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1 Introduction

The ubiquitous magnetic field seems to have played a great role in shaping and working of
our present-day universe. We see magnetic fields at the very largest scales in the universe.
They are usually very weak, no more than a million times weaker than Earth’s magnetic
field, but they exist throughout the known universe. Although weak, often the magnetic
fields are called the sturdy unsung workhorses of astrophysics and cosmology. On the other
hand, one of the strongest steady-state magnetic field in the known universe can be found on
the surface of a type of neutron star called Magnetars. Surprisingly, the strongest transient
magnetic fields in the universe are manmade and can be found on earth during the initial
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stages of heavy-ion collisions at Relativistic Heavy Ion Collider (RHIC) near Brookhaven,
New York and at Large Hadron Collider (LHC) near Geneva, Switzerland. These strongest
magnetic fields are produced by fast-moving charged protons (usually having Lorentz factor
γ ∼ 100 or larger) inside the colliding nuclei of heavy ions (Pb or Au). The strength of the
magnetic field produced in such collider experiments for example for a typical peripheral
Au+Au collisions at √sNN = 200GeV may reach as high as (∼ 1018-1019 Gauss) refs. [2–
6], this is almost three to four orders of magnitude larger than those found on Magnetars.
The magnitude of the produced magnetic field is expected to grow linearly with the center-
of-mass energy but the lifetime of these strong fields reduces for higher energy collisions.
The heavy-ion collisions also produce a new form of very hot and dense matter known
as quark-gluon plasma (QGP). The success of relativistic hydrodynamics in describing the
space-time evolution of the QGP created in high-energy heavy-ion collisions refs. [7–10] and
the existence of very large magnetic fields in these collisions indicates that one should take
into account the proper interaction of magnetic fields with QGP. Especially since the QGP
and the subsequent hadronic phase are known to be electrically conducting refs. [11–13].

Relativistic magnetohydrodynamics (RMHD) is one of the self-consistent macroscopic
frameworks that describes the evolution of mutually interacting charged fluid and electro-
magnetic fields. In several recent works, the effect of the electromagnetic fields on the QGP
fluid in the context of special relativistic systems have been studied in refs. [14–20]. Al-
most all of them involves numerical solutions of RMHD equations, the analytic solutions for
some simplified cases are presented in refs. [21–27]. The transport coefficients such as the
shear, bulk viscosity etc. are taken as input to the RMHD simulation, but they are deter-
mined from an underlying microscopic theory in refs. [28–36]. It is a well known fact that
a straightforward extension of non-relativistic viscous fluid formulations (a.k.a. Navier-
Stokes equation) to the relativistic regime (without magnetic field) refs. [37, 38] leads to
unacceptable acuasal and linearly unstable behaviour in refs. [39–41]. These issues were
later addressed and resolved by Israel and Stewart (IS) who developed a causal and stable
second-order formalism refs. [42, 43]. The order of the theory is determined by the presence
of different order terms in the gradient expansion of the hydrodynamic quantities such as
fluid four-velocity uµ, temperature T , etc. in the energy-momentum tensor. Although IS re-
solves the major problem, the theory is known to be causal and stable in a restricted manner
refs. [44–47]. Recently, there are some new developments in the formulation of first-order
theories which is potentially causal and stable refs. [48–54]. However, we note that in the
newly developed theory the existence of a relaxation time scale (usually found in the second-
order theories) in the definition of non-equilibrium hydrodynamics variables needs further
investigation. Although initially developed as a phenomenological theory, the IS theory was
later derived from the underlying kinetic theory using Grad’s moment method. One of the
limitations of the moment method is the absence of a smallness parameter such as Knudsen
number (Kn) which otherwise would have helped to systematically improve the result by
keeping higher-order terms. Later, more concrete and updated form of the IS equations
(without electromagnetic fields) were derived from the kinetic theory in refs. [55–64].

It was only recently that the second-order causal magnetohydrodynamics equations
were derived for non-resistive in ref. [1] and resistive case in ref. [65] for a single compo-
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nent system of spinless particles (no antiparticle) using a 14-moment approximation. In
the current work we consider contribution from both particles and antiparticles, hence-
forth whenever we compare our results with ref. [1] we report the result for particles only.
In ref. [66] we showed that this new theory of second-order relativistic MHD is causal
and stable under linear perturbation. In this paper, we derive the RMHD equations for
the non-resistive case using Chapman-Enskog expansion of the single-particle distribution
function within relaxation time approximation (RTA). Here we consider both particles and
antiparticles while calculating the relaxation equations for the dissipative quantities. Due
to the presence of smallness parameter Kn in the RTA formalism we have the freedom
to construct magnetohydrodynamics equations order by order and calculate corresponding
transport coefficients. It is necessary to use a causal theory of magnetohydrodynamics to
study other important phenomena associated with strong magnetic fields. For example,
the coexistence of the strongest magnetic field in the universe and the hot dense medium
of quarks and gluons also opens up possibilities to experimentally verify some of the fun-
damental issues of Quantum Chromo-Dynamics (QCD). One such fascinating phenomena
is “chiral magnetic effect” (CME) where an induced charge current is supposed to be pro-
duced parallel to the magnetic field in a chiral imbalance system refs. [67, 68]. Some other
important phenomenon associated with strong magnetic fields are chiral separation effect
ref. [69], chiral Hall effect ref. [70], chiral vortical effect ref. [71] etc. A chiral kinetic theory
framework is currently under development to further explore these important phenomena
see refs. [72–74].

The manuscript is organized as follows: in section 2 we give a textbook-like introduc-
tion to the energy-momentum tensor for the electromagnetic fields and the fluid-matter, we
also discuss the kinetic theory definition of various hydrodynamical variables in the same
section. In section 3 we present the first and second order magneto-hydrodynamic equa-
tions of motion for the non-resistive dissipative fluid. We conclude this work in section 4.
Throughout the paper we use the natural units, ~ = c = kB = ε0 = µ0 = 1 and the metric
tensor in flat space-time is gµν =diag(+1,−1,−1,−1). The time-like fluid four velocity
uµ satisfy uµuµ = 1. Also, we use the following decomposition for the partial derivative:
∂µ ≡ uµuν∂ν + (gµν − uµuν)∂ν = uµD +∇µ. The ∇αuβ is decomposed as:

∇αuβ = ωαβ + σαβ + 1
3θ∆

αβ , (1.1)

where ωαβ = (∇αuβ − ∇βuα)/2 is the anti-symmetric vorticity tensor, σαβ ≡ ∇〈αuβ〉 =
1
2

(
∇αuβ +∇βuα

)
− 1

3θ∆
αβ is the symmetric-traceless tensor and θ ≡ ∂µu

µ is the expan-

sion scalar. The fourth-rank projection tensor is defined as ∆µν
αβ = 1

2

(
∆µ
α∆ν

β + ∆µ
β∆ν

α

)
−

1
3∆µν∆αβ .

2 Relativistic magnetohydrodynamics

2.1 Equations of motion of the electromagnetic field

Here we start by giving some text-book like introduction to the relativistically covariant
formulation of electrodynamics. Without any loss of generality the second rank antisym-

– 3 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
6

metric electromagnetic field tensor Fµν can be defined in terms of the electric Eµ, magnetic
field Bµ four-vectors (defined later) and four-velocity uµ as in refs. [75–77]:

Fµν = Eµuν − Eνuµ + εµναβuαBβ , (2.1)

its dual counter-part is given by:

F̃µν = Bµuν −Bνuµ − εµναβuαEβ , (2.2)

where Eµ = Fµνuν and Bµ = F̃µνuν = 1
2ε
µναβuνFαβ . Also, using the anti-symmetric

property of the Fµν it is easy to see that both Eµ and Bµ are orthogonal to uµ i.e.,
Eµuµ = Bµuµ = 0. Futhermore notice that in the rest frame uµ = (1,0) we have Eµ :=
(0,E), and Bµ := (0,B), where E,B corresponds to the electric and magnetic field three
vectors with Ei := F i0 and Bi := −1

2ε
ijkFjk.

We can write the Maxwell’s equations in a covariant form as:

∂µF
µν = Jν , (2.3)

∂µF̃
µν = 0, (2.4)

where Jν is the electric charge four-current which acts as the source of electromagnetic
field. It can be tensor decomposed in a fluid with four velocity uµ in the following manner:

Jµ = jµ + dµ, (2.5)

where jµ is the conduction current and dµ = ∆µ
νJ

ν is the charge diffusion current with nq =
uµJ

µ the proper net charge density. If we assume a linear constitutive relation between
jµ and Eµ (Ohm’s law) then jµ = σµνEν where σµν is the conductivity tensor. Also note
that by construction uµjµ = 0 which imply that the conduction current exists even for the
vanishing net charge. The solution of eqs. (2.3), (2.4) along with a given Jµ in eq. (2.5)
completely specify the electro-magnetic field evolution. Jµ acts as a coupling between the
fluid and the fields because it contains the fluid informations such as fluid conductivity σµν ,
net charge density nq etc., and act as a source in the Maxwell’s equations. Incidentally, for a
single component gas as considered here the net charge is equivalent to net number density
and the following relation holds nq = qnf , where nf corresponds to net number density.

We assume here that the fluid under consideration does not possess polarisation or
magnetisation and thus the electromagnetic field stress-energy tensor can be written as:

TµνEM = −FµλF νλ + 1
4g

µνFαβFαβ . (2.6)

Now taking the partial derivative of the field stress-energy tensor we get the equation of
motion to be:

∂µT
µν
EM = −F νλJλ. (2.7)

Up until now, no external (electromagnetic field) sources were considered. So, the charge
current density comes only from the fluid i.e., Jµ = Jµf . However, in presence of an external
source current Jµext (for example, the spectator protons in heavy-ion collisions act like an
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external source for the electromagnetic fields in the QGP) the total current is a combination
of conduction and external current densities:

Jµ = Jµf + Jµext. (2.8)

In this case, the external current density acts as a source term in the energy-momentum
conservation equation (discusses later in detail). In this work, we consider an ideal MHD
limit which corresponds to very large magnetic Reynolds number Rm � 1. The magnetic
Reynolds number is given as, Rm = LUσµ, where L is the characteristic length or time scale
of the QGP, U is the characteristic velocity of the flow and µ is the magnetic permeability of
QGP. The large Rm limit can be attributed to a very large/infinite electrical conductivity.
But the induced charge density due to the electromagnetic field Jµind = σEµ (here σ is
the isotropic electrical conductivity i.e., σµν = σgµν) has to be finite, so to maintain that
Eµ → 0 for this case. This brings our electromagnetic tensor Fµν to the following form:

Fµν → Bµν = εµναβuαBβ . (2.9)

Using eqs. (2.8) and (2.9) in the Maxwell’s equations eq. (2.3) we get:

εµναβ (uα∂µBβ +Bβ∂µuα) = Jνf + Jνext. (2.10)

Now writing the energy-momentum tensor for the electromagnetic case by using eqs. (2.6)
and (2.9) we get:

TµνEM → TµνB = B2

2 (uµuν −∆µν − 2bµbν) , (2.11)

where BµBµ = −B2 and bµ = Bµ

B with the property bµuµ = 0 and bµbµ = −1. Furthermore
from eq. (2.9) one can show that BµνBµν = 2B2 so we can introduce another anti-symmetric
tensor defined as:

bµν = −B
µν

B
, (2.12)

with the following properties: bµνuν = bµνbν = 0 and bµνbµν = 2.

2.2 Kinetic theory and hydrodynamics

In this section, we define a few hydrodynamical variables from the kinetic theory. We start
with the equilibrium distribution function for particles given by f0 and is defined as:

f0 = 1
eβ(u·p)−α + r

, (2.13)

where u · p ≡ uµp
µ and r = +1,−1, 0 are for fermions, bosons and Boltzmann gas, re-

spectively. Here β = 1
T is the inverse temperature, uµ is the four-velocity, pµ is the

four-momentum and α = µ
T is the ratio of chemical potential to temperature with µ being

the chemical potential. For antiparticles α→ −α and f0 → f̄0.
For dissipative fluid, one can define fluid four velocity uµ in more than one ways but

the most popular choices are by Eckart and Landau-Lifshitz. In this work, the fluid four
velocity has been defined by the Landau-Lifshitz frame which corresponds to the vanishing
heat flux in the local rest frame of the fluid. For that case, the net four current Nµ and the
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energy-momentum tensor Tµνf can be decomposed in terms of uµ, the projector operator
∆µν , and dissipative fluxes diffusion current V µ

f , the shear πµν and bulk stress Π in the
following way:

Nµ = nfu
µ + V µ

f , (2.14)
Tµνf = εuµuν − (P + Π)∆µν + πµν , (2.15)

where nf is the net number density, ε is the energy density, P is the isotropic pressure of
fluid. According to kinetic theory framework the energy-momentum tensor and the particle
four current of a fluid can be defined in terms of moments of the single particle distribution
function f in the following way:

Tµνf =
∫
dppµpν

(
f + f̄

)
, (2.16)

Nµ =
∫
dppµ

(
f − f̄

)
, (2.17)

where dp = gd3p/[(2π)3p0] with p0 =
√

p2 +m2, m being the mass, g is the degeneracy
factor. For near-equilibrium system the distribution function can be decomposed into
equilibrium f0 and a correction to it δf as f = f0 + δf (for antiparticle δf → δf̄). The
explicit form of the δf is obtained from the Boltzmann equation and it depend on the
scheme used. For example the δf for the case of relativistic ideal gas in magnetic field in
terms of Grad’s fourteen moment method was derived in ref. [1]. With the above definition
of Nµ and Tµν all other thermodynamic variables can be defined as:

ε ≡ uµuνT
µν = uµuν

∫
dppµpν

(
f0 + f̄0

)
, (2.18)

nf ≡ uµN
µ = uµ

∫
dppµ

(
f0 − f̄0

)
, (2.19)

P ≡ −∆µν

3 Tµν = −∆µν

3

∫
dppµpν

(
f0 + f̄0

)
, (2.20)

V µ
f ≡ ∆µ

νN
ν = ∆µ

ν

∫
dppν

(
δf − δf̄

)
, (2.21)

Π ≡ −∆µν

3 δTµν = −∆µν

3

∫
dppµpν

(
δf + δf̄

)
, (2.22)

πµν ≡ ∆µν
αβδT

µν = ∆µν
αβ

∫
dppαpβ

(
δf + δf̄

)
, (2.23)

where δTµν = −Π∆µν +πµν . For a single component fluid the net current Nµ and charged
current are related as:

Jµf = qNµ, (2.24)

where q is the magnitude of electric charge.
For later use, we express the integrals in eq. (2.18) to eq. (2.20) in terms of thermody-

namics integrals I(m)±
nq (defined in appendix A) as:

ε = I
(0)+
20 , (2.25)

nf = I
(0)−
10 , (2.26)

P = −I(0)+
21 , (2.27)

here ± corresponds to the addition or subtraction of f̄ .
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2.3 Conservation of energy-momentum tensor of fluid and field

In a simple fluid (for zero magnetic field) the energy-momentum tensor and the particle
currents are conserved separately according to the following conservation laws:

∂µN
µ = 0, (2.28)

∂µT
µν
f = 0. (2.29)

Now let us consider a fluid interacting with the electro-magentic field and let Tµν be the
total energy-momentum tensor (field+fluid). Tµν can be written as a sum of energy-
momentum tensor of the fluid and the electromagnetic field as:

Tµν = Tµνf + TµνEM . (2.30)

In general, the total energy-momentum tensor contains additional terms in ref. [76] which
cannot be unambiguously attributed to either fluid or field but in case of constant suscep-
tibilities and vanishing Eµ these terms vanishes and eq. (2.30) is a good approximation.
Note that due to the conservation of electric charges, the charge current of the fluid is
individually conserved:

∂µJ
µ
f = 0. (2.31)

If we have an external charge current, it will act as a source in the energy momentum
conservation equation which in this case takes the following form:

∂µT
µν = −F νλJext,λ. (2.32)

The conservation equation for electromagnetic field eq. (2.7) with external source takes the
following form:

∂µT
µν
EM = −F νλ (Jf,λ + Jext,λ) . (2.33)

Using eq. (2.30) and eqs. (2.32), (2.33) we get:

∂µT
µν
f = F νλJf,λ. (2.34)

Usually, the total energy-momentum tensor of an isolated system remains conserved but in
case of the presence of an external source (here external charge current) the conservation
is satisfied only when a proper source term is taken into account. As we can see that in
this case, the fluid evolution depends on the fluid charge current through eq. (2.34).

It is convenient to express the conservation equations in an alternative form by tak-
ing projection along and perpendicular to fluid four velocity. The parallel projection of
eq. (2.33) and eq. (2.34) gives:

uν∂µT
µν
EM = 0, (2.35)

uν∂µT
µν
f = 0, (2.36)

it implies that the energy density of the fluid and the field are unaffected by the charge
currents/magnetic field. The perpendicular projection of eq. (2.33) and eq. (2.34) using
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eq. (2.8) gives

∆α
ν ∂µT

µν
EM = Bbαλ (Jf,λ + Jext,λ) , (2.37)

∆α
ν ∂µT

µν
f = −BbαλJf,λ. (2.38)

This shows that unlike energy density, the momentum density of the fluid depends on the
diffusion current/magnetic field and the momentum density of the field also depends on
the external current, along with the fluid diffusion current.

2.4 Ideal and dissipative non-resistive magnetohydrodynamics

In case the fluid is ideal, the total energy momentum tensor takes the form:

Tµν(0) =
(
ε+ B2

2

)
uµuν −

(
P + B2

2

)
∆µν −B2bµbν . (2.39)

If the fluid is dissipative with finite shear and bulk viscosity, the energy-momentum tensor
in that case becomes:

Tµν =
(
ε+ B2

2

)
uµuν −

(
P + Π + B2

2

)
∆µν −BµBν + πµν . (2.40)

The system of equations is closed with the constitutive relation of charged-current Jµf =
nfu

µ+dµf and with an Equation of State (EoS) relating thermodynamic pressure to energy
and number density p = p(ε, nf ). Now using eq. (2.31), eq. (2.34) along with eq. (2.14),
eq. (2.15) and using the thermodynamic integrals given in eq. (A.7) and eq. (A.8) we get
the evolution equations for α̇, β̇ and u̇µ which are of the following forms:

α̇ = 1
D20

[
−J (0)+

30 (nfθ + ∂µV
µ
f ) + J

(0)−
20 { (hnf + Π) θ − πµνσµν}

]
, (2.41)

β̇ = 1
D20

[
−J (0)−

20 (nfθ + ∂µV
µ
f ) + J

(0)+
10 { (hnf + Π) θ − πµνσµν}

]
, (2.42)

u̇µ = 1
(1 + Π)hnf

[
nf
β

(∇µα− h∇µβ)−∆µ
ν∂γπ

γν +∇µΠ− qBbµνVf,ν
]
, (2.43)

where D20 = J
(0)+
30 J

(0)+
10 − J (0)−

20 J
(0)−
20 , h = ε+P

nf
.

3 Formalism and results

3.1 Boltzmann equation

The relativistic Boltzmann equation (RBE) in the presence of a non-zero force Fν is given
by:

pµ∂µf + Fν ∂

∂pν
f = C[f ], (3.1)

where f(x,p, t) is the one particle distribution function characterising the phase space
density of the particles, C[f ] is the collision kernel. In the ideal MHD limit the electric
field vanishes in the local rest frame of the fluid, hence the only contribution to the force
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term in the RBE is due to the magnetic field which is Fν := qF ναpα for particles where q
is the electric charge of the particles, and Fµν = −Bbµν (eq. (2.9)).

Much simplification can be made if we assume the collision kernel of the form relaxation
time approximation given by Bhatnagar-Gross-Krook (BGK) for non-relativistic systems
and by Anderson-Witting in ref. [78] for the relativistic systems of the following form
C[f ] = −u·p

τc
δf where τc is the relaxation time or the time taken by the particles away from

equilibrium to come to the equilibrium state and δf = f − f0 denotes the deviation from
the equilibrium distribution f0. Now substituting the collision kernel into the eq. (3.1) we
get the RBE for the particles:

pµ∂µf + qF σνpν
∂

∂pσ
f = −u · p

τc
δf. (3.2)

The corresponding equation for the antiparticles are obtained by replacing q → −q and
f → f̄ . The above approximation of the collision kernel in the Boltzmann equation has
its own limitation e.g., the relaxation time (τc) here does not depend on momentum of the
colliding particles as mentioned above.The interaction between colliding particles are such
that the mean free path is larger than the interaction length. In other words we assume
that f(x,p, t) is a smoothly varying function over the duration of collisions and distances
of the order of the interaction range.

3.2 Expansion in gradients

One can cast eq. (3.2) to the well-known hydrodynamic gradient expansion form in ref. [79],
given the system is close to equilibrium, i.e., the collision kernel is almost vanishing, C[f ] ≈
0. In the absence of an electromagnetic field eq. (3.2) can be written in the following form:(

τc
u · p

pµ∂µ + 1
)
f = (D + 1)f = f0, (3.3)

where we have introduced the operator D ≡ τc
u·pp

µ∂µ. Multiplying the inverse operator
(D + 1)−1 in the above equation and subsequently doing a power series expansion gives

f =
∞∑
n=0

(−D)nf0 =
∞∑
n=0

(
− τc
u · p

pµ∂µ

)n
f0. (3.4)

The above expansion is valid given that Kn = τc∂ � 1, which of course is also the relevant
expansion parameter. If one identifies the typical gradient strength to be proportional to
the temperature, ∂ ∼ T , then the expansion parameter is τcT and the series expansion is
valid for τcT � 1.

However, in the presence of a magnetic field, the naive gradient expansion breaks since
one introduces a new scale into the problem which is proportional to the strength of the
magnetic field. Defining the operator DB ≡ τc

u·p

(
pµ∂µ + qF σνpν

∂
∂pσ

)
and doing a similar

power series expansion, gives the following result

f =
∞∑
n=0

(−DB)nf0,

=
∞∑
n=0

[
− τc
u · p

(
pµ∂µ + qF σνpν

∂

∂pσ

)]n
f0. (3.5)
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Along with previous assumption τcT � 1, one has to also assume that τc/rg � 1, where
rg = k⊥/qB is the gyroradius (Larmor radius) and k⊥ is the component of the momen-
tum perpendicular to the direction of the magnetic field. In the plasma, the typical
transverse momentum of particle k⊥ ∼ T and thus one has also to satisfy the condition
χ = qBτc/T � 1.

In the following, f is obtained by keeping the terms up to second order, i.e., n = 2 in
eq. (3.5), which yields

f = f0 + δf (1) + δf (2), (3.6)

where
δf (1) = − τc

u · p

(
pµ∂µ + qF σνpν

∂

∂pσ

)
f0, (3.7)

and
δf (2) = τc

u · p

(
pµ∂µ + qF σνpν

∂

∂pσ

)[
τc
u · p

(
pα∂α + qF ρβpβ

∂

∂pρ

)
f0

]
. (3.8)

The above expression can be simplified by using the relations qBbµνpν ∂f0
∂pµ = 0 and Fµν =

−Bbµν , which gives
f = f0 + δf̃ (1) + δf̃ (2), (3.9)

where
δf̃ (1) = − τc

u · p
pµ∂µf0, (3.10)

and
δf̃ (2) = τc

u · p
pµ∂µ

[
τc
u · p

pα∂αf0

]
− τc
u · p

qBbσνpν
∂

∂pσ

[
τc
u · p

pα∂αf0

]
.

Similarly for antiparticles δf̄ is calculated by replacing f0 → f̄0 and q → −q. It is important
to note that although the magnetic field does not enter explicitly in the first term of δf̃ (2),
moreover it does enter implicitly through the acceleration term u̇µ, i.e., eq. (2.43) while
taking higher-order moments of such terms.

3.3 First order equations

The term δf̃ (1) neither depends explicitly nor implicitly on the magnetic field, since in
the first-order equations we keep terms till order O(∂) in eqs. (2.41)–(2.43). However, for
completeness, we nevertheless discuss here the result for the first-order terms in gradient
expansion. The results of the present section are the same as in ref. [63] which was derived
for zero magnetic fields.

We evaluate the dissipative part of the energy-momentum tensor (which includes the
shear, bulk viscosity, and diffusion) using δf̃ (1) and δ ˜̄f (1) in the following,

πµν(1) = ∆µν
αβ

∫
dppαpβ

(
δf̃ (1) + δ ˜̄f (1)

)
, (3.11)

Π(1) = −∆µν

3

∫
dppµpν

(
δf̃ (1) + δ ˜̄f (1)

)
, (3.12)

V µ
(1) = ∆µ

α

∫
dppα

(
δf̃ (1) − δ ˜̄f (1)

)
. (3.13)
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Substituting the value of δf̃ (1) from eq. (3.10) into the above eqs. (3.11)–(3.13), after some
algebra we get the following relations. For shear viscous pressure

πµν(1) = 2τcβπσµν , (3.14)

where βπ = βJ
(1)+
42 and σµν = ∆µν

αβ∇αuβ .
For the bulk viscous pressure,

Π(1) = −τcβΠθ, (3.15)

where θ = ∂µu
µ and

βΠ = 5β
3 J

(1)+
42 + XJ (0)+

31 − YJ (0)−
21 , (3.16)

with the terms X and Y being

X = J
(0)+
10 (ε+ P )− J (0)−

20 nf
D20

,

Y = J
(0)−
20 (ε+ P )− J (0)+

30 nf
D20

, (3.17)

Finally for the net particle diffusion current,

V µ
(1) = τcβV∇µα, (3.18)

where βV = nf
ε+P J

(0)−
21 − J (1)−

21 .

3.4 Second order equations

We derive the second-order relaxation type equations for the shear, bulk viscous pressure
and diffusion current by taking the appropriate moments of δf̃ (2). While deriving these
equations, we keep terms up to order O(∂2). We know that the second-order transport
coefficient differs even for zero magnetic fields when calculated using RTA in ref. [63] and
moment method in ref. [60]. We might expect a similar result for non-zero magnetic field
as well.

For shear stress. By definition the second order contribution to the shear stress tensor
is given by:

πµν(2) = ∆µν
αβ

∫
dppαpβ

(
δf̃ (2) + δ ˜̄f (2)

)
, (3.19)

where δf̃ (2) is given in eq. (3.2). Note that the total shear stress is the combination of first
and second order terms:

πµν = πµν(1) + πµν(2). (3.20)

Evaluating the integral of eq. (3.19) (see appendix (B.1) for details) and adding it to the
eq. (3.20) we get the evolution equation for the shear stress tensor:

πµν

τc
= −π̇µν + 2βπσµν + 2π〈µγ ων〉γ − τπππ〈µγ σν〉γ − δπππµνθ + λπΠΠσµν − τπV V 〈µu̇ν〉

+λπV V 〈µ∇ν〉α+ lπV∇〈µV ν〉 + δπB∆µν
ηβqBb

γηgβρπγρ − τcqBτπV Bu̇〈µbν〉σVσ

−τcqBλπV BVγbγ〈µ∇ν〉α− qτcδπV B∇〈µ
(
Bν〉γVγ

)
, (3.21)
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the resulting second order transport co-efficients are given in terms of thermodynamic
integrals in table 2. Note, that the co-efficients τπV and λπV contain the derivatives of lπV
ref. [59], while τπV B, λπV B contain derivatives of δπV B, respectively. We notice that the
last four terms contain the magnetic field explicitly and are new when compared to the case
for zero magnetic field in ref. [63]. Compared to the calculation done for non-zero magnetic
field using a 14-moment approximation in ref. [1], we found only the first ten terms on the
r.h.s. have a similar form or analogous structure. However, the last three terms are new and
do not appear in the 14- moment approximation. We will discuss this issue in section 3.5.

For bulk stress. Similar to the shear viscosity, we derive the second order evolution
equation for the bulk viscous stress. By the definition:

Π(2) = −∆αβ

3

∫
dppαpβ

(
δf̃ (2) + δ ˜̄f (2)

)
. (3.22)

Evaluating the above integral by using δf̃ (2) from eq. (3.2) and noting the fact that the total
bulk stress is a combination of first and second-order terms i.e., Π = Π(1) + Π(2) after some
algebra (the details are given in appendix B.2 we get the evolution equation for bulk stress:

Π
τc

= −Π̇− δΠΠΠθ + λΠππ
µνσµν − τΠV V · u̇− λΠV V · ∇α− lΠV ∂ · V − βΠθ

+τcτΠV Bu̇αqBb
αβVβ − τcqδΠV B∇µ

(
BbµβVβ

)
− τcqBλΠV Bb

µβVβ∇µα, (3.23)

where the second-order transport coefficients are given in terms of the thermodynamic inte-
grals in table 3 and we use eq. (3.17) for the expression of X and Y. Coefficients τΠV , λΠV
contain derivatives of lΠV , while τΠV B, λΠV B contain derivatives of δΠV B, respectively.
The last three terms of the above equation are new compared to that of ref. [63] and are
magnetic field dependent. When compared to the 14-moment approximation in ref. [1] in
the presence of a magnetic field, the bulk viscous relaxation equation did not have any
magnetic field dependent term.

For diffusion current. The expression for the diffusion current for the net charge in
second order is:

V µ
(2) = ∆µ

α

∫
dppα

(
δf̃ (2) − δ ˜̄f (2)

)
, (3.24)

where δf̃(2) is taken from eq. (3.2). Like other dissipative quantities, the total diffusion four
vector is composed of first and second order terms, i.e., V µ = V µ

(1) + V µ
(2). After evaluating

the integral (for details see appendix B.3 in eq. (3.24), we get the following second order
evolution equation for the diffusion current:

V µ

τc
= −V̇ 〈µ〉−Vνωνµ−λV V V νσµν −δV V V µθ+λVΠΠ∇µα−λV ππµν∇να−τV ππµν u̇ν

+τVΠΠu̇µ+ lV π∆µν∂γπ
γ
ν − lVΠ∇µΠ+βV∇µα−qBδV BbµγVγ +τcqBlV πBb

σµ∂κπκσ

+τcqBτVΠBb
γµΠu̇γ−τcqBlVΠBb

γµ∇γΠ−qτcδV V BBbµνVνθ−qτcλV V BBbγνVνσµγ
−qτcρV V BBbγνVνωµγ −τcqτV V B∆µ

γD (BbγνVν) , (3.25)
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Transport Denicol CE
Coefficients et al.
βπ 4P/5 4P/5
τππ 10/7 10/7
δππ 4/3 4/3
τπV 0 0
λπV 0 0
lπV 0 0

(a)

Transport Denicol CE
Coefficients et al.
βV nf/12 nf/12
λV V 3/5 3/5
δV V 1 1
τV π β/20 β/4
λV π β/20 β/16
lV π β/20 β/4

(b)

Transport Denicol CE
Coefficients et al.
δπB 2β/5 β/2
δV B 5β/12 β

δπV B − 2/5
δΠV B − 1/3
τΠV B − 2/3
lV πB − β2/12
τVΠB − β2/12
lVΠB − β2/12
δV V B − β/3
λV V B − 3β/20
ρV V B − β/4
τV V B − β/4

(c)

Table 1. (a) Comparison between the coefficients for the shear-stress equation for a massless
Boltzmann gas (here we compare the result for particles only) calculated in this work using CE
method and Denicol et al. using the 14-moment method in ref. [65]. (b) Comparison between the
coefficients for the diffusion equation for a massless Boltzmann gas calculated in this work using
Chapman-Enskog method (CE) and Denicol et al. using the 14-moment method in ref. [65] (particles
only). (c) Transport coefficients appearing in the shear, bulk and diffusion equation that couple
magnetic field and dissipative quantities for a massless Boltzmann gas (particles only).

where the second order transport coefficients are given in terms of thermodynamic integrals
in table 4. Coefficients τV π, λV π contain the derivative of lV π; τVΠ, λVΠ contain the
derivative of lVΠ and δV V B contains derivative of τV V B , respectively. To arrive at the final
expression eq. (3.25) we also make use of X and Y given in eq. (3.17). A comparison of the
above to the RTA calculation done in ref. [63] without magnetic field shows that the last
eight terms in the r.h.s. are new and are magnetic field dependent. A similar comparison
with the relaxation equation for the diffusion in the presence of a magnetic field derived in
ref. [1] using 14-moment approximation shows that the first 13 terms are of similar form,
while the last seven terms are not present in the moment method.
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3.5 The ultrarelativistic and weak field limit

The transport coefficients in the ultra-relativistic limit, i.e. m/T = 0, for a classical Maxwell
gas with a constant relaxation time τc, can be calculated analytically using the thermo-
dynamic integrals. The transport coefficients are grouped into: (i) those which are inde-
pendent of the magnetic field are collected in tables 1(a) and 1(b) for the shear and the
number diffusion, respectively. (ii) Those which are magnetic field dependent are collected
in table 1(c). In this limit, the bulk viscous pressure vanishes and has not been considered.
In the same table, the results from the 14-moment approximation in the presence of a
magnetic field ref. [1] in the ultra-relativistic limit have also been shown. It is worthwhile
to note that in this limit, the new coefficients namely δπB and δV B are different in the
above two approaches.

In the limit of weak magnetic field, which translates to the statement that temperature
of the system is sufficiently large than the strength of the magnetic field T 2 � qB. We de-
fine the dimensionless parameter gB = qB/T 2 such that gB � 1. The RTA approximation
in the presence of magnetic field eq. (3.5), has two power counting schemes, viz. Kn = τcT

and χ = qBτc/T . However, in the weak field limit, the expansion parameter χ = gBτcT

becomes smaller and hence treated as sub-leading contribution. Therefore, at second order
one effectively retains term till O(Kn2) in spatial gradients and O(χ · Kn) for the mixed
terms.1 In this limit the relaxation equations reduce to following forms:

π̇µν = 2βπσµν −
πµν

τc
+ 2π〈µγ ων〉γ − τπππ〈µγ σν〉γ − δπππµνθ + λπΠΠσµν − τπV V 〈µu̇ν〉

+λπV V 〈µ∇ν〉α+ lπV∇〈µV ν〉 + δπB∆µν
ηβqBb

γηgβρπγρ, (3.26)

Π̇ = −βΠθ −
Π
τc
− δΠΠΠθ + λΠππ

µνσµν − τΠV V · u̇− λΠV V · ∇α− lΠV ∂ · V, (3.27)

V̇ 〈µ〉 = βV∇µα−
V µ

τc
− Vνωνµ − λV V V νσµν − δV V V µθ + λVΠΠ∇µα− λV ππµν∇να

−τV ππµν u̇ν + τVΠΠu̇µ + lV π∆µν∂γπ
γ
ν − lVΠ∇µΠ− qBδV BbµγVγ . (3.28)

The above set of reduced relaxation equations (3.26)–(3.28) formally corresponds to the
relaxation equations as given in ref. [1]. The dimensionless magnetic field dependent trans-
port coefficients TδπB and TδV B in the weak field limit are plotted in figure 1 as a function
of m/T . In the limit m/T → 0, these coefficients reduce to those obtained in table 1(c).

3.6 The Navier-Stokes limit

In the Navier-Stokes limit, we keep terms O(Kn), and O(χ ·Kn), which leaves us with the
first and second terms in right hand side of eqs. (3.26)–(3.28) which are of first-order in
gradients as well as the last term which is magnetic field dependent and are also first-order

1We do not keep terms which are O(χ2), since they do not contribute to the expansion eq. (3.5).
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Figure 1. Dimensionless transport coefficients TδV B and TδπB that couple fluid to magnetic field
as a function of m/T .

in gradients. Bringing these terms to the left we have,

Π
τc

= βΠθ, (3.29)(
gµν

τc
+ qBδV Bb

µγ
)
Vγ = βV∇µα, (3.30)(

gµγgνρ

τc
− δπB∆µν

ηβqBb
γηgβρ

)
πγρ = 2βπσµν . (3.31)

Since the bulk viscous pressure does not involve any magnetic field dependence, the
Navier-Stokes limit for bulk viscosity ζ turns out to be trivially the same as that without
any magnetic field, i.e., ζ = βΠτc. One needs now to invert the coefficients multiplied in
the left of the rest of the equations to get the respective constitutive relations. The general
solution for the rest of the equations are given as

Vγ =
(
κ‖P

‖
δγ + κ⊥P

⊥
δγ + κ×P

×
δγ

)
∂δα, (3.32)

πγρ =
(
η0P

(0)
αβγρ + η1

(
P

(1)
αβγρ + P

(−1)
αβγρ

)
+ iη2

(
P

(1)
αβγρ − P

(−1)
αβγρ

)
+ η3

(
P

(2)
αβγρ + P

(−2)
αβγρ

)
+iη4

(
P

(2)
αβγρ − P

(−2)
αβγρ

))
σαβ . (3.33)

where P ‖δγ , P⊥δγ and P×δγ are second rank projection tensors while P (n)
αβγρ, with n = −2 to

n = +2 are fourth rank projection tensors, respectively, where as the symbol i =
√
−1.

The definition of these tensors are shown in appendix C and further details can be found
in refs. [80, 81]. In the above set of equations κ‖, κ⊥, κ× and η0 − η4 are the transport
coefficients. These coefficients can be obtained by substituting the above solution to the
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Figure 2. The magnetic-field dependence of the diffusion coefficients and the shear-viscosity coef-
ficients. The solid lines are the results from the current work while the dotted lines are from ref. [1].

left hand side of eq. (3.31) and eq. (3.30) and using the usual properties of projection
tensors. The resulting diffusion coefficients are

κ‖ = βV τc, (3.34)

κ⊥ = βV τc

1 + (qBτcδV B)2 , (3.35)

κ× = βV qBτ
2
c δV B

1 + (qBτcδV B)2 = κ⊥qBτcδV B. (3.36)

Similarly, the shear viscous coefficients are

η0 = 2βπτc, (3.37)

η1 = 2βπτc
1 + (2qBτcδπB)2 , (3.38)

η2 = 4βπqBτ2
c δπB

1 + (2qBτcδπB)2 = 2η1qBτcδπB, (3.39)

η3 = 2βπτc
1 + (qBτcδπB)2 , (3.40)

η4 = 2βπqBτ2
c δπB

1 + (qBτcδπB)2 = η3qBτcδπB. (3.41)

The coefficients η1 and η3 are even function of magnetic field, where as η2 and η4 may have
either sign, and they are odd functions of B. In the limit of vanishing magnetic field, i.e.,
qB → 0, the diffusion coefficients reduce to κ× → 0 and κ‖ = κ⊥, while the shear viscous
coefficients reduce to η2 = η4 = 0 and η1 = η3 = η0 as expected.
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The transport coefficients in the Navier-Stokes limit found in the present work are κ‖,
κ⊥ and κ× for the diffusion coefficients and η0, η1, η2, η3, η4 for the shear viscous coefficients
respectively. In ref. [1] the above were labelled as κ0‖, κ0⊥ and κ0× for the diffusion
coefficients and η00, η01, η02, η03, η04 for the shear viscous coefficients respectively. Given
one uses the same basis as ref. [1], we get the following relations between the transport
coefficients [82]:

κ0‖ ≡ κ‖,

κ0⊥ ≡ κ⊥,

κ0× ≡ κ×,

η00 ≡ η1,

η01 ≡
16(qBτcδπB)2

3 η1,

η02 ≡ η3 − η1,

η03 ≡ η2/2,
η04 ≡ η4. (3.42)

The transport coefficients from both the approaches, in the m = 0 limit, is shown in figure 2
as a function of χ = qBτc/T . The solid lines correspond to the results from RTA used in
the present work while the dotted lines are the results from 14-moment approximation used
in ref. [1]. One notices that although quantitatively the transport coefficients are different
moreover qualitatively they are similar. The difference arises because one obtains different
value of transport coefficients δπB and δV B in the two approaches.

4 Conclusion

We derive for the first time the relativistic non-resistive, viscous second-order magneto-
hydrodynamics equations for the dissipative quantities using the relaxation time approxi-
mation. Assuming that the single-particle distribution function is close to equilibrium, we
solve the Boltzmann equation in the presence of a magnetic field using Chapman-Enskog
like gradient expansion with two relevant expansion parameters: the Knudsen number and
a dimensionless parameter χ = qBτc/T that depends on the strength of the magnetic field.
In first-order, dissipative quantities are found to be independent of the magnetic field.
Moreover, in second-order, we found new transport coefficients that couple magnetic field
to dissipative quantities apart from the usual transport coefficients that one gets without
any external field. When compared to the results of the 14-moment approximation, ad-
ditional terms involving the magnetic field appear in the relaxation time approximation.
However, in the weak field limit, the form of the relaxation equations is the same as that
of the 14-moment approximation but with different values for the transport coefficients. In
the ultra-relativistic limit, the resulting transport coefficients from the two approaches are
compared, some of the coefficients are found to differ. Finally, we find that one recovers
the usual anisotropic transport coefficients for fluid in magnetic fields in the Navier-Stokes
limit. As a further extension of the present work, we plan to investigate the general case for
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the relativistic resistive viscous fluid in a magnetic field in a future study in ref. [83]. The
formulation of the relativistic causal magnetohydrodynamics is expected to be useful in
astrophysical phenomena involving relativistic plasmas as well as femto-scopic high energy
heavy-ion collisions.

Acknowledgments

AP acknowledges the CSIR-HRDG financial support. AD and VR acknowledges support
from the DAE, Govt. of India. RB and VR acknowledge financial support from the DST
Inspire faculty research grant (IFA-16-PH-167), India.

A Thermodynamic integrals

The n-th moments integral for the distribution function is defined as:

I
(m)±
µ1µ2···µn =

∫
dp

(u · p)m pµ1pµ2 · · · pµn
(
f0 ± f̄0

)
, (A.1)

which can be docomposed as:

I(m)±
µ1µ2...µn = I

(m)±
n0 uµ1 · · ·uµn + I

(m)±
n1 (∆µ1µ2uµ3 · · ·uµn + perm.) + · · ·

· · ·+ I(m)±
nq

(
∆µ1µ2∆µ3µ4 · · ·∆µn−1µn + perm.

)
. (A.2)

where n ≥ 2q.
Similarly the auxiliary moments integral

J
(m)±
µ1µ2···µn =

∫
dp

(u · p)m pµ1pµ2 · · · pµn
(
f0f̃0 ± f̄0

˜̄f0
)
, (A.3)

can be decomposed as:

J (m)±
µ1µ2...µn = J

(m)±
n0 uµ1 · · ·uµn + J

(m)±
n1 (∆µ1µ2uµ3 · · ·uµn + perm.) + · · · (A.4)

· · ·+ J (m)±
nq

(
∆µ1µ2∆µ3µ4 · · ·∆µn−1µn + perm.

)
. (A.5)

where f̃0 = 1− rf0. Here we define the thermodynamic integrals as follows:

I(m)±
nq = 1

(2q + 1)!!

∫
dp(u · p)n−2q−m(∆αβp

αpβ)q
(
f0 ± f̄0

)
, (A.6)

and
J (m)±
nq = 1

(2q + 1)!!

∫
dp(u · p)n−2q−m(∆αβp

αpβ)q
(
f0f̃0 ± f̄0

˜̄f0
)
. (A.7)

One can write the J in terms of I as:

J (0)±
nq = 1

β

[
−I(0)±

n−1,q−1 + (n− 2q)I(0)±
n−1,q

]
. (A.8)

The general expression of Dnq used in eq. (2.41) and eq. (2.42) is given by: Dnq =
J

(0)+
n+1,qJ

(0)+
n−1,q − J

(0)−
nq J

(0)−
nq .

– 18 –



J
H
E
P
0
3
(
2
0
2
1
)
2
1
6

B Second order relaxation equation for dissipative stresses

In this appendix we discuss the detail calculation of the second order dissipative stresses.
The contribution due to the antiparticles are not shown explicitly for simplicity but they
appear in the final expressions.

B.1 Shear stress

The second order shear stress πµν(2) is given by eq. (3.19):

πµν(2) = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

pρ∂ρ

[
τc
u · p

pσ∂σf0

]
+ τc
u · p

qF γηpη
∂

∂pγ

[
τc
u · p

pσ∂σf0

])
. (B.1)

For convenience, we write them into two parts as:

πµν(2) = I1 + I2. (B.2)

Here

I1 = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

pρ∂ρ

[
τc
u · p

pσ∂σf0

])
, (B.3)

I2 = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

qF γηpη
∂

∂pγ

[
τc
u · p

pσ∂σf0

])
, (B.4)

Let us first evaluate the integral I1:

I1 = ∆µν
αβ

∫
dppαpβ

(
τc
u · p

pρ∂ρ

[
τc
u · p

pσ∂σf0

])
,

= A+ B + C, (B.5)

where

A = ∆µν
αβ

∫
dppαpβτcD

[
τc
u · p

pσ∂σf0

]
,

B = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ
[
τcḟ0

]
,

C = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ
[
τc
u · p

pσ∇σf0

]
.

A straight forward calculation gives:

A = −∆µν
αβ

∫
dpf0f̃0p

αpβτcD

[
τc
u · p

pσ { βpγ∂σuγ + (u · p) ∂σβ − ∂σα}
]
.

We can rewrite the above expression in terms of the thermodynamic integrals given in
appendix A and eq. (2.43) as:

A = −τcπ̇〈µν〉 − 2τ2
c

(
nf

ε+ P
J

(0)−
31 − J (1)−

31

)
u̇〈µ∇ν〉α+ τ2

c ∆µν
αβJ

(0)+
31 u̇β

[
βqBbασ

ε+ P
Vσ

]
+τ2

c ∆µν
αβJ

(0)+
31 u̇α

[
βqBbβσ

ε+ P
Vσ

]
. (B.6)
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Similarly for B we have:

B = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ
[
τcḟ0

]
,

= −∆µν
αβ

∫
dpf0f̃0p

αpβ
τc
u · p

pρ∇ρτc
[
βpγ u̇γ + (u · p)β̇ − α̇

]
.

Using the thermodynamics integral discussed in appendix A we get:

B = −2τ2
c

[(
J

(0)+
31 +J

(1)+
42

)
β̇−

(
J

(1)−
31 +J

(2)−
42

)
α̇
]
σµν−2τ2

c∇〈µ
(
u̇ν〉βJ

(1)+
42

)
,

= −2τ2
c

[(
J

(0)+
31 +J

(1)+
42

)
X −

(
J

(1)−
31 +J

(2)−
42

)
Y
]
θσµν−2τ2

c∇〈µ
(
u̇ν〉βJ

(1)+
42

)
, (B.7)

where in the last line we have used the expression for α̇ and β̇ given in eq. (2.41) and
eq. (2.42). The X and Y are same as eq. (3.17). Finally, for C we have

C = ∆µν
αβ

∫
dppαpβ

τc
u · p

pρ∇ρ
[
τc
u · p

pσ∇σf0

]
,

= −∆µν
αβ

∫
dpf0f̃0p

αpβ
τc
u · p

pρ∇ρ
[
τc
u · p

pσ (βpγ∇σuγ + (u · p)∇σβ −∇σα)
]
.

Like the previous cases we use the thermodynamic integrals given in appendix A along
with eq. (2.43) and eq. (1.1) to rewrite the above expression:

C = 2∇〈µ
(
u̇ν〉βτ2

c J
(1)+
42

)
+2∇〈µ

[
∇ν〉ατ2

c

(
J

(2)−
42 − 1

h
J

(1)−
42

)]
−4βτ2

c

(
2J (3)+

63 +J (1)+
42

)
σ〈µρ σ

ν〉ρ

−20
3 βτ

2
c J

(1)+
42 θσµν− 28

3 βτ
2
c J

(3)+
63 θσµν−4βτ2

c

(
J

(1)+
42 +2J (3)+

63

)
σ〈µρων〉ρ

+2τ2
c∇〈µ

[
J

(1)+
42

(
βqBbν〉γVγ
ε+P

)]
, (B.8)

Now let us evaluate the second integral I2:

I2 = −∆µν
αβ

∫
dppαpβ

((
τc
u·p

)2
qBbγηpη

∂

∂pγ
[pσ∂σf0]

)
,

= ∆µν
αβ

∫
dpf0f̃0p

αpβ
((

τc
u·p

)2
qBbγηpη

(
(βpρ∂σuρ+(u·p)∂σβ−∂σα)∆σ

γ

)
+β∂σuρpσ∆ρ

γ

)
,

= 2τ2
c qBb

γηβJ
(2)−
42

(
∆µν
ηβg

βρ+∆µν
αηg

αρ
)
σγρ, (B.9)
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where we have used ∂
∂pγ p

σ∂σf0 = ∂σf0∆σ
γ +pσ ∂

∂pγ ∂σf0 and the expression for ∂σf0 to arrive
at the final expression. Now using eqs. (B.6)–(B.9) we get the final expression:

πµν(2) = −τcπ̇〈µν〉−2τ2
c u̇
〈µ∇ν〉α

(
nf
ε+P

J
(0)−
31 −J (1)−

31

)
+τ2

c ∆µν
αβJ

(0)+
31 u̇β

[
βqBbασ

ε+P
Vσ

]
+τ2

c ∆µν
αβJ

(0)+
31 u̇α

[
βqBbβσ

ε+P
Vσ

]
−2τ2

c

[(
J

(0)+
31 +J

(1)+
42

)
X −

(
J

(1)−
31 +J

(2)−
42

)
Y
]
θσµν

−2τ2
c∇〈µ

(
u̇ν〉βJ

(1)+
42

)
+2∇〈µ

(
u̇ν〉βτ2

c J
(1)+
42

)
+2∇〈µ

[
∇ν〉ατ2

c

(
J

(2)−
42 − nf

ε+P
J

(1)−
42

)]
−20

3 βτ
2
c J

(1)+
42 θσµν−4βτ2

c

(
2J (3)+

63 +J
(1)+
42

)
σ〈µρ σ

ν〉ρ− 28
3 βτ

2
c J

(3)+
63 θσµν

−4βτ2
c

(
J

(1)+
42 +2J (3)+

63

)
σ〈µρων〉ρ +2τ2

c∇〈α
[
J

(1)+
42

(
βqBbβ〉γVγ
ε+P

)]
+2τ2

c qBb
γηβJ

(2)−
42

(
∆µν
ηβg

βρ+∆µν
αηg

αρ
)
σγρ. (B.10)

Here we kept terms only upto second-order in gradients.

B.2 Bulk stress

Let us now consider the bulk viscous case. From eq. (3.22) we get:

Π(2) = −1
3∆αβ

∫
dppαpβ

(
τc
u · p

pµ∂µ

[
τc
u · p

pρ∂ρf0

]
+ τc
u · p

qFµνpν
∂

∂pµ

[
τc
u · p

pρ∂ρf0

])
,

= I1 + I2, (B.11)

where

I1 = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∂µ

[
τc
u · p

pρ∂ρf0

]
,

I2 = −∆αβ

3

∫
dppαpβ

τc
u · p

qFµνpν
∂

∂pµ

[
τc
u · p

pρ∂ρf0

]
.

Note that for our case Fµν = −Bbµν . Let us first evaluate I1 by breaking it into three
parts I1 = A+ B + C where

A = −∆αβ

3

∫
dppαpβτcD

[
τc
u · p

pρ∂ρf0

]
,

B = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ
(
τcḟ0

)
,

C = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ
(
τcp

ρ

u · p
∇ρf0

)
.

We evaluate each of the above integrals one-by-one:

A = −∆αβ

3

∫
dppαpβτcD

[
τc
u · p

pρ∂ρf0

]
,

= ∆αβ

3

∫
dpf0f̃0p

αpβτcD

[
τc
u · p

pρ (βpγ∂ρuγ + (u · p) ∂ρβ − ∂ρα)
]
, (B.12)

= −τcΠ̇ + 2τ2
c

3 J
(0)−
31

nf
ε+ P

∇ααu̇α −
2τ2
c

3 J
(0)−
21 ∇ααu̇α −

2τ2
c β

3(ε+ P )J
(0)+
31 u̇αqBb

αβVβ
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We have used the thermodynamic integrals given in appendix A along with eq. (A.2) and
eq. (2.43) to arrive at the final expression eq. (B.12). Now let us evaluate B with the help
of thermodynamic integrals and its properties given in appendix A:

B = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ(τcḟ0),

= 5τ2
c

3 ∇µ
(
βJ

(1)+
42 u̇µ

)
+ 5τ2

c

3 θ
[(
J

(0)+
31 + J

(1)+
42

)
β̇ −

(
J

(1)−
31 + J

(2)−
42

)
α̇
]
. (B.13)

Similarly for C we have

C = −∆αβ

3

∫
dppαpβ

τc
u · p

pµ∇µ
(
τcp

ρ

u · p
∇ρf0

)
,

= ∆αβ

3

∫
dpf0f̃0p

αpβ
τc
u · p

pµ∇µ
(
τcp

ρ

u · p
(βpγ∇ρuγ + (u · p)∇ρβ −∇ρα)

)
,

= 5τ2
c β

9

(
7J (3)+

63 + 23
3 J

(1)+
42

)
θ2 + 5τ2

c

3 ∇µ
[
∇µα

(
J

(1)−
42

nf
ε+ P

− J (2)−
42

)]

+τ2
c β

3
(
7J (3)+

63 + J
(1)+
42

)
σµνσµν + 5τ2

c

3 ∇µ

[
−J (1)+

42 βu̇µ − J
(1)+
42 βqBbµνVν

ε+ P

]
. (B.14)

Needless to say, here we kept only terms upto the second-order. The remaining integral I2
is evaluated in a similar fashion,

I2 = ∆αβ

3

∫
dppαpβ

τc
u · p

qBbµνpν
∂

∂pµ

[
τc
u · p

pρ∂ρf0

]
,

= −∆αβ

3

∫
dpf0f̃0p

αpβ
τc
u · p

qBbµνpν
∂

∂pµ

[
τc
u · p

pρ (pγβ∂ρuγ + (u · p)∂ρβ − ∂ρα)
]
,

= −∆αβ

3 τ2
c qBb

µ
ν

(
βJαβνγ(2)− ∇µuγ + βJαβνρ(2)− ∂ρuµ

)
, (B.15)

using the expansion given in eq. (A.2) and the anti-symmetric property of bµν we get:

I2 = −qBτ
2
c

3 βJ
(2)−
42 (5bµγ∇µuγ + 5bµρ∇ρuµ) = 0. (B.16)

Finally using eqs. (B.12)–(B.14) and eq. (B.16) we have:

Π(2) = −τcΠ̇ + 2τ2
c

3h J
(0)−
31 u̇α∇αα−

2τ2
c

3 J
(0)−
21 u̇α∇αα−

2τ2
c β

3 (ε+ P )J
(0)+
31 u̇αqBb

αβVβ

+5τ2
c β

9

(
7J (3)+

63 + 23
3 J

(1)+
42

)
θ2 + 5τ2

c

3
[(
J

(0)+
31 + J

(1)+
42

)
β̇ −

(
J

(1)−
31 + J

(2)−
42

)
α̇
]
θ

+τ2
c β

3
(
7J (3)+

63 + J
(1)+
42

)
σµνσµν + 5τ2

c

3 ∇µ
[(1
h
J

(1)−
42 − J (2)−

42

)
∇µα

]

−5τ2
c

3 ∇µ

[
J

(1)+
42 βqBbµνVν

ε+ P

]
. (B.17)

Eq. (B.17) is the second-order relaxation equation for the bulk-viscous stress.
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B.3 Diffusion current

In this section we discuss the detail derivation of the diffusion current. From eq. (3.24) we
get:

V µ
(2) = ∆µ

α

∫
dppα

(
τc
u · p

pσ∂σ

[
τc
u · p

pρ∂ρf0

]
+ τc
u · p

qF σνpν
∂

∂pσ

[
τc
u · p

pρ∂ρf0

])
, (B.18)

where

I1 = ∆µ
α

∫
dppα

τc
u · p

pσ∂σ

[
τc
u · p

pρ∂ρf0

]
,

I2 = ∆µ
α

∫
dppα

τc
u · p

qF σνpν
∂

∂pσ

[
τc
u · p

pρ∂ρf0

]
.

Let us first calculate the I1 by breaking it up into three parts as: I1 = A+ B + C where

A = ∆µ
α

∫
dppατcD

[
τc
u · p

pρ∂ρf0

]
,

B = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ
(
τcḟ0

)
,

C = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ
(
τcp

ρ

u · p
∇ρf0

)
.

For A we get:

A = −∆µ
α

∫
dpf0f̃0p

ατcD

[
τc
u · p

pρ (βpγ∂ρuγ + (u · p) ∂ρβ − ∂ρα)
]
,

= −∆µ
αD

[∫
dpf0f̃0p

ατc
τc
u · p

pρ (βpγ∂ρuγ + (u · p) ∂ρβ − ∂ρα)
]
,

= −τcV̇ 〈µ〉 − τ2
c ∆µ

γD

[
nfqBb

γνVν
ε+ P

]
. (B.19)

We have used the thermodynamic integrals and its expansion given in the appendix A,
along with eqs. (2.41) and (2.42) to arrive at the final expression. Similarly for B we get:

B = ∆µ
α

∫
dppα

τc
u · p

pσ∇σ
(
τcḟ0

)
,

= ∆µ
α∇σ

(∫
dppα

τc
u · p

pστcḟ0

)
+ ∆µ

α∇σuγ
(∫

dppαpγ
τc

(u · p)2 p
στcḟ0

)
,

= −τ2
c∇µ

(
J

(0)−
21 β̇ − J (1)+

21 α̇
)
− τ2

c βu̇
µθ

(4
3J

(0)−
21 + 5

3J
(2)−
42

)
− τ2

c βJ
(0)−
21 u̇γω

γµ

−τ2
c βu̇γσ

γµ
(
J

(0)−
21 + 2J (2)−

42

)
. (B.20)

Lastly for C we get:

C = ∆µ
α

∫
dppα

τ2
c

u · p
pσ∇σ

(
pρ

u · p
∇ρf0

)
,

= ∆µ
α∇σ

(∫
dppα

τ2
c

u · p
pσ

pρ

u · p
∇ρf0

)
+ ∆µ

α∇σuγ

(∫
dppαpγ

τ2
c

(u · p)2 p
σ pρ

u · p
∇ρf0

)
.
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Substituting the expression for ∇ρf0 and using the usual thermodynamic integrals and
their expansion along with eq. (2.43) and eq. (1.1) the above expression takes the following
form:

C = −4τ2
c

3

(
J

(0)+
21 nf
ε+P

−J (1)+
21

)
(∇µα)θ+ 4τ2

c

3 J
(0)−
21 βu̇µθ−τ2

c

(
J

(0)+
21 nf
ε+P

−J (1)+
21

)
(∇γα)σµγ

+τ2
c J

(0)−
21 βu̇γσµγ −τ2

c

(
J

(0)+
21 nf
ε+P

−J (1)+
21

)
(∇γα)ωµγ +τ2

c J
(0)−
21 βu̇γωµγ

+τcJ (0)−
21 ωµγ

[
βqBbγνVν
ε+P

]
−2τ2

c

(
J

(2)+
42 nf
ε+P

−J (3)+
42

)
(∇γα)σµγ +2τ2

c J
(2)−
42 βu̇γσµγ

−5τ2
c

3

(
J

(2)+
42 nf
ε+P

−J (3)+
42

)
(∇µα)θ+ 5τ2

c

3 J
(2)−
42 βu̇µθ−2τ2

c ∆µ
ρ∇γ

(
βJ

(2)−
42 σργ

)
−5τ2

c

3 ∇
µ
[
βJ

(2)−
42 θ

]
+ 4τc

3 J
(0)−
21 θ

[
βqBbµνVν
ε+P

]
+τcJ

(0)−
21 σµγ

[
βqBbγνVν
ε+P

]
+2τcJ (2)−

42 σµγ

[
βqBbγνVν
ε+P

]
+ 5τc

3 J
(2)−
42 θ

[
βqBbµνVν
ε+P

]
. (B.21)

Now let us calculate the integral I2:

I2 = −∆µ
α

∫
dpf0f̃0p

α τc
u · p

qF σνpν
∂

∂pσ

[
τc
u · p

pρ (βpγ∂ρuγ + (u · p)∂ρβ − ∂ρα)
]
, (B.22)

= τ2
c qB

[
1
h
J

(1)−
21 bγµ∇γα− J (2)−

21 bγµ∇γα

−
βJ

(1)+
21 bγµ∆σ

γ∂
kπkσ

ε+ P
− βJ

(1)+
21 bγµΠu̇γ
ε+ P

+ βJ
(1)+
21 bγµ∇γΠ
ε+ P

]
.

Adding eqs. (B.19)–(B.22) together we get the final expression for the diffusion current
(which after simplification becomes eq. (3.25)):

V µ
(2) = −τcV̇ 〈µ〉−τ2

c ∆µ
γD

[
nfqBb

γνVν
ε+P

]
−τ2

c∇µ
(
J

(0)−
21 β̇−J (1)+

21 α̇
)

−τ2
c βu̇

µθ

(4
3J

(0)−
21 + 5

3J
(2)−
42

)
−τ2

c βJ
(0)−
21 u̇γω

γµ−τ2
c βu̇γσ

γµ
(
J

(0)−
21 +2J (2)−

42

)
−4τ2

c

3

(
J

(0)+
21 nf
ε+P −J (1)+

21

)
(∇µα)θ+ 4τ2

c

3 J
(0)−
21 βu̇µθ−τ2

c

(
J

(0)+
21 nf
ε+P −J (1)+

21

)
(∇γα)σµγ

+τ2
c J

(0)−
21 βu̇γσµγ +2τ2

c J
(2)−
42 βu̇γσµγ−τ2

c

(
J

(0)+
21 nf
ε+P −J (1)+

21

)
(∇γα)ωµγ +τ2

c J
(0)−
21 βu̇γωµγ

−2τ2
c

(
J

(2)+
42 nf
ε+P −J (3)+

42

)
(∇γα)σµγ−

5τ2
c

3

(
J

(2)+
42 nf
ε+P −J (3)+

42

)
(∇µα)θ

+5τ2
c

3 J
(2)−
42 βu̇µθ−2τ2

c ∆µ
ρ∇γ

(
βJ

(2)−
42 σργ

)
− 5τ2

c

3 ∇
µ
[
βJ

(2)−
42 θ

]
+ 4τc

3 J
(0)−
21 θ

[
βqBbµνVν
ε+P

]
+τcJ (0)−

21 σµγ

[
βqBbγνVν
ε+P

]
+2τcJ (2)−

42 σµγ

[
βqBbγνVν
ε+P

]
+ 5τc

3 J
(2)−
42 θ

[
βqBbµνVν
ε+P

]
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+τcJ (0)−
21 ωµγ

[
βqBbγνVν
ε+P

]
+τ2

c qB

[
J

(1)−
21 bγµ

h
∇γα−J (2)−

21 bγµ∇γα

−
βJ

(1)+
21 bγµ∆σ

γ∂
kπkσ

ε+P −βJ
(1)+
21 bγµΠu̇γ
ε+P +βJ

(1)+
21 bγµ∇γΠ
ε+P

]
. (B.23)

C Projection tensors

The definition of the second and fourth rank projection tensors used in the text is shown
in this section.

A general antisymmetric second rank tensor bµν can be defined by

bµν ≡ εµλνbλ, (C.1)

where bµ is a unit axial four vector. The second rank projection tensors are then defined as

P (0)
µν = bµbν ,

P (+1)
µν = 1

2 (∆µν − bµbν − ibµν) ,

P (−1)
µν = 1

2 (∆µν − bµbν + ibµν) .

where i =
√
−1. They satisfy the following properties

P (m)
µκ P (m′),κ

ν = δmm′P
(m)
µν , (C.2)(

P (m)
µν

)†
= P (−m)

µν = P (m)
νµ , (C.3)

1∑
m=−1

P (m)
µν = ∆µν , P (m)

µµ = 1, (C.4)

where m,m′ = 0,±1. The projection tensors P (m)
µν satisfy the following eigenvalue equation

(see ref. [80])
P (m)
µκ bκν = imP (m)

µν , (C.5)

where m is the eigenvalue. Also bµν can be represented as a linear combination of the
projection tensors

bµν =
1∑

m=−1
imP (m)

µν . (C.6)

It is also easy to generalize them to the fourth rank projection tensor which are defined in
terms of the second rank projection tensor as

P
(m)
µν,µ′ν′ =

1∑
m1=−1

1∑
m2=−1

P
(m1)
µµ′ P

(m2)
νν′ δ (m,m1 + m2) , (C.7)

where δ (m,m1 + m2) = 1 for m = m1 + m2 and zero otherwise. Notice that m1 + m2 as-
sumes the five values m = −2,−1, 0, 1, 2 which in turn result in the five shear viscous
coefficients dicussed in the text. A generalization to higher ranks is also possible using the
above basis if need arises.
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D General expressions of transport coefficients

τππ
2β
βπ

(
2J (3)+

63 + J
(1)+
42

)
δππ

β
3βπ

(
7J (3)+

63 + 5J (1)+
42

)
λπΠ

2
βΠ

[(
J

(0)+
31 + J

(1)+
42

)
X −

(
J

(1)−
31 + J

(2)−
42

)
Y + β

3

(
7J (3)+

63 + 5J (1)+
42

)]
lπV

2
βV

(
J

(2)−
42 − nf

ε+P J
(1)−
42

)
δπB 2J (2)−

42 /J
(1)+
42

δπV B 2βJ (1)+
42 /(ε+ P )

Table 2. Transport coefficients appearing in shear-stress equation eq. (3.21).

δΠΠ
5

3βΠ

[
(J (0)+

31 +J
(1)+
42 )X − (J (1)−

31 +J
(2)−
42 )Y+ β

3 (7J (3)+
63 +

23
5 J

(1)+
42 )

]
λΠπ

β
3βπ

(
7J (3)+

63 + J
(1)+
42

)
lΠV

5
3βV

(
J

(2)−
42 − nf

ε+P J
(1)−
42

)
δΠV B

5J(1)+
42 β

3(ε+P )

Table 3. Transport coefficients appearing in bulk equation eq. (3.23).

λV V 1 + 2
βV

(
nf
ε+P J

(2)+
42 − J (3)+

42

)
δV V

4
3 + 5

3βV

(
nfJ

(2)+
42

ε+P − J (3)+
42

)
lV π − β

βπ
J

(2)−
42

τV π −β ∂
∂β lV π

λV π − 1
h
∂
∂β lV π

lVΠ − 1
βΠ

(
XJ (0)−

21 − YJ (1)+
21 + 5β

3 J
(1)−
42

)
δV B −

(
nfJ

(1)−
21

ε+P − J (2)−
21

)
/βV

lV πB −βJ (1)+
21 /(ε+ P )

τVΠB −βJ (1)+
21 /(ε+ P )

lVΠB −βJ (1)+
21 /(ε+ P )

λV V B − β
ε+P

(
J

(0)−
21 + 2J (2)−

42

)
ρV V B −βJ (0)−

21 /(ε+ P )
τV V B nf/ (ε+ P )

Table 4. Transport coefficients appearing in diffusion equation eq. (3.25).
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