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Moreover, we find that their face polynomials obey a remarkable combinatorial pattern.
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1 Introduction

Algebraic Nahm equations1 govern the q → 1 limit of the q-hypergeometric Nahm sums,

which arise in various fields: conformal field theory [1], quiver representation theory [2–4],

hyperbolic geometry and ideal triangulations of 3-manifolds [5, 6], knots-quivers correspon-

dence [7–11] and topological strings [9, 10, 12]. In the realm of quivers, the Nahm sums

incarnate as the motivic Donaldson-Thomas (DT) generating series [2–4, 13, 14]:

PC(x1, . . . , xm) =
∑

(d1,...,dm)≥0

(−q1/2)
∑m
i,j=1 Cijdidj

(q; q)d1 · · · (q; q)dm
xd11 · · ·x

dm
m , (1.1)

where C is symmetric matrix with integer entries, q ∈ C and xi are formal variables which

commute with each other, and (a; q)n :=
∏n−1
k=0(1 − aqk) is the q-Pochhammer symbol. If

Ci,j are non-negative, the matrix C is the adjacency matrix for some symmetric quiver.

Otherwise we can apply the framing transformation C 7→ C + [f ], where [f ] is a matrix

with all values equal to f ∈ Z, in order to get rid of the negative entries. It transforms

the quiver series (1.1) in a simple way [15]. For a curious reader, we sketch the derivation

1Not to be confused with Nahm equations in gauge theory and differential geometry.
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of (1.1) from the quiver representation theory in section 2. The crucial property of (1.1) is

the following factorization2 [2, 4, 12, 14]:

PC(x1, . . . , xm) =
∏

(d1,...,dm) 6=0

∏
j∈Z

∏
k≥0

(1− qk+(j−1)/2xd11 . . . xdmm )Ωd1,...,dm;j (1.2)

The exponents Ωd1,...,dm;j are called the motivic DT invariants (or refined BPS invariants in

physics), and were shown to be integers in [14]. Consider the Laurent expansion at q → 1

of the saddle point approximation to the logarithm of (1.1):

logPc(x1, . . . , xm)|q=e~→1 =
1

~
S0 + S1 + ~S2 +O(~2), (1.3)

where Si = Si(x1, . . . , xm, z1 . . . , zm) and zi := qdi , i = 1 . . .m. The (algebraic) Nahm

equations arise from the critical points of the leading term (superpotential) in (1.3): ∂S0
∂zi

= 0

implies

Fi := zi − 1 + (−1)Ci,ixi

m∏
j=1

z
Ci,j
j = 0, i = 1 . . .m (1.4)

(see [12, 15] for the details). We add one extra equation:

F0 := y − z1 . . . zm = 0, (1.5)

in order to introduce the quiver resultant A(x1, . . . , xm, y) := resz1,...,zm(F0, F1, . . . , Fm). It

is a unique (up to a sign) irreducible polynomial in the coefficients of (1.4), which vanishes

whenever F0, F1, . . . , Fm have a common root with respect to zi, i = 1 . . .m. We will utilize

a slightly refined version of the quiver resultant starting from section 4, which is useful for

our combinatorial study.

Recall that the quiver A-polynomial is a two-variable specialization of the quiver re-

sultant:

A(x, y) = A(λ1x, . . . , λmx, y), λi ∈ C \ {0} (1.6)

It has been introduced in [11] and further studied in [8] and [15]. Ultimately, it is a

polynomial invariant of symmetric quivers. Under a suitable choice of the quiver matrix C

and parameters λi, it can be related to augmentation variety or geometric A-polynomial

for a knot [8]. Also, from the mirror symmetry perspective, quiver A-polynomials may

serve as the mirror curves (B-model) for some Calabi-Yau 3-folds (A-model). The case of

strip geometries was studied in [12], whereas the relation to Ooguri-Vafa large N duality

in [9] and [10].

Our object of interest is the Newton polygon N(A), that is, the convex hull of all

monomials of A(x, y). We conjecture that A(x, y) is tempered, i.e. all its face polynomials

have roots only on the unit circle, for any symmetric quiver. By a face polynomial we simply

mean the sum all monomials in A(x, y), which lie on a particular face of N(A). This is

called the K-theoretic condition, because of an elegant interpretation in terms of the group

2This formula is the cornerstone in [2], which led to the mathematical theory of BPS invariants in 3d

N = 2 theories, using quivers and their representations.
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K2 for a compact Riemann surface (in our case it is given by A(x, y) = 0) [16–18]. It turns

out that this condition relates to quantization, modularity and integrality properties for

A(x, y). It is confirmed true for all knot A-polynomials [19], but, to our knowledge, has

not been studied for quivers so far. In particular, it predicts the existence of a q-difference

operator (“quantum curve”, or non-commutative A-polynomial [18]) which annihilates the

associated partition function, and its q → 1 limit gives back A(x, y).

It is important to say a few words why we expect the conjecture to be true for all

symmetric quivers. From [9, 10, 15] we know that the quiver series (1.1) for any symmetric

matrix C with integer entries are annihilated by the quantized version of Nahm equations:

(1− ẑi)PC =

(−1)Ci,ixi

m∏
j=1

ẑ
Ci,j
j

PC (1.7)

where ẑi acts as follows: ẑixj = qδi,jxj (δi,j is the Kronecker delta). This can be re-written

in operator form:

Âi(x1, . . . , xm, ẑ1, . . . , ẑm)PC = 0, i = 1 . . .m (1.8)

It is therefore suggested that if we perform non-commutative elimination for the sys-

tem (1.8) with respect to ẑ1, . . . , ẑm, we get a single q-difference operator Â, which is

a non-commutative polynomial in x1 . . . , xm, ŷ:

Â(x1, . . . , xm, ŷ)PC = 0, ŷ := ẑ1 . . . ẑm (1.9)

Thus, the existence of a “quantum hypersurface” is expected for any symmetric quiver.3

The latter gives the quantum curve by setting xi = λix. However, it is not obvious at

all if the formally constructed quantum curve from [18] would agree with the eliminant Â

from (1.8).

On another hand, the physical point of view interprets quiver series as a partition

function of a (0-dimensional) quiver supersymmetric quantum mechanics [2, 3, 9, 10].

Such supersymmetric quantum mechanics may arise as an effective description of some

(4-dimensional) SUSY theory, which can be realized in brane systems. In this context,

DT invariants captured by the quiver generating series correspond to BPS invariants in

such a brane system. And if such BPS states can be encoded in a quiver generating series,

then it means that they can also be encoded in a quantum quiver A-polynomial (1.9),

which therefore must exist, and thus the classical A-polynomial must be quantizable. In

some cases we know explicit examples of such brane systems and effective descriptions in

terms o quivers (e.g. corresponding to systems of branes that encode knots [7–10], or for

strip geometries [12]). It is natural to expect that other (all possible) quivers also provide

effective description of some brane systems, and thus corresponding A-polynomials should

also be quantizable.

Our main result is that for a diagonal quiver with C = diag(α, α, . . . , α︸ ︷︷ ︸
m

), m ≥ 2, α ≥ 2,

A(x, y) is tempered (for the one-vertex quiver, the problem has been solved in [18]). More-

over, all its face polynomials factorize into binomials, forming a remarkable combinatorial

3Note that the explicit calculations are hard to perform — it has been achieved in fact only for a few

families of quivers in [15].

– 3 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
6

x

y

(x
1
x 2
y
−

1)
2

y(
x 1
y
+

1)
(x

2
y
+

1)

(y
−

1
)

x1
x2
y
3 (x1

x2
y + 1)

(τ
−

1)
2

(τ
+ 1)

(τ
−

1
)

(τ
+

1)
(τ

+
1)

Figure 1. Newton polygon N(A) and face polynomials for diag(2, 2) quiver.

pattern. This is the content of section 7, and Theorem 7.1 in particular. The beautiful

combinatorial pattern is given in Proposition 7.1. It involves permutations of rows and

columns of diagrams, representing the sub-resultants. One can think of it as a “cellular

automation” acting on the faces of the Newton polytope. To understand the mechanism

better (and also for a nicer presentation), we study the low-dimensional cases m = 2 and

m = 3 separately in sections 5 and 6. E.g., for diag(2, 2) there are four face polynomials:

τ + 1, τ − 1, (τ + 1)2 and (τ − 1)2, and all their roots are equal to ±1, as shown on figure 1.

The key point is that we don’t have to compute the resultant explicitly. Instead,

we use the machinery of initial forms [20, 21] and mixed polyhedral decompositions, de-

veloped in [20] and [22]. These guys generalize extremal A-polynomials from knot the-

ory [7, 8, 23, 24], and, under certain assumption, are in bijection with the faces of N(A).

As a consequence, we obtain the “extremalization” of quiver A-polynomials, provided by

a particular face of N(A).

Lastly, the two appendices A and B are devoted to experimantal confirmations and

computation of quiver resultants using Canny-Emiris matrix [25].

2 Quiver representations and motivic DT series

We begin with the origins of the motivic DT series (1.1) from the quiver representation

theory perspective [2, 4, 13, 26, 27].

Quiver is a directed finite graph Q = (Q0, Q1, h, t), where Q0, Q1 are the sets of vertices

and arrows, and h, t are the maps from Q1 to Q0, picking up a head or a tail vertex for a

given arrow. For example, if there are two vertices i, j connected by an arrow a from i to

j, we write ta = i, ha = j.

The term “quiver” is used instead of “graph”, since one also considers a quiver repre-

sentation: to every vertex i ∈ Q0 it associates a finite-dimensional vector space V (i) over

a field F (for example, one can take the field C of complex numbers), and to every arrow

a ∈ Q1 a linear map f : V (ta) → V (ha). Therefore, any representation is characterised

– 4 –
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by its dimension vector d = (d1, . . . , dm) ∈ Zm, di = dimV (i). Without loss of general-

ity, we take V (i) = F di , ∀i ∈ Q0. Also, we will write V (a) instead of f(a), abusing the

notation a bit.

We are not interested in particular representations, but rather in the representation

space of a fixed dimension vector d:

Repd(Q) :=
∏
a∈Q1

Matd(ha),d(ta), (2.1)

where Matm,n is the space of all m by n matrices (with entries in F ). Since any element

of Matd(ha),d(ta) is equal to V (a) for some V , each point of (2.1) defines a representation

of Q. Every representation V has its own group of automorphisms Aut(V ), defined as the

orbit of G :=
∏m
i=1 GLdi(F ). The group G acts on the points of (2.1) via conjugation:

(g)(V (a)) := (gjV (a)g−1
i )(a:i→j), ∀ a ∈ Q1, g ∈ G (2.2)

By definition, the orbits of G in Repd(Q) are precisely the isomorphism classes of quiver

representations of Q of dimension vector d (two representation are said to be isomorphic

if they are related by a change of bases of F di , i = 1 . . .m, which amounts to conjuga-

tion (2.2)).

Now that we have defined all basic notions, it’s time to count. Assume that our

representations are over a finite field Fq, where q = pr and p is prime. These are non-

negative integers modulo q, i.e. Fq = {0, 1, 2, . . . , q − 1} with modular multiplication. For

a fixed d, denote

sd =
∑

[V ], dimV=d

1

|Aut(V )|
, (2.3)

where the summation is over all isomorphism classes [V ] of representations with dimension

vector d, and |Aut(V )| is the size of the corresponding automorphism group. It is of course

also finite, since we are dealing with a finite field. Since V (i) = Fdiq , ∀i ∈ Q0, the total

number of representations of dimension vector d is q
∑
a∈Q1

didj = q
∑m
i,j=1 Cijdidj . On another

hand, the number of points in the orbit of V is |G|
|Aut(V )| . Therefore,

q
∑m
i,j=1 Cijdidj =

∑
[V ], dimV=d

|G|
|Aut(V )|

, (2.4)

which gives

sd =
q
∑m
i,j=1 Cijdidj∏m

i=1 |GLdi(Fq)|
, (2.5)

where C is the adjacency matrix of Q, and |GLn(Fq)| = (qn − 1)(qn − q) . . . (qn − qn−1) =

(−q)
n(n−1)

2 (q; q)n. The latter equality comes from counting of all admissible columns of an

element in GLn(Fq). The first row can anything but zero vector, hence the factor (qn− 1),

the second row can be anything but the multiple of the first one, hence (qn − q), and so

on. Finally, we assemble the generating series :∑
(d1,...,dm)≥0

sd x
d1
1 . . . xdmm (2.6)

– 5 –
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where xi are formal variables. It is easy to see that (2.6) coincides with (1.1) after trans-

formation xdii 7→ (−q)
di(di−1)

2 xdii . This can be achieved by introducing the quantum torus

variables [2, 3]. Therefore, the coefficients of PC can be interpreted as the Euler character-

istics of (the ordinary cohomology of) Repd(Q), bearing the name of motivic DT generating

series. If we take q to be an arbitrary complex number, sd would have poles at the unit

circle, due to the q-Pochhammer symbols in the denominator. Therefore, the perturbative

expansion of (2.6) at q = 1 will eventually lead to the Nahm equations (1.4).

3 Algebraic K-theory and tempered polynomials

Roughly speaking, the algebraic K-theory is about a study of the family of functors Kn :

Rings→ Abelian groups (it was invented to produce nice invariants of rings). K0,K1 and

K2 are classically known from the sixties. Higher K-groups, as well as those with the

negative index, were defined in the following decades. However, our main character is the

group K2(F ), where F is a field. The exposition here is mostly borrowed from Milnor’s

classical book [28]. We start with a rather informal definition:

K2(F ) := a group of non-trivial relations satisfied by elementary matrices of any size

with entries in F

(3.1)

Recall that elementary matrix is a matrix eλij ∈ GLn(F ), which differs from the identity

matrix of size n by a single element λ in the (i, j)-th position, i, j = 1 . . . n, or a matrix

obtained from such by elementary row operations. In other words, we can say that eλij
generate the subgroup of elementary matrices, sitting in GLn(F ). If eλij , e

µ
kl are elementary

matrices, their commutator is

[eλij , e
µ
kl] =


1; j 6= k, i 6= l

eλµil ; j = k, i 6= l

e−µλkj ; j 6= k, i = l

(3.2)

We can forget for a moment about matrices, and consider an abstract group generated by

the relations:
xλijx

µ
ij = xλ+µ

ij

[xλij , x
µ
jl] = xλµil ; i 6= l

[xλij , x
µ
kl] = 1; j 6= k, i 6= l

(3.3)

These relations define Steinberg group, denoted by St(n, F ) for n ≥ 3 (for n < 3 the

relations degenerate).

For each n ≥ 3 we have a homomorphism of groups:

ψ : St(n, F )→ GLn(F ), (3.4)

which associates an elementary matrix of size n to each element of St(n, F ): ψ(xλij) = eλij .

Now we can pass through the direct limit of a sequence of groups when n→∞, denoting

– 6 –
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it GL(F ), which is understood as follows:

GL1(F ) ⊂ GL2(F ) ⊂ GL3(F ) ⊂ . . . , (3.5)

and each GLn(F ) is injected into GLn+1(F ) by the map:

∗ 7→

(
∗ 0

0 1

)
, ∀∗ ∈ GLn(F ) (3.6)

Therefore, GL(F ) is determined by taking the union of all elements in the infinite se-

quence (3.5). Analogously, one can define St(F ). In what follows is the formal definition

of K2(F ):

K2(F ) := Kernel of the map ψ : St(F )→ GL(F ), (3.7)

where the kernel elements are mapped to an identity matrix in GL(F ). Let’s show this by

example: pick up a rotation by 90 degrees matrix, which is elementary:

e1
12e
−1
21 e

1
12 =

(
0 1

−1 0

)
(3.8)

and is decomposed as a product of the generators eλij . This matrix has period 4:

(e1
12e
−1
21 e

1
12)4 =

(
1 0

0 1

)
(3.9)

Therefore, the relation (3.9) is a non-trivial relation between elementary matrices, since

the identity matrix is of course also elementary. If we associate to the left hand side of (3.9)

the element in St, that is, the preimage of ψ, it will belong to the kernel of ψ, and thus

giving an element in K2(R):

(x1
12x
−1
21 x

1
12)4 ∈ kerψ, ψ

(
(x1

12x
−1
21 x

1
12)4

)
= (e1

12e
−1
21 e

1
12)4 (3.10)

since it evaluates as an identity matrix, which means that “the relation holds”. In general,

such identities are of the form:

eλ1i1j1e
λ2
i2j2

. . . eλrirjr = Id ←→ xλ1i1j1x
λ2
i2j2

. . . xλrirjr (3.11)

Following [17], we restrict ourselves to F = Q(C) — the field of rational functions on a

compact Riemann surface C. Choose a pair (x, y) of such functions. Since C is compact,

there is always a unique minimal irreducible polynomial P (x, y) defining it. For example,

if C is topologically a sphere, x = x(t), y = y(t) give a rational parametrization of P (x, y).

For higher genus, however, we would need more parameters, in order to make a proper

parametrization (see some examples in [16]).

Now take a pair of elementary matrices:

Dx =

x 0 0

0 x−1 0

0 0 1

 , D′y =

y 0 0

0 1 0

0 0 y−1

 , (3.12)

– 7 –
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and define

{x, y} := uvu−1v−1 (3.13)

with u = ψ−1(Dx), v = ψ−1(D′y). This bracket is called the universal symbol of (x, y).

The commutator is always identity matrix, therefore {x, y} ∈ K2(Q(C)). It turns out that

K2(F ) is generated by the symbols {x, y} ([28], Corollary 9.13 p. 78), and it holds exactly

when F is a field.

Now the K-theoretic condition for P (x, y) would be stated as follows ([17], also [16]

and [18] give slightly different at the first sight, but in fact equivalent formulations):

{x, y}N ∈ K2,∅ for some N ∈ N⇐⇒ P (x, y) is tempered (3.14)

where “tempered” means that the face polynomials of P (x, y) have roots only on the unit

circle (are products of cyclotomic polynomials), and K2,∅ is the set of “trivial” elements in

K2(Q(C)):

K2,∅ :=
⋂
w

kerλw ⊂ K2(Q(C)), (3.15)

where w ∈ C, and λw : K2 → C∗ corresponds to the tame symbol:

(x, y)w := (−1)w(x)w(y)x
w(y)

yw(x)

∣∣∣∣
w

(3.16)

Here the point w ∈ C induces a functional w( ) on Q(C), called the valuation. Such that

w(x(t)) or w(y(t)) equals to the degree of a leading term of x(t) (or y(t)) around t = w,

where x(t), y(t) are the Puiseax parametrizations of a local branch.

Remark. As the reader may notice, the tame symbol is a map F ∗ × F ∗ → C∗, where

F ∗ := F \ {0, 1}. Where does then λw come from? In fact, every symbol on F , that is,

a map

F ∗ × F ∗ → A, (3.17)

where A is any abelian group, gives rise to a unique homomorphism K2(F ) → A. This is

the content of the theorem by Matsumoto [17], which states that K2(F ) is the universal

target of all symbols on F . So in the case of the tame symbol, we simply denote this

homomorphism by λw. Its kernel consists of all elements in K2(F ), which are mapped to

1 ∈ C∗. Rephrasing, we require that all tame symbols for any w ∈ C are roots of unity.

It turns out that this criterion has many exciting implications: relation to modular

forms and special values of Zeta function [17], Chern-Simons geometric quantization [18],

knot theory [19], modularity properties of the Mahler measure [16, 17], etc. The proof

of (3.14) is due to the fact that for each slope p
q of N(P ), there is a valuation v such

that p
q = −v(x)

v(y) . Moreover, the value of the tame symbol (x, y)v equals to the root of the

corresponding face polynomial with this slope (details in [19]).

In other words, by choosing (x, y), we have to evaluate tame symbols (x, y)w for each

w ∈ S, where S is the set of zeroes and poles of x and y on C, and thus must be sure to

get the roots of unity. It holds if and only if the polynomial P (x, y) is tempered.

– 8 –
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x
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Figure 2. supp(P ) (left) and N(P ) (right) for P (x, y) = x2 − 2xy + y2 − 2x− y + 1.

In what follows, we will denote N(P ) the Newton polytope of a polynomial P (x1, . . . ,

xn), i.e. the convex hull of its monomials as integer lattice points in Rn, and supp(P )

the support of P , i.e. all its monomials as integer lattice points. Therefore, N(P ) :=

conv(supp(P )), where conv is the operation of taking the convex hull of a set of points.

(An) example. Take the genus zero curve:

P (x, y) = x2 − 2xy + y2 − 2x− y + 1, (3.18)

also studied in [16]. Its Newton polygon N(P ) is a triangle with vertices (0, 0), (0, 2), (2, 0)

(figure 2). Notice that P (x, y) is not self-reciprocal, since

P (x−1, y−1) 6= ±xpyqP (x, y), for some integers p, q (3.19)

which means it cannot be realized as a geometric A-polynomial for some hyperbolic 3-

manifold [19]. The slopes are 0,∞,−1. The face polynomials are (τ − 1)2, (τ − 1)2, τ2 −
τ + 1, where the variable τ decorates the monomials on a given edge of N(P ). Here’s

an explanation: write P (x, y) =
∑
ci,jx

iyj . To get a face polynomial fe for some edge e,

label all the monomials on e consequently from one vertex to another by E = {1, 2, . . . , |e|}
where |e| is the total number of monomials on e, and sum them up, replacing xiyj by some

power of τ : fe :=
∑

s∈E c(i,j)(s)τ
s, E = {1, 2, . . . , |e|}. In this way, starting from a vertex

and going through all edge monomials consequently, we end up in the opposite vertex,

and get:
x2 − 2x+ 1 7→ (τ − 1)2

y2 − y + 1 7→ τ2 − τ + 1

x2 − 2xy + y2 7→ (τ − 1)2

(3.20)

All of them are cyclotomic. Choose the rational parametrization, e.g.:

x(t) =
t2 + t+ 1

(t− 1)2
, y(t) =

3t2

(t− 1)2
(3.21)

Now compute the tame symbols at w ∈ S for this parametrization. In our case the set of

zeroes and poles S of x(t) and y(t) is

S = {0, 1, ζ(1)
3 , ζ

(2)
3 }, (3.22)
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where ζ
(1)
3 , ζ

(2)
3 are two complex-conjugated cubic roots of unity. We get:

horizontal: (x, y)0 = 1, slope -1: (x, y)1 = 1, vertical: (x, y)
ζ
(i)
3

= ζ
(i)
3 (3.23)

For instance,

(x, y)0 = (−1)0·2x(t)2

y(t)0

∣∣∣∣
t=0

= 1, (3.24)

since x(t) = 1 + 3t+ 6t2 +O(t3), and y(t) = 3t2 +O(t3) around w = 0, this gives w(x) = 0

and w(y) = 2. As we see, each of the values (x, y)0, (x, y)1, (x, y)ζ∗3 corresponds to a root

of some face polynomial. All of them are roots of unity, which shows that P (x, y) (3.18) is

tempered, i.e. the K-theoretic property holds for the underlying curve. Also, by computing

the tame symbols we indeed see the surjection, but not the bijection between valuations

and slopes (of course in this example one of the face polynomials has degree two and is

irreducible, thus giving the two distinct roots with the same slope).

4 The main conjecture

Here comes the main conjecture of the paper:

Conjecture 4.1 Quiver A-polynomials are tempered, for every choice of the adjacency

matrix.

If true, it implies that all quiver A-polynomials are quantizable, according to [18]. Again,

we would like to emphasise that this property is a priori independent from the existence

of quantized Nahm equations (1.8), since no one guarantees that the two quantization

techniques in [18] and [15] agree. In our attempt to prove it, we are focusing on the diagonal

case C = diag(α1, . . . , αm), because it involves a somewhat simplified combinatorics. In

appendix A.2 we provide a few confirmations for non-diagonal quivers.

We will study the Newton polytope of the resultant R from the Nahm equations, or

simply the resultant polytope N(R). The strategy is:

• find all monomials of R, supported at the edges of N(R)

• study their projection onto (x, y)-plane and the polygon N(A), given by the principal

specialization

• binomiality of face polynomials of A(x, y) would follow from factorization properties

of the edge polynomials of R, which project onto the edges of N(A)

• it would imply that A(x, y) is tempered, since these binomials always have form

(τ ± 1)k for some k ∈ Z+

We begin by defining the sparse mixed resultant [20, 29, 30].

Fix a non-negative integer m and a collection A = {A0, . . . , Am} of finite subsets

Ai ⊂ Zm, ni = |Ai|. Their convex hulls Qi = conv(Ai) ⊂ Rm are integral polytopes of
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dimension at most m. We are interested in Laurent polynomials, which are supported on

A. Take a generic (m+ 1)-tuple (f0, . . . , fm) of such polynomials:

fi(z1, . . . , zm) =
∑
a∈Ai

ci,az
a, i = 0, . . . ,m (4.1)

Since fi are generic, the coefficients ci,a 6= 0 simultaneously for all a ∈ Ai, i = 0, . . . ,m.

Therefore, we may think of the coefficient vector of (4.1) as a point in the product of

complex projective spaces:

(c0,A0 , . . . , cm,Am) ∈ Pn0−1 × · · · × Pnm−1 (4.2)

where ci,Ai encodes all the coefficients of fi. For example, if m = 0, A = {A0} is just

an integer, and conv(A) = A (zero-dimensional polytope). So the fist non-trivial case is

m = 1. E.g., A0 = {0, 1}, A1 = {0, 1, 2} gives:

f0 = c0,0 + c0,1z

f1 = c1,0 + c1,1z + c1,2z
2 (4.3)

with Q0 = [0 : 1] and Q1 = [0 : 2] the two intervals, and the corresponding point would

have projective coordinates {(c0,0 : c0,1), (c1,0 : c1,1 : c1,2)}: any of the two polynomials can

be multiplied by a constant, which gives the same point in the projective space.

Consider now all (m + 1)-tuples of the form (4.1), which have a common root z′ ∈
(C \ {0})m : {fi(z′) = 0}i=0...m. Since each such tuple corresponds to a single point in the

projective product space (assuming that the coefficients are fixed numbers), all of them

simultaneously will define a set of points, which closure we denote by Z. It has a structure

of projective variety. In general, Z is an irreducible hypersurface in Pn0−1 × · · · × Pnm−1

(see, for example, chapter 8 in [29]). However, sometimes degeneracies happen: for some

“bad” choices of A, Z may have codimension bigger than one.

Definition 4.1 Given a set A, the sparse mixed resultant RA is the unique (up to an

overall sign) irreducible polynomial in ci,a with integral coefficients, which vanishes on Z if

codim(Z) = 1, and RA := 1 if codim(Z) ≥ 2.

Also, we will use the notion of a (sparse mixed) sub-resultant, which is the sparse mixed

resultant for a proper subset A′ ⊂ A.

Returning to the example (4.3), we get:

R{0,1},{0,1,2} = c1,0c
2
0,1 − c1,1c0,0c0,1 + c1,2c

2
0,0 (4.4)

which agrees with the classical resultant (eliminant) resz(f0, f1). The Newton polytope

N(R{0,1},{0,1,2}) is a triangle in R5. In this case, R{0,1},{0,1,2} = 0 is the defining equation

for the hypersurface Z in P1 × P2. Indeed, in (4.4) there are 5 parameters (only 3 of them

are independent), but equating it to zero drops the dimension by 1, so that dimZ = 2 (in

other words, its codimension is equal to 1). If we cross out any monomial in f0, e.g.

f̃0 =��c0,0 + c0,1z

f1 = c1,0 + c1,1z + c1,2z
2 (4.5)
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the new (sub-)resultant would be R{1},{0,1,2}=c0,1. The degenerate cases when codim(Z)≥
2, along with the conditions for A that guarantee RA to be non-trivial, are studied in [20].

Summing up, when dealing with a non-degenerate set of supports A, RA agrees with

the usual resultant, or eliminant with respect to z1, . . . ,zm from the system {fi(z1, . . . , zm)=

0}i=0...m, where the coefficients are taken as parameters. Therefore, from a system of

algebraic equations we obtain a single polynomial equation, which still encodes a lot of

information about the original system. For example, in [15] the elimination has been

performed for a large class of quivers, but things are getting messy fairly quickly. There

are several techniques to compute RA for a given A. In most cases, any algorithm which

performs elimination of variables from systems of equations (e.g. using Groebner bases)

is able to compute RA. One of the most powerful is the Canny-Emiris method [25], an

overview and computations for which we provide in appendix B.

That’s being said; yet we need one more ingredient — initial form of a polynomial:

Definition 4.2 Given a polynomial P (x1, . . . , xm) and an integer vector ω = (ω1, . . . , ωm),

the initial form initω of P with respect to ω is a polynomial, formed from all monomials

of P which have maximum weight with respect to ω, in other words,

initω(P ) = vkP (v−ω1x1, . . . , v
−ωmxm)

∣∣∣
v=0

(4.6)

(the exponent k is chosen in order to get rid of the denominators, so that taking v = 0 does

not give infinifies). Let’s illustrate it again using the example (4.3). Take ω = (0, 1, 1, 0, 2),

then R{0,1},{0,1,2}(c0,0, c0,1, c1,0, c1,1, c1,2) will have the initial form:

initω = v3 R{0,1},{0,1,2}(c0,0, v
−1c0,1, v

−1c1,0, c1,1, v
−2c1,2)

∣∣
v=0

= c1,0c
2
0,1 (4.7)

Remark. For any face of the Newton polytope N(P ) one can associate an initial form.

Namely, if ω is the normal vector to some face, then initω is the restriction of P to this

face, meaning that we are left only with monomials belonging to the face. We will use this

fact when dealing with the resultant polytope N(RA). However, the vector ω itself will be

not that important for us, since we will use another construction of initial forms, involving

combinatorics.

It’s time to get back to Nahm equations (1.4). We would like to treat them from the

perspective of (4.1), therefore rewriting as

F0 = a0 + a1z1 . . . zm

Fi = bi,0 + bi,1zi + bi,2

m∏
j=1

z
Ci,j
j

(4.8)

This gives:

ANahm = {supp(Fi)}i=0...m = {[0, 1], [0, ei, . . . ], . . . , [0, em, . . . ]}, (4.9)

where n = (

m times︷ ︸︸ ︷
n, . . . , n), and ei = (0, . . . , 1︸︷︷︸

i-th pos.

, . . . , 0). We will shorthand b := {bi,j}, i =

0 . . .m, j = 1, 2.
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Q1

Q2

Q0 +Q1 +Q2

z1

z2

(0, 0)

(0, β)

(α, 0)

(α+ 1, β + 1)

(1, 0)

(0, 1)

Q0

Figure 3. The Minkowski sum of three intervals (generators) Q0, Q1, Q2 is a hexagon, each bound-

ary face of which corresponds to one of its generators.

Definition 4.3 (Refined) quiver resultant R(a0, a1,b) := RANahm
is the sparse mixed re-

sultant from the supports ANahm of Fi, i = 0 . . .m (4.8).

We have a chain of specializations:

A(x1, . . . , xm, y) = R
(
y,−1 | 1,−1, (−1)C1,1x1 | . . . | 1,−1, (−1)Cm,mxm

)
A(x, y) = A(λ1x, . . . , λmx, y)

(4.10)

There are several symbolical methods to compute sparse mixed resultants, one of them

is discussed in appendix B. Also, there is a plenty of computer programs — for example,

standard elimination functions in Mathematica or Maple are capable to compute such

resultants in cases when the set of supports is non-degenerate and not too complicated.

Recall the notion of Minkowski sum of subsets Q1, . . . , Qm in Rn is simply the sum of

all vectors in Q1, . . . , Qm. For example, the system (4.8) for m = 2 with C = diag(α, β)

produce 3 intervals Qi = conv(Fi), i = 0 . . . 2. Their Minkowski sum is a hexagon, shown on

figure 3. The hexagon, however, is not just a hexagon: it is a zonotope, i.e. a projection of a

3-cube onto the plane. Its zones (on the boundary) are given by three colours: red, magenta

and blue (each one corresponding to its generator: Q1, Q0 and Q2, correspondingly). It

can be further generalized to higher dimensional zonotope, when the diagonal quiver will

have more nodes. Therefore, the combinatorial simplicity of the diagonal quiver lies exactly

here: its Newton polytope will inherit this combinatorial structure.

Due to the results of [20], the dimension of N(R) is equal to (m − 1), and the total

degree is the mixed volume of the Minkowski sum Q = Q0 + · · ·+Qm. To work out higher

dimensional resultant polytopes, we use the language of perfograms. Each perfogram is

just a pictorial presentation of a sub-resultant, for example:

b0 + b1z1 +
���

���
��

b2z
C1,1

1 . . . z
C1,m
m

c0 +���c1z2 + c2z
C2,1

1 . . . z
C2,m
m

d0 +��
�d1z3 + d2z

C3,1

1 . . . z
C3,m
m

⇐⇒
• •
• •
• •

(4.11)
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Figure 4. An example of non-tight decomposition for diagonal quiver with m = 2.

(a)

(b)

(c)

(d)

α

β

Figure 5. An example of TCMD for diagonal quiver with m = 2: the Minkowski sum Q =

Q0 +Q1 +Q2 is decomposed into the 4 non-overlapping cells.

Or, with F0 included:

F0 = a0 + a1z1 . . . zm

F1 = b0 + b1z1 +
���

���
��

b2z
C1,1

1 . . . z
C1,m
m

F2 = c0 +���c1z2 + c2z
C2,1

1 . . . z
C2,m
m

F3 = d0 +��
�d1z3 + d2z

C3,1

1 . . . z
C3,m
m

⇐⇒

• •
• •
• •
• •

(4.12)

Now we shall review the combinatorics of a tight coherent mixed decomposition (TCMD) of

the Minkowski sum Q of supports for some Laurent polynomial system. Each cell of such

decomposition is a Minkwoski sum of a sub-system, which means that it corresponds to

some perfogram. For example, the decomposition on figure 4 is not tight: not all its cells

correspond to perfograms (triangles do not). The word “coherent” is a bit more technical:

it says that there is a convex piecewise linear function on Q, which domains of linearity

are in 1:1 correspondence with the cells of our decomposition (the canonical examples are

presented in section 7.1 of [23]; see also [20]). In our study all mixed decompositions will be

automatically tight and coherent by construction, so we will not refer to these properties

henceforth.

Given the Minkowski sum Q = Q1 + · · · + Qm of convex hulls of supports of Fi,

we may construct its TCMD as follows: each cell is a Minkowski sum of sub-supports,

computed for some subsets A′0 ⊂ A0, . . . , A
′
m ⊂ Am. Then, another cell would be given

by yet another subsets A′′0 ⊂ A0, . . . , A
′′
m ⊂ Am, and so on, which yields a partition of

Q into non-overlapping cells (if the subsets are chosen properly). Example of such mixed

decomposition is on figure 5.
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Figure 6. Each cell is a Minkowski sum of sub-supports: the case (a), left and (b), right.

Figure 7. Each cell is a Minkowski sum of sub-supports: the case (c), left and (d), right.

Let’s see which perfograms produce the cells on figure 5. For example:

(a)

a0 + a1z1z2

b1,0 + b1,1z1 +��
�b1,2z
2
1

�
�b2,0 + b2,1z2 + b2,2z

2
2

⇐⇒
• •
• •
• •

(b)

a0 + a1z1z2

�
�b1,0 + b1,1z1 + b1,2z

2
1

b2,0 + b2,1z2 +��
�b2,2z
2
2

⇐⇒
• •
• •

• •

(4.13)

Now we see that the Minkowski sums of these two collections of sub-supports indeed pro-

duce the two small hexagons (figure 6). E.g., (a) gives Q̃0 = [(0, 0) : (1, 1)], Q̃1 = [(0, 0) :

(1, 0)], Q̃2 = [(0, 1) : (0, 2)], and Q̃0 + Q̃1 + Q̃2 is indeed the left hexagon on figure 6.

Analogously, the two rectangular cells (figure 7) are given by:

(c)

a0 +���
�a1z1z2

b1,0 + b1,1z1 +��
�b1,2z
2
1

b2,0 + b2,1z2 +��
�b2,2z
2
2

⇐⇒
•
• •
• •

(d)

��a0 + a1z1z2

�
�b1,0 + b1,1z1 + b1,2z

2
1

�
�b2,0 + b2,1z2 + b2,2z

2
2

⇐⇒
•
• •
• •

(4.14)

The fact that we treat hexagonal cells separately from rectangular ones, is not a coin-

cidence. In fact, we can already see that rectangular cells give degenerate sets of supports,

i.e. their sub-resultant would be equal identically to 1. This is due to the fact that already

in F0 we are left with just a single monomial. In what follows, we would like to associate

an initial form to each TCMD, such that:

• each hexagonal cell gives a binomial factor

• each rectangular cell gives a monomial factor

Namely, given the following data:
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R̃1
(a)

a10

a
(α−1)(β−1)
1

R̃1
(b)

Figure 8. This TCMD gives rise to the initial form (4.16), computed as the product over all its

cells.

• a collection A = {A0, . . . , Am} of subsets in Zm

• Minkowski sum of their convex hulls Q =
∑m

i=1 conv(Ai) in Rm

• a coherent mixed decomposition TCMD of Q,

we can associate a polynomial to this TCMD by the formula:

initTCMD(Q)(c0,0, c0,1, . . . ) =
∏

“rectangles”

×
∏

“hexagons”

= µ
∏

ι∈TCMD(Q)

R̃kιι , (4.15)

where µ =
∏
ι′ µ

(kι′ )
ι′ is a monomial, each letter µι′ of which corresponds to a rectangle ι′ in

TCMD(Q). On another hand, each R̃ι is a (sparse mixed) sub-resultant, which perfogram

gives a hexagonal cell ι. The latter product is taken over all hexagonal cells in TCMD(Q),

and the exponents kι and kι′ are chosen uniquely such that the volume of ι equals to the

total degree of R̃kιι , for every cell ι, and for ι′ the volume of a rectangular cell ι′ simply

equals to kι′ .

The correspondence between TCMDs and initial forms of the sparse mixed resultant

is due to the following

Theorem 4.1 initTCMD(Q) is the initial form for RA.

This allows to associate a TCMD to each face of the resultant polytope, and then

study their initial forms. The theorem has been proven [20] for A being “good enough”,

and quite recently [30] in a full generality.

Let us illustrate how it works using the example on figure 5. We claim that it gives

the initial form:

a0a
(α−1)(β−1)
1 (aα−1

0 b2c
α−1
1 + aα−1

1 b1c
α−1
0 )(aβ−1

0 c2b
β−1
1 + aβ−1

1 c1b
β−1
0 ) (4.16)

The choice of ω is, however, not unique. E.g., we can take ω = ((0, 0), (0, 1, 1), (1, 1, 1)) +

const, where const is an arbitrary constant vector. Once again, we want to emphasise that

these vectors are not important for us, since we focus on the combinatorial structure given

by the formula (4.15). Here, hexagons are the two distinct binomial factors, while rectangles

contribute to the monomial in (4.16). We have the following picture (figure 8). Indeed,

the sparse mixed resultants from (a) and (b) are R̃(a) = aβ−1
0 c2b

β−1
1 + aβ−1

1 c1b
β−1
0 , R̃(b) =

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
6

aα−1
0 b2c

α−1
1 +aα−1

1 b1c
α−1
0 . The exponents k(a) and k(b) are equal to 1, since the total degrees

of R̃(b) and R̃(a) are equal to 2(α− 1) + 1 and 2(β − 1) + 1, correspondingly, which agrees

with the areas of the two hexagons (a) and (b), figures 5 and 6. On the monomial side,

we have two degenerations: in the first one, a0 survives, and the area of (c) is equal to

k(c) = 1, so a1
0. In the second one, a1 survives and the area is k(d) = (α− 1)(β− 1). Taking

the product over all of them gives us the expression (4.16).

Definition 4.4 Initial form is called simple, if it does not have “interior” monomials, i.e.

if all its monomials lie on the 1-dimensional skeleton of the corresponding face of N(R).

In general, the correspondence between faces and initial forms is not 1:1. For each face,

there may be many associated initial forms. It depends on whether we want to include the

interior monomials or not, and which ones (by switching the intermediate bullets im each

row of a perfogram). However, we may get better results with simple initial forms. Let

initξ be an initial form, such that supp(initξ) ⊂ ξ and ξ is a face of N(R).

Proposition 4.1 initξ is simple if and only if all its perfograms, corresponding to each R̃i
in (4.15), do not have intermediate bullets in each of its row. Moreover, there is a bijection

between the set of all simple initial forms and the set of faces of N(R).

Here’s an example:

• •
• •
• •

is simple, whereas

• •
• • •
• •

is not. (4.17)

Proof. Start with an assumption that initξ is simple, which means that all its monomials

lie on the 1-dimensional skeleton of ξ. We can ignore the monomial prefactor µξ, since

it simply rescales the lattice, which results in isomorphic polytopes. From the product

formula (4.15) we deduce that the N(
∏
R̃i) decomposes as a Minkowski sum of N(R̃i),

for i = 1 . . . |TCMDξ|. But since ξ is simple, each R̃i should be simple as well, i.e. not

containing any interior monomials (otherwise it would hold also for their Minkowski sum).

Another way around is immediate: since all R̃i are simple, their Minkowksi sum does not

have interior monomials, which implies ξ is simple. Finally, the bijection is provided by:

vertices(ξ) = vertices(conv(supp(init)ξ))) ⊆ supp(initξ), (4.18)

and the set supp(initξ) \ vertices(ξ) is fixed uniquely, by requiring all the perfograms to

have no intermediate bullets “•” in each of its row. �

Proposition 4.2 If initξ is simple, then dim(ξ) is equal to the number of its distinct

binomial factors.

Proof. The case dim(ξ) = 1 is trivial, since if ξ is an edge and init(ξ) is simple, then it

cannot be anything but just a single binomial (one vertex + another vertex, and if there

are intermediate monomials, it factorizes into a power of this binomial). When dim(ξ) = 2,
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Figure 9. Simple initial form with two distinct binomial factors corresponds to a 2d face ξ2.

Joining an extra edge to ξ2 will lead to ξ3. Since the simplicity relation is preserved, it increases

the dimension by one. The configuration in the middle does not preserve this relation, therefore is

not simple. For the middle picture, the bold edge of ξ2 is not an edge of the resulting convex hull.

init(ξ) would have two distinct binomial factors. Conversely, for any initial form with two

binomial factors, these factors cannot belong to the same edge — the initial form is said

to be simple. The only monomials are vertices of its convex hull (in the opposite situation

we would encounter some monomials which are not the vertices — a contradiction).

The same argument is applied by induction to any number of binomial factors. Namely,

assume we have a product of n binomials, which defines a face of dimension n. If we join

to them one more binomial, the dimension will increase to n + 1, due to convexity and

the fact that the faces ξn and ξn+1 are both simple (so it will never happen that the extra

face ξn+1 will be linearly dependent with any of sub-faces of ξn. Since if it would, then we

will unavoidable loose some of its edges by taking the convex hull, which contradicts the

simplicity property, and also the fact that ξn is actually a face of ξn+1), figure 9. �
It’s also important to mention that each initial form is a summand of R (this follows

directly from Definition 4.2), and R itself corresponds to the “filled” diagram:

R '

• •
• • •
...

...
...

• • •

(4.19)

In what follows, we will consider only simple initial forms. Also we will often write ξ instead

of initξ, since there is one-to-one correspondence between faces and simple initial forms.

5 Two-dimensional case

Our first result concerns the m = 2 case:

F0 = a0 + a1z1z2

F1 = b0 + b1z1 + b2z
α
1

F2 = c0 + c1z2 + c2z
β
2

(5.1)

Without loss of generality, we assume α, β ≥ 2 (for α, β ∈ {0, 1} the resultant polytope

degenerates; for the negative values, after multiplying each Fi by a suitable monomial, we
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x1 x2

Figure 10. Quiver with adjacency matrix C = diag(2, 2).

end up with an equivalent polytope). We have subtracted the anti-diagonal, since it simply

amounts to a choice of framing. Therefore, the case C = diag(α, β) is of our main interest.

For any α, β distinct from4 0 and 1, the polytope N(RA) coincides with the Gelfand-

Kapranov-Zelevinsky (GKZ) polytope N2,2, depicted on figure 11 [29, 31]. By definition,

GKZ polytope Nm′,n′ is the Newton polytope of classical resultant resz(f0, f1):{
f0 = ã0 + ã1z + . . . ãm′z

m′

f1 = b̃0 + b̃1z + . . . b̃n′z
n′

−→ Nm′,n′ := N (resz(f0, f1)) . (5.2)

When (m′, n′) = (2, 2), this system is equivalent to (5.1) with (α, β) = (2, 2). Indeed,

we can solve F0 for any of z1, z2 and plug the result into F1 or F2, being left with an

equivalent system of quadratic equations in one variable. It implies that N(RA) = N2,2

for (α, β) = (2, 2). However, varying α, β ≥ 2 in (5.1) does not change the polytope, since

it corresponds to dilation of the lattice of A, which is an affine transformation. Therefore,

N(RA) = N2,2 for any α, β ≥ 2.

We begin with the simplest non-trivial example.

Warm-up example: (α, β) = (2, 2). Take C = diag(2, 2) (figure 10). Eliminating

z1, z2 from (5.1) and specializing as in (4.10), we get

Adiag(2,2)(x1, x2, y) = x2
1x

2
2y

4 + x1x2y
3 − 2x1x2y

2 + x1y
2 + x2y

2 + y + 1. (5.3)

The vertices (i, j, k) of N2,2 encode the powers of monomials xi1x
j
2y
k in (5.3):

(2, 2, 4), (1, 1, 3), (1, 0, 2), (0, 1, 2), (0, 0, 1), (0, 0, 0) (5.4)

Here only −2x1x2y
2 does not correspond to a vertex of N2,2. Instead, it divides the

bottom edge (a) into two equal intervals (figure 11). We can combine some monomials and

re-write (5.3) as

Adiag(2,2)(x1, x2, y) = (x1x2y
2 − 1)2 − y (x1y + 1)(x2y + 1) (5.5)

It turns out that the two binomial summands are supported on the two distinguished faces

of N2,2: the convex hull of (x1x2y
2−1)2 gives the edge (a), and −y (x1y+1)(x2y+1) gives

the 2-dimensional face (b). The latter belongs to the plane defined by equation:

1 + x1 + x2 − y = 0 (5.6)

Its normal vector is ω = (1, 1,−1), up to translation and multiplication by a scalar. Rescale

the variables x1, x2, y with respect to this vector:

Adiag(2,2)(c
1x1, c

1x2, c
−1y) = (x1x2y

2 − 1)2 − c−1y (x1y + 1)(x2y + 1), c ∈ C (5.7)

4If α ∈ {0, 1} or β ∈ {0, 1}, the resultant polytope can be obtained by edge contraction from N2,2.
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Figure 11. GKZ polytope N2,2, along with the monomials (blue nodes) of Adiag(2,2), compare with

the (x, y)-projection (figure 1).

Therefore, the parameter c separates the faces of N2,2 as the two summands in (5.5). So

we get the two distinguished initial forms:

inita = lim
c→∞

Rdiag(2,2)(c
ω1x1, c

ω2x2, c
ω3y) = (x1x2y

2 − 1)2

initb = lim
c→0

(c · Rdiag(2,2)(c
ω1x1, c

ω2x2, c
ω3y)) = y (x1y + 1)(x2y + 1)

(5.8)

Let us move to the unspecialized case. The (refined) quiver resultant from (5.1) reads:

R(a0, a1,b) = (a2
0b2c2 − a2

1b0c0)2 + a0a1 (a0b2c1 + a1b1c0)(a0b1c2 + a1b0c1). (5.9)

We have: R(y,−1,−1, 1, x1,−1, 1, x2) = Adiag(2,2)(x1, x2, y).

The advantage of the refined quiver resultant is that we can study combinatorics of the

Minkowski sum Q = Q0 +Q1 +Q2, where Qi = conv(Fi). This would be impossible when

dealing with the specialized case (5.3). Consider the first initial form: (a2
0b2c2 − a2

1b0c0)2.

It is attached to the bottom edge (a) of N2,2. The square comes from the areal factor of Q,

which is the largest hexagon (figure 12, left). The total degree of a given binomial equals to

the euclidean volume of the corresponding cell of a mixed decomposition, which is equal to

8 in our case. Notice that the binomial a2
0b2c2−a2

1b0c0 is the sub-resultant for b1 = c1 = 0.

At last, consider the second initial form a0a1 (a0b2c1 + a1b1c0)(a0b1c2 + a1b0c1). It

splits into the product of four distinct sub-resultants, which represent four distinct cells of

our mixed decomposition on figure 12, right:

b0 = c2 = 0, a0b2c1 + a1b1c0

b2 = c0 = 0, a0b1c2 + a1b0c1

a1 = b2 = c2 = 0, a0

a0 = b0 = c0 = 0, a1

(5.10)
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(0, 0) (2, 0)

(0, 2)

Figure 12. Mixed decompositions in (z1, z2)-plane: for inita (left) and initb (right).

Therefore, one may search for all possible mixed decompositions of Q and compute

the associated initial forms from the cell arrangement in each decomposition. This is the

meaning of the formula (4.15).

General (α, β). Moving to the general case α, β ≥ 2, we have to introduce an operator

which implements the rule for computing the exponents kι in (4.15).

Definition 5.1 Given a binomial ηp + θq,p = (p1, . . . , pk),q = (q1, . . . , qk), define

GCD (ηp + θq) :=
(
η

p
gcd(p,q) + θ

q
gcd(p,q)

)gcd(p,q)
, (5.11)

where gcd(p,q) acts on the two vectors component-wise. Also, for any integer s ≥ 1

GCD

( ∏
i=1...s

(ηpi + θqi)

)
=
∏
i=1...s

GCD(ηpi + θqi) (5.12)

For example:

GCD
(
a2

0b
2
2c2 + a2

1b
2
0c0

)
= a2

0b
2
2c2 + a2

1b
2
0c0,

GCD
(
a4

0b
2
2c

2
2 + a4

1b
2
0c

2
0

)
= (a2

0b2c2 + a2
1b0c0)2.

(5.13)

Proposition 5.1 The Newton polytope N(R) for the system (5.1) supports the following

simple initial forms:

inita = GCD
(
aαβ0 bβ2 c

α
2 + (−1)αβ+α+βaαβ1 bβ0 c

α
0

)
,
• •
• •
• •

initb = a0a
(α−1)(β−1)
1 (aα−1

0 b2c
α−1
1 + aα−1

1 b1c
α−1
0 )(aβ−1

0 c2b
β−1
1 + aβ−1

1 c1b
β−1
0 ),

• •
• •
• •

×
• •
• •

• •

initc = a
α(β−1)
1 bβ−1

0 (aα0 b2c
α
1 + aα1 b0c

α
2 ),

• •
• •
• •
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Figure 13. The Newton polytope N2,2 with the initial forms (5.1): top (left) and bottom (right).

Blue faces are those, which do not have other points rather than the vertices.

initd = a
(α−1)β
1 cα−1

0 (aβ0 b
β
1 c2 + aβ1 b

β
2 c0),

• •
• •
• •

inite = aβ0 c2 ·GCD
(
a
(α−1)β
0 bβ2 c

α−1
2 + (−1)(α−1)β+(α−1)+βa

(α−1)β
1 bβ1 c

α−1
0

)
,
• •
• •

• •

initf = aα0 b2 ·GCD
(
a
α(β−1)
0 bβ−1

2 cα2 + (−1)(α−1)β+(α−1)+βa
α(β−1)
1 bβ−1

0 cα1

)
,
• •
• •
• •

initg = aα+β−1
0 b2c2 ·GCD

(
a
(α−1)(β−1)
0 bβ−1

2 cα−1
2

+ (−1)(α−1)(β−1)+(α−1)+(β−1)a
(α−1)(β−1)
1 bβ−1

1 cα−1
1

)
,
• •
• •
• •

inith = aαβ−1
1 bβ−1

0 cα−1
0 (a0b1c1 + a1b0c0),

• •
• •
• •

where a, b, c, d, e, f, g, h are the faces of N(R) (figure 13), and perfograms on the right

correspond to distinct binomial factors.

Proof. Every binomial factor in init∗ correspond to a sub-resultant, which perfogram

is given on the right side of each expression in Proposition 5.1. Let’s associate mixed

decompositions to these initial forms, as shown on figure 14. This provides a desired

combinatorial interpretation of the faces. Each hexagon in a mixed decomposition gives

the distinct binomial factor in the corresponding initial form, and all rectangles together

determine the monomial prefactor. The GCD operator has the following interpretation:

each kι ≥ 1 in (4.15) is uniquely fixed when (α, β) are fixed, so that the total degree of R̃kiι
equals to the area of the ι-th cell of a mixed decomposition.

E.g., for inita there is only a single hexagon (the top-left in figure 14), which is Q

itself — so there is no monomial prefactor. This hexagon gives the sub-resultant R̃ =

aαβ0 bβ2 c
α
2 + (−1)αβ+α+βaαβ1 bβ0 c

α
0 . We see that the area of Q is αβ +α+ β, so if α and β are

not co-prime, it would give k > 1, hence

inita = GCD
(
aαβ0 bβ2 c

α
2 + (−1)αβ+α+βaαβ1 bβ0 c

α
0

)
.
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a b c d

e f g h

Figure 14. TCMDs of Q, associated to the faces of N2,2.

In the case of initb we have two hexagons (giving the two distinct binomial factors)

and two quadrangles for the monomial: the bottom square is a0, and the top quadrangle

is a
(α−1)(β−1)
1 (compare with figure 5). The rest is carried out analogously.

It turns out that using the mixed decompositions a, b, c, d, e, f, g, h we completely de-

scribed the bijection between the faces and simple initial forms. �

Corollary 5.1 Quiver A-polynomial for any two-vertex quiver is tempered, with its face

polynomials all being binomials.

It follows directly from factorization formulas for the initial forms a, b, c, d, e, f, g, h. The

polytope N(R) projects onto N(A) in such a way that the faces of N(R) do not overlap

each other (colliding the axes x1 and x2 on figure 11 to obtain the projection shown on

figure 1). Binomiality of the initial forms of Proposition 5.1 implies binomiality of the

face polynomials, which means that A(x, y) is tempered. Notice that the non-diagonal

case is simply a framing transformation x 7→ xyf , which amounts to equivalence of the

polytopes, therefore not bringing any substantial changes. This is clear on the level of

quiver A-polynomials even for generic m: framing transformation maps A(x1, . . . , xm, y)

into A′ = A(x1y
f , . . . , xmy

f , y), so the two polytopes N(A) and N(A′) are equivalent up

to dilation of the axes x1, . . . , xm, and the shape of the initial forms is preserved.

6 Three-dimensional case

The Nahm equations for C = diag(α, β, γ) take form:

F0 = a0 + a1z1z2z3

F1 = b0 + b1z1 + b2z
α
1

F2 = c0 + c1z2 + c2z
β
2

F3 = d0 + d1z3 + d2z
γ
3

(6.1)

We assume α, β, γ ≥ 2 and introduce the initial forms initφp,q (which we will shortly write

as φp,q, at the same time referring to the corresponding face of N(R)), labelled by the two
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non-negative integers. These initial forms are given by products over all permutations of

perfograms with p rows of the form [•• ] and q rows of the form [ ••], such that p+q = m

(the red color is just for a better visuals). The only exception is φ0,0, which rows are of

the form [• •]. For m = 3, they are given by

φ0,0 :

• •
• •
• •
• •

φ3,0 :

• •
• •
• •
• •

φ0,3 :

• •
• •
• •
• •

φ2,1 :

• •
• •

• •
• •

×

• •
• •
• •

• •

×

• •
• •
• •
• •

φ1,2 :

• •
• •
• •
• •

×

• •
• •

• •
• •

×

• •
• •
• •

• •

(6.2)

φ0,0 = GCD
(
a0
αβ γb2

β γc2
αγd2

αβ + (−1)σ+1 a1
αβ γb0

β γc0
αγd0

αβ
)
,

φ3,0 = µ3,0 · (a0b1c1d1 − a1b0c0d0),

φ2,1 = µ2,1 ·GCD
((
a0
α−1b2c1

α−1d1
α−1 + (−1)α+1 a1

α−1b1c0
α−1d0

α−1
)
×(

a0
β−1c2b1

β−1d1
β−1 + (−1)β+1 a1

β−1c1b0
β−1d0

β−1
)
×(

a0
γ−1d2b1

γ−1c1
γ−1 + (−1)γ+1 a1

γ−1d1b0
γ−1c0

γ−1
))

,

φ1,2 = µ1,2 ·GCD
((
a0

(β−1)(γ−1)b1
(β−1)(γ−1)c2

γ−1d2
β−1+

(−1)β+γ+1 a1
(β−1)(γ−1)b0

(β−1)(γ−1)c1
γ−1d1

β−1
)
×(

a0
(α−1)(γ−1)c1

(α−1)(γ−1)b2
γ−1d2

α−1+

(−1)α+γ+1 a1
(α−1)(γ−1)c0

(α−1)(γ−1)b1
γ−1d1

α−1
)
×(

a0
(α−1)(β−1)d1

(α−1)(β−1)b2
β−1c2

α−1+

(−1)α+β+1 a1
(α−1)(β−1)d0

(α−1)(β−1)b1
β−1c1

α−1
))

,

φ0,3 = µ0,3 ·GCD
(
a

(α−1)(β−1)(γ−1)
0 b

(β−1)(γ−1)
2 c

(α−1)(γ−1)
2 d

(α−1)(β−1)
2 +

(−1)(α−1)+(β−1)+(γ−1)+1a
(α−1)(β−1)(γ−1)
1 b

(β−1)(γ−1)
1 c

(α−1)(γ−1)
1 d

(α−1)(β−1)
1

)
,

(6.3)
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where σ = αβ γ + αβ + αγ + β γ, and the monomials are:

µ3,0 = aαβγ−1
1 bβγ−1

0 cαγ−1
0 dαβ−1

0 ,

µ2,1 = a0a1
αβ γ−α−β−γ+2b0

(β−1)(γ−1)c0
(α−1)(γ−1)d0

(α−1)(β−1),

µ1,2 = a0
α+β+γ−2a1

(α−1)(β−1)(γ−1)b2c2d2,

µ0,3 = aαβ+αγ+βγ−α−β−γ+1
0 bβ+γ−1

2 cα+γ−1
2 dα+β−1

2 .

(6.4)

One can check the dimensions of the corresponding faces of N(R): dimφ0,0 = dimφ3,0 =

dimφ0,3 = 1, whereas dimφ2,1 = dimφ1,2 = 3. The initial form φ0,0 corresponds to the

bottom edge of N(R). Its vertices are the monomials of minimal and maximal weight in R.

For example, let’s calculate φ0,3: by looking at the corresponding perfogram in (6.2),

we know which monomials to cross-out in (6.1), to get:

{
a0 = −a1z1z2z3, z

α−1
1 = −b1

b2
, zβ−1

2 = −c1

c2
, zγ−1

3 = −d1

d2

}
(6.5)

To compute the binomial factor, we have to compute the sparse mixed resultant from

this system (6.5). This is quite easy: rasing the first equation to (α − 1) immediately

eliminates z1:

a
(α−1)
0 = (−a1z2z3)(α−1)

(
−b1
b2

)
(6.6)

Consequently, we raise it to (β − 1) and (γ − 1) and getting rid of numerators, to obtain

(
a

(α−1)(β−1)(γ−1)
0 b

(β−1)(γ−1)
2 c

(α−1)(γ−1)
2 d

(α−1)(β−1)
2 +

(−1)(α−1)+(β−1)+(γ−1)+1a
(α−1)(β−1)(γ−1)
1 b

(β−1)(γ−1)
1 c

(α−1)(γ−1)
1 d

(α−1)(β−1)
1

) (6.7)

Now the binomial part of φ0,3 will be equal to the GCD applied to (6.7). The mono-

mial part (6.4) is a bit more subtle, since we have to play with “Lego boxes” to form a

proper subdivision of Q. Only when all the boxes are aligned properly, we get a mixed

decomposition, which amounts to the expressions for µp,q (see figure 15 as an example).

Now we focus on the case β = γ = α. It turns out that this is well-behaved: the data

of (6.2) is sufficient to describe all the edges of N(A). In particular:

• every vertex of N(A) has a unique preimage, which is a vertex of N(R)

• every edge of N(A) is an image of a unique simple face from the set {φ0,0, φ3,0, φ2,1,

φ1,2, φ0,3}

First, let’s put α = β = γ into the formulas (6.3). For any φp,q, denote its extremal

monomials (having minimal/maximal powers of a0) by φmin
p,q and φmax

p,q . We get for φ0,0,
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Figure 15. The mixed decomposition induced by φ1,2: there are three red cells, which correspond

to three binomials in (6.3), while the union of blue cells give the monomial µ1,2 (6.4). This picture

is a generalization of figure 5 to 3d.

φ2,1 and φ1,2, respectively:[
a1
α3
b0
α2
c0
α2
d0
α2
, a0

α3
b2
α2
c2
α2
d2
α2
]

[
a0a1

α3−1b0
α2−1b1c0

α2−1c1d0
α2−1d1,

a0
3α−2a1

α3−3α+2b0
α2−2α+1b1

2α−2b2c0
α2−2α+1c1

2α−2c2d0
α2−2α+1d1

2α−2d2

]
[
a0

3α−2a1
α3−3α+2b0

α2−2α+1b1
2α−2b2c0

α2−2α+1c1
2α−2c2d0

α2−2α+1d1
2α−2d2,

a0
3α2−3α+1a1

α3−3α2+3α−1b1
α2−2α+1b2

−1+2αc1
α2−2α+1c2

−1+2αd1
α2−2α+1d2

−1+2α
]

(6.8)

Now coming back to φ3,0 and φ0,3: they are simply given by

φ3,0 = φmin
0,0 + φmin

2,1 , φ0,3 = φmax
1,2 + φmax

0,0 . (6.9)

So (6.8) are the monomials, which project onto the vertices N(A). Each face corresponding

to φp,q projects onto one of the edges of N(A), and from (6.8) we can write down all the

vertices of N(A), starting from the origin (x, y) = (0, 0) and going clockwise around the

polygon:

diag(α, α, α) : (0, 0), (0, 1), (3, 3α− 2), (6α− 3, 3α2 − 3α+ 1), (3α2, α3). (6.10)

Hence binomiality of the face polynomials for diag(α, α, α) follows from binomiality of its

preimages in R: the initial forms (6.2). Unfortunately, the same does not work for generic

α, β, γ. In fact, we have to take into account some extra edges r, r′, r′′, . . . lying between

φ1,2 and φ2,1. Consider the following initial forms:

initr = µr ·GCD
(
a0

(β−1)(γ−1)b1
(β−1)(γ−1)c2

γ−1d2
β−1+

(−1)β+γ+1 a1
(β−1)(γ−1)b0

(β−1)(γ−1)c1
γ−1d1

β−1
)
,

µr = a0
−1+β+γa1

σb1
−1+β+γc0

γ−2+αc2d0
(α−1)(β−1)+α−1d2

(6.11)
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where σ = (α− 1) (β − 1) (γ − 1) + α− 1 + (α− 1) (β − 1) + (α− 1) (γ − 1), and

initr′ = µr′ ·GCD
((
a0

(β−1)(γ−1)b1
(β−1)(γ−1)c2

γ−1d2
β−1+

(−1)β+γ+1 a1
(β−1)(γ−1)b0

(β−1)(γ−1)c1
γ−1d1

β−1
)
×(

a0
α−1b2c1

α−1d1
α−1 + (−1)α+1 a1

α−1b1c0
α−1d0

α−1
))

,

µr′ = a0
−1+β+γa1

σ′b1
β−2+γc0

(α−1)(γ−1)c2d0
(α−1)(β−1)d2

(6.12)

where σ′ = (α− 1) (β − 1) (γ − 1) + (α− 1) (γ − 1) + (α− 1) (β − 1). In what follows, we

assume 2 ≤ α < β < γ.

Conjecture 6.1 For the diagonal quiver with 3 vertices, the only contribution to the edges

of N(A) is due to the initial forms {φi,j}i+j=3, completed with initr and initr′:

1. (α, α, α): φ0,0, φ3,0, φ2,1, φ1,2, φ0,3 project onto the edges of N(A), and are in bijection

with the edges

2. (α, α, β): {φi,j}i+j=3 are still OK, although some of the monomials of φ1,2 and φ2,1

will project onto the interior of N(A), unlike in the case above. Nevertheless, this

does not affect binomiality of the edges of N(A)

3. (α, β, β): we need to include the extra initial form initr′, since φ1,2 would have an

issue: it will capture the vertices, but not all the intermediate points of the edge.

Therefore, initr′ will fully cover this problematic edge, and since it is a binomial, so

is true for the projection.

4. (α, β, γ) all distinct: instead of initr′, we have to take initr

We verify this conjecture using the computer program (see appendix A.1 for the examples).

To sum up, the four cases of Conjecture 6.1 produce non-equivalent projections N(A).

Proposed initial forms (6.3), (6.11) and (6.12) contribute to the edges of N(A). Their

binomiality would imply that the quiver A-polynomial for C = diag(α, β, γ) is tempered,

providing that the contribution happens in the same way as for the examples studied.

However, a general proof for diag(α, β, γ) is still missing.

7 Arbitrary dimension

This section contains the main result of the paper. Consider the quiver

C = diag(α1, . . . , αm), αi ≥ 2, m ≥ 2. (7.1)

Let R be the refined quiver resultant (Definition 4.3) and N(R) its Newton polytope — a

(m+ 1)-dimensional polytope in R2+3m.
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We reveal the combinatorial structure of the 1-dimensional skeleton of N(R), cap-

tured by its initial forms.5 When αi = α, i = 1 . . .m, binomiality of these forms implies

the K-theoretic property (3.14) for quiver A-polynomial A(x, y). Therefore the latter is

quantizable.

Let m = p+ q. Our main actors are simple initial forms {φp,q}, where p is the number

of [•• ]-type rows — we indicate them by the index subset I = {i1, . . . , ip}, and q is the

number of [ ••]-type rows K = {k1, . . . , kq}, in each of the perfogram contained in φp,q.

Dimension of the face on which φp,q is supported, is equal to the number of its distinct

binomial factors (due to Proposition 4.2). In what follows, we give a full description of

{φp,q} for the diagonal quiver.

Proposition 7.1 Let I = {i1, . . . , ip}, K = {k1, . . . , kq}, p+ q = m. Define

ϕI,K :=

(
a0

∏
i∈I

bi,1

)∏
k∈K(αk−1) ∏

k∈K
b

∏′
k′∈K
k′ 6=k

(αk′−1)

k,2 +

(−1)

1+
∑
k∈K

∏
k′∈K
k′ 6=k

(αk′−1)
(
a1

∏
i∈I

bi,0

)∏
k∈K(αk−1) ∏

k∈K
b

∏′
k′∈K
k′ 6=k

(αk′−1)

k,1

(7.2)

where the product
∏′ equals to 1 if q = 1. Then

φp,q := µp,q ·
∏

I,K⊂{1,...,m}
|I|=p,|K|=q

GCD(ϕI,K) (7.3)

are well-defined initial forms, where the product is taken over all m!
p!q! choices of the subsets

I,K, and the monomial µp,q is given by

µp,q = a
1+

∑
|K′|=1...q−1

∏
k′∈K′ (αk′−1)

0 a

∑
|K′|=q+1...m

∏
k′∈K′ (αk′−1)

1 ×

∏
i=1...m

b

∑
|K′|=q−2...m−1

i/∈K′

∏
k′∈K′ (αk′−1)

i,0 b

δ(q)+
∑
|K′|=1...q−2

i/∈K′

∏
k′∈K′ (αk′−1)

i,2

(7.4)

where δ(q) = 0 if q ≤ m− 1, and δ(q) = 1 otherwise.

Proof. The expression for ϕI,K is rather easy. Recall that we are dealing with polynomi-

als (4.8) and C = diag(α1, . . . , αm). Write the first equation F0 = 0 as

a0 = −a1z1 . . . zm, (7.5)

and then raise it consequently in powers (αk − 1) where k ∈ K corresponds to [ ••]-type

rows, each time plugging zαk−1
k = − bk,1

bk,2
(repeating for all permuted perfograms).

5Note that non-diagonal quivers can be build upon the same skeleton, but with additional assumptions,

which are outside of the scope of this paper.
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The monomial part is more involved. We will use the short-hand notation (π) for the

permutation class of a perfogram, e.g.:

m+1
rows



•
• •

• •
• •
• •
...

...
...

• •
(π)

:=

•
• •

• •
• •
• •
...

...
...

• •

×

•
• •
• •

• •
• •
...

...
...

• •

×

•
• •
• •
• •

• •
...

...
...

• •

× · · · ×

•
• •
• •
• •
• •
...

...
...

• •

•
• •
• •

• •
• •
...

...
...

• •
(π)

:=

•
• •
• •

• •
• •
...

...
...

• •

×

•
• •

• •
• •

• •
...

...
...

• •

×

•
• •
• •
• •

• •
...

...
...

• •

× · · · ×

•
• •
• •
• •
...

...
...

• •
• •

(7.6)

and similarly for other types, which consists of all possible perfograms with fixed number

of black and red rows. Therefore, the number of such permutations is equal to

|(π)| = m!

(#black rows)! · (#red rows)!
(7.7)

Note that the product “×” is commutative, since it corresponds to taking unions of

Minkowski sums (the ordering in (7.6) is chosen just to illustrate the idea). Here we

used black (red) color for bullets in order to easily distinguish [•• ]- ([ ••]-) type of rows,

correspondingly — it does not carry any additional structure. Next, the blue bullet indi-

cate the equation, which remains fixed under permutation (it is always the one with just

a single bullet). In (7.6) it is F̃0 = a0 +((((
((a1z1 . . . zm, and its monomial a0 is the only guy

which survived in its row. Therefore, all such perfograms contribute to a0 in the monomial

µp,q (7.4). On another hand, all perfograms for a1 will start with F̃0 = ��a0 + a1z1 . . . zm,

and so forth. Therefore, we claim that the following perfograms generate all letters in the

monomial µp,q:

a0 :

•
• •
• •
• •
• •
...

...
...

• •

×

•
• •

• •
• •
• •
...

...
...

• • (π)

×

•
• •
• •

• •
• •
...

...
...

• • (π)

× · · · ×

•
• •

...
...

...

• •
• •
...

...
...

• • (π)

, unless #red rows ≤ q − 1 (7.8)

a1 :

•
• •
• •
• •
• •

...
...

...

• •

×

•
• •
• •
• •
• •

...
...

...

• • (π)

×

•
• •
• •
• •
• •

...
...

...

• • (π)

× · · · ×

•
• •
...

...
...

• •
• •

...
...

...

• • (π)

, unless #red rows ≥ q + 1 (7.9)
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b∗,0 :

• •
•
• •
• •
• •
• •

...
...

...

• •

×

• •
•
• •
• •
• •
• •

...
...

...

• • (π)

×

• •
•
• •
• •
• •
• •

...
...

...

• • (π)

× · · · ×

• •
•
• •
...

...
...

• •
• •

...
...

...

• • (π)

, unless #red rows ≥ q + 1

(7.10)

b∗,2 :

• •
•

• •
• •
• •
• •
...

...
...

• •

×

• •
•

• •
• •
• •
• •
...

...
...

• • (π)

×

• •
•

• •
• •

• •
• •
...

...
...

• • (π)

× · · · ×

• •
•

• •
...

...
...

• •
• •
...

...
...

• • (π)

, unless #red rows ≤ q − 1

(7.11)

where the number of red rows corresponds to |K ′| in (7.4). Also, for b∗,0 and b∗,2 “*” means

that we can choose any row i′ for the blue bullet, moving it around from the first to the

m-th row of each perfogram (the zeroth is of course not, since F0 does not depend on bi,j).

Somewhat surprisingly, µp,q does not depend on b∗,1 at all. This is due to the fact that

there is simply no more space for such extra cells. Recall that each φp,q corresponds to

a TCMD of Q. Its total volume equals to vol(Q), and does not depend on p, q, but only

on m. Therefore, the sum over all cells (perfograms) entering the monomial plus all the

perfograms entering the binomials, gives the total volume. For example, let’s verify that

the exponent of a0 in µp,q (7.4) is indeed equal to 1 +
∑
|K′|=1...q−1

∏
k′∈K′(αk′ − 1). This

is simply the sum over all volumes of Minkowski sums for its perfograms:

F̃0

F̃1

F̃2

F̃3

F̃4

...

F̃m

•
• •
• •
• •
• •
...

...
...

• •︸ ︷︷ ︸
vol=1

•
• •

• •
• •
• •
...

...
...

• •︸ ︷︷ ︸
vol=α1−1

•
• •
• •

• •
• •
...

...
...

• •︸ ︷︷ ︸
vol=(α1−1)(α2−1)

. . . (7.12)

In the first case we are left with F̃0 = a0 and F̃i = bi,0+bi,2z, i = 1 . . .m, which corresponds

to Q̃ being a unit m-cube with vol(Q̃) = 1. Similarly, each j-th row switching to red, gives

the factor (αj − 1) to the volume of Q̃. Calculating the volumes for each perfogram of

the variables a0, a1, b∗,0, b∗,2 and then summing them up, we obtain the exponents in (7.4).

What about the total volume? One can verify that the total degree of φp,q is equal to the
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total volume vol(Q). First of all, we have:

vol(Q) = α1 . . . αm +

m∑
j=1

α1 . . .��αj . . . αm. (7.13)

Take the identical TCMD(Q) = Q, which corresponds to the “bottom” 1-dimensional face

of N(R), with initial form

φ0,0 := GCD
(
a
∏
αj

0

∏
b
∏
j′ 6=j αj′

j,2 + (−1)
∏
αj+

∑∏
αj′a

∏
αj

1

∏
b
∏
j′ 6=j αj′

j,0

)
'

• •
• •
• •
...

...
...

• •
(7.14)

The GCD operator does not change the total degree of a polynomial, therefore the degree

of φ0,0 is equal to the right hand side of (7.13). On another hand, since the cell is unique

and equals to Q itself, its total degree is equal to the volume of Q. For m = 2 we have the

complete set of φp,q’s:

{φp,q} = {φ0,0} ∪ {φ2,0, φ0,2, φ1,1}. (7.15)

E.g.,

φ1,1 = a0a
(α1−1)(α2−1)
1 (aα1−1

0 b2c
α1−1
1 +aα1−1

1 b1c
α1−1
0 )(aα2−1

0 c2b
α2−1
1 +aα2−1

1 c1b
α2−1
0 ) (7.16)

(recall (4.16)). The volume vol(Q) = α1α2 +α1 +α2. We see that the condition deg(φ1,1) =

vol(Q) is satisfied. Analogously, for m = 3 it can be checked from the formulas (6.3). For

arbitrary m it then follows by induction. Indeed, increasing m by one amounts to adding

one extra row to all perfograms we have, and also introducing some new perfograms. Since

the volume of a cell given by a perfogram is the product over all its rows, the individual

volumes are modified as

α̃1 . . . α̃m 7→ α̃1 . . . α̃mα̃m+1

α̃1 . . .��̃αj . . . α̃m 7→ α̃1 . . .��̃αj . . . α̃mα̃m+1, j 6= m+ 1

α̃1 . . .���
�α̃j , α̃j′ . . . α̃m 7→ α̃1 . . .���

�α̃j , α̃j′ . . . α̃mα̃m+1, j, j
′ 6= m+ 1

...

(7.17)

where α̃i := αi − 1. But this picture is not yet symmetric, since α̃m+1 is never crossed

out. To make it fully symmetric, we have to take the permutation classes (π) in both

binomial (7.2) and monomial (7.4) parts. When we sum up the volumes of all cells in

φp,q with p + q = m, some cancellations occur (i.e. in the total volume all monomials

αi1 . . . αik with k < m − 1 are cancelled), which results in (7.13). The same type of

cancellation happens if we add one extra dimension, since the formula is symmetrized

(thanks to the permutations involved), and only the number of factors is increased by one.

Therefore, {φp,q} are well-defined initial forms for any m ≥ 2. � The following result is

the most important for us, since it implies that A(x, y) is tempered for any quiver with

C = diag(α, α, . . . , α), of size m:
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Figure 16. N(A) for diag(α, . . . , α): each φi,j projects onto the corresponding edge, such that the

min/max monomials of φi,j are in bijection with the vertices of N(A); φ0 := φ0,0.

Theorem 7.1 The edges of N(A) are in 1:1 correspondence with φp,q’s, if and only if

(α1, . . . , αm) = (α, . . . , α) (figure 16). Moreover, the vertices of N(A) are then given by

φmin
p,q and φmax

p,q , for all p, q such that p+ q = m and (p, q) = (0, 0) for the bottom edge.

Proof. We have:

φmin
0,0 = (−1)

∏
αj+

∑∏
αj′a

∏
αj

1

∏
b
∏
j′ 6=j αj′

j,0 , φmax
0,0 = a

∏
αj

0

∏
b
∏
j′ 6=j αj′

j,2
(7.18)

which gives the lowest and highest powers of y in the A-polynomial — the points (0, 0)

and (
∑∏

j′ 6=j αj′ ,
∏
αj) on the (x, y)-plane, are thus the vertices of N(A). Let’s write

min/max monomials for φp,q:

φmin
p,q = µp,q ·

∏
π(I,K)

(−1)

1+
∑
k∈K

∏
k′∈K
k′ 6=k

(αk′−1)
(
a1

∏
i∈I

bi,0

)∏
k∈K(αk−1) ∏

k∈K
b

∏
k′∈K
k′ 6=k

(αk′−1)

k,1

φmax
p,q = µp,q ·

∏
π(I,K)

(
a0

∏
i∈I

bi,1

)∏
k∈K(αk−1) ∏

k∈K
b

∏
k′∈K
k′ 6=k

(αk′−1)

k,2

(7.19)

For example, the first few nodes project onto (x, y)-plane with coordinates:

φmin
m,0 : (0, 0), φmax

m,0 : (0, 1),

φmin
m−1,1 : (0, 1), φmax

m−1,1 :

(
m, 1 +

∑
i=1...m

(αi − 1)

)
(7.20)

where (xi, yi) = (deg(φ
min/max
∗ , x), deg(φ

min/max
∗ , y)). The vertical edge given by φm,0 is

always presented in A(x, y), since it encodes the analytic branch of y as a function of x

(when the leading coefficient in the Puiseaux expansion has non-negative degree), see [15].
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Uniqueness of the preimage of each vertex of N(A) follows from uniqueness of the

corresponding mixed decomposition, where the a0-type and (
⋃
i bi,2)-type cells (represented

by the perfograms (7.8) and (7.11), respectively) are fixed. There is no space to vary the

other cells, as they would be fixed rigidly by their perfograms, and therefore produce a

unique extremal monomial. Being projected, each of them gives a unique vertex of N(A).

We have to introduce one extra notion: the detalization map, which subdivides a mixed

decomposition, refining its cell structure by dividing cells into smaller cells. For a given

face, it corresponds to picking up a particular sub-face. We can think of it as acting on

the two mutually dual levels: 1) the level of TCMDs, and 2) the level of perfograms. If

we have a simple initial form supported on a face, given by a collection of perfograms, we

can apply the detalization map to each of its perfograms as follows: assume we have a

perfogram which corresponds to some ϕI,K in (7.2):

ϕI,K ∼

• •
• •

...
...

...

• •
• •
...

...
...

• •

(7.21)

(the positions of red and black rows are not so important, they can be arbitrary, as their

numbers, so everything can be considered up to permutation of the rows). We proceed

with the following steps:

1. in the first equation F0, highlight the leftmost (rightmost) bullet, by putting it into

the “box”

2. in the rest of equations F1, . . . , Fm, do the same for the rightmost (leftmost) bullets:

• •
• •

...
...

...

• •
• •
...

...
...

• •

or

• •
• •

...
...

...

• •
• •
...

...
...

• •

(7.22)

3. copy this perfogram as many times as the number of its rows, every time removing

one of the bullets which are not in the box:
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Figure 17. Detalization of φ1,1, applied once to each of its smaller hexagons.

• •
• •

...
...

...

• •
• •
...

...
...

• •

detalization−−−−−−−→



•
• •

...
...

...

• •
• •
...

...
...

• •

• •
•

...
...

...

• •
• •
...

...
...

• •

• •
• •

...
...

...

•
• •
...

...
...

• •

• •
• •

...
...

...

• •
•
...

...
...

• •

• •
• •

...
...

...

• •
• •
...

...
...

•


which defines the map

edge −→ vertex

4. the whole set of such reduced perfograms corresponds to a vertex of N(R): a tail or

a head of an edge given by ϕI,K (if the leftmost or rightmost configuration is chosen,

respectively)

Therefore, if we have just a single perfogram (remember that it always corresponds to an

edge), there are only two options: detalization gives either its head or tail vertex (a kind

of “morsification”, since we assume that the head is always above the tail). On another

hand, if the face has a bigger dimension, we can apply detalization to each of its perfograms

independently, each time choosing either a head or a tail. In this way, all possible choices

generate the complete set of sub-faces. Here is an example of how it looks on the level of

TCMDs, borrowed from section 5 (figure 17).
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Q ∼ N(R)

face φ1,1 edge

edgeedge

edge

vertices

(∗)

(∗)

(∗) (∗∗)

(∗∗)(∗ ∗ ∗)

(∗ ∗ ∗)

Figure 18. Detalization of φ1,1: the complete picture.

Now we see how the “abstract” steps 1–4 work. For example, the underlined perfograms

align into the pattern of step 3. The two possibilities — the choice of the rightmost or

leftmost boxes — implement the cubical flip inside of each hexagon, which is being detailed.

Returning to figure 13, we see that the middle TCMD corresponds to the 2-dimensional

face b, whereas each of the four detalizations give one of its edges. On another hand, we

can iterate the procedure to obtain the complete set of sub-faces of φ1,1 (figure 18).

Let’s prove an important intermediate statement, which clarifies the incidence relations

for {φp,q}.

Proposition 7.2 The incidence relation for min/max:

φmax
m−i,i = φmin

m−i−1,i+1, ∀i = 0 . . .m; m ≥ 2 (7.23)

Proof. To begin with, let’s see how the detalization map acts on each perfogram, repre-

senting a binomial in φp,q. We study the pattern for diag(α1, α2): φmax
2,1 = φmin

1,2 . Then it
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will follow for any φp,q by induction on m. First, for φ2,1:

φ2,1 ∼

• •
• •

• •
• •

×

• •
• •

• •
• •

×

• •
• •
• •

• •

(7.24)

We take its detalization which gives the maximal weight:

•
• •

• •
• •

×

•
• •

• •
• •

×

•
• •
• •

• •

(7.25)

• •
•

• •
• •

×

• •
•
• •

• •

×

• •
•

• •
• •

(7.26)

• •
• •
•

• •

×

• •
• •

•
• •

×

• •
• •

•
• •

(7.27)

• •
• •

• •
•

×

• •
• •

• •
•

×

• •
• •
• •

•

(7.28)

The boxed monomials are those, which remain frozen (always non-zero) when doing de-

talization, i.e. we do not cross them out. We obtain decompositions of each binomial

diagram (of the three in the upper row) into four pieces (forming a column), such that all

of them along with µ2,1 define the corresponding extremal monomial φmax
2,1 . For the sake of

completeness, we also give a formula for µ2,1:

(a0) :

•
• •
• •
• •

(a1) :

•
• •
• •
• •

•
• •
• •
• •

(π)

(b∗,0) :

• •
•
• •
• •

(π)

(7.29)

Now we do the same thing for φ1,2:

φ1,2 ∼

• •
• •

• •
• •

×

• •
• •

• •
• •

×

• •
• •
• •

• •

(7.30)
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and its detalization which gives the minimal weight:

•
• •

• •
• •

×

•
• •

• •
• •

×

•
• •
• •

• •

(7.31)

• •
•

• •
• •

×

• •
•

• •
• •

×

• •
•
• •

• •

(7.32)

• •
• •

•
• •

×

• •
• •

•
• •

×

• •
• •
•

• •

(7.33)

• •
• •

• •
•

×

• •
• •

• •
•

×

• •
• •
• •

•

(7.34)

The monomial µ1,2:

(a0) :

•
• •
• •
• •

•
• •

• •
• •

(π)

(a1) :

•
• •
• •
• •

(b∗,2) :

• •
•

• •
• •

(π)

(7.35)

We see that the binomial counterparts of both φmax
1,2 and φmin

2,1 have the identical collections

of b∗,1-perfograms. Moreover, it immediately extends to any φp,q, since detalizing any

of b∗,1 corresponds to taking a row of the form [•• ] or [ ••]. So, in order to get the

maximum (minimum), we remove the left (right) neighbouring “•”, which results in the

same perfogram. Next, comparing the a0- and a1-perfograms, we see that those ones,

which are in the binomial part of φmin
2,1 , coincide with the µ-part in φmax

2,1 , and vice versa.

This is also true for b∗,2 counterpart (follows from Proposition 7.1). Therefore, there is

an “exchange relation” between the two collections of perfograms, resulting into identical

extremal monomials. Moreover, this rule extends to any p, q, hence the claim. �
Returning to the proof of Theorem 7.1, what is left to show is that when sending a0

to y and bi,2 to x, for i = 1 . . .m, the x- and y-degrees of each of monomial for φp,q grow

linearly. That is, after the principal specialization they project onto the same line segment,

if and only if αi are all equal.

First, recall that all φp,q are simple, meaning that all its monomials are extreme mono-

mials of N(R), and its dimension equals to the number of distinct binomial factors. We

already described now to compute its monomials with minimal and maximal powers of
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a0. Now how we do it for all other monomials? The answer is simple (and was in fact

already given in [20]): we have to take all possible combinations of min and max applied to

a particular binomial, in such way to obtain its full detalization (e.g. figure 18 for m = 2),

and the resulting mixed decomposition would give us the extreme monomial of φp,q, and

then changing the min max configuration will give another extremal monomial, and so on.

Consider, for example, φ2,1 versus φ1,2. Each of them contains three distinct binomial

factors — denote them as H(i)
p,q, (p, q) = (2, 1) or (1, 2). Therefore, their monomials are

given by the triples (min,min,min) . . . (max,max,max) (7.36).

H(1)
p,q H(2)

p,q H(3)
p,q

min min min

min min max

min max min

min max max

max min min

max min max

max max min

max max max

(7.36)

In total there are 8 monomials for φ2,1 (or φ1,2). We have the following rule for “min”

(“max”): make the a1 (a0) bullet frozen: • , along with all the leftmost (rightmost) b-type

bullets, as shown on (7.25)–(7.28) and (7.31)–(7.34). Then, duplicate the perfogram by

removing each non-frozen bullet, to obtain a collection of perfograms corresponding to a

single coefficient in a non-negative power. Therefore, the whole collection will now define

some extreme monomial.

Recall that the binomial counterpart of φmin
2,1 does not depend on neither a0 nor bi,2,

which means that the (x, y)-coordinates of the minimal monomial are completely fixed by

µ2,1. Moving to the next order gives an increment to both x- and y- degrees of µ2,1 (which

we denote as µ̃x and µ̃y). For the fist increment, we replace a single “min” by “max”, say, in

Hs := H(s)
p,q for s ∈ {1, 2, 3}. This amounts to changing the frozen configuration, so that the

a0-degree gets the increment +
∏
j∈K′s(αj − 1), where K ′s is attached to Hs. If we do that

again, we modify yet another factor Hs′ , getting the increment: a0 7→ a0 +
∏
j∈K′

s′
(αj − 1),

and so on, until we reach φmax
2,1 ' (max,max,max). Analogously, for b∗,2 the increment at

Hs be like: +
∏
j∈K′s\{∗}(αj − 1). The total x-degree is given by summing up the latter

expression. We obtain the sequence of increments (figure 19).

Therefore, each time by changing “min” of Hs to “max” (7.36), we get the increments

for the (x, y)-coordinates of a monomial on the edge of N(A):

x 7→ x+
∑

r=1...m

∏
j∈K′s\{r}

(αj − 1), y 7→ y +
∏
j∈K′s

(αj − 1), (7.37)

We see that the increment, being a function of (α1, . . . , αm), is non-linear. Now it be-

comes clear by looking at (7.37) that it is linear only when αi are all equal. Of course the

(x, y)-degree of the monomial does not depend on permutation (i.e. (min,min,max) and
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{min,min,min}

{max,max,max}

{min,min,max}

{min,max,max}

φmin
2,1

φmax
2,1 = φmin

1,2

N(A)

Figure 19. The (x, y)-projection of φ2,1 onto the edge of N(A) gives the four nodes, and the

min/max rule.

(max,min,min) are indistinguishable after the (x, y)-projection). Therefore, eight mono-

mials of φ2,1 (or φ1,2) are mapped onto four points on the edge of N(A), see figure 19. The

endpoints are extremal, and in one-to-one correspondence with their preimages, while the

intermediate nodes (green) correspond to classes of permutations. The picture is drawn

when α’s are all equal, which guarantees linearity of the increments, therefore a single line

segment being a projection slope. Vice versa, linearity of the increment forces all αi to be

equal, since any pair αi 6= αj will result in a change of slope on figure 19 between any of

the two nodes. This calculation is absolutely analogous for any m and p, q, so that the

result does not depend on the size of perfograms.

Finally, we have to clarify the following: if αi are all equal, there are no intermediate

monomials on the edges, except from the projection of φp,q. This follows from the fact that

the minimally allowed y-increment is equal to (α− 1). For m = 2 this holds trivially, since

there are no integer lattice points on each edge of N(A), which are not the monomials of

φp,q for some p and q. Then, for α > 2 there are integer points between red-green, and

green-green nodes (figure 19). But in order to have the corresponding monomials in A(x, y),

one has to apply y-increment which is smaller than (α − 1), among all the initial forms

{φp,q}, which is of course forbidden. Those integer lattice points would stay unoccupied,

hence the claim.

At this point, we have finally completed the proof of the main Theorem 7.1. �
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Figure 20. Newton polygon and the initial forms φp,q forming its edges for diag(2, 2, 2) quiver.

A Experimental data

A.1 Diagonal quivers

Here we provide some examples of quivers with diagonal matrix C, which support Con-

jecture 6.1. All computations were performed in Maple. Since quiver A-polynomials for

3-vertex quivers are quite huge, we use the notation [cijkl, i, j, k, l] for each monomial in

A(x1, x2, x3, y):

A(x1, x2, x3, y) =
∑
i,j,k,l

cijklx
i
1x
j
2x
k
3y
l (A.1)

diag(2, 2, 2).

[1,4,4,4,8],[1,3,3,3,7],[-4,3,3,3,6],[-2,3,3,2,6],[-2,3,2,3,6],[-2,2,

3,3,6],[-1,3,2,2,6],[-1,2,3,2,6],[-1,2,2,3,6],[5,2,2,2,5],[1,2,2,1,5],

[1,2,1,2,5],[1,1,2,2,5],[6,2,2,2,4],[4,2,2,1,4],[4,2,1,2,4],[4,1,2,2,4

],[1,2,2,0,4],[1,2,0,2,4],[1,0,2,2,4],[-1,1,1,1,4],[-5,1,1,1,3],[-1,1,

1,0,3],[-1,1,0,1,3],[-1,0,1,1,3],[-4,1,1,1,2],[-2,1,1,0,2],[-2,1,0,1,2

],[-2,0,1,1,2],[-1,1,0,0,2],[-1,0,1,0,2],[-1,0,0,1,2],[-1,0,0,0,1],[1,0

,0,0,0]

On figure 20 and henceforth, the green and blue nodes are (the projections of) φ2,1

and φ1,2, correspondingly. The encircled point is where φ2,1 meets φ1,2, i.e. φmax
2,1 = φmin

1,2 .

This is the m = 3 case of figure 16.

diag(2, 2, 3).

[[1,6,6,4,12],[-4,5,5,3,10],[-2,5,4,3,10],[-2,4,5,3,10],[-1,4,4,3,10],

[9,4,4,3,9],[3,4,3,3,9],[3,3,4,3,9],[1,3,3,3,9],[6,4,4,2,8],[4,4,3,2,8

],[4,3,4,2,8],[1,4,2,2,8],[1,2,4,2,8],[-11,3,3,2,7],[-5,3,2,2,7],[-5,2

,3,2,7],[-2,3,3,2,6],[-1,3,1,2,7],[-1,1,3,2,7],[-4,3,3,1,6],[-9,3,2,2,

6],[-9,2,3,2,6],[-2,3,2,1,6],[-6,3,1,2,6],[-2,2,3,1,6],[-6,1,3,2,6],[-

1,3,0,2,6],[-1,2,2,1,6],[-1,0,3,2,6],[3,2,2,1,5],[2,2,1,1,5],[2,1,2,1,

5],[4,2,2,1,4],[1,1,1,1,5],[1,2,2,0,4],[8,2,1,1,4],[8,1,2,1,4],[2,2,0,
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Figure 21. Newton polygon for diag(2, 2, 3) quiver.

1,4],[7,1,1,1,4],[2,0,2,1,4],[1,1,0,1,4],[1,0,1,1,4],[9,1,1,1,3],[-1,1

,1,0,3],[3,1,0,1,3],[3,0,1,1,3],[1,0,0,1,3],[-2,1,1,0,2],[-1,1,0,0,2],

[-1,0,1,0,2],[-1,0,0,0,1],[1,0,0,0,0]]

On figure 21 (unlike for diag(2, 2, 2), figure 20) we can see that some of the monomials

of φ2,1 and φ1,2 project onto the interior of N(A). Nevertheless, those initial forms still

fully cover the edges, and binomiality of the face polynomials is preserved.

diag(2, 2, 4). The Newton polygon and initial forms are shown in figure 22.

[[1,8,8,4,16],[9,6,6,3,13],[3,6,5,3,13],[3,5,6,3,13],[-4,6,6,3,12],[1,

5,5,3,13],[-8,6,5,3,12],[-8,5,6,3,12],[-2,6,4,3,12],[-16,5,5,3,12],[-2

,4,6,3,12],[-4,5,4,3,12],[-4,4,5,3,12],[-1,4,4,3,12],[-2,5,5,2,10],[-9

,5,4,2,10],[-9,4,5,2,10],[-6,5,3,2,10],[-6,3,5,2,10],[-1,5,2,2,10],[-1

,2,5,2,10],[13,4,4,2,9],[14,4,3,2,9],[14,3,4,2,9],[6,4,4,2,8],[7,4,2,2

,9],[7,2,4,2,9],[16,4,3,2,8],[16,3,4,2,8],[1,4,1,2,9],[1,1,4,2,9],[20,

4,2,2,8],[20,2,4,2,8],[8,4,1,2,8],[8,1,4,2,8],[1,4,0,2,8],[1,0,4,2,8],

[9,3,3,1,7],[3,3,2,1,7],[3,2,3,1,7],[4,3,3,1,6],[1,2,2,1,7],[2,3,2,1,6

],[2,2,3,1,6],[-8,2,2,1,6],[-3,2,1,1,6],[-3,1,2,1,6],[-21,2,2,1,5],[-1

,1,1,1,6],[-17,2,1,1,5],[-17,1,2,1,5],[-4,2,2,1,4],[-3,2,0,1,5],[-9,1,

1,1,5],[-3,0,2,1,5],[1,2,2,0,4],[-8,2,1,1,4],[-8,1,2,1,4],[-1,1,0,1,5]

,[-1,0,1,1,5],[-2,2,0,1,4],[-16,1,1,1,4],[-2,0,2,1,4],[-4,1,0,1,4],[-4

,0,1,1,4],[-1,0,0,1,4],[-1,1,1,0,3],[-2,1,1,0,2],[-1,1,0,0,2],[-1,0,1,0

,2],[-1,0,0,0,1],[1,0,0,0,0]]

diag(2, 3, 3).

[[1,9,6,6,18],[-4,8,5,5,16],[-2,7,5,5,16],[9,7,5,5,15],[3,6,5,5,15],[6

,7,4,4,14],[4,6,4,4,14],[1,5,4,4,14],[-11,6,4,4,13],[-5,5,4,4,13],[-3,

6,4,4,12],[-1,4,4,4,13],[-2,6,4,3,12],[-2,6,3,4,12],[27,5,4,4,12],[-4,

6,3,3,12],[-9,5,4,3,12],[-9,5,3,4,12],[18,4,4,4,12],[-2,5,3,3,12],[-6,
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Figure 22. Newton polygon for diag(2, 2, 4) quiver.

4,4,3,12],[-6,4,3,4,12],[3,3,4,4,12],[-1,3,4,3,12],[-1,3,3,4,12],[3,5,

3,3,11],[2,4,3,3,11],[-4,5,3,3,10],[4,5,3,2,10],[4,5,2,3,10],[-5,4,3,3

,10],[1,5,2,2,10],[8,4,3,2,10],[8,4,2,3,10],[14,3,3,3,10],[-18,4,3,3,9

],[2,3,3,2,10],[2,3,2,3,10],[8,2,3,3,10],[9,4,3,2,9],[9,4,2,3,9],[21,3

,3,3,9],[1,1,3,3,10],[-1,4,2,2,9],[3,3,3,2,9],[3,3,2,3,9],[27,2,3,3,9]

,[9,1,3,3,9],[1,4,2,2,8],[1,0,3,3,9],[-2,4,2,1,8],[-2,4,1,2,8],[-15,3,

2,2,8],[-1,3,2,1,8],[-1,3,1,2,8],[-12,2,2,2,8],[-26,3,2,2,7],[-2,1,2,2

,8],[-1,3,2,1,7],[-1,3,1,2,7],[-43,2,2,2,7],[3,3,2,2,6],[-17,1,2,2,7],

[-6,3,2,1,6],[-6,3,1,2,6],[-27,2,2,2,6],[-2,0,2,2,7],[1,3,2,0,6],[4,3,

1,1,6],[1,3,0,2,6],[-18,1,2,2,6],[4,2,1,1,6],[-3,0,2,2,6],[1,1,1,1,6],

[8,2,1,1,5],[6,1,1,1,5],[8,2,1,1,4],[1,0,1,1,5],[-2,2,1,0,4],[-2,2,0,1

,4],[7,1,1,1,4],[-1,1,1,0,4],[-1,1,0,1,4],[1,0,1,1,4],[9,1,1,1,3],[-3,

1,1,0,3],[-3,1,0,1,3],[3,0,1,1,3],[-1,0,1,0,3],[-1,0,0,1,3],[1,1,0,0,2

],[1,0,0,0,1],[-1,0,0,0,0]]

Calculating the initial form initr′ (6.12), we get:

initr′ = a0
5a1

8b1
4c0

2c2d0
2d2 ·GCD

((
a0

4b1
4c2

2d2
2 − a1

4b0
4c1

2d1
2
)

(a0b2c1d1 − a1b1c0d0)
)

= a0
5a1

8b1
4c0

2c2d0
2d2

(
a0

2b1
2c2d2 − a1

2b0
2c1d1

)2
(a0b2c1d1 − a1b1c0d0) .

(A.2)

After specialization it takes form:

initr′ = y5x2x3

(
y2x2x3 − 1

)2
(yx1 − 1) (A.3)

Its projection onto N(A) is shown on figure 23, right (the red nodes).

On figure 23, left, one can see that φ1,2 does not fully cover the edge: some of the

monomials are missing. However, by introducing initr′ , we get rid of this problem (figure 23,

right).
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Figure 23. Newton polygon for diag(2, 3, 3) quiver: without and with initr′ .

diag(2, 4, 4).

[[1,16,8,8,32],[9,14,7,7,29],[3,13,7,7,29],[-8,14,7,7,28],[-16,13,7,7,

28],[-4,12,7,7,28],[-3,13,6,6,26],[27,12,6,6,26],[18,11,6,6,26],[-23,

12,6,6,25],[3,10,6,6,26],[-70,11,6,6,25],[28,12,6,6,24],[-35,10,6,6,25

],[96,11,6,6,24],[-5,9,6,6,25],[120,10,6,6,24],[48,9,6,6,24],[6,8,6,6,

24],[-18,11,5,5,23],[21,10,5,5,23],[4,11,5,5,22],[27,9,5,5,23],[23,10,

5,5,22],[9,8,5,5,23],[-35,9,5,5,22],[-19,10,5,5,21],[1,7,5,5,23],[-35,

8,5,5,22],[-15,9,5,5,21],[-56,10,5,5,20],[-10,7,5,5,22],[59,8,5,5,21],

[-2,10,5,4,20],[-2,10,4,5,20],[-240,9,5,5,20],[-1,6,5,5,22],[44,7,5,5,

21],[3,10,4,4,20],[-36,9,5,4,20],[-36,9,4,5,20],[-444,8,5,5,20],[11,6,

5,5,21],[-27,9,4,4,20],[-105,8,5,4,20],[-105,8,4,5,20],[-448,7,5,5,20]

,[1,5,5,5,21],[-18,8,4,4,20],[-112,7,5,4,20],[-112,7,4,5,20],[-216,6,5

,5,20],[-14,9,4,4,19],[-3,7,4,4,20],[-54,6,5,4,20],[-54,6,4,5,20],[-48

,5,5,5,20],[22,8,4,4,19],[13,9,4,4,18],[-12,5,5,4,20],[-12,5,4,5,20],[

-4,4,5,5,20],[17,7,4,4,19],[6,8,4,4,18],[-1,4,5,4,20],[-1,4,4,5,20],[3

,6,4,4,19],[-36,7,4,4,18],[125,8,4,4,17],[-20,6,4,4,18],[27,8,4,3,17],

[27,8,3,4,17],[444,7,4,4,17],[70,8,4,4,16],[-3,5,4,4,18],[9,8,3,3,17],

[90,7,4,3,17],[90,7,3,4,17],[674,6,4,4,17],[8,8,4,3,16],[8,8,3,4,16],[

320,7,4,4,16],[3,7,3,3,17],[81,6,4,3,17],[81,6,3,4,17],[554,5,4,4,17],

[4,8,3,3,16],[64,7,4,3,16],[64,7,3,4,16],[656,6,4,4,16],[27,5,4,3,17],

[27,5,3,4,17],[287,4,4,4,17],[-7,7,3,3,16],[80,6,4,3,16],[80,6,3,4,16]

,[800,5,4,4,16],[3,4,4,3,17],[3,4,3,4,17],[90,3,4,4,17],[-3,6,3,3,16],

[32,5,4,3,16],[32,5,3,4,16],[676,4,4,4,16],[6,7,3,3,15],[15,2,4,4,17],

[4,4,4,3,16],[4,4,3,4,16],[352,3,4,4,16],[10,6,3,3,15],[-32,7,3,3,14],

[1,1,4,4,17],[104,2,4,4,16],[3,5,3,3,15],[-6,7,3,2,14],[-6,7,2,3,14],[

-202,6,3,3,14],[16,1,4,4,16],[-1,7,2,2,14],[-27,6,3,2,14],[-27,6,2,3,

14],[-382,5,3,3,14],[-165,6,3,3,13],[1,0,4,4,16],[-18,5,3,2,14],[-18,5

,2,3,14],[-348,4,3,3,14],[-25,6,3,2,13],[-25,6,2,3,13],[-587,5,3,3,13]

,[-56,6,3,3,12],[-3,4,3,2,14],[-3,4,2,3,14],[-162,3,3,3,14],[1,6,2,2,

13],[-25,5,3,2,13],[-25,5,2,3,13],[-874,4,3,3,13],[-12,6,3,2,12],[-12,
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Figure 24. Newton polygon and the initial form initr′ (red nodes) for diag(2, 4, 4) quiver.

6,2,3,12],[-240,5,3,3,12],[-36,2,3,3,14],[-5,4,3,2,13],[-5,4,2,3,13],[

-644,3,3,3,13],[-1,6,2,2,12],[-24,5,3,2,12],[-24,5,2,3,12],[-444,4,3,3

,12],[-3,1,3,3,14],[-239,2,3,3,13],[-1,5,2,2,12],[-6,4,3,2,12],[-6,4,2

,3,12],[-448,3,3,3,12],[-43,1,3,3,13],[-216,2,3,3,12],[38,5,2,2,11],[-

3,0,3,3,13],[-48,1,3,3,12],[3,5,2,1,11],[3,5,1,2,11],[94,4,2,2,11],[23

,5,2,2,10],[-4,0,3,3,12],[1,4,2,1,11],[1,4,1,2,11],[81,3,2,2,11],[2,5,

2,1,10],[2,5,1,2,10],[159,4,2,2,10],[27,2,2,2,11],[1,4,2,1,10],[1,4,1,

2,10],[250,3,2,2,10],[91,4,2,2,9],[3,1,2,2,11],[145,2,2,2,10],[1,4,2,1

,9],[1,4,1,2,9],[234,3,2,2,9],[28,4,2,2,8],[35,1,2,2,10],[177,2,2,2,9]

,[8,4,2,1,8],[8,4,1,2,8],[96,3,2,2,8],[3,0,2,2,10],[51,1,2,2,9],[1,4,2

,0,8],[1,4,0,2,8],[120,2,2,2,8],[5,0,2,2,9],[-9,3,1,1,8],[48,1,2,2,8],

[-6,2,1,1,8],[6,0,2,2,8],[-12,3,1,1,7],[-1,1,1,1,8],[-19,2,1,1,7],[-4,

3,1,1,6],[-8,1,1,1,7],[-13,2,1,1,6],[-1,0,1,1,7],[-7,1,1,1,6],[-17,2,1

,1,5],[-1,0,1,1,6],[-3,2,1,0,5],[-3,2,0,1,5],[-9,1,1,1,5],[-8,2,1,1,4]

,[-1,1,1,0,5],[-1,1,0,1,5],[-1,0,1,1,5],[-2,2,1,0,4],[-2,2,0,1,4],[-16

,1,1,1,4],[-4,1,1,0,4],[-4,1,0,1,4],[-4,0,1,1,4],[-1,0,1,0,4],[-1,0,0,

1,4],[-1,1,0,0,2],[-1,0,0,0,1],[1,0,0,0,0]]

initr′ = a0
7a1

15b1
6c0

3c2d0
3d2 ·GCD

((
a0

9b1
9c2

3d2
3 − a1

9b0
9c1

3d1
3
)

(a0b2c1d1 − a1b1c0d0)
)

= a0
7a1

15b1
6c0

3c2d0
3d2

(
a0

3b1
3c2d2 − a1

3b0
3c1d1

)3
(a0b2c1d1 − a1b1c0d0) .

(A.4)

After specialization, it takes form:

initr′ = −y7x2x3

(
−y3x2x3 + 1

)3
(yx1 − 1) (A.5)

Now we take its counterpart: −y7x2x3

(
−y3x2x3 + 1

)3
. Its projection is shown on figure 24.
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diag(3, 3, 4). The Newton polygon and initial forms are shown in figure 25.

[[1,12,12,9,36],[9,11,11,8,33],[-4,10,10,8,32],[36,10,10,7,30],[-3,10,

9,7,30],[-3,9,10,7,30],[-2,9,9,7,30],[13,9,9,7,29],[-32,9,9,7,28],[-8,

9,8,7,28],[-8,8,9,7,28],[6,8,8,7,28],[84,9,9,6,27],[-18,9,8,6,27],[-18

,8,9,6,27],[9,8,8,6,27],[72,8,8,6,26],[-18,8,7,6,26],[-18,7,8,6,26],[-

167,8,8,6,25],[4,7,7,6,26],[49,8,7,6,25],[49,7,8,6,25],[-3,8,8,6,24],[

-21,7,7,6,25],[126,8,8,5,24],[-24,8,7,6,24],[-24,7,8,6,24],[-45,8,7,5,

24],[-2,8,6,6,24],[-45,7,8,5,24],[-64,7,7,6,24],[-2,6,8,6,24],[3,8,6,5

,24],[36,7,7,5,24],[16,7,6,6,24],[3,6,8,5,24],[16,6,7,6,24],[-6,7,6,5,

24],[-6,6,7,5,24],[-4,6,6,6,24],[79,7,7,5,23],[1,6,6,5,24],[-7,7,6,5,

23],[-7,6,7,5,23],[-357,7,7,5,22],[-1,6,6,5,23],[162,7,6,5,22],[162,6,

7,5,22],[-18,7,7,5,21],[-18,7,5,5,22],[-84,6,6,5,22],[-18,5,7,5,22],[

126,7,7,4,21],[-66,7,6,5,21],[-66,6,7,5,21],[13,6,5,5,22],[13,5,6,5,22

],[-60,7,6,4,21],[27,7,5,5,21],[-60,6,7,4,21],[-128,6,6,5,21],[27,5,7,

5,21],[-2,5,5,5,22],[9,7,5,4,21],[35,6,6,4,21],[18,6,5,5,21],[9,5,7,4,

21],[18,5,6,5,21],[124,6,6,5,20],[-3,6,5,4,21],[-3,5,6,4,21],[-1,5,5,5

,21],[-4,6,6,4,20],[-128,6,5,5,20],[-128,5,6,5,20],[15,6,5,4,20],[20,6

,4,5,20],[15,5,6,4,20],[64,5,5,5,20],[20,4,6,5,20],[-400,6,6,4,19],[-2

,6,4,4,20],[-8,5,4,5,20],[-2,4,6,4,20],[-8,4,5,5,20],[172,6,5,4,19],[

172,5,6,4,19],[-45,6,6,4,18],[1,4,4,5,20],[-19,6,4,4,19],[-76,5,5,4,19

],[-19,4,6,4,19],[84,6,6,3,18],[-45,6,5,4,18],[-45,5,6,4,18],[6,5,4,4,

19],[6,4,5,4,19],[-45,6,5,3,18],[27,6,4,4,18],[-45,5,6,3,18],[-17,5,5,

4,18],[27,4,6,4,18],[9,6,4,3,18],[-6,6,3,4,18],[9,5,5,3,18],[-23,5,4,4

,18],[9,4,6,3,18],[-23,4,5,4,18],[-6,3,6,4,18],[310,5,5,4,17],[-1,6,3,

3,18],[4,5,3,4,18],[-1,3,6,3,18],[4,3,5,4,18],[-45,5,5,3,17],[-187,5,4

,4,17],[-187,4,5,4,17],[16,5,5,4,16],[6,5,4,3,17],[17,5,3,4,17],[6,4,5

,3,17],[47,4,4,4,17],[17,3,5,4,17],[-250,5,5,3,16],[92,5,4,4,16],[92,4

,5,4,16],[-3,4,3,4,17],[-3,3,4,4,17],[100,5,4,3,16],[-64,5,3,4,16],[

100,4,5,3,16],[-63,4,4,4,16],[-64,3,5,4,16],[-60,5,5,3,15],[-19,5,3,3,

16],[8,5,2,4,16],[-14,4,4,3,16],[16,4,3,4,16],[-19,3,5,3,16],[16,3,4,4

,16],[8,2,5,4,16],[36,5,5,2,15],[21,5,4,3,15],[21,4,5,3,15],[2,5,2,3,

16],[-2,4,2,4,16],[2,2,5,3,16],[-2,2,4,4,16],[-18,5,4,2,15],[-8,5,3,3,

15],[-18,4,5,2,15],[71,4,4,3,15],[-8,3,5,3,15],[3,5,3,2,15],[3,5,2,3,

15],[-12,4,3,3,15],[3,3,5,2,15],[-12,3,4,3,15],[3,2,5,3,15],[304,4,4,3

,14],[-16,4,4,2,14],[-72,4,3,3,14],[-72,3,4,3,14],[22,4,4,3,13],[2,4,3

,2,14],[11,4,2,3,14],[2,3,4,2,14],[1,3,3,3,14],[11,2,4,3,14],[-87,4,4,

2,13],[95,4,3,3,13],[95,3,4,3,13],[3,4,4,3,12],[-1,4,1,3,14],[-1,1,4,3

,14],[39,4,3,2,13],[-14,4,2,3,13],[39,3,4,2,13],[-64,3,3,3,13],[-14,2,

4,3,13],[-45,4,4,2,12],[-40,4,3,3,12],[-40,3,4,3,12],[-6,4,2,2,13],[-1

,4,1,3,13],[6,3,2,3,13],[-6,2,4,2,13],[6,2,3,3,13],[-1,1,4,3,13],[9,4,

4,1,12],[33,4,3,2,12],[42,4,2,3,12],[33,3,4,2,12],[64,3,3,3,12],[42,2,

4,3,12],[-3,4,3,1,12],[-9,4,2,2,12],[-12,4,1,3,12],[-3,3,4,1,12],[40,3

,3,2,12],[-16,3,2,3,12],[-9,2,4,2,12],[-16,2,3,3,12],[-12,1,4,3,12],[1

,4,0,3,12],[1,3,3,1,12],[-4,3,2,2,12],[-4,2,3,2,12],[4,2,2,3,12],[1,0,

4,3,12],[121,3,3,2,11],[1,3,3,1,11],[-30,3,2,2,11],[-30,2,3,2,11],[-3,

3,3,2,10],[3,3,1,2,11],[3,1,3,2,11],[-17,3,3,1,10],[3,3,2,2,10],[3,2,3

,2,10],[9,3,3,2,9],[6,3,2,1,10],[3,3,1,2,10],[6,2,3,1,10],[-28,2,2,2,

10],[3,1,3,2,10],[-18,3,3,1,9],[-54,3,2,2,9],[-54,2,3,2,9],[-2,2,2,1,
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Figure 25. Newton polygon for diag(3, 3, 4) quiver.

10],[2,2,1,2,10],[2,1,2,2,10],[1,3,3,0,9],[9,3,2,1,9],[27,3,1,2,9],[9,

2,3,1,9],[-20,2,2,2,9],[27,1,3,2,9],[-3,3,0,2,9],[-5,2,2,1,9],[2,2,1,2

,9],[2,1,2,2,9],[-3,0,3,2,9],[-56,2,2,2,8],[4,2,2,1,8],[16,2,1,2,8],[

16,1,2,2,8],[-3,2,1,1,8],[-2,2,0,2,8],[-3,1,2,1,8],[-2,0,2,2,8],[-8,2,

2,1,7],[1,1,1,1,8],[-2,2,2,0,7],[-3,2,1,1,7],[-3,1,2,1,7],[9,2,2,1,6],

[2,1,1,1,7],[-3,2,2,0,6],[-18,2,1,1,6],[-18,1,2,1,6],[3,2,0,1,6],[11,1

,1,1,6],[3,0,2,1,6],[-1,1,0,1,6],[-1,0,1,1,6],[9,1,1,1,5],[1,1,1,0,5],

[-1,1,0,1,5],[-1,0,1,1,5],[16,1,1,1,4],[1,1,1,0,4],[-4,1,0,1,4],[-4,0,

1,1,4],[1,0,0,1,4],[3,1,1,0,3],[-1,1,0,0,3],[-1,0,1,0,3],[1,0,0,0,1],[

-1,0,0,0,0]]

diag(3, 4, 4).

[[1,16,12,12,48],[9,15,11,11,45],[-8,14,11,11,44],[36,14,10,10,42],[-3

,13,10,10,42],[-23,13,10,10,41],[-16,13,10,10,40],[28,12,10,10,40],[84

,13,9,9,39],[-18,12,9,9,39],[3,12,9,9,38],[4,11,9,9,38],[-23,12,9,9,37

],[-19,11,9,9,37],[-4,12,9,9,36],[-3,12,9,8,36],[-3,12,8,9,36],[96,11,

9,9,36],[126,12,8,8,36],[-24,11,9,8,36],[-24,11,8,9,36],[-56,10,9,9,36

],[-45,11,8,8,36],[-2,10,9,8,36],[-2,10,8,9,36],[3,10,8,8,36],[80,11,8

,8,35],[-14,10,8,8,35],[72,11,8,8,34],[-85,10,8,8,34],[9,11,8,8,33],[

13,9,8,8,34],[-18,11,8,7,33],[-18,11,7,8,33],[-138,10,8,8,33],[126,11,

7,7,33],[-66,10,8,7,33],[-66,10,7,8,33],[125,9,8,8,33],[120,10,8,8,32]

,[-60,10,7,7,33],[27,9,8,7,33],[27,9,7,8,33],[-136,10,8,7,32],[-136,10

,7,8,32],[-240,9,8,8,32],[9,9,7,7,33],[110,10,7,7,32],[70,8,8,8,32],[-

39,9,7,7,32],[8,8,8,7,32],[8,8,7,8,32],[199,10,7,7,31],[4,8,7,7,32],[-

71,9,7,7,31],[45,10,7,7,30],[6,8,7,7,31],[-45,10,7,6,30],[-45,10,6,7,

30],[-173,9,7,7,30],[84,10,6,6,30],[-45,9,7,6,30],[-45,9,6,7,30],[86,8

,7,7,30],[-329,9,7,7,29],[-45,9,6,6,30],[27,8,7,6,30],[27,8,6,7,30],[-

32,7,7,7,30],[-360,9,7,6,29],[-360,9,6,7,29],[523,8,7,7,29],[48,9,7,7,

28],[9,8,6,6,30],[-6,7,7,6,30],[-6,7,6,7,30],[57,9,6,6,29],[151,8,7,6,

29],[151,8,6,7,29],[-165,7,7,7,29],[-152,9,7,6,28],[-152,9,6,7,28],[-
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444,8,7,7,28],[-1,7,6,6,30],[-20,8,6,6,29],[-25,7,7,6,29],[-25,7,6,7,

29],[176,9,6,6,28],[-170,8,7,6,28],[-170,8,6,7,28],[320,7,7,7,28],[1,7

,6,6,29],[-52,8,6,6,28],[96,7,7,6,28],[96,7,6,7,28],[-56,6,7,7,28],[40

,9,6,6,27],[9,7,6,6,28],[-12,6,7,6,28],[-12,6,6,7,28],[-60,9,6,5,27],[

-60,9,5,6,27],[207,8,6,6,27],[-1,6,6,6,28],[36,9,5,5,27],[21,8,6,5,27]

,[21,8,5,6,27],[-152,7,6,6,27],[-39,8,6,6,26],[-18,8,5,5,27],[-8,7,6,5

,27],[-8,7,5,6,27],[38,6,6,6,27],[-320,8,6,5,26],[-320,8,5,6,26],[360,

7,6,6,26],[-243,8,6,6,25],[3,7,5,5,27],[3,6,6,5,27],[3,6,5,6,27],[7,8,

5,5,26],[157,7,6,5,26],[157,7,5,6,26],[-94,6,6,6,26],[-288,8,6,5,25],[

-288,8,5,6,25],[1018,7,6,6,25],[6,8,6,6,24],[1,7,5,5,26],[-21,6,6,5,26

],[-21,6,5,6,26],[23,5,6,6,26],[63,8,5,5,25],[-55,7,6,5,25],[-55,7,5,6

,25],[-508,6,6,6,25],[-48,8,6,5,24],[-48,8,5,6,24],[-448,7,6,6,24],[2,

5,6,5,26],[2,5,5,6,26],[-22,7,5,5,25],[26,6,6,5,25],[26,6,5,6,25],[91,

5,6,6,25],[3,8,6,4,24],[9,8,5,5,24],[3,8,4,6,24],[-512,7,6,5,24],[-512

,7,5,6,24],[656,6,6,6,24],[3,6,5,5,25],[1,5,6,5,25],[1,5,5,6,25],[-45,

8,5,4,24],[-45,8,4,5,24],[-40,7,6,4,24],[159,7,5,5,24],[-40,7,4,6,24],

[384,6,6,5,24],[384,6,5,6,24],[-240,5,6,6,24],[9,8,4,4,24],[33,7,5,4,

24],[33,7,4,5,24],[42,6,6,4,24],[-35,6,5,5,24],[42,6,4,6,24],[-96,5,6,

5,24],[-96,5,5,6,24],[28,4,6,6,24],[611,7,5,5,23],[-3,7,4,4,24],[-9,6,

5,4,24],[-9,6,4,5,24],[-12,5,6,4,24],[-9,5,5,5,24],[-12,5,4,6,24],[8,4

,6,5,24],[8,4,5,6,24],[-106,7,5,4,23],[-106,7,4,5,23],[-329,6,5,5,23],

[234,7,5,5,22],[1,4,6,4,24],[1,4,4,6,24],[-2,7,4,4,23],[33,6,5,4,23],[

33,6,4,5,23],[44,5,5,5,23],[-150,7,5,4,22],[-150,7,4,5,22],[1032,6,5,5

,22],[-45,7,5,5,21],[-6,5,5,4,23],[-6,5,4,5,23],[-12,4,5,5,23],[8,7,4,

4,22],[37,6,5,4,22],[37,6,4,5,22],[-450,5,5,5,22],[-36,7,5,4,21],[-36,

7,4,5,21],[1348,6,5,5,21],[-3,6,4,4,22],[-11,5,5,4,22],[-11,5,4,5,22],

[39,4,5,5,22],[9,7,5,3,21],[18,7,4,4,21],[9,7,3,5,21],[-366,6,5,4,21],

[-366,6,4,5,21],[-530,5,5,5,21],[-216,6,5,5,20],[-4,3,5,5,22],[-18,7,4

,3,21],[-18,7,3,4,21],[-54,6,5,3,21],[-35,6,4,4,21],[-54,6,3,5,21],[95

,5,5,4,21],[95,5,4,5,21],[111,4,5,5,21],[-450,6,5,4,20],[-450,6,4,5,20

],[800,5,5,5,20],[1,7,3,3,21],[9,6,4,3,21],[9,6,3,4,21],[27,5,5,3,21],

[27,5,4,4,21],[27,5,3,5,21],[11,4,5,4,21],[11,4,4,5,21],[-17,3,5,5,21]

,[-48,6,5,3,20],[331,6,4,4,20],[-48,6,3,5,20],[328,5,5,4,20],[328,5,4,

5,20],[-444,4,5,5,20],[-3,4,5,3,21],[-3,4,3,5,21],[-3,3,5,4,21],[-3,3,

4,5,21],[-12,6,4,3,20],[-12,6,3,4,20],[32,5,5,3,20],[-126,5,4,4,20],[

32,5,3,5,20],[-115,4,5,4,20],[-115,4,4,5,20],[96,3,5,5,20],[365,6,4,4,

19],[6,5,4,3,20],[6,5,3,4,20],[-4,4,5,3,20],[36,4,4,4,20],[-4,4,3,5,20

],[24,3,5,4,20],[24,3,4,5,20],[-8,2,5,5,20],[-17,6,4,3,19],[-17,6,3,4,

19],[176,5,4,4,19],[99,6,4,4,18],[-2,2,5,4,20],[-2,2,4,5,20],[1,6,3,3,

19],[13,5,4,3,19],[13,5,3,4,19],[-33,4,4,4,19],[21,6,4,3,18],[21,6,3,4

,18],[1065,5,4,4,18],[12,3,4,4,19],[9,6,4,2,18],[26,6,3,3,18],[9,6,2,4

,18],[17,5,4,3,18],[17,5,3,4,18],[-300,4,4,4,18],[919,5,4,4,17],[-3,6,

3,2,18],[-3,6,2,3,18],[-18,5,4,2,18],[-27,5,3,3,18],[-18,5,2,4,18],[-

54,4,4,3,18],[-54,4,3,4,18],[-8,3,4,4,18],[-73,5,4,3,17],[-73,5,3,4,17

],[150,4,4,4,17],[-48,5,4,4,16],[3,4,4,2,18],[3,4,2,4,18],[9,3,4,3,18]

,[9,3,3,4,18],[15,2,4,4,18],[-25,5,4,2,17],[55,5,3,3,17],[-25,5,2,4,17

],[53,4,4,3,17],[53,4,3,4,17],[-211,3,4,4,17],[-176,5,4,3,16],[-176,5,

3,4,16],[676,4,4,4,16],[-1,1,4,4,18],[-2,5,3,2,17],[-2,5,2,3,17],[5,4,
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4,2,17],[-36,4,3,3,17],[5,4,2,4,17],[-42,3,4,3,17],[-42,3,3,4,17],[38,

2,4,4,17],[-24,5,4,2,16],[28,5,3,3,16],[-24,5,2,4,16],[140,4,4,3,16],[

140,4,3,4,16],[-448,3,4,4,16],[6,2,4,3,17],[6,2,3,4,17],[-1,1,4,4,17],

[-3,5,3,2,16],[-3,5,2,3,16],[6,4,4,2,16],[-15,4,3,3,16],[6,4,2,4,16],[

-64,3,4,3,16],[-64,3,3,4,16],[120,2,4,4,16],[10,5,3,3,15],[-12,3,3,3,

16],[8,2,4,3,16],[8,2,3,4,16],[-16,1,4,4,16],[3,5,3,2,15],[3,5,2,3,15]

,[114,4,3,3,15],[1,0,4,4,16],[3,5,3,1,15],[9,5,2,2,15],[3,5,1,3,15],[

43,4,3,2,15],[43,4,2,3,15],[55,3,3,3,15],[180,4,3,3,14],[-1,4,3,1,15],

[-1,4,1,3,15],[-9,3,3,2,15],[-9,3,2,3,15],[-36,2,3,3,15],[47,4,3,2,14]

,[47,4,2,3,14],[266,3,3,3,14],[267,4,3,3,13],[3,1,3,3,15],[-1,4,3,1,14

],[12,4,2,2,14],[-1,4,1,3,14],[21,3,3,2,14],[21,3,2,3,14],[-101,2,3,3,

14],[63,4,3,2,13],[63,4,2,3,13],[393,3,3,3,13],[-4,4,3,3,12],[-6,2,3,2

,14],[-6,2,2,3,14],[7,1,3,3,14],[-1,4,3,1,13],[9,4,2,2,13],[-1,4,1,3,

13],[32,3,3,2,13],[32,3,2,3,13],[-236,2,3,3,13],[-30,4,3,2,12],[-30,4,

2,3,12],[352,3,3,3,12],[4,3,2,2,13],[-10,2,3,2,13],[-10,2,2,3,13],[43,

1,3,3,13],[-12,4,3,1,12],[-36,4,2,2,12],[-12,4,1,3,12],[48,3,3,2,12],[

48,3,2,3,12],[-216,2,3,3,12],[-3,0,3,3,13],[-1,4,3,0,12],[-9,4,2,1,12]

,[-9,4,1,2,12],[-1,4,0,3,12],[-33,3,2,2,12],[-12,2,3,2,12],[-12,2,2,3,

12],[48,1,3,3,12],[3,3,2,1,12],[3,3,1,2,12],[27,2,2,2,12],[-4,0,3,3,12

],[-99,3,2,2,11],[-3,1,2,2,12],[-3,3,2,1,11],[-3,3,1,2,11],[72,2,2,2,

11],[-90,3,2,2,10],[2,2,2,1,11],[2,2,1,2,11],[-8,1,2,2,11],[3,3,2,1,10

],[3,3,1,2,10],[160,2,2,2,10],[27,3,2,2,9],[2,2,2,1,10],[2,2,1,2,10],[

-41,1,2,2,10],[27,3,2,1,9],[27,3,1,2,9],[134,2,2,2,9],[3,0,2,2,10],[3,

3,2,0,9],[9,3,1,1,9],[3,3,0,2,9],[2,2,2,1,9],[2,2,1,2,9],[-51,1,2,2,9]

,[104,2,2,2,8],[-6,2,1,1,9],[5,0,2,2,9],[16,2,2,1,8],[16,2,1,2,8],[-48

,1,2,2,8],[1,1,1,1,9],[2,2,2,0,8],[-6,2,1,1,8],[2,2,0,2,8],[6,0,2,2,8]

,[2,1,1,1,8],[-15,2,1,1,7],[9,1,1,1,7],[-18,2,1,1,6],[-1,0,1,1,7],[-3,

2,1,0,6],[-3,2,0,1,6],[11,1,1,1,6],[1,1,1,0,6],[1,1,0,1,6],[-1,0,1,1,6

],[9,1,1,1,5],[1,1,1,0,5],[1,1,0,1,5],[-1,0,1,1,5],[16,1,1,1,4],[4,1,1

,0,4],[4,1,0,1,4],[-4,0,1,1,4],[-1,0,1,0,4],[-1,0,0,1,4],[1,1,0,0,3],[

-1,0,0,0,1],[1,0,0,0,0]]

initr′ = a0
7a1

30b1
6c0

6c2d0
6d2

(
a0

3b1
3c2d2 − a1

3b0
3c1d1

)3 (
a0

2b2c1
2d1

2 + a1
2b1c0

2d0
2
)
.

(A.6)

After specialization, it takes form:

initr′ = y7x2x3

(
−y3x2x3 + 1

)3 (
y2x1 − 1

)
(A.7)

We take its counterpart: y9x2x3

(
−y3x2x3 + 1

)3
x1 and project it onto N(A) (figure 26).
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Figure 26. Newton polygon and the initial form initr′ (red nodes) for diag(3, 4, 4) quiver.

diag(2, 3, 4). The Newton polygon and initial forms are shown in figure 27.

[[1,12,8,6,24],[9,10,7,5,21],[3,9,7,5,21],[-4,10,6,5,20],[-8,9,6,5,20]

,[-2,8,6,5,20],[-3,9,6,4,18],[-2,9,5,4,18],[27,8,6,4,18],[-9,8,5,4,18]

,[18,7,6,4,18],[-6,7,5,4,18],[3,6,6,4,18],[13,8,5,4,17],[-1,6,5,4,18],

[14,7,5,4,17],[-8,8,5,4,16],[7,6,5,4,17],[6,8,4,4,16],[-64,7,5,4,16],[

1,5,5,4,17],[16,7,4,4,16],[-80,6,5,4,16],[20,6,4,4,16],[-32,5,5,4,16],

[-18,7,5,3,15],[8,5,4,4,16],[-4,4,5,4,16],[9,7,4,3,15],[21,6,5,3,15],[

1,4,4,4,16],[3,6,4,3,15],[27,5,5,3,15],[-18,7,4,3,14],[9,4,5,3,15],[4,

7,3,3,14],[-18,6,4,3,14],[1,3,5,3,15],[2,6,3,3,14],[-3,5,4,3,14],[49,6

,4,3,13],[-21,6,3,3,13],[5,5,4,3,13],[-2,6,4,3,12],[-17,5,3,3,13],[-65

,4,4,3,13],[3,6,4,2,12],[16,6,3,3,12],[-36,5,4,3,12],[-3,4,3,3,13],[-

44,3,4,3,13],[-6,6,3,2,12],[-4,6,2,3,12],[-27,5,4,2,12],[32,5,3,3,12],

[-105,4,4,3,12],[-11,2,4,3,13],[1,6,2,2,12],[-8,5,2,3,12],[-18,4,4,2,

12],[8,4,3,3,12],[-112,3,4,3,12],[-1,1,4,3,13],[-2,4,2,3,12],[-3,3,4,2

,12],[-54,2,4,3,12],[-7,5,3,2,11],[-12,1,4,3,12],[-1,5,2,2,11],[-10,4,

3,2,11],[-18,5,3,2,10],[-1,0,4,3,12],[-2,3,3,2,11],[13,5,2,2,10],[36,4

,3,2,10],[-2,5,1,2,10],[7,4,2,2,10],[60,3,3,2,10],[27,4,3,2,9],[-1,4,1

,2,10],[24,2,3,2,10],[9,4,3,1,9],[18,4,2,2,9],[90,3,3,2,9],[3,1,3,2,10

],[-3,4,2,1,9],[-1,4,1,2,9],[3,3,3,1,9],[28,3,2,2,9],[81,2,3,2,9],[20,

4,2,2,8],[-1,3,2,1,9],[14,2,2,2,9],[27,1,3,2,9],[-2,4,2,1,8],[-8,4,1,2

,8],[32,3,2,2,8],[2,1,2,2,9],[3,0,3,2,9],[1,4,0,2,8],[-1,3,2,1,8],[40,

2,2,2,8],[16,1,2,2,8],[-19,3,2,1,7],[2,0,2,2,8],[6,3,1,1,7],[-15,2,2,1

,7],[-6,3,2,1,6],[5,2,1,1,7],[-3,1,2,1,7],[-1,3,2,0,6],[4,3,1,1,6],[-

27,2,2,1,6],[1,1,1,1,7],[13,2,1,1,6],[-18,1,2,1,6],[7,1,1,1,6],[-3,0,2

,1,6],[17,2,1,1,5],[1,0,1,1,6],[-3,2,0,1,5],[9,1,1,1,5],[8,2,1,1,4],[-

1,1,0,1,5],[1,0,1,1,5],[2,2,1,0,4],[-2,2,0,1,4],[16,1,1,1,4],[1,1,1,0,

4],[-4,1,0,1,4],[4,0,1,1,4],[-1,0,0,1,4],[3,1,1,0,3],[1,0,1,0,3],[-1,1

,0,0,2],[-1,0,0,0,1],[1,0,0,0,0]]
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Figure 27. Newton polygon and the initial form initr (red nodes) for diag(2, 3, 4) quiver.

Initial form initr (6.11):

initr = a0
6a1

12b1
6c0

4c2d0
3d2

(
a0

6b1
6c2

3d2
2 + a1

6b0
6c1

3d1
2
)

(A.8)

After specialization:

initr = y6x2x3

(
−y6x2

3x3
2 + 1

)
(A.9)

A.2 Non-diagonal quivers

Here we provide some examples of quivers with non-diagonal matrix C and polynomials

A(x1, . . . , xm, y), satisfying the K-theoretic condition.

a)

 1 1 1

1 0 0

1 0 0

 ,
y3x1

3x2x3 + 3 y2x1
2x2x3 − y2x12x2 − y2x12x3 + 3 yx1x2x3

−2 yx1x2 − 2 yx1x3 + yx1 + x2x3 − y − x2 − x3 + 1.

b)

 1 1 1

1 1 0

1 0 0

 ,
y2x1

2x3 − y2x1x2 + 2 yx1x3 − yx1 − yx2 + y + x3 − 1.

c)

 2 1 1

1 1 0

1 0 0

 ,
y3x1

2 − y2x1x2 + 2 y2x1 − yx1 − yx2 + y + x3 − 1.
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d)

 2 2 1

2 2 1

1 1 0

 ,
y6x1

2x2
2 − y4x12x2 − y4x1x22 + y3x1

2x3 + y3x2
2x3 − y3x1x2 + y2x1x2

+2 y2x1x3 + 2 y2x2x3 − yx1x3 − yx2x3 + yx3 + x3
2 − x3.

e)

 3 2 1

2 2 1

1 1 0

 ,
y4x1

2 + y3x2
2x3 − y3x1x2 − 2 y2x1x3 + 2 y2x2x3 − y2x1
−yx2x3 + yx1 + yx3 + x3

2 − x3.

f)


1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 0

 ,
y4x1

4x2x3x4 + 4 y3x1
3x2x3x4 − y3x13x2x3 − y3x13x2x4 − y3x13x3x4 + 6 y2x1

2x2x3x4

−3 y2x1
2x2x3 − 3 y2x1

2x2x4 − 3 y2x1
2x3x4 + y2x1

2x2 + y2x1
2x3 + y2x1

2x4

+4 yx1x2x3x4 − 3 yx1x2x3 − 3 yx1x2x4 − 3 yx1x3x4 + 2 yx1x2 + 2 yx1x3

+2 yx1x4 + x2x3x4 − yx1 − x2x3 − x2x4 − x3x4 + y + x2 + x3 + x4 − 1.

g)


1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0

 ,
y6x1

3x2
3x3x4 + 3 y5x1

3x2
2x3x4 + 3 y5x1

2x2
3x3x4 + 3 y4x1

3x2x3x4 + 9 y4x1
2x2

2x3x4

+3 y4x1x2
3x3x4 − y4x12x22x3 − y4x12x22x4 + y3x1

3x3x4 + 9 y3x1
2x2x3x4 + 9 y3x1x2

2x3x4

+y3x2
3x3x4 − 2 y3x1

2x2x3 − 2 y3x1
2x2x4 − 2 y3x1x2

2x3 − 2 y3x1x2
2x4 + 3 y2x1

2x3x4

+9 y2x1x2x3x4 + 3 y2x2
2x3x4 − y2x12x3 − y2x12x4 − 4 y2x1x2x3 − 4 y2x1x2x4 − y2x22x3

−y2x22x4 + y2x1x2 + 3 yx1x3x4 + 3 yx2x3x4 − 2 yx1x3 − 2 yx1x4 − 2 yx2x3

−2 yx2x4 + yx1 + yx2 + x3x4 − y − x3 − x4 + 1.

h)


2 2 2 2

2 2 1 1

2 1 0 0

2 1 0 0

 ,
y10x1

5x3x4 − y10x13x23 + y9x1
4x2x3 + y9x1

4x2x4 − 5 y8x1
4x3x4 + y8x1

3x2
2 + 3 y8x1

2x2
3

−4 y7x1
3x2x3 − 4 y7x1

3x2x4 + 3 y7x1
2x2

2 + 10 y6x1
3x3x4 − y6x13x3 − y6x13x4 − 3 y6x1

2x2
2

−3 y6x1x2
3 + 6 y5x1

2x2x3 + 6 y5x1
2x2x4 − 2 y5x1

2x2 − 6 y5x1x2
2 − 10 y4x1

2x3x4 + 3 y4x1
2x3

+3 y4x1
2x4 + 3 y4x1x2

2 + y4x2
3 − 3 y4x1x2 − 4 y3x1x2x3 − 4 y3x1x2x4 + 4 y3x1x2 + 3 y3x2

2

+5 y2x1x3x4 − 3 y2x1x3 − 3 y2x1x4 − y2x22 + y2x1 + 3 y2x2 + yx2x3

+yx2x4 − 2 yx2 − x3x4 + y + x3 + x4 − 1.
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b)

c)

d)

e)

Figure 28. Newton polygons and face polynomials for the examples a), b), c), d), e).

On figures 28 and 29 only those face polynomials are shown, which consist of three or

more monomials. For every binomial we can re-label its nodes using the parameter τ along

the edge, so that it would give a factor (τ + 1). Therefore, any product of binomials maps

into (τ + 1)k, where the integer k ≥ 1 varies from one edge to another. According to this,

all roots of all face polynomials are equal to 1 in these examples, which means that A(x, y)

is tempered.
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−
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Figure 29. Newton polygons and face polynomials for the examples f), g), h).

B Canny-Emiris matrix for the diagonal quiver

We construct the square matrix of size
(∏m

i=1 αi +
∑m

j′=1

∏
j 6=j′ αj

)
, which determinant

equals to the sparse mixed resultant RA for the diagonal quiver with C = diag(α1, . . . , αm).

Note that, however, this method suits for any set of supports A, and has been introduced

by J. Canny and I. Emiris in [25] and further studied in [20, 30].

In fact, for every vertex of N(RA) there exist a version of such matrix, where the

letters from the corresponding extremal monomial sit on its main diagonal (matrices are

different, but having the same determinant, up to redundant monomial prefactors, which

– 53 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
6

we usually ignore). Therefore, we may say that the matrices are labelled by those TCMDs,

which are attached to the vertices of the Newton polytope. Adapting the simplest scenario,

we choose the following

TCMD :

•
• •
• •
...

...
...

• •

→ a
∏
αi

0 ,

• •
•

• •
...

...
...

• •
(π)

→ b
∏
j 6=j′ αj

j′,2 (B.1)

(recall that the i-th row in a perfogram stands for Fi in (4.8)), and denote M the corre-

sponding matrix, such that |M| = RA. For diagonal quivers after specialization (4.10), it

would have the letters x1, . . . , xm, y only on the main diagonal, whereas the off-diagonal

entries will be equal to 0 or 1. Therefore, the choice (B.1) seems to be quite interesting

(still, this is the property of diagonal quivers). We want to emphasise that the advantage

of this method is that it can immediately extended to any dimension m, and the structure

of the matrix would be somewhat similar and nicely structured.

Denote by Qδ the translation of Q =
∑m

i=0 conv(supp(Fi)) by some integer vector

δ = (δ, . . . , δ). It is chosen such that the number of integer lattice points of the intersection

Qδ ∩ Zm is minimally possible. The entries of M are attached to pairs (p, p′) ∈ Qδ ∩ Zm.

We have a decomposition induced by (B.1):

Qδ ∩ Zm = Ea0 ∪ Eb1,2 ∪ · · · ∪ Ebm,2 (B.2)

where each Ek is associated to a cell in (B.1). Each entry is labelled by a pair of lattice

points p = (i, j), p′ = (i′, j′), and is calculated by the following rule:

Mp,p′ := coeff(zi1z
j
2Fs(z1, z2), zi

′
1 z

j′

2 ) (B.3)

where s is an indicator, depending on whether p belongs to Ea0 (s = 0), or to Ebi,2 (s = i).

Therefore,M has a block structure, where each block represents “interaction” of the cells in

a chosen TCMD. Below we proceed with the explicit construction of M for the two-vertex

quiver.

The case m = 2. The Nahm equations for C = diag(α, β), α, β ≥ 2:

F0 = a0 + a1z1z2

F1 = b0 + b1z1 + b2z
α
1

F2 = c0 + c1z2 + c2z
β
2

(B.4)

The TCMD (B.1) is given by the three 2-dimensional cells:

•
• •
• •

×
• •

•
• •

×
• •
• •

•
(B.5)

for a0, b2 := b1,2 and c2 := b2,2, correspondingly (figure 30). Therefore, after shifting by δ
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aαβ0

bβ2

cα2

(0, 0) (α, 0)

(0, β)

(1, β + 1) (α+ 1, β + 1)

z1

z2

Figure 30. The TCMD (B.5) divides Q into the three cells: aαβ0 , cα2 and bβ2 , producing the extreme

monomial aαβ0 bβ2 c
α
2 .

equal to, say, ( 1
3 ,

1
3), the number of integer lattice points in each block will be αβ, β and

α, for a0, b2 and c2, correspondingly, which is indeed minimal. The matrix M is then a

block matrix of size αβ + α+ β:

M =

Ea0 × Ea0 Ea0 × Eb0 Ea0 × Ec0Eb2 × Ea0 Eb2 × Eb2 Eb2 × Ec2
Ec2 × Ea0 Ec2 × Eb2 Ec2 × Ec2

 (B.6)

For a better presentation we need to enumerate the 2d lattice points with a single index.

We shall get Mk,l, where k, l are integers labelling the pair of points (p, p′), and each

p = (i, j), p′ = (i′, j′) is given by its Z2-coordinates. For m = 2, we can act as follows:

from left to right, down to top; Ea0 goes first, then Eb2 and Ec2 . We know that the main

diagonal shall consist of several letters a0 for Ea0 ×Ea0 , b2 for Eb2 ×Eb2 and c2 for Ec2 ×Ec2 .

Calculating the “interactions” by the formula (B.3) leads to the following result for all

non-diagonal entries:

Ea0 × Ea0 : Mk=1...α,l=1...β =

{
a1; l = k + α+ 1, k (mod α) 6= 0

0

Ea0 × Eb2 : M k=1...αβ,
l=αβ+1...αβ+β

=

{
a1; l = αβ + k

α , k (mod α) = 0

0

Ea0 × Ec2 : M k=1...αβ,
l=αβ+β+1...αβ+α+β

=

{
a1; k ≥ αβ − α+ 1, l = k + α+ β + 1

0

Eb2 × Ea0 : Mk=αβ+1...αβ+β,
l=1...αβ

=


b0; l = (k − αβ)α+ 1

b1; l = (k − αβ)α+ 2

0

(B.7)

– 55 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
6

Eb2 × Ec2 : Mαβ+β,αβ+β+1 = b0,

Mαβ+β,αβ+β+2 = b1

Ec2 × Ea0 : Mk=αβ+β+1...αβ+α+β,
l=1...αβ

=


c0; l = k − αβ − β
c1; l = k − αβ − β + α

0

Ec2 × Eb2 : Mk=αβ+β+1...αβ+α+β,
l=αβ+1...αβ+β

=

{
c1; k = αβ + α+ β + 1, l = αβ + 1

0

(B.8)

All other entries are zero, in particular, the off-diagonal blocks Eb2 × Eb2 and Ec2 × Ec2 all

vanish. For example, (α, β) = (2, 2) gives

RA =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1

a0 a1

a0 a1

a0 a1

b0 b1 b2

b2 b0 b1

c0 c1 c2

c0 c1 c2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.9)

(unoccupied entries are zeroes), which reproduces the expression (5.9) from section 5.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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