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and perpendicular to the direction of anisotropy. We compute the dispersion relation for
momentum diffusion along the transverse direction in the shear channel and show that
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1 Introduction

A large number of studies has been conducted in recent years to quantify the chaotic
behavior of quantum systems with large number of degrees of freedom. Classically, the
chaotic behavior of a dynamical system is characterized by a parameter λL, known as the
Lyapunov exponent. A positive value of λL indicates an exponentially fast growth (w.r.t.
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time t) of separation between two phase space trajectories which were infinitesimally close
at some initial time t0. In quantum system, the characteristics of chaotic behavior is
somewhat analogous to that of the classical systems. However, the mathematical tools
required to diagnose or quantitatively compute the chaotic behavior in quantum systems
are different from the classical ones. For instance, in quantum systems the random matrix
theory is one such commonly used tools to describe chaos [1]. However, due to the progress
in the last few years it turns out that a more satisfactory diagnosis of quantum chaos can
be achieved from the study of black hole, in particular using the holographic principle.1

The gauge/gravity duality and for that matter, the AdS/CFT correspondence [3–5]
provides a significant improvement of our understanding on quantum systems with large
number of degrees of freedom at strong coupling. Using the tools of gauge/gravity duality
one can perform the gravitational shock wave analysis [6–10] to calculate the out-of-time
ordered correlation function (OTOC) which is regarded as the measure of chaos in quantum
systems. The OTOC characterises the chaotic behavior in many body quantum systems in
terms of two parameters, namely the lyapunov exponent λL and the butterfly velocity vB. A
series of comprehensive work has already been done over the past few years in order to estab-
lish this connection between OTOC and quantum chaos, for instance see [6, 7, 9, 11–16] and
the references therein. More precisely, in chaotic systems the OTOC or essentially the four
point correlation function shows the following exponential growth w.r.t. time and space,

〈V (t, ~x)W (0)V (t, ~x)W (0)〉β0 ' 1− eλL(t−|~x|/vB), (1.1)

V and W being some generic operator. The butterfly velocity vB represents the speed at
which the perturbation propagates in space. However, most recently it is observed that
a particular component of a much more simple correlation function namely, the energy
density retarded Green’s function can provide a direct signature of quantum chaos in most
of the holographic theories with Einstein gravity [17–21].

In strongly coupled quantum field theories at finite temperature, thermal retarded
Green’s function encode information about the near equilibrium physics of the system.
Using the concept of gauge/gravity duality the properties of these thermal Green’s functions
has been investigated for strongly coupled systems in [22–25]. It is recently observed that
the dispersion relation of collective excitations in the energy density Green’s function is
actually related to the particular form of the OTOC as given in (1.1). In particular, the
parameters λL and vB can be obtained by analysing the behavior of quasinormal modes
in holographic systems. The phenomenon that sets up a direct relation between these
collective excitations in the retarded Green’s function and the parameters of chaos in
quantum many body systems is known as the ‘pole skipping’ phenomenon. It is defined
as the special locations in the complex (w − q) plane such that the lines of zeroes and the
lines of poles of the retarded Green’s function in momentum space coincide or crosse each
other at that special point and hence it is not defined uniquely.

The non-uniqueness of Green’s function at special location in the complex plane was
explicitly shown for example in [18, 19] by performing a near horizon expansion of the

1See [2] for a complete review of recent work on holographic chaos.
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equation of motion. To explain the basic idea with a particular example, let us consider the
equation of motion for a massive scalar field φ in planner AdS black hole background with
horizon radius rH [18]. Writing the metric in terms of the ingoing Eddington-Finkelstein
coordinates (v, r, x) with φ = ϕ(r)e−iwv+iqx, one obtains the second order equation of
motion for ϕ(r). Now for the near horizon behavior of the solution, ϕ(r) can be expanded
as ϕ(r) = (r − rH)λ with the two possible results for λ as λ1 = 0, λ2 = (iw/2πT ), T
being the black hole temperature. At this point one imposes the ingoing wave boundary
condition at the horizon and picks the exponent λ1 which makes the solution regular at the
horizon. However at special values of wn = −i2πTn, (n = 1, 2, 3, . . .), the other exponent λ2
becomes a positive integer and hence there exist two independent ingoing regular solutions
at the horizon. As a result the retarded Green’s function can not be defined uniquely. In
fact it turns out that the retarded Green’s function actually depends on the slope with
which one approaches the pole skipping points.

In order to have a clear idea about the phenomenon, it would be helpful to describe
in short the procedure to obtain the pole skipping points at different orders of expansion
near the horizon. As already discussed, the pole skipping points are defined as the special
locations in the complex (w − q) plane at which the pole of the retarded Green’s function
is skipped because the numerator as well as the denominator (of the Green’s function)
vanishes simultaneously. These special points are represented by the set of values (wn, qn)
obtained by the near horizon analysis of the equation of motion involving the bulk fields
in the dual gravity theory. In the above the index n can take positive integer values
(n = 0, 1, 2, 3, . . .) that indicates the order for the near horizon expansion of the bulk
equation. Let us consider an equation of motion for any bulk field Z(r) having the following
general form,

Z ′′ +A(r)Z ′ +B(r)Z = 0, (1.2)
where r denotes the radial coordinate of the dual gravitational background and the horizon
is defined at r = rH . In this analysis we will be using the ingoing Eddington-Finkelstein
coordinates in which the metric for a generic gravity background takes the following form,

ds2 = −f(r)dv2 + 2dvdr + . . . (1.3)

where v is defined in terms of the tortoise coordinate r∗ as v = t + r∗ and the ellipses
indicates the spatial part of the metric. To proceed further, consider the near horizon
expansion of the bulk field Z(r) as,

Z(r) =
∑
n

zn (r − rH)n (1.4)

and then put it back into the equation of motion (1.2). The resultant equation can be
expanded in a power series near the horizon rH and are given at different orders as,

c00z0 + c01z1 = 0,
c10z0 + c11z1 + c12z2 = 0,

c20z0 + c21z1 + c22z2 + c23z3 = 0,
...

(1.5)
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Considering equations upto nth order one can construct a n × n matrix with elements as
the coefficients of the above set of equations is given as,

C =



c00 c01 0 0 · · ·
c10 c11 c12 0 · · ·
c20 c21 c22 c23 · · ·
...

...
...

... · · ·
,


(1.6)

where the above matrix elements are functions of w and q. With the above matrix, the
pole skipping points are determined by the solutions of the following equations,

cn−1 n = 0, detC = 0. (1.7)

In this work, we manage to solve the above equation analytically only for the first few pole
skipping points and one has to rely on numerical solutions for the results at higher orders.

Several interesting aspects of quantum chaos can be realised from the phenomenon
of pole skipping. The connection between hydrodynamics and chaos has been explicitly
shown in several holographic theories using the pole skipping. In [26], the authors showed
through numerical calculation that for the hydrodynamic sound mode, the dispersion re-
lation provides the results of lyapunov exponent, a parameter for quantum chaos. This
connection with hydrodynamics was shown to be valid even for gravitational theories with
curvature squared correction in [27] using the pole skipping phenomenon. Also in [28]
the author obtained the higher curvature correction to the special value of the momen-
tum at which the pole is supposed to be skipped, with no correction to the results for
the frequency. Another interesting connection between the transport coefficient and the
parameter of quantum chaos was developed in [29, 30]. Moreover, the diffusion constant
for both charge and momentum is shown to be related to the square of the butterfly ve-
locity in strongly coupled theory. In holographic theories, both transport coefficients and
the parameters of chaos are related to the near horizon physics. So the connection can be
realized from the AdS/CFT correspondence. A list of several other works recently done on
pole skipping phenomenon can be found in [31–38].2

In this paper we have considered a gravitational background with a spatial anisotropy
as obtained in [40, 41].3 The primary goal of this paper is to find explicitly the corrections
that the pole skipping points receive in the complex frequency-momentum plane due to the
spatial anisotropy in the background theory parameterized by a (or a dimensionless one
b = a/T ). We consider the bulk scalar, axion and metric field perturbations and in each
case we make two different choices for the direction of propagation for the field fluctuations,
namely (i) along the direction of anisotropy (ii) perpendicular to the direction of anisotropy.
We find that the frequency at the pole skipping point receives no correction due to the
anisotropy but only the momentum gets corrected. The rest of the paper is organized as
follows, In section 2, we present a short discussion on the gravitational background dual

2Pole skipping in two dimensional CFT and also two dimensional BCFT was studied in [39].
3See [42] for holographic study of brownian motion in the same background.
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to a SYM plasma with spatial anisotropy. In section 3, we describe quantitatively the pole
skipping phenomenon in energy density Green’s function in the upper half complex plane
by doing a near horizon analysis of the vv component of Einstein’s equation and obtain
the Lyapunov exponent and butterfly velocity associated to the phenomenon of chaos. In
section 4, we first study the pole skipping in the lower half plane for scalar and axion field
and then carry on the analysis for the metric perturbations. For the metric perturbations
we take into account all the non-zero components for the shear and the sound channel and
construct the corresponding master equations involving the gauge invariant variables (we
present a detailed discussions on the construction of gauge invariant variables for different
metric field perturbations in appendix A). In the same section we also solve the dispersion
relation of the transverse momentum diffusion in the shear channel using numerical method
and showed that it passes through the corresponding pole skipping points. Finally, we
conclude in section 5.

2 Details of the anisotropic background

In this section we will briefly describe the supergravity solution as obtained by the authors
in [40, 41] which is dual to a spatially anisotropic strongly coupled SYM theory at finite
temperature. In relativistic heavy ion collision the plasma that is created has been found
to be locally anisotropic for a very short time period due to the pressure difference along
the longitudinal and transverse direction. This motivates the authors towards a dual
gravitational background with anisotropy along a spatial direction. The five dimensional
action involving the metric (g), the dilaton (φ) and the axion (χ) field excitation is given as,

S = 1
2k2

∫
d5x
√
−g

(
R+ 12− 1

2(∂φ)2 − 1
2e

2φ(∂χ)2
)
, (2.1)

with 2k2 = 16πG as the five dimensional gravitational constant. The supergravity solution
is given by the following five dimensional metric as [40, 41],

ds2 = e−
φ(r)

2 r2
(
−FBdt2 +Hdx2

1 + dx2
2 + dx2

3 + dr2

r4F

)
, (2.2)

χ = ax1, φ = φ(r) (2.3)

where the spatial anisotropy is considered along the x1 direction. The above solution is
static, completely regular on the horizon and also asymptotically AdS. Notice that the
axion field χ is linearly proportional to x1, the anisotropic direction and the dilaton field
φ depends on the radial coordinate r. The black hole horizon is located at r = rH with
the boundary at r = ∞. The explicit form of the different metric components in (2.2)
is given in [40, 41], where the authors have introduced an anisotropy parameter a. Also,
assuming the anisotropy to be weak (a/T � 1, T being the hawking temperature), the
authors have kept terms only upto quadratic order in a in the series expanded form of
the metric components of (2.2). It is important to note that the anisotropy parameter a
is a dimensionfull quantity, [a] = dim[Length]. The hawking temperature is given upto
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quadratic order in a as,

T = rH
π

+ a2

rH

(5 log (2)− 2)
48π +O(a4). (2.4)

Varying above action (2.1) with respect to gµν , φ and χ one gets the Einstein equations as
well as the equations of motion for the scalars as,

Rµν = −4gµν + 1
2∂µφ∂νφ+ 1

2e
2φ∂µχ∂νχ, (2.5)

�φ = e2φ (∂χ)2 , (2.6)
�χ = 0. (2.7)

However for the near horizon analysis we need to write the above five dimensional metric
in terms of the ingoing Eddington-Finkelstein coordinates defined as,

v = t+ r∗, r∗ =
∫ (

grr
gtt

)1/2
dr. (2.8)

The metric (2.2) can be rewritten in Eddington-Finkelstein coordinate as,

ds2 = gvvdv
2 + g11dx

2
1 + g22

(
dx2

2 + dx2
3

)
+ 2gvrdvdr, (2.9)

where the metric components including the correction due anisotropy are given as,

gvv = −r2
(

1− r4
H

r4

)
+ a2

12

[
1 + r2

H

r2 (5 log 2− 1)− 5r2

r2
H

(
1 + r4

r4
H

)
log

(
1 + r2

H

r2

)]

gvr = 1− a2

48

[
10

r2 + r2
H

− 5
r2
H

log
(
r2
H

r2 + 1
)]

g11 = r2 + 3a2

8

[
r2

r2
H

log
(

1 + r2
H

r2

)]

g22 = r2 + a2

8

[
r2

r2
H

log
(

1 + r2
H

r2

)]
.

(2.10)

Using the above metric, in the following sections we will do the near horizon analysis of the
EOM for different field perturbation to obtain the special points in the complex (w − q)
plane where the pole skipping phenomenon will be explicit.

3 Pole skipping in energy density Green’s function

Recently it is explicitly shown that an universal description of the chaotic behavior in many
body system can be achieved by a hydrodynamical effective field theory [43].4 In other
words, this effective field theory predicts that the exponential growth of the OTOC can be
realized from the energy density retarded Green’s function in a sense that it exhibit pole

4Also see [44].
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skipping at a particular value of frequency and momentum that is directly related to the
parameters λL, vB appearing in the exponential form of the OTOC as,

w = iλL, q = iλL
vB

(3.1)

So one can obtain λL, vB from the energy density Green’s function using the pole skipping
phenomenon. In this section we will try to obtain the explicit form of λL and vB from the
near horizon expansion of Einstein’s equation. In particular we would be interested in the
corrections that these parameters receives due to the spatial anisotropy in the background
theory. In turns out that only the vv component of Einstein’s equation has to be computed
near the horizon in order to determine the pole skipping point.

We will start by considering the small perturbation of the above unperturbed met-
ric (2.9). There are two different choices that one can make regarding the direction of
propagation for the metric perturbation, (i) Perturbation along the direction of anisotropy,
(ii) perturbation perpendicular to the direction of anisotropy. In the following we will con-
sider these two cases separately to study the phenomenon of pole skipping for the metric
fluctuation in the sound channel. Let us now consider the following linear perturbations of
the above fields as,

gµν = g(0)
µν + hµν ,

φ = φ0 + ϕ,

χ = χ0 + ψ,

(3.2)

where, g(0)
µν , φ0, χ0 represents the background values of the fields and hµν , ϕ, ψ are their

linear perturbations. For computational simplification here we will work in radial gauge
such that all the components of metric perturbation which are of the form hrµ are zero
for all µ. Substituting the above linear fluctuation of the bulk fields to the corresponding
equations of motion as given in (2.5), (2.6), (2.7), we obtained the following linearized
equations as,

R(1)
µν +4hµν−

1
2 (∂µφ0∂νϕ+∂µϕ∂νφ0)−e2φ0

[
(∂µχ0∂νχ0)ϕ+ 1

2 (∂µψ∂νχ0+∂µχ0∂νψ)
]

= 0,

(3.3)

g(0)µν
[
∂µ∂νϕ−2e2φ0 (∂µχ0∂νχ0)ϕ+(∂µχ0∂νψ+∂µψ∂νχ0)−Γ(1)ρ

µν ∂ρφ0−Γ(0)ρ
µν ∂ρϕ

]
−hµν

[
∂µ∂νφ0+e2φ0 (∂µχ0∂νχ0)−Γ(0)ρ

µν ∂ρφ0
]

= 0,
(3.4)

g(0)µν
(
∂µ∂νψ−Γ(1)ρ

µν ∂ρχ0−Γ(0)ρ
µν ∂ρψ

)
−hµν

(
∂µ∂νχ0−Γ(0)ρ

µν ∂ρχ0
)

= 0, (3.5)

where, Γ(0)ρ
µν is the background value of the affine connection while Γ(1)ρ

µν , R(1)
µν are the

linearized fluctuations to the affine connection and the ricci tensor respectively defined as,

Γ(0)ρ
µν = 1

2g
(0)λρ

(
∂µg

(0)
λν + ∂νg

(0)
λµ − ∂λg

(0)
µν

)
,

Γ(1)ρ
µν = 1

2
[
g(0)λρ (∂µhλν + ∂νhλµ − ∂λhµν)− hλρ

(
∂µg

(0)
λν + ∂νg

(0)
λµ − ∂λg

(0)
µν

)]
,

R(1)
µν = ∂ρΓ(1)ρ

µν − ∂µΓ(1)ρ
ρν + Γ(0)ρ

ρλ Γ(1)λ
µν + Γ(1)ρ

ρλ Γ(0)λ
µν − Γ(0)ρ

µλ Γ(1)λ
ρν − Γ(1)ρ

µλ Γ(0)λ
ρν

(3.6)
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3.1 Perturbation parallel to the direction of anisotropy

We first consider the perturbations to propagate along the direction of the anisotropy, x1
so that one can use the fourier transform to write the same as,

hµν(v, r, x1) = e−iwv+iqx1hµν(r),
ϕ(v, r, x1) = e−iwv+iqx1ϕ0(r),
ψ(v, r, x1) = e−iwv+iqx1ψ0(r).

(3.7)

Moreover, with this particular choice of the field fluctuation one can categorize all the
metric perturbations into three different modes depending on their transformation under
the SO(2) rotational symmetry in the x2−x3 plane [45], namely (i) Scalar mode, (ii) Vector
mode, (iii) Tensor mode. In the following we will write down the nonzero components of
these three modes of metric perturbation.

• Scalar modes: hvv, hvr, hrr, hvx1 , hrx1 , hx1x1 , hx2x2 = hx3x3 ,

• Vector modes: hvx2 , hrx2 , hx1x2 ,

• Tensor mode: hx2x3 .

For the computation of special point in the complex (w − q) plane we consider only the
sound modes of metric perturbation which corresponds to the retarded Green’s function
for the temporal component of the energy momentum tensor, GRT 00T 00 .

To proceed further we consider the near horizon expansion of the above fluctuations
to have the following form,

Y (r) = Y (0) + Y (1) (r − rH) + . . . , (3.8)

where Y represents in general the fluctuations of the metric, scalar and the axion field. The
reason for the above near horizon expansion is due to the fact that the location of the special
point depends on the near horizon value of the background metric. Substituting (3.8) into
the linearized Einstein equation one gets the following result for the vv component in the
near horizon limit as,

−i
(

2iw+4rH
r2
H

− a2

6r3
H

(
1+ log(2)

2 + 3iw log(2)
2rH

))(
2wh(0)

x2x2 +
(

1− a2 log(8)
8r2
H

)
(2qh(0)

vx1 +wh(0)
x1x1)

)

+
(
−6iw

rH

(
1+ 5a2 log(2)

48r2
H

)
+ 2q2

r2
H

(
1− a2 log(8)

8r2
H

))
h(0)
vv = 0. (3.9)

The above equation is identically satisfied for the particular value of w and q,

w = 2iπT, q = i
√

6πT
[
1 + b2

(1 + 4 log(2)
48π2

)]
, (3.10)

where, we define the dimensionless quantity b defined as b = a/T � 1, in the limit a� T .
The Lyapunov exponent and the butterfly velocity can be obtained as (3.1),

λL = 2πT, v2 = |w|
2

|q|2
= 2

3 − b
2
(1 + 4 log(2)

36π2

)
. (3.11)
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The Lyapunov exponent takes the maximum value allowed by the chaos bound even in the
presence of a spatial anisotropy and only the butterfly velocity receives a correction due to
the anisotropy.

3.2 Perturbation perpendicular to the direction of anisotropy

We now consider the perturbation along the x2 coordinate, that is perpendicular to the
direction of anisotropy. So the perturbation of the fields in this case can be written as,

hµν(v, r, x2) = e−iwv+iqx2hµν(r),
ϕ(v, r, x2) = e−iwv+iqx2ϕ0(r),
ψ(v, r, x2) = e−iwv+iqx2ψ0(r).

(3.12)

In this case the non zero components of the metric perturbations for the scalar, vector and
the tensor mode are given as,

• Scalar modes: hvv, hvr, hrr, hvx2 , hrx2 , hx2x2 , hx1x1 = (g11/g22)hx3x3 ,

• Vector modes: hvx3 , hrx3 , hx2x3 ,

• Tensor mode: hx1x3 .

Again analysing the vv component of the linearized Einsteins equation near the horizon
one gets,

−i
(

2iw+4rH
r2
H

− a2

6r3
H

(
1+ 13log(2)

2 + 9iw log(2)
2rH

))(
2wh(0)

x1x1 +
(

1+ a2 log(2)
4r2
H

)
(2qh(0)

vx2 +wh(0)
x2x2)

)

+
{
−6iw

rH

(
1− 5a2 log(2)

48r2
H

)
+ 2q2

r2
H

(
1− a2 log(2)

8r2
H

)}
h(0)
vv = 0. (3.13)

The corresponding value of w and q from the above equation can be obtained as,

w = 2iπT, q = i
√

6πT
[
1− b2

(−1 + 2 log(2)
48π2

)]
, (3.14)

with the butterfly velocity given as,

λL = 2πT, v2 = |w|
2

|q|2
= 2

3 + b2
(−1 + 2 log(2)

36π2

)
(3.15)

Similar to the previous case, here the Lyapunov exponent remains the same and the butter-
fly velocity gets corrected. The results for the butterfly velocity as obtained here in (3.11)
and (3.15) matches exactly with the results obtained in [46] using gravitational shock wave
analysis.

– 9 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
2

4 Gauge invariant variable and pole skipping phenomenon in anisotropic
plasma

In the previous section we have considered the near horizon analysis of only the (vv)-
component of the Einsteins equation (3.3) in the sound channel to figure out the location
of the lowest order pole skipping point and from that we also obtain the Lyapunov exponent
and the butterfly velocity. However even more rigorous way of doing the same is to take into
account all components of the Einsteins equation and study their behavior near the event
horizon. For example, in the sound channel there are different components of the metric
fluctuation and hence we required to solve multiple equations simultaneously. In particular,
we will construct a gauge invariant master variable for the anisotropic background so that
all the components of the Einstein’s equation can be put together into a single equation
which is easier to deal with. In the following, we will first discuss the computation of pole
skipping points at different orders for the scalar and the axion field and then we will move
on to the fluctuations of the metric corresponding to both the shear and the sound channel
where the gauge invariant master variable will play an important role.

4.1 Scalar field fluctuation

The equation of motion for the scalar field follows from (2.6) with the background metric
components in terms of Eddington-Finkelstein coordinates as given in (2.10). As before
we have considered two separate choices for the field fluctuation to propagate along the
direction of anisotropy or perpendicular to that.

Parallel case. Inserting the form of the scalar field perturbation as given in (3.7), prop-
agating along x1 into (2.6) one gets equation of motion for the scalar field as,

ϕ′′0 −
(
S1 + a2S̃1

)
ϕ′0 −

(
S2 + a2S̃2

)
ϕ0 = 0, (4.1)

where the coefficients S1, S2, S̃1 and S̃2 are given in appendix B. Using the near horizon
power series expansion of ϕ0 as in (1.4) one can construct the coefficient matrix C as
in (1.6). The first few elements of the same is given below as,

c00 = 1
64r5

H

[
−16r2

H

(
q2+3iwrH

)
+a2

(
iwrH (3+5log2)−32r2

H+q2 (1+6log2)
)]

c01 = 1
96r3

H

[
96r3

H−48iwr2
H+a2

(
iw (−2+5log2)

)]
c10 = 1

128r6
H

[
48r2

H

(
q2+iwrH

)
−a2

(
iwrH (4+5log2)−96r2

H+6q2 (2+3log2)
)]

c11 = 1
192r5

H

[
−48r2

H

{
q2+2rH (2iw−5rH)

}
+a2

(
4iwrH (4+5log2)−138r2

H+3q2(1+6log2)
)]

c12 = 1
48r3

H

[
192r3

H−48iwr2
H+a2

(
iw (−2+5log2)

)]
(4.2)
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Solving (1.7), the location of the first and the second order special points can be obtained
analytically and they are given as

w1 = −i2πT, q2
1 = −6r2

H −
a2

4

(
7 + 9 log 2

)
,

w2 = −i4πT, q2
2 =

(
−12± 4

√
3
)
r2
H −

a2

2

(
2±
√

3 + 3
(
3∓
√

3
)

log 2
) (4.3)

The pole skipping points appearing at higher orders can be calculated numerically for a
given value of the dimensionless parameter b.

Perpendicular case. Considering the perturbation propagating along x2 direction we
get the following equation of motion for the scalar field,

ϕ′′0 −
(
S1 + a2 ˜̃S1

)
ϕ′0 −

(
S2 + a2 ˜̃S2

)
ϕ0 = 0, (4.4)

where the coefficients ˜̃S1 and ˜̃S2 are given in appendix A. In this case the first few elements
of the coefficient matrix C are given as

c00 = 1
192r5

H

[
−48r2

H

(
q2+3iwrH

)
+a2

(
3iwrH (3+5log(2))−96r2

H+q2 (3+6log(2))
)]

c01 = 1
96r3

H

[
96r3

H−48iwr2
H+a2

(
iw (−2+5log(2))

)]
c10 = 1

128r6
H

[
48r2

H

(
q2+iwrH

)
−a2

(
iwrH (4+5log(2))−96r2

H+2q2 (2+3log2)
)]

c11 = 1
192r5

H

[
−48r2

H

{
q2+2rH (2iw−5rH)

}
+a2

(
4iwrH(4+5log(2))−138r2

H+3q2(1+2log(2))
)]

c12 = 1
48r3

H

[
192r3

H−48iwr2
H+a2

(
iw (−2+5log(2))

)]
(4.5)

Again only the first and the second ordered pole skipping points can be solved analytically
and they are given below as,

w1 = −i2πT, q2
1 = −6r2

H −
a2

4

(
7 + 3 log 2

)
,

w2 = −i4πT, q2
2 =

(
−12± 4

√
3
)
r2
H −

a2

2

(
3 +

(
3∓
√

3
)

log 2
) (4.6)

In figure 1a we manage to plot the first four pole skipping points for the scalar field in the
complex (w−q) plane for both the cases with perturbation propagation parallel (denoted by
the blue dots) and perpendicular (denoted by the orange star) to the direction of anisotropy.
We see from the plot that the results for the parallel and the perpendicular case differ by
very small amount. Also note that, the value of w at the special points at different order
does not receive any correction due to non zero anisotropy but only the value of q gets a
finite correction.

Next we compute the pole of the retarded Green’s function corresponding to some
scalar operator which is dual to the bulk scalar field considered above. Using the numerical
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Figure 1. a) Locations of the pole skipping points for the scalar field obtained by means of
numerical calculations with the dimensionless parameter b = 0.1, b) Plot showing the pole skipping
points obtained numerical calculations for the axion field with b = 0.15.
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Figure 2. Plot showing the movement of the poles of retarded Green’s function as the value of
the momentum is increased from zero to finite values.

methods as described in [47, 48] (we discuss this numerical method in some details in
section-4), the pole of the Green’s function can be obtained. In figure 2 we have shown
the locations of the poles occurring at first and second order as denoted by dot and star
symbol respectively. Different plots in the same figure corresponds to four different values
of the dimensionless momentum, namely the top left plot corresponds to the dimensionless
momentum Q = q

2πT = 0, the top right with Q = 1.1i, the bottom left with Q = 1.225i
and the bottom right with Q = 1.126i. The last two values of Q corresponds to the pole
skipping points at first and second order respectively. Hence at Q = 1.225i and Q = 1.126i
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the pole has to appear atW = −1i andW = −2i respectively forW = w
2πT which is clearly

evident from figure 2.

4.2 Axion field fluctuation

The equation of motion for the axion field fluctuation χ is almost similar to that of the scalar
field discussed above. Also after performing the near horizon analysis, the components of
the matrix C in (1.6) turns out to be very similar to those obtained for the scalar field
fluctuation. In fact the leading ordered terms appearing in C are exactly the same. So
we will not write them down again but only mention the final results for the pole skipping
points at different order. Again the pole skipping points at first and second order can
be solved exactly as given below for the two different cases with the perturbation being
parallel and perpendicular to the direction of anisotropy.

Parallel case.
w1 = −i2πT, q2

1 = −6r2
H −

a2

8

(
2− 18 log 2

)
,

w2 = −i4πT, q2
2 =

(
−12± 4

√
3
)
r2
H + a2

2

(
2∓
√

3− 3
(
3∓
√

3
)

log 2
) (4.7)

Perpendicular case.

w1 = −i2πT, q2
1 = −6r2

H + a2

4

(
1− 3 log 2

)
,

w2 = −i4πT, q2
2 =

(
−12± 4

√
3
)
r2
H + a2

2

(
1− 3

(
3∓
√

3
)

log 2
) (4.8)

The higher order pole skipping points are solve them by numerical methods. We have
shown the locations of those points in figure 1b with the blur colored dots and the orange
stars indicating the parallel and perpendicular cases respectively.

4.3 Metric perturbation

Let us now discuss the metric field perturbations with two different modes of perturbations,
the vector and scalar modes which corresponds respectively to shear and sound channel.
The non zero components are discussed in section 3 for both parallel and perpendicular
case. However in order to make the calculations simpler we will work in a particular gauge
where all the metric perturbations hrµ for all µ is set to zero. Einstein’s equation for the
two modes of perturbations can be cast into a closed form in terms of a single equation
involving the gauge invariant variable. The constructions of the gauge invariant variables
are discussed in appendix A.

4.3.1 Shear channel

In this section we consider the vector modes of metric perturbation. Similar to the scalar
and axion field, we will consider the following two separate cases,
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Parallel case. In the particularly chosen gauge we have only two non zero components
for the field perturbation in this case. They are defined in the fourier space as,

hvx2 = e−iwv+iqx1gvvHvx2(r), hx1x2 = eiwv+iqx1g11Hx1x2(r), (4.9)

with Hvx2 = hvv/gvv and Hx1x2 = hx1x2/g11. The two independent Einstein’s equations
can be written in the following form,

H ′x1x2 =
(
Fx1x2 +a2F̃x1x2

)
H ′vx2 +

(
Gx1x2 +a2G̃x1x2

)
Hvx2 +

(
Jx1x2 +a2J̃x1x2

)
Hx1x2 ,

H ′′vx2 =
(
Fvx2 +a2F̃vx2

)
H ′vx2 +

(
Gvx2 +a2G̃vx2

)
Hvx2 +

(
Jvx2 +a2J̃vx2

)
Hx1x2 ,

(4.10)

where all the coefficients Fx1x2 , Gx1x2 , Jx1x2 . . . are functions of w, q and rH . We will not
write their exact form as the expressions are too long. Using the gauge invariant variable
Zv‖ as given in (A.23), the above two equations can be clubbed into a single equation
involving Zv‖ which is given as,

Z ′′v‖ −
(
N + a2Ñ

)
Z ′v‖ −

(
P + a2P̃

)
Zv‖ = 0, (4.11)

where the coefficients N , Ñ , P and P̃ in the above equation are given in appendix C.
We consider a near horizon expansion for Zv‖ as given in (1.4) and substitute it into
equation (4.11) to get the first few components of the matrix C in (1.6),

c00 = 1
192wr5

H

[
−48r2

H

(
wrH(8rH−iw)+q2(4irH+w)

)
+a2

{
wrH

(
24rH−iw(7+log(32))

)
+q2

(
3w(1+log(64))+4irH(5+log(8192))

)}]
c01 = 1

96r3
H

[
96r3

H−48iwr2
H+a2

(
iw (−2+5log(2))

)]
c10 = 1

384w3r6
H

[
−48ir2

H

(
32q4rH+w3rH(24irH+w)+iwq2

(
−64r2

H+36iwrH+3w2
))

+a2
{

2wq2
(

9w2(2+log(8))−64r2
H(5+log(16))+18iwrH(14+log(8192))

)
+w3rH

(
−288rH+iw(16+log(32))

)}]
c11 = 1

192w2r5
H

[
48r2

H

(
−14w2r2

H+q2(16r2
H−4iwrH−w2)

)
+a2

{
78w2r2

H

+q2
(

3w2(1+log(64))−16r2
H(7+log(256))+4iwrH(5+log(8192))

)}]
c12 = 1

48r3
H

[
192r3

H−48iwr2
H+a2

(
iw (−2+5log(2))

)]
(4.12)
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Solving (1.7), the first two pole skipping points are obtained as,

w1 = −i2πT q2
1 = 6r2

H + a2

4

(
1 + log(512)

)
,

w2 = −i4πT, q2
2 = ±4

√
6r2
H + a2

(
1±

√
3
2 log(8)

)
,

(4.13)

Notice that here the pole skipping points corresponds to real momentum along with the
imaginary solutions. These real momentum puts nontrivial constrains to the transverse
momentum dispersion relation which will be discussed in the next subsection.

Perpendicular case. In this case the non zero components of the field perturbations are,

hvx3 = e−iwv+iqx2gvvHvx3(r), hx2x3 = eiwv+iqx2g22Hx2x3(r). (4.14)

Similar to the parallel case discussed above one gets two independent equations which can
be clubbed together using the gauge invariant variable as given in (A.25). The equation of
motion involving the gauge invariant variable Zv⊥ is given as,

Z ′′v⊥ −
(
N + a2 ˜̃N

)
Z ′v⊥ −

(
P + a2 ˜̃P

)
Zv⊥ = 0. (4.15)

The power series ansatz near the horizon gives the following few components of the matrix
C in (1.6),

c00 = 1
192wr5

H

[
−48r2

H

(
wrH(8rH−iw)+q2(4irH+w)

)
+a2

{
wrH

(
24rH−5iw(−1+log(2))

)
+q2

(
w(3+log(64))+4irH(5+log(2))

)}]
c01 = 1

96r3
H

[
96r3

H−48iwr2
H+a2

(
iw (−2+5log(2))

)]
c10 = 1

384w3r6
H

[
−48ir2

H

(
32q4rH+w3rH(24irH+w)+iwq2

(
−64r2

H+36iwrH+3w2
))

+a2
{
−2wq2

(
3w2(2+log(8))+64r2

H(−5+log(4))+6iwrH(26+log(8))
)

+w3rH

(
−96rH+5iw(−4+log(2))

)}]
c11 = 1

192w2r5
H

[
48r2

H

(
−14w2r2

H+q2(16r2
H−4iwrH−w2)

)
+a2

{
6w2rH(5rH+2iw)

+q2
(
w2(3+log(64))+16r2

H(−7+log(16))+4iwrH(5+log(2))
)}]

c12 = 1
48r3

H

[
192r3

H−48iwr2
H+a2

(
iw (−2+5log(2))

)]
(4.16)

yielding the following analytic results for the first two pole skipping points,

w1 = −i2πT q2
1 = 6r2

H + a2

8

(
−2 + log(64)

)
,

w2 = −i4πT, q2
2 = ±4

√
6r2
H ±

a2

4
√

6

(
−6 + log(4096)

)
,

(4.17)
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4.3.2 Transverse momentum diffusion in shear channel
In this section we wish to evaluate explicitly the location of the diffusion poles in the
complex (w−q) plane which according to the phenomenon of pole skipping is constrained to
pass through the pole skipping points as obtained in the previous subsection. In particular,
we are interested in the dispersion relation that arises from the pole of the retarded Green’s
function associated to the transverse momentum density. The non zero components for the
perturbed fields in this case again will be of vector type which in (t, u = r2

H
r2 , ~x) coordinates

are htx2 and hx1x2 (again we consider a particular gauge such that hµu = 0, for all µ) with
the perturbation propagating along the anisotropic direction x1 as htx1/x1x2(t, u, x1) =
e−iwt+iqx1htx1/x1x2(u). The Einstein’s equation in this case can be put in a closed form in
terms of the gauge invariant variable, Zv = whtx1 + qhx1x2 as,

Z ′′v −
(
R+ b2R̃

)
Z ′v −

(
S + b2S̃

)
Zv = 0, (4.18)

with the coefficients R,S, R̃, S̃ as given in (C.5). Here as before, we define dimensionless
frequencyW and momentum Q asW = (w/2πT ) and Q = (q/2πT ). Now, to determine the
dispersion relation we follow the numerical approach as given in [47, 48]. First, the behavior
near the horizon is determined by inserting the ansatz (1− u)α into equation (4.18). Two
possible solutions for α is obtained as α = ±iW/2 in which the solution with the negative
sign is chosen to impose the incoming wave boundary condition at the horizon. Then the
final solution can be written as the following power series,

Zv = (1− u)−
iW

2

∞∑
n=0

cn(W,Q)
(

1− u
)n
. (4.19)

Imposing the following Dirichlet boundary condition at the boundary (u = 0) one deter-
mines the quasinormal modes,

Zv(0) =
∞∑
n=0

cn(W,Q) = 0. (4.20)

In figure 3, we have shown the quasinormal modes for the exact dispersion relation (blue
dots) as obtained by the above numerical method. Notice that the blue dots which are
the poles of the correlation function, passes through the pole skipping points (only the
first three points are shown in the graph with locations given by the points (−1i, 1.2284),
(−2i, 1.5710), (−3i, 1.8041) where the first value represents the complex frequency and the
second one is the real momentum) which are represented by points where the horizontal
and vertical black dashed lines intersects each other. The pole structure of the retarded
Green’s function for transverse momentum density at very small momentum and frequency
Q,W � 1 (hydrodynamic approximation) gives the following dispersion relation,

W = −iDQ2 + . . . (4.21)

D being the diffusion constant. However, the above equation is not appropriate at large
energy scale, W ∼ T . The above discussion shows that the behavior of the dispersion
relation at large energy can be predicted from a simple near horizon analysis due to the
pole skipping phenomenon.
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Figure 3. Plot showing the dispersion relation for momentum diffusion which passes through the
first three successive pole skipping points. The calculation for the dispersion relation is done using
numerical methods with b = .5.

4.3.3 Sound channel

The non zero components of the metric perturbations for the scalar modes are already given
in equation (3.1) and (3.2) respectively for the perturbation propagating along or normal
to the direction of anisotropy. Here, to make the discussion simpler we will consider a par-
ticular gauge so that all the metric fluctuations of the form hrµ for all µ will be set to zero.

Parallel case. Considering the scalar modes of metric perturbation the full set of fluc-
tuations are given as,

hvv = e−iwv+iqx1gvvHvv(r), hvx1 = e−iwv+iqx1g11Hvx1(r),
hx1x1 = e−iwv+iqx1g11Hx1x1(r), hx2x2 = e−iwv+iqx1g22Hx1x1(r),

(4.22)

where in the above we define Hvv = hvv/gvv, Hvx1 = hvx1/g11, Hx1x1 = hx1x1/g11,
Hx2x2 = hx2x2/g22. Now, using the above form of different fluctuations into the linearized
equations (3.3), we obtain the following four linearly independent coupled differential equa-
tions for the metric perturbations as,

H ′mn = (Amn + a2Ãmn)H ′vv + (Bmn + a2B̃mn)Hvv + (Cmn + a2C̃mn)Hvx1

+ (Dmn + a2D̃mn)Hx1x1 + (Emn + a2Ẽmn)Hx2x2

H ′′vv = (Avv + a2Ãvv)H ′vv + (Bvv + a2B̃vv)Hvv + (Cvv + a2C̃vv)Hvx1

+ (Dvv + a2D̃vv)Hx1x1 + (Evv + a2Ẽvv)Hx2x2 ,

(4.23)

where, Hmn = {Hvx1 , Hx1x1 , Hx2x2} and all the coefficients in the above equation namely,
Amn, Bmn, Cmn . . . etc. are too lengthy to write in the paper but are functions of (r, w, q).
We can see that all the equations written above in (4.23) are coupled which makes it dif-
ficult to solve them. However constructing gauge invariant variables [48–53] by combining
the field fluctuations one can reduce the coupled equations into a single equation involving
the gauge invariant variables. The details of the construction of the gauge invariant vari-
ables for scalar and vector modes of metric perturbations {(Zs), (Zv)} for the anisotropic
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gravitational background are given in appendix A. The equation of motions involving the
gauge invariant variables for the metric perturbations (scalar modes) is given as,5

Z ′′s‖ −
(
M+ a2M̃

)
Z ′s‖ −

(
L+ a2L̃

)
Zs‖ = 0. (4.24)

We write down the exact expression forM and L in (D.1) and (D.2) respectively, while the
results for M̃ and L̃ are given in (D.3) and (D.4). Here we are interested to find the pole
skipping points in the upper half complex plane and for this we closely follow the analysis
done in [18, 28].

Following the results as obtained in section 3, the location of the special point in the
absence of the anisotropy (a = 0), is given from the near horizon analysis as,

w = 2irH , q =
√

3
2w. (4.25)

In order to proceed with the near horizon analysis of equation (4.24), we must check its
singularity structure near r = rH which changes at the special location as given in the above
equation. In particular at q =

√
3/2w, in the near horizon limit M and L in the above

equation is dominated by terms proportional to 1/(r − rH) and 1/(r − rH)2 respectively.
In presence of the anisotropy which is considered in a perturbative approximation (a� T

or b� 1), equation (4.24) must abide by the above mentioned regularity condition at the
special point. In other words, any term that appears in the near horizon expansion of(
M+ a2M̃

)
and

(
L+ a2L̃

)
which is proportional to (1/(r − rH)p) with p ≥ 2 and p ≥ 3

respectively must be equated to zero [28].
Turning on the anisotropy, we expect the special point to get shifted from the value

mention in the above equation (4.25). Let us assume that the coordinate of the shifted
point in the complex (w − q) plane is given as,

q =
√

3
2w + a2q1, w = 2irH + a2w1, (4.26)

where we required to determine w1 and q1. Inserting the above choice for w, q into (4.24)
we obtain the following near horizon expansion for the coefficient of Z ′s‖ in (4.24) as,

(
M+ a2M̃

)
∼
a2
(
1 + i8

√
6q1rH + 4 log(2)

)
24rH (r − rH)2 +O

(
(r − rH)−1

)
. (4.27)

Equating the above to zero, we obtain the following result for q1 as,

q1 = i (1 + 4 log(2))
8
√

6rH
. (4.28)

On the other hand, the near horizon expansion for the coefficient of Zs‖ in (4.24) again
with the shifted w and q is already dominated by term O

(
(r − rH)−2). Using the obtained

5See [54–56] for the detailed procedure to obtain the equation of motion involving the gauge invari-
ant variable.
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result for q1 and keeping only the most dominating terms for the near horizon expansion
of
(
M+ a2M̃

)
and

(
L+ a2L̃

)
one gets,

(
M+ a2M̃

)
=
a2
(
−28 + 23 log (2) + 24iw1rH

)
48r2

H(r − rH) +O
(

(r − rH)0
)

(
L+ a2L̃

)
=
a2
(

2− 5 log (2)− 24iw1rH

)
48r2

H(r − rH)2 +O
(
(r − rH)−1

)
,

(4.29)

Now, we consider the following power series ansatz for Zs‖,

Zs‖ = (r − rH)λ
∑
n=0

Zsn(r − rH)n. (4.30)

Inserting the above in (4.24) with the coefficients of Z ′s‖, Zs‖ as given in (4.29) and solving
the indicial equation for λ, one gets the following two solutions,

λ1 =
a2
(
−2 + 5 log (2) + 24iw1rH

)
48r2

H

,

λ2 = 1 +
a2
(
−13 + 9 log (2)

)
24r2

H

(4.31)

Solving for w1 such that λ1 = 0, we get the final result for w and q from (4.26) as,

w = 2iπT, q = i
√

6πT
[
1 + b2

(1 + 4 log(2)
48π2

)]
(4.32)

Perpendicular case. Let us now consider the perturbation along the x2 direction. The
non zero components of the perturbations in this case are given as,

hvv = e−iwv+iqx2gvvHvv(r), hvx2 = e−iwv+iqx2g22Hvx2(r),
hx1x1 = e−iwv+iqx2g11Hx1x1(r), hx2x2 = e−iwv+iqx2g22Hx2x2(r), hx3x3 = (g22/g11)hx1x1 .

(4.33)

Again with the above perturbations we will get four linearly independent equations similar
to (4.23) which can be put in a closed form using the gauge invariant variable obtained
in (A.18). The equation in terms of the gauge invariant variable Zs⊥ is given as,

Z ′′s⊥ −
(
M+ a2 ˜̃M

)
Z ′s⊥ −

(
L+ a2 ˜̃L

)
Zs⊥ = 0. (4.34)

The expressions of ˜̃M and ˜̃L are given in (D.5) and (D.7) respectively. The analysis
towards the final results for w and q are exactly similar to what we have done in the
previously corresponding to the perturbation that is parallel to the direction of anisotropy.
In particular in this case also we found the coefficient of Z ′s⊥ to behave near the horizon
as ∼ 1/(r− rH)2 which must vanish in order for the perturbative analysis to be consistent.
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Considering the same ansatz for w and q as given in (4.26), the near horizon behavior of(
M+ a2 ˜̃M

)
is given as,

(
M+ a2 ˜̃M

)
∼
a2
(

1 + i8
√

6q1rH − 2 log(2)
)

24rH (r − rH)2 +O
(
(r − rH)−1

)
. (4.35)

The above vanishes exactly for the value of q1 given as,

q1 = −i

(
−1 + 2 log(2)

)
8
√

6rH
. (4.36)

Again considering the power series ansatz for Zs⊥ similar to the one as given in (4.30) and
solving the indicial equation the exponent λ can be solved as,

λ1 =
a2
(
−2 + 5 log (2) + 24iw1rH

)
48r2

H

,

λ2 = 1 +
a2
(
−2 + log 2

)
8r2
H

,

(4.37)

such that, the value of w1 remains the same as in (4.31), with the final results given as,

w = 2iπT, q = i
√

6πT
[
1− b2

(−1 + 2 log(2)
48π2

)]
. (4.38)

The results for the pole skipping points in the sound channel as obtained in this section
using the gauge invariant approach is exactly matches with the results in section 3 for both
parallel and perpendicular case.

5 Conclusion

In the current manuscript we have done a detailed analysis of the very recently observed
phenomenon called “Pole skipping” in a strongly coupled plasma with anisotropy along a
spatial direction from the near horizon analysis of the equation of motions for different
bulk field perturbations. We have also shown that this phenomenon helps us determine
the parameters of chaos for the same anisotropic quantum theory. To this end we wish to
list the following new aspects/results that we have obtained after doing the above analysis.

• In this paper we have explicitly computed the occurrence of the pole skipping points in
the complex plane for an anisotropic plasma using the corresponding dual holographic
set up. We have obtained the pole skipping points from the near horizon analysis of
the equation of motion for three different bulk field fluctuations: scalar, axion and the
metric field perturbations. For the metric field we considered both the shear modes
and the sound modes of the field fluctuations. We find that only the momentum
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value receives a correction due to the spatial anisotropy as parameterized by a or
the dimensionless ratio b = a/T . For scalar, axion and vector modes of the metric
perturbation the pole skipping happen to appear in the lower half of the complex
plane. However in the sound channel it occurs in the upper half plane and is related
to the parameters of chaos. So in this regard the current paper provides a complete
description of the above phenomenon for the anisotropic plasma which is one of our
primary motivation.

• As discussed earlier, the pole skipping phenomenon constraints the dispersion relation
to pass through the special pole skipping points in the complex plane. In this work
we have explicitly shown that the numerically obtained poles of the retarded green’s
function for the diffusion of transverse momentum exactly passes through the first
three successive pole skipping points. Also the same kind of exact overlapping is
shown to happen for the scalar field green’s function.

• The connection between the quantum chaos and the modes of collective excitations is
remarkably established by the phenomenon of pole skipping such that instead of four
point functions of generic single trace operators in QFT one needs to find the points
(at different orders) at which the associated energy density two point correlation
function has zeroes in both the numerator and the denominator. The point at lowest
order gives the butterfly velocity of quantum chaotic spread and also the Lyapunov
exponent. One of the most important result of this paper is that even in the presence
of a spatial anisotropy, the pole skipping phenomenon correctly produce the Lyapunov
exponent and the butterfly velocity where the Lyapunov exponent saturates the chaos
bound as expected and the butterfly velocity receives the anisotropic correction.

• In this manuscript, for the first time (to the best of our knowledge), we have con-
structed the gauge invariant variables regarding the metric perturbations in both
shear and scalar channel for a gravitational background dual to the anisotropic
plasma. In appendix A, we have discussed this construction in details. Using this
gauge invariant variable one can write the Einstein’s equation in a simple closed form
which turns out to be very useful in determining the pole skipping points.

• Finally, as discussed in [17], a satisfactory understanding of the pole skipping phe-
nomenon has been achieved in the gravity side in terms of a particular component
of Einstein’s equation which becomes trivial at the lowest order pole skipping point
near the horizon. However from the field theory point of view, the reason for this
phenomenon is yet to be understood. In particular, there are infinite number of spe-
cial points in the complex plane where the two point correlation function has zero
over zero form among which only the lowest order point has a connection to the pa-
rameters of quantum chaos. However the physical meaning of the other points is still
unclear from the perspective of quantum field theory. So we hope this work would
be a valuable contribution to this field of research in future.

– 21 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
2

Before closing, we must mention that in [29] the author, using the gravitational shock wave
analysis obtains a direct connection between the coefficient of momentum diffusion and the
butterfly velocity for anisotropic background. For the special anisotropy there exists two
different diffusion coefficient and hence two butterfly velocity, one along the direction of
anisotropy and the other which is perpendicular to direction of anisotropy. In this paper
we also compute two different butterfly velocities. Physically these two velocities indicated
the speed with which the momentum diffuse in the x1 (direction of anisotropy in our case)
and x2 direction. In [29] it was shown that the ratio of these two butterfly velocities are
given by the following relation,

v2
x1

v2
x2

= g22
g11
|r=rH . (5.1)

With the metric as given in (2.2), the r.h.s. of the above equation can be easily calculated as,
g22
g11
|r=rH = 1− b2 log(2)

4π2 , (5.2)

which exactly matches with the ratio of two velocities as obtained in (3.11) and (3.15) from
the near horizon analysis of vv component of Einstein’s equation in section 3.

The above analysis can be repeated for a gravitational background which is deformed by
the presence of uniformly distributed heavy quark in the dual field theory [57].6 Moreover
it would be interesting to see how the Lyapunov exponent and the butterfly velocity modify
due to the non zero quark density.
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A Construction of the gauge invariant variable

In this section we present a detailed discussion towards the construction of the gauge
invariant variable for the anisotropic background.7 The five dimensional metric with
anisotropy (2.9) can be rewritten following [20] as,

ds2 = gabdx
adxb + gijdx

idxj , (A.1)

where xa = (v, r) and xi = (x1, x2, x3). Note that all the metric components in the above
equation depends only on the redial coordinate r. Also unlike gij , the matrixform of gab
has nonzero off-diagonal components. Now given the linear perturbation of the above
background metric, the perturbation can be decomposed in the following way,

h = A1dv ⊗ dv +A2dr ⊗ dr +A3 (dv ⊗ dr + dr ⊗ dv)

+ bai
(
dxa ⊗ dxi + dxi ⊗ dxa

)
+ (Cgij + eij) dxi ⊗ dxj .

(A.2)

6Also see [58] for the study of different entanglement measures on the same back reacted background.
7We find the lecture as given in [59] very useful in computing the gauge invariant variable in our case.
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In the above decomposition A1, A2, A3, C are scalars, bai is a vector and eij is a symmetric
traceless tensor. The vector bai can be decomposed as,

bai = DiBa + B̃ai, (A.3)

where Ba is a scalar for a = (v, r) and B̃ai is a divergence free vector, that is DiB̃ai = 0
with Di denoting the covariant derivative with respect to the metric gij . Furthermore the
tensor eij in (A.2) can also be decomposed as,

eij =
(
DiDj −

1
3gij∇

)
E + 2D(iEj) + Eij , (A.4)

where ∇ = gijD
iDj . In the above decomposition E is a scalar, Ej is a vector and Eij is a

symmetric traceless tensor quantity.
Now consider the infinitesimal transformation of the coordinates as, xm → xm + ξm,

where m = (a, i). To study the gauge invariance of the metric perturbation under the
above transformation of the coordinate xm we first note the following definition,

δξhµν = £ξgµν , (A.5)

where δξ denotes the gauge invariant transformation and £ξ is the lie derivative. The
infinitesimal transformation ξm can again be decomposed as,

ξm = T a +DiL+ Li, DiL
i = 0. (A.6)

A.1 Scalar modes of metric perturbation

The gauge invariant transformation for the scalar modes of the metric perturbation is
obtained using (A.5) as,

δξhab = 2D(aTb)

δξBa = Ta + ∂aL− Lgij∂agij

δξC = 1
3
(
T agij∂agij + 2∇L

)
δξE = 2L.

(A.7)

Substituting the final relation into the second one of the above equation we get,

Ta = δξζa,

ζa = Ba −
1
2∂aE + 1

2Eg
ij∂agij .

(A.8)

Also using the above expression for T a in the first and the third relation of (A.7) gives,

δξHab = 0 → Hab = hab − 2D(aζb)

δξHL = 0 → HL = C − 1
3ζ

agij∂agij −
1
3∇E.

(A.9)

From the above equation we see that Hab and HL are gauge invariant.

– 23 –



J
H
E
P
0
3
(
2
0
2
1
)
2
3
2

A.1.1 Perturbation along the direction of the anisotropy

For the perturbation along the direction of the anisotropy, the perturbation is written as
the plane wave form: hµν = e−iwv+iqx1hµν . So in this case different components of the
perturbation can be evaluated from (A.2) as,

hx1x1 = Cg11 − q2E +
(
g11
3

)
q2E

hss
2 = Cg22 + g22

3 q2E

hvx1 = iqBv.

(A.10)

where we define hss = hx2x2 + hx3x3 , that is the trace part of the perturbation in the
(x2 − x3) plane. The above equation can be solved for C and E to get,

C = 1
3hx1x1 + 1

2g22hss −
1
6

(
g11
g22

)
hss, q2E = 1

2

(
g11
g22

)
hss − hx1x1 . (A.11)

Substituting the above expression for C and q in (A.9) we obtain the following two gauge
invariant metric perturbation for the scalar mode as,

Hvv = hvv + 2iwζv −
g′vv
gvr

(
ζv −

gvv
gvr

ζr

)
Hvr = −ζ ′v +

(
iw + g′vv

gvr

)
ζr

Hrr = −ζ ′r + g′vr
gvr

ζr

HL = hss
2g22

− gij∂rgij
3gvv

(
ζv −

g2
vv

g2
vr

ζr

)
(A.12)

Finally from the above equation the gauge invariant variable Zs‖ for the scalar modes of
metric perturbation is obtained as,

Zs‖ = 2q2 (gvvHvv) + 4wq (g11Hvx1) + 2w2 (g11Hx1x1)− 2
(
g11w

2 + 3q2 g′vv
gij∂rgij

)
Hx2x2 .

(A.13)
The corresponding gauge invariant variable for the dilaton (Zd) and axion (Za) in a similar
way can be obtained as,

Zd‖ = ϕ0 −
3φ′0

gij∂rgij
Hx2x2 ,

Za‖ = ψ0 − a
(
i

2q

)
(Hx2x2 −Hx1x1) .

(A.14)

A.1.2 Perturbation perpendicular to the direction of the anisotropy

Let us now take the plane wave like perturbation to propagate along the other direction
say x2 such that it can be written as, hµν = e−iwv+iqx2hµν . The non zero components for
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the scalar modes of metric perturbation are computed using (A.2) as,

hx2x2 = Cg22 − q2E +
(
g22
3

)
q2E

hss = (g11 + g22)
(
C + 1

3q
2E

)
hvx2 = iqBv.

(A.15)

where in this case hss = hx1x1 + hx3x3 . Again the above can be solved for C and E as,

C = 1
3hx2x2 + hss

g11 + g22
− g22

3(g11 + g22)hss, q2E = g22
g11 + g22

hss − hx2x2 . (A.16)

With this the gauge invariant metric perturbations are obtained as,

Hvv = hvv + 2iwζv −
g′vv
gvr

(
ζv −

gvv
gvr

ζr

)
Hvr = −ζ ′v +

(
iw + g′vv

gvr

)
ζr

Hrr = −ζ ′r + g′vr
gvr

ζr

HL = hss
g11 + g22

− gij∂rgij
3gvv

(
ζv −

g2
vv

g2
vr

ζr

)
(A.17)

The gauge invariant variable Zs⊥ is given as,

Zs⊥ = 2q2 (gvvHvv) + 4wq (g22Hvx2) + 2w2 (g22Hx2x2)− 2
(
g22w

2 + 3q2 g′vv
gij∂rgij

)
Hx1x1 .

(A.18)
Again, in this case the gauge invariant variable for the dilaton and the axion field is
obtained as,

Zd = ϕ0 −
3φ′0

gij∂rgij
Hx1x1 ,

Za = ψ0.

(A.19)

A.2 Vector modes of metric perturbation

For the vector modes the gauge invariant transformations are given as,

δξB̃ai = ∂aLi − Lig
kl∂agkl,

δξEi = Li.
(A.20)

Substituting the second relation into the first one in the above equation one gets,

δξHai = 0 → Hai = B̃ai − ∂aEi + Eig
kl∂agkl. (A.21)

Hence in this case Hai is the gauge invariant variable.
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A.2.1 Perturbation along the direction of the anisotropy

The nonzero components of the vector modes of metric perturbation can be expressed as,

hvx2 = B̃vx2 , hx1x2 = iqEx2 . (A.22)

So the gauge invariant variable for the vector modes with perturbation along the anisotropic
direction is given as,

Zv‖ = qhvx2 + whx1x2 . (A.23)

A.2.2 Perturbation perpendicular to the direction of the anisotropy

Again considering the perturbation along the x2 direction with the same plane wave form
the nonzero components of perturbation can be written as,

hvx3 = B̃vx3 , hx2x3 = iqEx3 , (A.24)

yielding the gauge invariant variable as,

Zv⊥ = qhvx3 + whx2x3 . (A.25)

B Coefficients of the scalar field EOM

The coefficients as appearing in equation (4.1) and (4.4) for the scalar field perturbation
propagating parallel and perpendicular to the direction of anisotropy are explicitly given as,

S1 = r3(
r4−r4

H

) (−5+2iw
r

+ r4
H

r4

)
, S2 = r2(

r4−r4
H

) (q2

r2 +3iw
r

)
,

S̃1 = r7

24r2
H

(
r4−r4

H

)2
[
6r

6
H

r6 −5iw
r

log
(

1+ r2
H

r2

)
+ r2

H

r2

(
26−6iw

r

)

+ r4
H

r4

{
−32+6iw

r
−20

(
2−iw

r

)
log(2)+5

(
8−3iw

r

)
log
(

1+ r2
H

r2

)}]
,

S̃2 = r6

48r2
H

(
r4−r4

H

)2
[
−
(

18q
2

r2 +15iw
r

)
log
(

1+ r2
H

r2

)
+16r

2
H

r2

(
6− q

2

r2−3iw
r

)

−96r
6
H

r6 + r4
H

r4

{
16q

2

r2 +48iw
r

+20
(
q2

r2 +3iw
r

)
log(2)−

(
2q

2

r2 +45iw
r

)
log
(

1+ r2
H

r2

)}]

˜̃S1 = r

24r2
H

(
r4−r4

H

)2
[
r2
H

(
26r4+6r4

H−6iwr3−8r2r2
H (4+5log2)+2iwr (3+10log2)r2

H

)

−5ir
(

8irr4
H+r4w+3wr4

H

)
log
(

1+ r2
H

r2

)]

˜̃S2 = 1
48r2

H

(
r4−r4

H

)2
[
16r2

H

(
r4−r4

H

)(
6
(
r2+r2

H

)
−q2−3iwr

)
+20r4

H

(
q2+3iwr

)
log2

−
(

2q2
(
3r4+7r4

H

)
+15iwr

(
r4+3r4

H

))
log
(

1+ r2
H

r2

)]
(B.1)
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C Equation of motion in shear channel

The coefficients appearing in equation (4.11) and (4.15) are given as,

N =
r3r4

H

(
3rw2+2q2(r−iw)

)
−q2r8

H +r7 (w2−q2)(r−2iw)
r (r4−r4

H)(r4 (q2−w2)−q2r4
H)

Ñ = 1
24rr2

H (r4−r4
H)2 (q2(r4−r4

H)−w2r4)2

{
2r2

Hq
4(r4−r4

H)2
(

7r6−12r4r2
H

+3r2r4
H +2r6

H−3iwr5+iwr3r2
H(3+log1024)

)
+2w4r8r2

H

(
r6+15r2r4

H−12r6
H

−3iwr5−4r4r2
H(1+log32)+iwr3r2

H(3+log1024)
)
−4q2w2r4r2

H

(
r4−r4

H

)
(

4r6+7r2r4
H−3iwr5−2r4r2

H(4+log32)−r6
H(3+log1024)+iwr3r2

H(3+log1024)
)

−iwr3
(

5q4 (r4−r4
H

)(
r4+3r4

H

)
+5w3r8 (8irr4

H +wr4+3wr4
H

)
−2q2wr

(
r4−r4

H

)
(
4ir4

H

(
3r4+7r4

H

)
+5wr3 (r4+3r4

H

)))
log
(

1+ r2
H

r2

)}
(C.1)

P = 1
r2 (r4−r4

H)(q2(r4−r4
H)−w2r4)

{
q4r2 (r4−r4

H

)
+w2r4 (−4r4−4r4

H +iwr3)+q2 (4r8−8r4r4
H +4r8

H−iwr7−3iwr3r4
H−w2r6)}

P̃ = 1
48r2r2

H (r4−r4
H)2 (q2(r4−r4

H)−w2r4)2

{
4w4r8r2

H

(
−2
(
r2−r2

H

)
(
4r4+12r4

H−3iwr3)+r3r2
H(8r−iw) log32

)
+4w2q2r4r2

H

(
2r2 (r2−r2

H

)
(

2
(
7r6−r4r2

H−7r2r4
H +r6

H

)
−iwr

(
3r4+r2r2

H +6r4
H

)
−2w2r4

)
+10r2

H

(
4r8

H +3iwr7) log2+r3r2
H

(
−8r5−2iwr4

H +w2r3) log32
)

−4q6r2r2
H

(
r4−r4

H

)2 (4r2−r2
H(4+log32)

)
−4q4r2

H

(
r4−r4

H

)(
20r10+40r4r6

H

+12r2r8
H−16r10

H −12iwr5r4
H−8r8(3r2

H +w2)+iwr3r6
H(14+15log2)

+iwr7r2
H(−2+25log2)+2r6r2

H

(
−16r2

H +w2(4+log32)
))

−r2

(
2q6 (r4−r4

H

)2 (9r4+r4
H

)
−iwq4r

(
r4−r4

H

)(
5
(
r8+22r4r4

h+9r8
H

)
−4iwr3 (9r4+r4

H

))
+5w4r9 (32rr4

H−iw
(
r4+3r4

H

))
+2w2q2r2

(
16r4

H

(
−3r8−4r4r4

H +7r8
H

)
+iwr3 (5r8+76r4r4

H−41r8
H

)
+w2r6 (9r4+r4

H

)))
log
(

1+ r2
H

r2

)}

(C.2)
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˜̃N = 1
24rr2

H (r4−r4
H)2 (q2(r4−r4

H)−w2r4)2

{
2r2

Hq
4(r4−r4

H)2
(

7r6−12r4r2
H

+3r2r4
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H−3iwr5+iwr3r2
H(3+log1024)
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+2w4r8r2

H

(
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H−12r6
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H

(
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H

)
(
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H(3+log1024)+iwr3r2

H(3+log1024)
)

−iwr3
(

5q4 (r4−r4
H

)(
r4+3r4

H

)
+5w3r8 (8irr4

H +wr4+3wr4
H

)
−2q2wr

(
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4ir4

H

(
3r4+7r4

H

)
+5wr3 (r4+3r4

H
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log
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˜̃P = 1
48r2r2

H (r4−r4
H)2 (q2(r4−r4

H)−w2r4)2
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−4w4r8r2

H

(
20r6+12r2r4

H

−12r6
H +5iwr3r2

h log2−20r4r2
H(1+log4)

)
−4q6r2r2

H

(
r4−r4

H

)2 (4r2−r2
H(4+log32)
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The coefficients appearing in equation (4.18) are given as,
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D Equation of motion in sound channel

The coefficients of the equations in (4.24) are given as,
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