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1 Introduction

Two-dimensional gravity is one of the simplest models of quantum gravity which has been
intensively studied for quite some time. In [1–4] it was found that two-dimensional gravity
is described by a certain double-scaled random matrix model (see [5] for a review). Math-
ematically, two-dimensional gravity corresponds to an intersection theory on the moduli
space of closed Riemann surfaces, as first conjectured by Witten [6] and proved by Kont-
sevich [7]. It is known that the free energy of two-dimensional gravity on closed Riemann
surfaces satisfies the KdV equations [6–8] and the Virasoro constraints [9, 10]. Recently, it is
realized that this story holds for Jackiw-Teitelboim (JT) gravity as well; Saad, Shenker and
Stanford [11] showed that JT gravity is described by a doubled-scaled matrix model and it
corresponds to a particular background of Witten-Kontsevich topological gravity [12–14].

Recently, Pandharipande, Solomon and Tessler [15] initiated the study of open topo-
logical gravity, i.e. the intersection theory on the moduli space of Riemann surfaces with
boundary. See also [16–21] for related works. It is conjectured in [15] and proved in [18]
that the open free energy F o(s),1 or the generating function of the open intersection num-
bers, satisfies the open version of the KdV equations and the Virasoro constraints. As

1The variable s is related to the ’t Hooft parameter λ in our previous papers [14, 22] by λ =
√

2s.
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explained in [13], open topological gravity is physically realized by adding vector degrees of
freedom to the matrix model of two-dimensional gravity. After integrating out the vector
degrees of freedom, this amounts to the insertion of the determinant operator det(ξ−M) to
the matrix integral, where ξ is a parameter and M is the random matrix. The expectation
value of this determinant operator

ψ(ξ) = e
− 1

2gs
V (ξ)〈det(ξ −M)〉 (1.1)

corresponds to the wavefunction of the FZZT brane [23, 24]. Here V (ξ) is the matrix model
potential and gs is the genus counting parameter (denoted as u in [15–18]). ψ(ξ) is also
identified as the Baker-Akhiezer (BA) function of the KdV hierarchy [25].

It is known that the exponential of the open free energy eF o(s) and the BA function
ψ(ξ) are related by the formal Fourier transformation [13, 18]2

eF
o(s) =

∫ ∞
−∞

dξe
sξ
gs ψ(ξ). (1.2)

One can compute the small gs expansion of F o(s)

F o(s) =
∞∑
g̃=0

gg̃−1
s F o

g̃ (s) (1.3)

from the result of the WKB expansion of the BA function by evaluating the integral (1.2)
by the saddle point method. For instance, the leading term of the small gs expansion
of ψ(ξ) ≈ e

− 1
2gs

Veff(ξ) is given by the so-called effective potential Veff(ξ). In our previous
paper [22], we obtained the explicit form of Veff(ξ) for arbitrary background couplings {tn}.
Then the leading term F o

0 (s) in (1.3) is given by the Legendre transform of Veff(ξ). One
can in principle continue this saddle point computation for the higher order corrections in
gs, but the computation becomes very cumbersome as the order of gs increases.

It turns out that the small gs expansion of F o(s) can be computed systematically by
recursively solving Buryak’s equation [17], which is understood as the Fourier transform
of the Schrödinger equation of the KdV hierarchy. This is based on the fact that F o

g̃≥2(s)
in (1.3) is written as a polynomial in variables which are expressed in terms of genus zero
quantities only. This is similar to the situation in original Witten-Kontsevich topological
gravity, where the genus-g(≥ 2) closed free energy F c

g is written as a polynomial in a certain
basis [26, 27].

This paper is organized as follows. In section 2 we briefly review closed and open
topological gravities. We also explain how the open KdV equations and Buryak’s equation
are derived from the KdV hierarchy. In section 3 we study the genus expansion of the
open free energy. We first compute it from the genus expansion of the BA function by
the saddle point calculation. We next derive an explicit expression of the genus zero open
free energy. We then formulate a method of computing the genus expansion by solving
Buryak’s equation. We conclude in section 4 with discussions on the future directions.
Some details of the calculations are relegated to the appendices A and B.

2The inverse transformation of (1.2) is considered in [18]. Our (1.2) is equivalent to eq. (4.76) in [13].

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
7

2 Brief review of topological gravity

In this section we will briefly review the basics and known results about closed and open
topological gravities. We will also explain how the open KdV equations and Buryak’s
equation, which will be the main tools of our study of the open free energy, are derived
from the KdV hierarchy.

2.1 Witten-Kontsevich closed topological gravity

In Witten-Kontsevich topological gravity [6, 7] (see also [13]) observables are made up of
the intersection numbers

〈τd1 · · · τdn〉g,n =
∫
Mg,n

ψd1
1 · · ·ψ

dn
n , d1, . . . , dn ∈ Z≥0. (2.1)

They are defined on a closed Riemann surface Σ of genus g with n marked points p1, . . . , pn.
We letMg,n denote the moduli space of Σ andMg,n the Deligne-Mumford compactification
ofMg,n. Here τdi = ψdii and ψi is the first Chern class of the complex line bundle whose
fiber is the cotangent space to pi. The intersection numbers (2.1) obey the selection rule

〈τd1 · · · τdn〉g,n = 0 unless d1 + · · ·+ dn = 3g − 3 + n. (2.2)

The generating function for the above intersection numbers is defined as

F c({tk}, gs) :=
∞∑
g=0

g2g−2
s F c

g ({tk}), F c
g ({tk}) :=

〈
e
∑∞

d=0 tdτd
〉
g
. (2.3)

We will call F c the closed free energy.
It was conjectured [6] and proved [7] that eF c is a tau function for the KdV hierarchy.

This means that

u := g2
s ∂

2
0F

c (2.4)

satisfies the KdV equations

∂ku = ∂0Rk+1, (2.5)

where Rk are the Gelfand-Dikii differential polynomials of u

R0 = 1, R1 = u, R2 = u2

2 + g2
s ∂

2
0u

12 , · · · . (2.6)

Here we have introduced the notation

∂k := ∂

∂tk
. (2.7)

For k = 1, (2.5) gives the traditional KdV equation

∂1u = u∂0u+ g2
s

12∂
3
0u. (2.8)

– 3 –
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Integrating (2.5) once in t0 we have

g2
s ∂k∂0F

c = Rk+1. (2.9)

It is well known (see e.g. [28]) that the KdV equations (2.5) are obtained as the
compatibility condition of the Schrödinger equation

Qψ = ξψ (2.10)

and the KdV flow equations

∂kψ = Mkψ, (2.11)

where

Q := g2
s
2 ∂

2
0 + u, Mk :=

(2Q)k+1/2
+

(2k + 1)!!gs
. (2.12)

Here we have decomposed (2Q)k+1/2 = (2Q)k+1/2
+ + (2Q)k+1/2

− and the subscript + means
that (2Q)k+1/2

+ contains only non-negative powers of ∂0. Indeed, (2.5) is recovered by using
the relation

[Mk, Q] = ∂0Rk+1. (2.13)

The wave function ψ that satisfies (2.10) and (2.11) is known as the Baker-Akhiezer func-
tion.

Another important constraint that the closed free energy F c obeys is the string equa-
tion [8]. For Witten-Kontsevich gravity it is written as

u−
∞∑
k=0

tkRk = 0. (2.14)

The genus zero part of this string equation is written as

u0 − I0(u0, {tk}) = 0, (2.15)

where u0 is the genus-zero part of u

u0 := ∂2
0F

c
0 (2.16)

and we have introduced the Itzykson-Zuber variables [26]

In(v, {tk}) =
∞∑
`=0

tn+`
v`

`! (n ≥ 0). (2.17)

Throughout this paper In without specifying its arguments should always be understood as

In = In(u0, {tk}). (2.18)
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It is also convenient to introduce the variable

t := (∂0u0)−1 = 1− I1. (2.19)

It was conjectured [26] and proved [27, 29] that Fg({tk}) (g ≥ 2) are polynomials in In≥2
and t−1. This fact significantly helps us to compute higher genus free energy F c

g .
An efficient way to compute F c

g is as follows. (See [14] for a more detailed explanation.)
Let us expand u as

u =
∞∑
g=0

g2g
s ug, ug = ∂2

0F
c
g . (2.20)

ug can be computed by recursively solving the KdV equation (2.8). To do this, let us
regard tk≥2 as parameters and consider the change of variables from (t0, t1) to (u0, t). The
differentials ∂0,1 are then written in the new variables as3

∂0 = 1
t
(∂u0 − I2∂t), ∂1 = u0∂0 − ∂t. (2.21)

By expanding both sides of the equation in gs (2.8) is written as the recursion relation

−1
t
∂t(tug) =

g−1∑
h=1

ug−h∂0uh + 1
12∂

3
0ug−1 (g ≥ 1). (2.22)

This is easily solved with the help of (2.21). First few of ug are

u1 = I2
2

12t4 + I3
24t3 ,

u2 = 49I5
2

288t9 + 11I3
2I3

36t8 + 84I2
2I4 + 109I2I

2
3

1152t7 + 32I2I5 + 51I3I4
2880t6 + I6

1152t5 .
(2.23)

As explained in [14] one can easily integrate ug twice in t0 and obtain the well-known
results [26]

F c
1 = − 1

24 log t,

F c
2 = I4

1152t3 + 29I2I3
5760t4 + 7I3

2
1440t5 .

(2.24)

2.2 Pandharipande-Solomon-Tessler open topological gravity

Pandharipande, Solomon and Tessler proposed an open analog of Witten-Kontsevich topo-
logical gravity [15]. They introduced the open intersection numbers

〈τd1 · · · τdnσk〉og̃,n = 2−
g̃+k−1

2

∫
Mg̃,k,n

e(E, s), d1, . . . , dn ∈ Z≥0. (2.25)

The new insertion σ corresponds to the addition of a boundary marking and the power k
of σ specifies the number of boundary markings. e(E, s) is the relative Euler class [15],

3This change of variables was originally introduced by Zograf (see e.g. [30]).
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which is thought of as an open analog of the Euler class e(E) = ψd1
1 · · ·ψdnn used in (2.1).

Mg̃,k,n denotes a suitable compactification of the moduli spaceMg̃,k,n of Riemann surfaces
with boundary of doubled genus g̃ with graded spin structures,4 n interior and k boundary
marked points. The open intersection numbers (2.25) obey the selection rule

〈τd1 · · · τdnσk〉og̃,n = 0 unless 2
n∑
j=1

dj = 3g̃ − 3 + k + 2n. (2.26)

The generating function for the open intersection numbers is defined as

F o(s, {tk}, gs) :=
∞∑
g̃=0

gg̃−1
s F o

g̃ (s, {tk}), F o
g̃ (s, {tk}) :=

〈
esσ+

∑∞
d=0 tdτd

〉o

g̃
. (2.27)

We will call F o the open free energy.
It was conjectured [15] and then proved [18] that F o satisfies the open KdV equations

2n+ 1
2 ∂nF

o = gs∂sF
o∂n−1F

o + gs∂s∂n−1F
o + g2

s
2 ∂0F

o∂0∂n−1F
c − g2

s
4 ∂

2
0∂n−1F

c (n ≥ 1).

(2.28)

In fact it is known [17] that F o is fully determined by the above system of equations with
the initial condition

F o
∣∣∣
tk≥1=0

= 1
gs

(
s3

6 + t0s

)
, (2.29)

given the closed free energy F c. Buryak proved that F o further satisfies another differential
equation [17]

∂sF
o = gs

[1
2(∂0F

o)2 + 1
2∂

2
0F

o + ∂2
0F

c
]
. (2.30)

These equations play a crucial role in the study of F o in this paper.
In [16] Buryak constructed an explicit expression for eF o in terms of F c. In this sense

an explicit form of F o is known. For many purposes, however, it is still useful to express
F o in the form of genus expansion (2.27) and construct an explicit, closed expression of
F o
g̃ (s, {tk}) for fixed g̃. This is our primary goal in this paper.

2.3 Open free energy and Fourier transform of BA function

It is known [13, 18] that the exponential of the open free energy expF o is related to the BA
function ψ by the formal Fourier transformation (1.2). Using this relation one can show [18]
that the open KdV equations (2.28) and Buryak’s equation (2.30) are in fact derived from
the KdV flow equations (2.11) and the Schrödinger equation (2.10) respectively. In what
follows we will present a derivation in a manner slightly different from [18].

Let ψ̂ denote the formal Fourier transform of the BA function ψ

ψ̂(s) :=
∫ ∞
−∞

dξe
sξ
gs ψ(ξ). (2.31)

4For the notion of graded spin structures, see e.g. [19].
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In terms of ψ̂ the Schrödinger equation (2.10) is written as

Qψ̂ = gs∂sψ̂. (2.32)

On the other hand, (1.2) is written as

ψ̂ = eF
o
. (2.33)

Substituting (2.33) into (2.32) one obtains

g2
s
2 ∂

2
0e
F o + ueF

o = gs∂se
F o
. (2.34)

Rewriting u by (2.4) we immediately see that this is equivalent to (2.30). We have thus
seen that Buryak’s equation (2.30) is nothing but the formal Fourier transform of the
Schrödinger equation (2.10).

Similarly, let us consider the Fourier transform of the KdV flow equations (2.11). It is
clear that the same equations hold for ψ̂ as well

∂nψ̂ = Mnψ̂

=
(2Q)n+ 1

2
+

(2n+ 1)!!gs
ψ̂.

(2.35)

It is shown [16] that these equations are satisfied by ψ̂ in (2.33) with F o obeying the open
KdV equations (2.11). Conversely, we can directly derive the open KdV equations (2.11)
from (2.35) using (2.33). Since the derivation is rather technical, we relegate it to ap-
pendix A. We stress that the open KdV equations are equivalent to the KdV flow equa-
tions (2.11) under the identification (2.33).

3 Genus expansion of open free energy

In this section we will study the genus expansion of the open free energy. We will first
compute it from the genus expansion of the BA function by the saddle point calculation.
We will next derive a fully explicit expression of the genus zero open free energy. Finally, we
will formulate a method of computing the genus expansion by solving Buryak’s equation,
which turns out to be much more efficient than the saddle point calculation.

3.1 Genus expansion of BA function

We saw in [22] that the BA function ψ admits the following expansion

ψ = eA, A =
∞∑
g̃=0

gg̃−1
s Ag̃. (3.1)

– 7 –
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First few of Ag̃ are5

A0 = − tz
3

3 +
∞∑
n=1

In+1
(2n+ 3)!!z

2n+3,

A1 = −1
2 log z + const.,

A2 = − 5
24tz3 −

I2
24t2z ,

A3 = 5
16t2z6 + 1

t3

(
I2

8z4 + I3
48z2

)
+ I2

2
24t4z2 ,

(3.2)

where we have introduced6

z :=
√

2(ξ − u0). (3.3)

Ag̃ can be computed up to any order by solving the recursion relation for vg̃ := ∂0Ag̃

vg̃ = − 1
2v0

∂0vg̃−1 +
g̃−1∑
k=1

vkvg̃−k +
{

2u g̃
2
(g̃ even)

0 (g̃ odd)

 , (n ≥ 2),

v0 = z, v1 = 1
2tz2 .

(3.4)

In [22] we performed this computation with special values of tk corresponding to the case
of JT gravity, but as advertised in [31] it can be generalized without any effort to the case
of general values of tk, as we have seen above.

3.2 Saddle point calculation and polynomial structure of free energy

The Fourier transformation (1.2) enables us to calculate the genus expansion (1.3) of F o

from that of A = logψ just obtained above. (1.2) is written as

eF
o =

∫ ∞
−∞

dξe
sξ
gs

+A

=
∫ ∞
−∞

dξe[sξ+A0(ξ)]g−1
s +A1(ξ)+A2(ξ)gs+O(g2

s ).
(3.5)

As in [14, 22] one can calculate F o
g̃ by the saddle point method.

The saddle point ξ∗ is given by the condition

∂ξ [sξ +A0(ξ)]
∣∣∣
ξ=ξ∗

= 0. (3.6)

5In [22] the constant part of A1 is fixed so that it fits well with the convention of closed topological gravity.
In this paper we will use this degree of freedom later for compensating the difference of the normalizations
of eF

o
and ψ, so that we can avoid putting an inessential normalization factor in (1.2).

6Ag̃, vg̃ and z in this paper are related to those in our previous paper [22] by Ahere
g̃ =

(√
2
)1−g̃

Athere
g̃ ,

vhere
g̃ =

(√
2
)1−g̃

vthere
g̃ , zhere =

√
2zthere.
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This is equivalent to

s = −∂ξA0
∣∣∣
ξ=ξ∗

= tz∗ −
∞∑
n=1

In+1
(2n+ 1)!!z

2n+1
∗ ,

(3.7)

where

z∗ :=
√

2(ξ∗ − u0) ⇔ ξ∗ = z2
∗
2 + u0. (3.8)

By using the Lagrange inversion theorem this is inverted as (see appendix B)

z∗ =
∑
ja≥0∑
a
ja=k∑

a
aja=n

(2n+ k)!
(2n+ 1)!

s2n+1

t2n+k+1

∞∏
a=1

Ijaa+1
ja!(2a+ 1)!!ja . (3.9)

As in [14] let us introduce a new variable φ as

ξ = ξ∗ +√gsφ. (3.10)

The integral (3.5) is then written as

eF
o = e[sξ∗+A0(ξ∗)]g−1

s +A1(ξ∗)
∫ ∞
−∞

√
gsdφe

1
2∂

2
ξ∗A0(ξ∗)φ2+O(g1/2

s ). (3.11)

By expanding the integrand in gs, the integral in φ can be performed order by order as a
Gaussian integral. In fact, we did essentially the same calculation in [14] up to the order
of g1

s . We thus immediately obtain

F o
0 = sξ∗ +A0(ξ∗) = sξ∗ −

∫ ξ∗

u0
dξ′∗s(ξ′∗)

=
∫ s

0
ds′ξ∗(s′),

F o
1 = A1(ξ∗) + 1

2 log 2πgs
−∂2

ξ∗
A0(ξ∗)

= 1
2 log ∂sξ∗

z∗
= 1

2 log ∂sz∗,

F o
2 = A2(ξ∗) + 1

2

(
A

(3)
0∗
3!

)2

〈φ6〉+
(
A

(4)
0∗
4! + A

(3)
0∗ A

(1)
1∗

3!

)
〈φ4〉+

(
A

(1)
1∗
)2 +A

(2)
1∗

2 〈φ2〉

= − 5
24tz3

∗
− I2

24t2z∗
+ ξ

(3)
∗

8
(
ξ

(1)
∗
)2 −

(
ξ

(2)
∗
)2

6
(
ξ

(1)
∗
)3 − ξ

(2)
∗

4z2
∗ξ

(1)
∗

+ 5ξ(1)
∗

8z4
∗
,

(3.12)

where we have introduced the notation

A
(n)
g̃∗ := ∂nξ Ag̃

∣∣∣
ξ=ξ∗

, ξ
(n)
∗ := ∂ns ξ∗. (3.13)

– 9 –
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In the last equality in (3.12) we have used

A
(n)
0∗ = −

(
1
ξ

(1)
∗

∂

∂s

)n−1

s (n ≥ 1),

〈φ2m〉 =
∫∞
−∞ dφe

1
2A

(2)
0∗ φ

2
φ2m∫∞

−∞ dφe
1
2A

(2)
0∗ φ

2
= (2m− 1)!!(
−A(2)

0∗
)m = (2m− 1)!!

(
ξ

(1)
∗
)m (m ≥ 1).

(3.14)

We have fixed the constant part of A1 in (3.2) in such a way that the initial condition (2.29)
is satisfied. Using this method one can in principle calculate F o

g̃ up to any order. However,
this calculation gets quickly involved as g̃ increases. We will propose an alternative, much
more efficient method of computing F o

g̃ in the following subsections.
An advantage of the above calculation is that we can prove the polynomial structure of

the higher genus free energies F o
g̃≥2. The expansion (3.11) implies that F o

g̃≥2 are polynomials
in A(n≥3)

0∗ , A(n≥1)
1∗ , A(n≥0)

g̃≥2 ∗ and 〈φ2m〉 (m ≥ 1). On the other hand, by using the polynomial
structure of the closed free energy reviewed in section 2.1, it is easy to show that Ag̃≥2 are
polynomials in t−1, Ik≥2 and z−1. Combining these two lemmas we arrive at the conclusion
that F o

g̃≥2 are polynomials in the variables t−1, Ik≥2, z−1
∗ ,

(
ξ

(1)
∗
)−1 and ξ(n≥1)

∗ .
It is well known that closed topological gravity exhibits the constitutive relation [32],

i.e. higher genus quantities are expressed in terms of genus zero quantities only. In the
case of Witten-Kontsevich gravity F c

1 is given as in (2.24) and F c
g≥2 are expressed as

polynomials in the variables t−1 and Ik≥2, as we saw in section 2.1. These variables are
expressed explicitly in terms of genus zero quantities ∂n0 u0 (n ≥ 1) [33]. Since z∗ and
ξ

(n)
∗ = ∂n+1

s F o
0 are also genus zero quantities,7 the form of F o

1 in (3.12) and the above
polynomial structure of F o

g̃≥2 ensure that Pandharipande-Solomon-Tessler open topological
gravity exhibits a generalized constitutive relation.

3.3 Genus zero open free energy

In the last subsection we have obtained an explicit expression of F o
0 : by plugging (3.8) into

the second line of (3.12) we have

F o
0 = u0s+ 1

2

∫ s

0
ds′z∗(s′)2 (3.15)

with z∗(s) given in (3.9). As we will see below, we can write down a more direct expres-
sion for F o

0 by using the relations among F o
0 , ξ∗ and z∗ which follow from the system of

equations (2.30) and (2.28).
Buryak’s equation (2.30) at the order of g−1

s reads

∂sF
o
0 = 1

2 (∂0F
o
0 )2 + u0. (3.16)

Note also that the second line of (3.12) gives

∂sF
o
0 = ξ∗. (3.17)

7See (3.18). It is also possible to express ξ(n)
∗ in terms of t0-derivatives only. This is done by repeatedly

using (3.33).
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Comparing these with (3.8) one finds8

∂0F
o
0 = z∗. (3.18)

On the other hand, the open KdV equation (2.28) for n = 1 at the order of g−1
s reads

3
2∂1F

o
0 = ∂sF

o
0 ∂0F

o
0 + 1

2∂0F
o
0 ∂

2
0F

c
0 . (3.19)

By using (2.21), (3.16), (3.18) and (2.16) this becomes

−∂tF o
0 = z3

∗
3 . (3.20)

Applying ∂s to both sides of the equation and using again (3.16) and (3.18) one obtains

−∂t

(
z2
∗
2 + u0

)
= z2
∗∂sz∗, (3.21)

which gives

−∂tz∗ = z∗∂sz∗

= ∂sξ∗

= ∂2
sF

o
0 .

(3.22)

Hence, differentiating (3.9) once in t and then integrating it twice in s, one obtains

F o
0 = u0s+

∑
ja≥0∑
a
ja=k∑

a
aja=n

(2n+ k + 1)!
(2n+ 3)!

s2n+3

t2n+k+2

∞∏
a=1

Ijaa+1
ja!(2a+ 1)!!ja . (3.23)

The integration constants have been fixed accordingly so that (3.23) matches with (3.15).
We verified by series expansion in s that (3.23) and (3.15) are indeed in perfect agreement.
Note that when tk≥1 = 0, we have t0 = u0, t = 1, Ik≥2 = 0 and thus the above F o

0 becomes

F o
0 = t0s+ s3

6 . (3.24)

This is consistent with the initial condition (2.29).
One can recast (3.23) into another simple form. Using

1
t2n+k+2 = (1− I1)−2n−k−2 =

∞∑
j0=0

(2n+ k + j0 + 1)!
(2n+ k + 1)!

Ij01
j0! (3.25)

8Note that z∗ is the uniformization coordinate on the spectral curve. In the context of minimal string
theory, it is known that z∗ is given by the t0-derivative of the disk amplitude F o

0 [25].
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and rewriting a+ 1, j`−1, k + j0 as a, j`, k respectively one obtains

F o
0 = u0s+

∑
ja≥0∑
a
ja=k∑

a
(a−1)ja=n

(2n+ k + 1)!
(2n+ 3)! s2n+3

∞∏
a=1

Ijaa
ja!(2a− 1)!!ja . (3.26)

This expression can be directly compared with the result of [15]. By observing

u0 = t0 + t0 · O(t∗), In = tn + t0 · O(t∗), (3.27)

and recalling the definition (2.27) with the selection rule (2.26), it is easy to see that (3.26)
indeed reproduces the Theorem 1.4 of [15]〈

τd1 · · · τd`σ
∑`

i=1 2(di−1)+3
〉o

0,`
=
(∑`

i=1 2di − `+ 1
)
!∏`

i=1(2di − 1)!!
, d1, . . . , d` ≥ 1. (3.28)

Note that (3.26) contains not only this formula but also all the information about open
intersection numbers involving the operator τ0.

3.4 Recursion relation

By substituting the genus expansions (1.3) and (2.20) Buryak’s equation (2.30) at the order
of gg̃−1

s (g̃ ≥ 1) is written as

DF o
g̃ = 1

2

g̃−1∑
k=1

∂0F
o
g̃−k∂0F

o
k + 1

2∂
2
0F

o
g̃−1 +

 u g̃
2
(g̃ even)

0 (g̃ odd)
, (3.29)

where we have introduced the differential operator

D := ∂s − z∗∂0. (3.30)

(3.29) can be viewed as a recursion relation: one can recursively compute F o
g̃ if one is able

to perform the integration D−1 on the l.h.s. of (3.29). This is indeed feasible, as we will
see below.

To do this, let us first study the operator D, which has in fact several interesting
properties. For instance, one can show that

Dz∗ = 1
t
,

Dξ∗ = 0,

Dξ(n−1)
∗ = D∂n−1

s ξ∗ = 1
2

n−1∑
k=1

n
k

 ∂n−ks z∗∂
k
s z∗ (n ≥ 2).

(3.31)

The first line of (3.31) follows from

z∗∂0z∗ = ∂0(ξ∗ − u0) = ∂0ξ∗ −
1
t

(3.32)
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and

∂0ξ∗ = ∂sz∗, (3.33)

which follows from (3.18) by differentiating both sides of the equation in s. The second
line of (3.31) also follows from (3.33). The third line of (3.31) can easily be shown by
induction.

It is also useful to note that

ξ
(n)
∗ = ∂ns ξ∗ = 1

2

n∑
k=0

n
k

 ∂n−ks z∗∂
k
s z∗ (n ≥ 1), (3.34)

which immediately follows from (3.8). This relation is important because it enables us to
express ξ(n≥1)

∗ in terms of

z
(n)
∗ := ∂ns z∗ (n ≥ 1), (3.35)

and vice versa. For instance, z(n≥1)
∗ with small n are expressed in terms of ξ(n≥1)

∗ as

z
(1)
∗ = ξ

(1)
∗
z∗

,

z
(2)
∗ = ξ

(2)
∗
z∗
−
(
ξ

(1)
∗
)2

z3
∗

,

z
(3)
∗ = ξ

(3)
∗
z∗
− 3ξ(1)

∗ ξ
(2)
∗

z3
∗

+
3
(
ξ

(1)
∗
)3

z5
∗

.

(3.36)

Moreover, comparing (3.34) with (3.31) one finds that

ξ
(n)
∗ = Dξ(n−1)

∗ + z∗z
(n)
∗ (n ≥ 1). (3.37)

Therefore, by using (3.36) and (3.37) one can express Dξ(n≥1)
∗ as polynomials in ξ

(k≥1)
∗

and z−1
∗ :

Dξ(1)
∗ =

(
ξ

(1)
∗
)2

z2
∗

,

Dξ(2)
∗ = 3ξ(1)

∗ ξ
(2)
∗

z2
∗

−
3
(
ξ

(1)
∗
)3

z4
∗

,

Dξ(3)
∗ = 4ξ(1)

∗ ξ
(3)
∗

z2
∗

+
3
(
ξ

(2)
∗
)2

z2
∗
−

18
(
ξ

(1)
∗
)2
ξ

(2)
∗

z4
∗

+
15
(
ξ

(1)
∗
)4

z6
∗

.

(3.38)

On the other hand, to evaluate the r.h.s. of (3.29) it is convenient to use

∂0z∗ = z
(1)
∗
z∗
− 1
tz∗

,

∂0ξ
(n)
∗ = z

(n+1)
∗ (n ≥ 0).

(3.39)

Again using (3.36) one can express these quantities as polynomials in t−1, z−1
∗ and ξ(n≥1)

∗ .
Hence, by using the low genus results (3.12) and the polynomial structure of F o

g̃≥2 derived
in section 3.2, it is easy to see that all quantities appearing in (3.29) are expressed as
polynomials in the variables t−1, Ik≥2, z−1

∗ ,
(
ξ

(1)
∗
)−1 and ξ(n≥1)

∗ .
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3.5 Higher genus open free energy

We are now in a position to solve the recursion relation (3.29) and compute the higher
genus free energy F o

g̃ . To begin with, we verified that F o
g̃ with g̃ = 0, 1, 2 given in (3.12)

indeed satisfy the recursion relation (3.29) for g̃ = 1, 2. This is easily done by using
various identities derived in the last two subsections. Moreover, based on the polynomial
structure discussed above, one can perform the integration D−1 completely and determine
F o
g̃ unambiguously for g̃ ≥ 2. The algorithm to solve (3.29) and obtain F o

g̃ from the data
of {F o

g̃′}g̃′<g̃ is as follows:

(i) Compute the r.h.s. of (3.29) using (3.39) and express it as a polynomial in the vari-
ables t−1, Ik≥2, z−1

∗ ,
(
ξ

(1)
∗
)−1 and ξ(n≥1)

∗ .

(ii) Let t−mf(Ik, z∗, ξ
(n)
∗ ) denote the highest order part in t−1 of the obtained expression.

This part can arise only from

D
(
− f(Ik, z∗, ξ

(n)
∗ )

(m− 2)tm−2z∗I2

)
. (3.40)

Therefore subtract this from the obtained expression.

(iii) Repeat the procedure (ii) down to m = 3. Then all the terms of order t−2 automat-
ically disappear and the remaining terms are of order t−1 or t0. Note also that the
expression does not contain any Ik.

(iv) In the result of (iii), collect all the terms of order t−1 and let t−1∂z∗g(z∗, ξ(n)
∗ ) denote

the sum of them. This part arises from

Dg(z∗, ξ(n)
∗ ). (3.41)

Therefore subtract this from the result of (iii). The remainder turns out to be inde-
pendent of t.

(v) In the obtained expression, let

h
(
ξ

(n≥2)
∗

)
z2
∗
(
ξ

(1)
∗
)m (3.42)

denote the part which is of order z−2
∗ as well as of the lowest order in

(
ξ

(1)
∗
)−1. This

part arises from

D

 h
(
ξ

(n≥2)
∗

)
(m+ 1)

(
ξ

(1)
∗
)m+1

 . (3.43)

Therefore subtract this from the obtained expression.

(vi) Repeat the procedure (v) until the resulting expression vanishes.
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(vii) By summing up all the above obtained primitive functions we obtain F o
g̃ .

Using this algorithm we computed F o
g̃ for g̃ ≤ 15.9 We verified that F o

2 computed by this
algorithm reproduces the result (3.12) of our saddle point calculation. For g̃ = 3 we obtain

F o
3 = I2

2
24t4z2

∗
+ I2

8t3z4
∗

+ I3
48t3z2

∗
+ 5

16t2z6
∗

+ I2ξ
(2)
∗

48t2z3
∗ξ

(1)
∗
− I2ξ

(1)
∗

12t2z5
∗

+ 5ξ(2)
∗

16tz5
∗ξ

(1)
∗
− 15ξ(1)

∗
8tz7
∗

− 35ξ(2)
∗

16z6
∗

+
35
(
ξ

(1)
∗
)2

8z8
∗
− ξ

(4)
∗

16z2
∗
(
ξ

(1)
∗
)2 + 5ξ(3)

∗

16z4
∗ξ

(1)
∗
−

3
(
ξ

(2)
∗
)2

16z4
∗
(
ξ

(1)
∗
)2 −

(
ξ

(2)
∗
)3

4z2
∗
(
ξ

(1)
∗
)4

+ 7ξ(3)
∗ ξ

(2)
∗

24z2
∗
(
ξ

(1)
∗
)3 + ξ

(5)
∗

48
(
ξ

(1)
∗
)3 −

(
ξ

(3)
∗
)2

8
(
ξ

(1)
∗
)4 − ξ

(4)
∗ ξ

(2)
∗

6
(
ξ

(1)
∗
)4 +

3ξ(3)
∗
(
ξ

(2)
∗
)2

4
(
ξ

(1)
∗
)5 −

(
ξ

(2)
∗
)4

2
(
ξ

(1)
∗
)6 .

(3.44)

4 Conclusions and outlook

In this paper we have studied the small gs expansion (1.3) of the open free energy F o(s)
of topological gravity. We have obtained the explicit form (3.23) of the genus zero part
F o

0 of the free energy. We have then argued that the higher order corrections F o
g̃ can be

computed systematically by solving Buryak’s equation recursively. We have demonstrated
this computation explicitly for the first few orders. We have also elucidated the polynomial
structure of F o

g̃≥2. We emphasize that our result of F o
g̃ holds for arbitrary value of the

couplings {tn}. We have shown that F o
g̃ is written as a combination of genus-zero quantities

only, which can be thought of as an open analog of the constitutive relation for closed
topological gravity [26, 27].

The existence of the polynomial structure established in this paper is important in
several respects. From a practical viewpoint, it is this structure that enables us to deter-
mine the free energy merely by solving a single, simple differential equation rather than an
infinite number of KdV flow equations or Virasoro constraints. From a philosophical per-
spective, our study would serve as a simple example of Gromov-Witten theories in which
the polynomial structure of the closed sector naturally extends to the open sector. It could
uncover the existence of similar polynomial structures in a broader class of open Gromov-
Witten theories. Since our derivation of the polynomial structure is simply based on the
relation (1.2) or (3.5) between the open free energy and the BA function, it is likely to be
generalized at least to some cases such as the theory of open r-spin intersection numbers [34]
for which a similar relation is known [35]. We stress that the polynomial structure is of the
type known as the constitutive relation, i.e. all the generators are genus zero quantities.
All these may suggest the possibility of an open analog of Givental’s formalism [36–38],
namely a general framework of determining higher genus open Gromov-Witten invariants
from genus zero ones.

There are several interesting open questions. In [39] a refinement of the open inter-
section numbers is presented, where how boundary markings are partitioned between the
boundaries is taken into account. It is conjectured [39] that the refined open free energy,

9The data of F o
g̃ are available upon request to the authors.
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or the associated partition function τo,ext
N , is written in terms of the Kontsevich-Penner

matrix integral, generalizing the result established in the N = 1 unrefined case [20, 21].
A similar matrix integral that is deformed by an additional parameter N is considered
for the Brezin-Gross-Witten model [40, 41]. Its genus expansion is computed both in the
finite N regime and in the ’t Hooft regime: N � 1, gs � 1 with gsN fixed [31, 41]. In
particular, the genus expansion in the latter regime can be computed by simply solving
the KdV equation [31]. It is interesting to see if the refined open free energy can similarly
be computed in the ’t Hooft regime by the techniques developed in this paper.

In general, the small gs expansion of F o in (1.3) is an asymptotic series and we ex-
pect that F o receives non-perturbative corrections in gs. Such corrections are physically
interpreted as the effect of the so-called ZZ-branes [42]. It would be interesting to find the
general structure of the effect of ZZ-branes for the arbitrary background {tn}. It is known
that [43] some of the background {tn} exhibits a non-perturbative instability and it does not
lead to a well-defined theory. It would be interesting to find the map of the “swampland”
in the space of all two-dimensional topological gravities {tn}. In particular, it is argued
that the JT gravity matrix model suffers from such a non-perturbative instability [11]. It
is important to see if JT gravity is non-perturbatively well-defined or not.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Nos. 19K03845 and 19K03856,
and JSPS Japan-Russia Research Cooperative Program.

A Derivation of open KdV equations

In this section we will derive the open KdV equations (2.28) from the KdV flow equa-
tions (2.35).

Let n be a positive integer. Since

Qn+ 1
2 = Q ·Qn−

1
2 = Q

(
Q
n− 1

2
+ +Q

n− 1
2

−

)
, (A.1)

we have

Q
n+ 1

2
+ =

(
Q ·Qn−

1
2

+

)
+

+
(
Q ·Qn−

1
2

−

)
+

= Q ·Qn−
1
2

+ +
(
Q ·Qn−

1
2

−

)
+
. (A.2)

Therefore (2.35) is rewritten as

2n+ 1
2 ∂nψ̂ = Q

(2Q)n−
1
2

+
(2n− 1)!!gs

ψ̂ +

Q (2Q)n−
1
2

−
(2n− 1)!!gs


+

ψ̂. (A.3)

Using (2.35) again one finds that the first term on the r.h.s. of (A.3) gives Q∂n−1ψ̂. On
the other hand, it is known that (see e.g. [28]) Qn−

1
2

− has the structure

Q
n− 1

2
− = (2n− 1)!!

2n+ 1
2 gs

{Rn, ∂−1
0 }+O(∂−3

0 ), (A.4)
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from which (2.13) follows. By using this, the second term on the r.h.s. of (A.3) becomesQ (2Q)n−
1
2

−
(2n− 1)!!gs


+

ψ̂ = 1
4
(
∂2

0{Rn, ∂−1
0 }

)
+
ψ̂

= 1
4
(
(∂2

0Rn)∂−1
0 + (∂0Rn) + 2∂0Rn

)
+
ψ̂

= 1
4
(
(∂0Rn)ψ̂ + 2∂0(Rnψ̂)

)
= 3

4(∂0Rn)ψ̂ + 1
2Rn∂0ψ̂.

(A.5)

Hence (A.3) becomes

2n+ 1
2 ∂nψ̂ = Q∂n−1ψ̂ + 3

4(∂0Rn)ψ̂ + 1
2Rn∂0ψ̂

=
(
g2

s
2 ∂

2
0 + u

)
∂n−1ψ̂ + 3

4(∂n−1u)ψ̂ + g2
s
2 (∂0∂n−1F

c)∂0ψ̂

= ∂n−1

(
g2

s
2 ∂

2
0 + u

)
ψ̂ − 1

4(∂n−1u)ψ̂ + g2
s
2 (∂0∂n−1F

c)∂0ψ̂

= ∂n−1Qψ̂ + g2
s
2 (∂0∂n−1F

c)∂0ψ̂ −
1
4(∂n−1u)ψ̂.

(A.6)

In the second equality we have used (2.5) and (2.9). Substituting (2.32) we have

2n+ 1
2 ∂nψ̂ = gs∂s∂n−1ψ̂ + g2

s
2 (∂0∂n−1F

c)∂0ψ̂ −
g2

s
4 (∂2

0∂n−1F
c)ψ̂. (A.7)

Under the identification (2.33) one sees that this is equivalent to the open KdV equa-
tions (2.28).

B Derivation of z∗(s)

In this section we will derive (3.9) from (3.7).
Suppose that w is expressed as a function of z given by the formal power series

w = f(z) =
∞∑
n=1

fn
zn

n! (B.1)

with f1 6= 0. According to the Lagrange inversion theorem, the inverse function is given by

z = g(w) =
∞∑
n=1

gn
wn

n! (B.2)

with

g1 = 1
f1
, gn = 1

fn1

n−1∑
k=1

(−1)k(n+ k − 1)!
∑
{j`}

n−k∏
`=1

1
j`

(
f`+1

(`+ 1)!f1

)j`
(n ≥ 2), (B.3)
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where the second sum is taken over all sequences j1, j2, . . . , jn−k of non-negative integers
such that

j1 + j2 + · · ·+ jn−k = k,

j1 + 2j2 + · · ·+ (n− k)jn−k = n− 1.
(B.4)

In the present case we have

w = s, z = z∗,

f1 = t,
fn
n! =


− 1
n!!In+1

2
n = 3, 5, 7, . . . ,

0 n = 2, 4, 6, . . . .

(B.5)

Since f`+1 with odd ` are absent, the conditions (B.4) reduce to

j2 + j4 + · · ·+ j2bn−k2 c
= k,

2j2 + 4j4 + · · ·+ 2bn−k2 cj2bn−k2 c
= n− 1.

(B.6)

It is clear that the second condition is satisfied only if n is odd. This means that all gn
with even n vanish. For odd n(≥ 3) we have

gn = 1
tn

n−1∑
k=1

(−1)k(n+ k − 1)!
∑
{j2a}

bn−k2 c∏
a=1

1
j2a!

(
− Ia+1

(2a+ 1)!!t

)j2a

=
n−1∑
k=1

(n+ k − 1)!
tn+k

∑
{j2a}

bn−k2 c∏
a=1

1
j2a!

(
Ia+1

(2a+ 1)!!

)j2a
.

(B.7)

Therefore

z∗ = s

t
+
∞∑
m=1

s2m+1

(2m+ 1)!g2m+1

= s

t
+
∞∑
m=1

s2m+1

(2m+ 1)!

2m∑
k=1

(2m+ k)!
t2m+k+1

∑
{j2a}

b2m−k+1
2 c∏

a=1

1
j2a!

(
Ia+1

(2a+ 1)!!

)j2a

= s

t
+

∑
j2a≥0∑
a
j2a=k≥1∑
a
aj2a=m

(2m+ k)!
(2m+ 1)!

s2m+1

t2m+k+1

∞∏
a=1

1
j2a!

(
Ia+1

(2a+ 1)!!

)j2a

=
∑
j2a≥0∑
a
j2a=k∑

a
aj2a=m

(2m+ k)!
(2m+ 1)!

s2m+1

t2m+k+1

∞∏
a=1

1
j2a!

(
Ia+1

(2a+ 1)!!

)j2a
.

(B.8)

By rewriting j2a as ja this gives (3.9).
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