
s̃ET

V 12µ(k1,k2,−k1 − k2)(
ηµν + (|k1 + k2|+ ET )(k1 + k2)µ(k1 + k2)ν

(|k1 + k2|)(k1 + k2)(k3 + k4)

)
V 34ν(k3,k4,k1 + k2) , (3.4)

and the other exchange diagrams are found by permutation. The contact diagram is even
simpler and is given by the flat space vertex times the total energy pole:

WYM
cont(ki) =V abcd

1234
ET

. (3.5)

5We note that W denotes the full Witten diagram of Yang-Mills, whereas W in section 2.2 denotes the
Witten diagram of the bi-adjoint scalar with its color factor and numerator removed.
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b, ν

a, µ

c, ρ

d, σ

k1 + k2k1

k2 k3

k4

Figure 4. Four point exchange Witten diagram for Yang-Mills theory.

Next, we want to rearrange the full color-dressed, Yang-Mills result into the form

MYM(1, 2, 3, 4) = −ig
2

ET

(
csns
s̃

+ ctnt
t̃

+ cunu
ũ

)
. (3.6)

In order to do this, we follow the flat space prescription and split the contact diagram into
three pieces, corresponding to the color structures ci. For example, the s-channel piece of
the contact diagram is

WYM
cont,s(ki) = − ig

2

ET
cs(ε13ε24 − ε14ε23) , (3.7)

where we defined

εij ≡ εi · εj . (3.8)

Then to bring this term into the form (3.6) we multiply WYM
cont,s by s̃/s̃, and similarly for

the t and u-channel pieces of the contact diagram. With these manipulations, we can bring
the AdS correlator into the standard form (3.6), for which ns reads

ns = 4 (k1 · ε2 (ε13k3 · ε4 − ε14k4 · ε3)− 1↔ 2)
− [4ε12 (k1 · ε3k3 · ε4 − 3↔ 4) + (1 4 2 3 1)]

− ε12ε34(k̂1 − k̂2) · (k̂4 − k̂3) + s̃(ε13ε24 − ε14ε23)

+ ET ε12ε34
(k1 − k2) (k4 − k3)

|k1 + k2|
. (3.9)

The term proportional to s̃ comes from the quartic interaction. As a reminder, the k̂ are
the null flat space momenta, which we have used to make the expression more compact. In
this form the AdS correlator does not obey the color-kinematic relations. One can check
that ns + nt + nu 6= 0 but that we have ns + nt + nu → 0 in the flat space limit. The fact
we have color-kinematics in this limit follows from the fact that the individual Witten
diagrams have the correct flat space limit. Since color-kinematics holds automatically for
flat space, four-point, Yang-Mills amplitudes, the corresponding AdS numerators must also
obey color-kinematics in the limit ET → 0.
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However, the AdS numerators are not unique and it is possible to define a new set of
numerators related by a generalized gauge transformation:6

n′s = ns − s̃Ω , (3.10a)
n′t = nt − t̃Ω , (3.10b)
n′u = nu − ũΩ . (3.10c)

With these new numerators, the full correlator is unchanged:

csn
′
s

s̃
+ ctn

′
t

t̃
+ cun

′
u

ũ
= csns

s̃
+ ctnt

t̃
+ cunu

ũ
, (3.11)

where we used the color Jacobi identity cs + ct + cu = 0. Therefore, if we choose:

Ω = ns + nt + nu
s̃+ t̃+ ũ

, (3.12)

the new numerators n′s automatically satisfy color-kinematic duality. Here we see that our
freedom in choosing a generalized gauge transformation such that the duality holds relies
on having s̃ + t̃ + ũ 6= 0. A similar observation at four-points was also seen for massive,
flat space amplitudes [56] and was made independently in [50].

With this generalized gauge transformation, we can now repeat exactly the analysis we
did for the conformal bi-adjoint scalar in AdS6. By imposing both the color and kinematic
identities, cs + ct + cu = 0 and n′s + n′t + n′u = 0, we can express the numerators in terms
of the color-ordered, Yang-Mills correlators:7

n′s = iET
g2

s̃

s̃+ t̃+ ũ

(
ũAYM(1, 3, 2, 4) + (t̃+ ũ)AYM(1, 2, 3, 4)

)
, (3.13)

n′u = − iET
g2

ũ

s̃+ t̃+ ũ

(
s̃AYM(1, 2, 3, 4) + (s̃+ t̃)AYM(1, 3, 2, 4)

)
. (3.14)

The only difference in comparison to the bi-adjoint scalar is that we had to shift the
numerators in order for color-kinematics to hold.

3.2 Generalization to AdSd+1

In this section we will study Yang-Mills in AdSd+1. As with the bi-adjoint scalar, we
face the problem that the gauge theory Witten diagrams are not known in closed form
for general dimensions. For the bi-adjoint scalar, one solution was to simply express the
full correlator as a sum of exchange diagrams. In the study of Yang-Mills in AdS, we face
the additional challenge of the contact interaction, which we need to re-express such that
it looks like a sum of exchange diagrams. Without a closed form expression in general
dimensions, we can not simply multiply by s̃/s̃ to rewrite the contact diagram in this way.

Our resolution for this problem is to study the AdS Witten diagrams under the p and z
integrals. We then want to understand color-kinematics at the level of the AdS integrand,
which looks similar in structure to a flat space amplitude.

6The same transformation was found in [50].
7One can also check that the AdS color-ordered correlators satisfy the same U(1) decoupling identity as

their flat space counterparts.
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For example, using the explicit form of the cubic vertices, we find the exchange
diagram is:

WYM
exch,s(ki) = −g2cs

∫
dz1dz2

(z1z2)d−3 t
µν
s GYM

µν (k1 + k2, z1, z2)Φs, (3.15)

where tµν is a product of three-point vertices,

tµνs = (ε34(k4 − k3)ν − 2ε3 · k4ε
ν
4 + 2ε4 · k3ε

ν
3)

(ε12(k1 − k2)µ + 2ε1 · k2ε
µ
2 − 2ε2 · k1ε

µ
1 ) , (3.16)

and Φs is the product of s-channel bulk-to-boundary propagators,

Φs = KYM(k1, z1)KYM(k2, z1)KYM(k3, z2)KYM(k4, z2). (3.17)

In analogy to flat space, these can be thought of as our external wavefunctions.
One difference in comparison to flat space is that our bulk-to-bulk propagator

GYM
µν (k, z1, z2) is not proportional to the metric ηµν . Instead, we have extra factors which

comes from our choice of axial gauge. The expression for the Witten diagram is simplest
if we use the p integral representation of the propagator:

WYM
exch,s(ki) = ig2cs

∫
dz1dz2

(z1z2)
d−4

2

∞∫
0

dp2

2 tµνs Tµν(k1+k2,p)
J d−2

2
(pz1)J d−2

2
(pz2)

(k1+k2)2+p2−iε
Φs . (3.18)

The way to interpret this expression, when making the analogy with flat space, is that
the term

ĜYM
p (|k1 + k2|, z1, z2) =

J d−2
2

(pz1)J d−2
2

(pz2)
(k1 + k2)2 + p2 − iε

, (3.19)

is the scalar piece of our propagator. Heuristically, we can think of p as the radial momen-
tum, although it only becomes a true component of the momentum in the flat space limit.

For the s-channel piece of the contact diagram, we only have z-integrals:

WYM
cont,s(ki) = −ig2cs

∫
dz

zd−3 (ε13ε24 − ε14ε23)Φs . (3.20)

To make this look like an exchange diagram, we introduce p-integrals via the following
identity:

∞∫
0

dp2

2 Jν(pz1)Jν(pz2) = δ(z1 − z2)
z1

. (3.21)

The same identity was used in [28] to prove the validity of the BCFW recursion relations
in AdS. We then find

WYM
cont,s(ki) = −ig2cs

∫
dz1dz2

(z1z2)
d−4

2
(ε13ε24 − ε14ε23)

∞∫
0

dp2

2 J d−2
2

(pz1)J d−2
2

(pz2)Φs . (3.22)
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It is now clear how to rewrite the contact diagram such that it looks like an exchange
diagram, we multiply by (k1+k2)2+p2

(k1+k2)2+p2 under the integral. We now have the full s-channel
piece of the color-dressed correlator:

MYM
s = −ig2

∫
dz1dz2

(z1z2)
d−4

2

∞∫
0

dp2

2 csnsĜ
YM
p (|k1 + k2|, z1, z2)Φs , (3.23)

where the s-channel numerator is,

ns = (ε13ε24 − ε14ε23)((k1 + k2)2 + p2) + tµνs Tµν(k1 + k2, p) . (3.24)

Finally, the color-dressed correlator is the sum over the three-channels:

MYM(1, 2, 3, 4) = MYM
s +MYM

t +MYM
u . (3.25)

In order to bring all the numerators under one integral, one can switch to the position-
space representation for the propagator and add plane-wave factors to the external wave-
functions Φs,t,u. Then the full, color-dressed correlator is:

MYM(1, 2, 3, 4) = −ig2
∫
ddx1d

dx2

∫
dz1dz2

(z1z2)
d−4

2

∞∫
0

dp2

2 ĜYM
p (x1, z1;x2, z2)

(
csnsΦ̂s + ctntΦ̂t + cunuΦ̂u

)
,

(3.26)

where the new external wavefunctions are defined as:

Φ̂s = ei(x1·(k1+k2)+x2·(k3+k4))Φs . (3.27)

While this representation nicely groups different terms together, we will find it convenient
to work with the momentum space representation for the propagators. In general, one can
also consider external wavefunctions which do not have translation invariance in the d flat
directions, in which case the x-integral representation is more useful.

Now we want to find a generalized gauge transformation such that the numerators
obey color-kinematics duality, but the full correlator is left invariant. To do this, we define
the following “scalar” exchange diagram for the s-channel,

Rs(ki, p) = −ig2
∫

dz1dz2

(z1z2)
d−4

2
Ĝp(|k1 + k2|, z1, z2)Φs , (3.28)

and similarly for the t and u-channels. If we define the shifted numerators as:

n′s = ns −R−1
s (ki, p)Ω(ki, p) , (3.29a)

n′t = nt −R−1
t (ki, p)Ω(ki, p) , (3.29b)

n′u = nu −R−1
u (ki, p)Ω(ki, p) , (3.29c)

then Ms shifts as:

MYM
s →MYM

s + cs

∞∫
0

dp2

2 Ω(ki, p) . (3.30)
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Therefore, as long as
∫∞

0
dp2

2 Ω(ki, p) is finite, the color Jacobi identity guarantees this
redefinition leaves the full correlator invariant. We find that the shifted numerators n′i
satisfy color-kinematics duality if we set:

Ω(ki, p) = ns + nt + nu

R−1
s (ki, p) +R−1

t (ki, p) +R−1
u (ki, p)

. (3.31)

As an example, in AdS4 we have:

Rs(ki, p) = − 2ip
π ((k1 + k2)2 + p2)

1
((k1 + k2)2 + p2) ((k3 + k4)2 + p2) , (3.32)

and one can check that
∫∞

0
dp2

2 Ω(ki, p) is finite.
We should emphasize, unlike in our previous analysis for Yang-Mills in AdS4 or the bi-

adjoint scalar in AdSd+1, here the color-kinematic numerators are functions of both p and
k. Therefore, we cannot directly express the numerators in terms of the integrated, color-
ordered correlators. It would be interesting if there is another formulation of AdS color-
kinematics where such relations hold in general d. It would also naturally be interesting
to find a representation, e.g., in Mellin or position space, where the numerators are not
directly expressible in terms of the AdS color-ordered correlators, and instead there are
new BCJ-like relations for AdS correlators.

4 Color KLT and double copy

In this section we will study simple examples of the KLT and double-copy relations in AdS.
The simplest double-copy and KLT relations roughly state that YM=YM ⊗ bi-adjoint.
More precisely, the color-dressed Yang-Mills correlator can be expressed as a product of
color-ordered Yang-Mills and bi-adjoint correlators [51, 63].8 We then discuss double-copy
for gravity at 3- and 4-points.

To start, we can consider Yang-Mills in AdS4, where the color-dressed correlator has
the form:

MYM(1, 2, 3, 4) = −ig
2

ET

(
csns
s̃

+ ctnt
t̃

+ cunu
ũ

)
. (4.1)

This is a simple example of double-copy because we can think of ci as the numerators
for the bi-adjoint theory and ni are of course the numerators of the Yang-Mills theory.
Assuming color-kinematics holds for the Yang-Mills numerators, we can directly express
them in terms of the color-ordered Yang-Mills correlators. Similarly, we can also express
the color-factors ci in terms of the color-ordered, bi-adjoint correlators. To find a KLT
relation, we then write each of the numerators in terms of the corresponding color-ordered
correlators.

There are two important differences in comparison to the flat space, color KLT rela-
tions. The first is that here the AdS KLT matrix has rank two. This is expected because
in AdS we have two linearly independent color-ordered correlators at four-points, while in
flat space we only have one independent amplitude. The second is that we have an extra

8For an example of KLT in cosmology, see [64].
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degree of freedom: when writing the color factors ci in terms of the bi-adjoint correlators,
we are free to choose the spacetime dimension d. In flat space we have a similar freedom,
but there the scalar amplitudes look the same in all dimensions, while in AdS the form can
change dramatically. For example, while we take the Yang-Mills theory to live in AdS4, we
are free to express ci in terms of the conformally-coupled, bi-adjoint scalar theory in AdS6.
With this choice the color KLT relation takes the form:

MYM(1, 2, 3, 4) =
(
A(d)
sc (1, 2, 3, 4), A(d)

sc (1, 3, 2, 4)
)T
·K(d,3)

·
(
A

(d=3)
YM (1, 2, 3, 4), A(d=3)

YM (1, 3, 2, 4)
)
. (4.2)

Here the superscripts in K(d1,d2) give us the dimension of the AdSdi+1 spacetime in which
the bi-adjoint scalar and the Yang-Mills theory live, respectively.9 The AdS KLT matrix
becomes singular in the flat space limit, reflecting the additional linear relations for flat
space amplitudes. Here we restricted Yang-Mills to AdS4, so that its integrated correlator
took a simple form, but it would be interesting to extend this discussion to integrated
correlators in general dimensions.

Next, we will study how double-copy may work at the integrand level for general
dimensions and for gravity. Below, we reproduce the s-channel piece of the AdS Yang-
Mills integrand:

MYM
s = −i

∫
dz1dz2

(z1z2)
d−4

2

∞∫
0

dp2

2 csnsĜ
YM
p (|k1 + k2|, z1, z2)Φs . (4.3)

Given this expression, we can double-copy down to the bi-adjoint scalar by taking ns and
replacing it with a SU(N) color factor c′s. This yields an exchange Witten diagram for a
scalar in AdSd+3 dual to a boundary scalar of dimension ∆ = d:

M sc
∆=d,s

∣∣∣∣
d′=d+2

= −i
∫

dz1dz2

(z1z2)
d−4

2

∞∫
0

dp2

2 csc
′
sĜ

YM
p (|k1 + k2|, z1, z2)Φs . (4.4)

The shift d→ d+ 2 and the identification ∆ = d follows from matching this expression with
the integrand for a scalar exchange diagram in AdS. Specifically, to find the dimension of
the AdS spacetime and the conformal dimension of the scalar, we match the arguments of
the Bessel functions and the overall powers of z. As a consistency check, if we set d = 3
we find a scalar of dimension ∆ = 3 in AdS6, i.e. the conformally-coupled scalar. By
comparing eq. (2.12) and eq. (4.1), we see explicitly that making the replacement ns → c′s
for the AdS4 Yang-Mills correlator gives the AdS6 bi-adjoint scalar correlator, up to overall
factors such as the couplings.

9For d1 = 5 and d2 = 3, we have

K(5,3) = E2
T

t̃(s̃ + t̃ + ũ)2

(
s̃(t̃ + ũ)(2s̃ũ + t̃(t̃ + ũ)) s̃ũ(2s̃ + 3t̃)(t̃ + ũ)
s̃ũ(s̃(t̃ + 2ũ) + 2t̃(t̃ + ũ)) ũ

(
ũ(2s̃ + t̃)(s̃ + t̃) + s̃t̃ũ + t̃(s̃ + t̃)2)) .
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It is tempting to conjecture that if we replace cs in the Yang-Mills integrand with ns
we get the s-channel contribution to graviton four-point scattering in AdSd−1:10,11

MGR
s

∣∣∣∣
d′=d−2

?= −i
∫

dz1dz2

(z1z2)
d−4

2

∞∫
0

dp2

2 n2
sĜ

YM
p (|k1 + k2|, z1, z2)Φs . (4.5)

The shift from d→ d− 2 is once again found by comparing the z dependence of the resulting
expression to that of the graviton propagators, which we will give explicitly in a moment.
Here we assume that the AdS theory is given by Einstein gravity.

Unfortunately (4.5) is inconsistent with the AdS cutting rules [31].12 The fact double-
copy in AdS will have to be more complicated than a simple squaring may not be surprising.
We have already seen that at tree-level the AdS gauge-boson exchange diagram is more
complex than the corresponding flat space one and there is a similar increase in complexity
for graviton diagrams [30, 34, 42]. Furthermore, in flat-space squaring color-kinematic
numerators is motivated by the fact the resulting amplitude obeys the graviton Ward
identities [3]. Ward identities in AdS/CFT are more complicated, owing to contact terms
in the CFT correlators, and it would be interesting to understand what relations have to
be imposed on gauge-theory numerators such that the double-copied correlator obeys the
graviton, or stress-tensor, Ward identities.

With these caveats in mind, one motivation to study AdS double-copy comes from
relations between gauge and graviton scattering at three-points. The three-point correlator
for Yang-Mills in AdSd+1 is

MYM
3 = gfabc

∫
dz

zd+1 z
4 (ε1 · (k2 − k3)ε2 · ε3 + cyclic)

3∏
i=1

KYM(ki, z) , (4.6)

while the three-point correlator for Einstein gravity in AdSd+1 is [28, 29, 34]

MGR
3 =

√
GN

∫
dz

zd+1 z
8
(
− 2ε1 · k2ε2 · k3ε1 · ε3ε2 · ε3

+ ε1 · k2ε1 · k3(ε2 · ε3)2 + perms
) 3∏
i=1

KGR(ki, z) . (4.7)

Here we wrote the graviton polarization tensor as a product of null polarization vectors,
εµν = εµεν . We also need the graviton bulk-to-boundary propagator:

KGR(k, z) = −i
2d/2Γ(d/2 + 1)

kd/2zd/2−2Kd/2(kz) . (4.8)

As with the Yang-Mills bulk-to-boundary propagator, we have dropped an overall tensor
structure which projects out polarizations along the momenta k.

10Recall that to compare the graviton amplitude with the double-copied Yang-Mills amplitude, we also
need to write its contact term so that it looks like the sum of three exchanges.

11In comparison to [50], here we perform the squaring under the p and z integral, i.e. directly for the
integrand.

12We thank Daniel Baumann for bringing this to our attention.
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Then, if we define the three-point numerator to be

n3-pt = ε1 · (k2 − k3)ε2 · ε3 + cyclic , (4.9)

we find

MGR
3

∣∣∣∣
d′=d−2

∝
∫

dz

zd+1 z
4n2

3-pt

3∏
i=1

KYM(ki, z) . (4.10)

In other words, squaring the three-point numerator for Yang-Mills in AdSd+1 yields the
three-point correlator for Einstein gravity in AdSd−1, up to some overall convention de-
pendent factors. Alternatively, one can square the numerator and modify by hand the
z-dependence so that the double-copied correlator also comes from gravity in AdSd+1.

5 Conclusion

In this work we explored the viability of color-kinematics and double-copy in AdS momen-
tum space. We found that color-kinematics for AdS four-point functions appears trivial, one
can always perform a generalized gauge transformation such that the duality is valid. We
also found that it is possible to express the numerators directly in terms of the color-ordered
correlators and that the BCJ relations are modified by an extra term which vanishes in the
flat space limit. We used the relation between the numerators and integrated correlators
to find the AdS color KLT relation and discuss how double-copy in AdS may work at the
integrand level.

There is clearly more work that needs to be done on this subject. In this note we
focused on AdS momentum space because it has a natural connection to the wave function
of the universe in cosmological spacetimes. There has also been recent beautiful work
on the relation between momentum space correlators in AdS and dS and a new set of
cosmological polytopes [54, 65–68]. For color-kinematics however, it could turn out that
another representation is more useful, including twistor formulations [69–73], spinor-helicity
in stereographic coordinates [24, 25, 74], Mellin space [5], or of course position space.
Recent work on the scattering equation formalism [52, 75, 76] generalized to AdS [77, 78]
will also prove invaluable in studying color-kinematics and double-copy in AdS. Based on
related results for massive scattering amplitudes [56], we expect it is important to find
a representation of AdS/CFT correlators such that color-kinematics, plus some possible
assumptions on the spectrum, implies additional relations for the color-ordered correlators.

In flat space, color-kinematic duality and the double-copy relations extend to theories
other than gauge or gravity theories. For instance, the nonlinear sigma model has been
studied in [79, 80]. Also, it was shown that the Lagrangian of the nonlinear sigma model
exhibits a manifest duality between color and kinematics [81]. It would be interesting to
study these theories in AdS and see if color-kinematics can be understood at the Lagrangian
level. Finally, there has been progress in computing loop level AdS correlators through bulk
and boundary unitarity methods [31, 82–87].13 In flat space, generalized unitarity and
double-copy relations can be systematically used to study higher-loop graviton amplitudes

13See also [88, 89] for related developments in dS.
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and reveal new ultraviolet cancellations [90]. Loop computations in AdS is in its infancy
in comparison to its flat space counterpart and it is conceivable that color-kinematics and
double-copy could present a new way to study AdS loops.
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A Bi-adjoint, five point correlators

Here we will study the five-point color-dressed correlator for the conformally coupled, bi-
adjoint scalar in AdS6.14 The color-dressed correlator can be written as a sum over 15
exchange diagrams:

M(1, 2, 3, 4, 5) = c12345n12345W12345 + crossed-channels , (A.1)

where the color factors are defined as

cijk`m ≡ f ijαfαkβfβ`m . (A.2)

The nijk`m are defined in the same way, but for the second SU(N) global symmetry. Wijk`m

is the Witten diagram in the corresponding channel with the color and kinematic factors
removed. We follow the same ordering as in figure 2. The explicit expression for the
five-point Witten diagram is

W12345 = −(iλ)3

ET

1
s̃12s̃123

(
1 + ET

ET + ω−12 + ω−45

)
, (A.3)

where ω± are defined in eq. (2.25).
For completeness, the 15 diagrams are given by:

{W12345,W12435,W12534,W13245,W23145,

W32415,W32514,W42315,W42531,W43125,

W43215,W52341,W52431,W53142,W53241} .

14In this section we will drop the “sc” superscript as we will only study the five-point function for the
bi-adjoint scalar.
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There are nine independent Jacobi identities among the color factors:

0 =c12435 − c53142 + c53241 ,

0 =c13245 − c42531 + c52431 ,

0 =c43125 − c52341 + c52431 ,

0 =c42315 + c42531 − c53142 ,

0 =c32514 + c52341 − c53241 ,

0 =c32415 + c42531 + c43215 − c53142 ,

0 =c12534 − c43215 + c52341 − c52431 ,

0 =c23145 − c42531 − c43215 + c52341 + c53142 − c53241 ,

0 =c12345 + c43215 − c52341 + c52431 − c53142 + c53241 .

(A.4)

By using these identities, we can rewrite eq. (A.1) in terms of 6 color-ordered correlators:

M(1, 2, 3, 4, 5) = c12435A(1, 2, 4, 3, 5) + c12534A(1, 2, 5, 3, 4)
+ c32514A(3, 2, 5, 1, 4) + c42531A(4, 2, 5, 3, 1)
+ c43125A(4, 3, 1, 2, 5) + c52431A(5, 2, 4, 3, 1) ,

(A.5)

where we made an arbitrary choice for the independent set of color factors. The color-
ordered correlators can then be expressed in terms of the numerators nijk`m. For example,
we have:

A(1, 2, 4, 3, 5) = n12345W12345 + n12435W12435 − n23145W23145 + n32415W32415

+ n42315W42315 + n53142W53142 . (A.6)

Similar relations can be found for the other 5 color-ordered correlators by comparing
eq. (A.1) and eq. (A.5), or equivalently by using the color-ordered Feynman rules [3]. Using
that the numerators nijk`m also obey the Jacobi relations, we can relate the 6 independent,
color-ordered correlators to 6 independent numerators. If we organize the numerators and
color-ordered correlators into vectors,

A ≡ (A(1, 2, 4, 3, 5), A(1, 2, 5, 3, 4), A(3, 2, 5, 1, 4),
A(4, 2, 5, 3, 1), A(4, 3, 1, 2, 5), A(5, 2, 4, 3, 1))

(A.7)

and
n ≡

(
n12435 n12534 n32514 n42531 n43125 n52431

)
(A.8)

Then the color-dressed correlator can be written as

M(1, 2, 3, 4, 5) = Aαcα = Sαβcαnβ (A.9)

for some matrix Sαβ . In flat space, the corresponding matrix is degenerate due to the flat
space BCJ relations. In AdS, Sαβ instead is a full-rank matrix, which can be checked using
the explicit form of the five-point Witten diagram. We then find,

n = S−1 ·A . (A.10)

This is the generalization of eq. (3.13) to 5-point amplitudes.
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The explicit expression for Sαβ reads as

S1β =



W12345 +W12435 +W23145 +W32415 +W42315 +W53142
−W12345 −W23145 −W32415
W32415 +W42315 +W53142
−W23145 −W32415 −W42315

W42315 +W53142
W23145 +W32415 +W42315 +W53142



S2β =



−W12345 −W23145 −W32415
W12345 +W12534 +W23145 +W32415 +W43215

−W32415
W23145 +W32415

W43215
−W23145 −W32415



S3β =



W32415 +W42315 +W53142
−W32415

W32415 +W32514 +W42315 +W53142 +W53241
−W32415 −W42315

W42315 +W53142 +W53241
W32415 +W42315 +W53142 +W53241



S4β =



−W23145 −W32415 −W42315
W23145 +W32415
−W32415 −W42315

W13245 +W23145 +W32415 +W42315 +W42531
−W42315

−W13245 −W23145 −W32415 −W42315



S5β =



W42315 +W53142
W43215

W42315 +W53142 +W53241
−W42315

W42315 +W43125 +W43215 +W52341 +W53142 +W53241
W42315 +W52341 +W53142 +W53241



S6β =



W23145 +W32415 +W42315 +W53142
−W23145 −W32415

W32415 +W42315 +W53142 +W53241
−W13245 −W23145 −W32415 −W42315
W42315 +W52341 +W53142 +W53241(

W13245 +W23145 +W32415 +W42315 +W52341
+W52431 +W53142 +W53241

)



(A.11)
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