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Abstract: We clarify general mathematical and physical properties of pole-skipping
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is due to a specific UV condition, contrary to the types I and II, which are related to
a non-unique near horizon boundary condition. We also clarify the relation between the
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out that there are subtle cases where the near horizon analysis alone may not be able to
capture the existence and properties of the pole-skipping points.
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1 Introduction

In recent years, the so-called pole-skipping phenomenon [1–3] has attracted much attention,
specially because of its connection with quantum chaos.1 Pole-skipping points are special
values of frequency and wave number at which a momentum space Green’s function is not
well defined. This phenomenon is particularly important in the context of gauge-gravity
duality [6–8], because it reveals properties of the boundary theory that are completely
encoded in the region near the black hole horizon.

According to the holographic dictionary, boundary correlators are related to solutions
of the classical equations of motion in the bulk. In particular, a retarded Green’s function
in momentum space can be read off from the near boundary behavior of perturbations
satisfying ingoing boundary conditions at the black hole horizon. In general, for generic
values of frequency and wave number, (ω, k), the ingoing solution is unique, which leads
to the uniqueness of the Green’s function.

1For a review on quantum chaos, in the context of holography, we refer to [4, 5] and references therein.
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There are, however, some special values of frequency and wave number (ω∗, k∗) at which
the ingoing solution is not unique. As a consequence, the Green’s function is ill-defined
at those points [3]. These special points are known as pole-skipping points. They were
first discovered in energy density retarded two-point functions, where they were shown to
be related to behavior of out-of-time-order correlators (OTOCs) [9–12]2 that characterize
chaotic behavior [1]. More specifically,

ω∗ = iλL , k = i
λL
vB

(1.1)

where λL = 2πT is the Lyapunov exponent, and vB is the butterfly velocity, which control
the exponential behavior of OTOCs, i.e., 〈V (0)W (t, x)V (0)W (t, x)〉 ∼ c0 + c1e

λL(t−|x|/vB),
where c0 and c1 are constants. The relation between pole-skipping and the non-uniqueness
of the incoming solution was discovered in [3], where it was also shown that a near horizon
analysis was enough to compute the pole-skipping point. It was later realized that pole-
skipping is a much more general phenomenon, that takes place for correlators involving
other component of the stress energy tensor, and also for vector and scalar fields, although
in those cases the pole-skipping points are not in general related to chaos [15, 16]. More-
over, [15, 16] revealed the existence of a infinite set of pole-skipping points, occurring at
higher Matsubara frequencies. The existence of pole-skipping for fermions was confirmed
in [17]. Other recent development involving pole-skipping include for instance [18–31].

In all the above examples, pole-skipping was studied for boundary theories living in a
flat spacetime, where one can decompose the bulk perturbations and the boundary Green’s
function in terms of plane waves. Pole-skipping also takes place in hyperbolic space [32, 33].
In this case one has to decompose the bulk field perturbation and the boundary Green’s
function in terms of scalar harmonics of the Laplacian operator in hyperbolic space. The
use of hyperbolic space is convenient because it allows us to obtain analytic results in
both sides of the AdS/CFT duality. In particular, by considering a Rindler-AdS geometry,
the boundary description is given in terms of a CFT in hyperbolic space, while the bulk
geometry is just the Rindler wedge of AdS. In this holographic set up, one can obtain the
exact Green’s function of scalar and vector fields, and compute the full set of pole-skipping
points in both sides of the AdS/CFT duality [34].

The authors of [34] confirmed that the leading pole-skipping points of scalar and vector
fields in a Rindler-AdS geometry can also be obtained by a near horizon analysis, but they
did not check whether the full tower of pole-skipping points can also be obtained in this
way. In this work, we study the full tower of pole-skipping points of scalar and vector
fields in a Rindler-AdS geometry using a near horizon analysis, following the formalism
developed in [15].

Analysing the results, we find that, for certain values of the scaling dimension ∆ and the
spacetime dimension d, there appears to be some anomalous points [15], whose properties
have not been fully clarified yet. Near the anomalous points, the Green’s function does
not depend on the ratio of the deviation (δω/δk) from the pole-skipping points. In some

2For OTOCs in the context of quantum many body systems and quantum mechanics we refer to [13, 14]
and references therein.
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cases, the anomalous pole-skipping point looked like an intersection of two lines of poles.3
Building on the analysis in [15] and [20] and based on our concrete computation from field
theory and holography, we clarify the nature of the anomalous pole-skipping points. We
call it type-II pole-skipping point to distinguish it from the usual one, which we call type-I
pole-skipping point. Furthermore, we find a possibility that there is another type of the
pole-skipping point with non-integer iω values, which we call type-III.

Let us highlight some of the main properties of the different types of pole-skipping
points:

• type I and type II: in theses cases, iω takes integer values,4 and the non-uniqueness
of the Green’s function GR(ω, k) at the pole-skipping point is related to the non-
uniqueness of incoming solution at the black holes horizon. This basically means
that the value that GR(ω, k) takes at the pole-skipping point (ω∗, k∗) depends on the
particular path ω(k) we take to approach this point. In particular, we can always
choose a path in which GR(ω, k) is constant. For type I points, the Green’s function
is constant along straight lines that pass though the pole-skipping points, while for
type II points, the Green’s function is constant along quadratic or higher order curves
passing through the pole-skipping point. Type I points occur when a line of zeros
intersects a line of poles, or, more generally, when the same number of zero-lines and
pole-lines intersect at a point. For type II points, a different number of zero-lines and
pole-lines intersect at a point.

• type III: in this case iω takes in general non-integer values, and the non-uniqueness
of the Green’s function at the pole-skipping point is not related to the incoming
solution at the horizon, which is unique in this case. Actually, for type III points, the
non-uniqueness results from a UV property of the theory, rather than a IR property,
i.e., it is not related to the black hole horizon.

We stress that the above classification of poles-skipping points was facilitated because
we have analytic control of the retarded Green’s function of scalar and vector operators in
hyperbolic space. Since the knowledge of the Green’s function is not always available, it
is important to know whether this classification of pole-skipping points can also be done
using a near horizon analysis, which is easily applicable in much more general geometries.
In the main text, we show that this classification from the near horizon analysis is possible.
We point out that there is a subtlety: sometimes the near horizon analysis alone is not
enough to capture the existence and properties of the pole-skipping points.

This paper is organized as follows. In section 2, we study the pole-skipping points of
scalar and vector fields in hyperbolic space using a near horizon analysis and compare the
results with the ones obtained using field theory. In section 3, we classify pole-skipping
points in two types (type-I and type-II). After showing a simple example for type-II pole-
skipping points, we develop a general argument for the type-I and type-II pole-skipping

3Actually, a curve of zeros also passes through the anomalous point as we will see later.
4Strictly speaking, iω

2πT is the dimensionless frequency that takes integer values, where T is temperature.
In this paper, we consider a Rindler-AdS geometry with T = 1

2π , which implies 2πT = 1.
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points from the Green’s function perspective. In section 4, we investigate how to identify
the type-I and type-II pole-skipping points from a near horizon analysis. A subtlety in the
near horizon analysis is discussed in section 5. Based on the observation from this subtlety,
we find another type of the pole-skipping point in the near horizon analysis, type-III, and
discuss its mechanism. We conclude in section 6.

2 Pole-skipping points from near horizon analysis and field theory

Let us recall that a pole-skipping point is defined as a point in momentum space at which
the Green’s function is ill-defined (e.g., it takes the form of GR ∼ 0

0) [3, 15, 18–20]. From
the holographic perspective, one possibility for pole-skipping points is the ambiguity of
boundary conditions at the horizon. If there is no unique way to impose incoming boundary
conditions on the horizon at certain frequencies and wave numbers, the Green’s function
will not be unique at those points. Such points can be found by analyzing the bulk equation
of motion near the black hole horizon.

In this section, we build ‘towers’ of pole-skipping points [15] of scalar and massless
vector fields by analyzing the bulk equations of motion near the black hole horizon. In the
case in which the boundary theory lives in flat space, the near horizon analysis for higher
(Matsubara) frequencies has been done in [15, 20, 28]. Following the same method, we
consider the case where the boundary theory lives in hyperbolic space. For simplicity we
ignore back-reactions.

The pole-skipping points for scalar and vector fields in hyperbolic space have been
analytically obtained from a field theory computation [34]. We confirm that our holographic
near horizon analysis completely agrees with the field theory result.

Setup: geometry and coordinate systems. As a classical solution of the Einstein-
Hilbert action

S =
∫
dd+1x

√
−g

[
R+ d (d− 1)

`2AdS

]
, (2.1)

we consider the Rindler-AdSd+1 geometry

ds2 = `2AdS
z2

(
−f(z)dt2 + dz2

f(z) + `2AdS

(
dχ2 + sinh2 χdΩ2

d−2

))
,

f(z) = 1− z2

`2AdS
,

(2.2)

where `AdS is an AdS radius and we consider that the black hole horizon radius is `AdS.
The Hawking temperature is

T = 1
2π`AdS

. (2.3)

Although the analysis can be done for a general hyperbolic black hole with any horizon
radius apart from `AdS, we will focus on (2.2) because, in this case, the field theory dual
analysis can be done analytically so we may be able to compare our results with the field
theory results.
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In the following, we set `AdS = 1. For the near horizon analysis, it is useful to introduce
the incoming Eddington-Finkelstein coordinate v as

v = t− z∗ , dz∗ = dz

f
, (2.4)

in terms of which the metric (2.2) becomes

ds2 = −f(z)
z2 dv2 − 2

z2 dvdz + 1
z2

(
dχ2 + sinh2 χdΩ2

d−2

)
,

f(z) = 1− z2 .

(2.5)

2.1 Scalar field

2.1.1 Near horizon analysis

In this section, we compute the full set of pole-skipping points of a massive scalar field by
analysing the near horizon equations of motion. We assume that the action of the scalar
field has the form

Sscalar = −1
2

∫
dd+1x

√
−g

(
gµν∂µϕ∂νϕ+m2ϕ2

)
, (2.6)

where the background geometry is (2.2). In incoming Eddington-Finkelstein coordi-
nates (2.4), the equation of motion for the massive scalar field can be written as

zd+1∂z
(
z1−df(z)∂zϕ

)
+ z(d− 1)∂vϕ− 2z2∂v∂zϕ+ z2�Hd−1ϕ−m

2ϕ = 0 , (2.7)

where
�Hd−1 = ∂2

χ + (d− 2) cothχ∂χ + 1
sinh2 χ

�Sd−2 , (2.8)

is the Laplacian operator in Hd−1.
Let us consider the ‘Fourier’ transformation

ϕ(v, z, χ) =
∫

dω dk φ(z;ω, k)e−iωvSk(χ) , (2.9)

where Sk(χ) is an eigenfunction of �Hd−1 , which is defined as(
�Hd−1 + k2 +

(
d− 2

2

)2)
Sk(χ) = 0. (2.10)

In terms of the Fourier mode, φ(z;ω, k), the equation of motion (2.7) boils down to

φ′′(z)− F1(d, ω, z)
zf(z) φ′(z)− F2(d, ω, z, k)

z2f(z) φ(z) = 0 ,

F1(d, ω, z) = (d− 1)f(z)− z
(
f ′(z) + 2iω

)
,

F2(d, ω, k, z) =
(
k2 +

(
d− 2

2

)2)
z2 + i(d− 1)ωz +m2 ,

(2.11)

where we omit the k and ω dependence in φ(z;ω, k) to avoid clutter.
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The equation (2.11) is a second-order differential equation with a regular singular point
at the horizon, at z = 1. By solving the indicial equation near the singular point, we obtain
two independent solutions

φ(z) ∼ (1− z)0 or (1− z)iω . (2.12)

Usually, the second solution is discarded since it is not regular. The resulting solution
φ(z) ∼ (1 − z)0 is unique and amounts to incoming boundary condition at the horizon.
Thanks to this condition, the holographic Green’s function is uniquely determined.

However, if the frequency is given by iω = n ∈ Z+, where n is a positive integer, the
second solution becomes regular and must be kept and we end up with two independent
solutions. One may argue that, even in this case, there is only one regular solution because
the power of the two solutions differ by an integer, which leads to the appearance of a term
of the form log(1−z) that should be discarded by the regularity condition. However, it turns
out that this log(1−z) term vanishes for specific values of k, which we denoted as k = k{n}.
As a result, whenever the frequency and wave number are given by (ω, k) = (−in, k{n}) we
have indeed two independent incoming solutions

φ(z) = φ0 + φ1(1− z) + · · ·+ (1− z)n(φn + φn+1(1− z) + · · · ) , (2.13)

where φi(1 ≤ i ≤ n− 1) and φi(n+ 1 ≤ i) are determined by φ0 and φn, respectively. This
implies that the Green’s function is not uniquely defined at (ω, k) = (−in, k{n}) and has
the form of 0/0. These points are called ‘pole-skipping points’ because the ‘would-be pole’
is skipped by the zero in the numerator [2, 3].

To find out concrete conditions for the pole-skipping points, let us plug (2.13) into (2.11)
and solve it order by order. We can express these equations collectively in a matrix form

M · Φ ≡


M00 M01 0 0 0 · · ·
M10 M11 M12 0 0 · · ·
M20 M21 M22 M23 0 · · ·
...

...
...

...
... . . .





φ0
φ1
φ2
φ3
...


=



0
0
0
0
...


, (2.14)

where the j-th row is the equation of order O((1− z)j−1). For example, the leading order
of equation is

M00φ0 +M01φ1 = 0 . (2.15)

The equations up to order O(1− z) is

M00φ0 +M01φ1 = 0 , (2.16)
M10φ0 +M11φ1 +M12φ2 = 0 , (2.17)

which is equivalent to

1
M01

(M01M10 −M00M11)φ0 +M12φ2 = 0 (2.18)
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by eliminating φ1. In general, the equation up to order O((1− z)n) for (n ≥ 1) is

1
M01M12 · · ·M(n−2)(n−1)

detM(n)(ω, k)φ0 +M(n−1)n φn = 0 , (2.19)

whereM(n) is the n× n sub-matrix in the top-left corner of the matrix M.
In our case, the matrix element Mij has the form

Mij = aijiω + bijk
2 + cij , (2.20)

where aij , bij , and cij are real numbers. In particular,

M(j−1)j = j − iω , (j ≥ 1) , (2.21)

and

M00 = −1
2

(
(d− 1)iω + k2 +

(
d− 2

2

)2
+ ∆(∆− d)

)
,

M10 = 1
2

(
(d− 1)

2 iω + k2 +
(
d− 2

2

)2)
,

M11 = −1
2

(
(d− 5)

2 iω + k2 +
(
d− 2

2

)2
+ ∆(∆− d)

2 − (d− 4)
)
,

(2.22)

where we used the relation m2 = ∆(∆− d).
Using (2.21), the general equation (2.19) becomes

1
N (n)(ω)

detM(n)(ω, k)φ0 + (n− iω)φn = 0 , (n ≥ 1) , (2.23)

where5

N (n)(ω) ≡
n−1∏
m=1

(iω −m) . (2.24)

The pole-skipping points are obtained when φ0 and φn are independent, which is realized
if the point (ω, k) = (ωn, k{n}) is such that

ωn = −in , detM(n)(ωn, k{n}) = 0 . (2.25)

For a given ωn, the determinant detM(n)(ωn, k) is a polynomial in k of order 2n. This im-
plies that there are 2n solutions for k. We collectively denote them by k{n}. For example,6

ω1 = −i , k{1} = ±i
(

∆− d

2

)
,

ω2 = −2i , k{2} = ±i
(

∆− d

2 ± 1
)
.

(2.26)

Figure 1 shows the ‘tower’ of pole-skipping points of a scalar field propagating in (2.2).
5This is closely related with Mn−1,n−1 = 2nT − 2iω, T = 1

2π . See equation (2.22) and equation (2.3).
6In principle, one can systematically compute k{n} for any n by expanding (2.11). However, the explicit

computation for large n may be complicated.
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(a) ∆ = 4.2 (δ = 2.2)
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(b) ∆ = 4 (δ = 2.0)
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(c) ∆ = 3.8 (δ = 1.8)
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E
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(d) ∆ = 2 (δ = 0)

Figure 1. The black dots represent the pole-skipping points at d = 4 (obtained from (2.14)) of a
scalar field propagating in a Rindler-AdS geometry. Here δ := ∆− d/2.

2.1.2 Field theory results

In this section, we briefly summarize the result for the retarded Green’s function of scalar
operators and the corresponding pole-skipping points computed for a CFT living in S1 ×
Hd−1 [34].

The analytic form of the Green’s function of a scalar field with conformal dimension
∆ in momentum space is conveniently expressed in terms of δ := ∆ − d/2. The unitarity
bound implies δ ≥ −1. However, it was shown in [34] that there are no pole-skipping points
at δ = −1, so we only consider the range δ > −1. We refer to [34] for a detailed derivation
and here we show only the final results. For non-integer δ

G∆(ω, k) ∝ Γ(x+ δ/2)
Γ(x− δ/2)

Γ(y + δ/2)
Γ(y − δ/2)Γ(−δ) , (2.27)

and for non-negative integer δ ∈ {Z+, 0}

G∆(ω, k) ∝ Γ(x+ δ/2)
Γ(x− δ/2)

Γ(y + δ/2)
Γ(y − δ/2) [ψ(x+ δ/2) + ψ(y + δ/2)] , (2.28)
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(a) ∆ = 4.2 (δ = 2.2) (b) ∆ = 4.0 (δ = 2.0)

(c) ∆ = 3.8 (δ = 1.8) (d) ∆ = 2 (δ = 0)

Figure 2. log |G∆(Im[ω], Im[k])| at d = 4. The blue lines and red lines represent zeros and poles
of the Green’s function, respectively. The white circles and squares are type I and type II pole-
skipping points, respectively. The meaning of the type I and II classifications will be explained in
section 3.

where
x = −iω + ik + 1

2 , y = −iω − ik + 1
2 , (2.29)

and ψ is the digamma function.
Note that even though these are derived in [34], the case with non-negative integer

δ ∈ {Z+, 0} (2.28) was not analyzed there and important subtleties due to the digamma
functions were not revealed. Here, we will make this point clear.

We may analytically identify the zeros and poles of the Green’s function by investi-
gating the properties of the gamma functions in (2.27) and (2.28) in the two-dimensional
space of Im[ω] versus Im[k]. For an easy visualization and cross check, we make numerical
plots of (2.27) and (2.28). See, for example, figure 2, where we consider the case d = 4
and ∆ = 2, 3.8, 4, 4.2. For clear visualization, we make plots of the logarithm of the
absolute values of Green’s function, log |G∆(Im[ω], Im[k])|. The red lines represent pole
conditions and the blue lines (curves) represent zero conditions. The points where the red
and blue lines cross each other are pole-skipping points. They are represented by white
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circles (type-I) or white squares (type-II). We will explain the difference between these two
types of pole-skipping point in section 3.

To understand the origin of the zeros and poles from the analytic expressions (2.27)
and (2.28), let us consider three cases depending on the values of δ separately.

Case 1: non-integer δ. There is no cancellation between the gamma functions in (2.27).
Thus, from the gamma functions in the numerator and denominator, the non-positive
integer value of the argument x ± δ/2 (or y ± δ/2) give an infinite number of zeros and
poles. For example, if δ = 2.2 or δ = 1.8, an infinite number of straight blue and red lines
spread out beyond the range of figures 2(a) and 2(c).

Case 2: δ ∈ Z+. The first factor of the gamma functions in (2.28) becomes a δ-th order
polynomials of x and y:

(x+ δ/2− 1)(x+ δ/2− 2) · · · (x− δ/2)︸ ︷︷ ︸
δ factors

·(x→ y) , (2.30)

which gives a conditions for zeros. For example, if δ = 2 this condition gives four (two from
‘x’, two from ‘y’) straight blue lines with slopes ±1 in figure 2(b). The next two digamma
functions in (2.28) give the conditions for poles:

−iω ± ik + δ + 1 = −2j, (j = 0, 1, 2 . . . ) . (2.31)

For example, if δ = 2 this condition gives the straight red lines in figure 2(b). Importantly,
there is another type of zero-conditions, which comes from the cancellation between two
digamma functions, i.e.

ψ(x+ δ/2) + ψ(y + δ/2) = 0 . (2.32)

These conditions can not be written analytically but can be shown graphically by plotting
ψ(x+ δ/2) + ψ(y + δ/2). They are represented by the blue curves in figure 2(b).

Case 3: δ = 0. The Green’s function (2.28) becomes the summation of two digamma
functions.

ψ(x) + ψ(y) = 0 , (2.33)

from which all zero and pole conditions appear. Figure 2(d) shows this case. Note that
there is no straight blue lines. All blue curves come from the summation of two digamma
functions. The red straight lines appear if x and y are non-positive integers.

All things considered, the pole-skipping points of the scalar Green’s function can be
summarized as in [34]:

ωn = −in, and k{n} = ±i (−n+ 2q + δ − 1) , (2.34)

where n = 1, 2, · · · , q = 1, 2, · · · , n, and δ > −1. Here, the subscript {n} of k includes the
q dependence collectively. For example, for the first two cases n = 1, 2 (2.34) read

ω1 = −i , k{1} = ±i
(

∆− d

2

)
,

ω2 = −2i , k{2} = ±i
(

∆− d

2 ± 1
)
,

(2.35)
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which agree with the results from the near horizon analysis (2.26). The agreements can be
also confirmed by comparing figure 1 (for the near horizon analysis) and figure 2 (for the
field theory Green’s function). The pole-skipping points in both cases exactly match.

Before closing this section we want to recall the dual role of the two digamma functions
in (2.28), which give conditions for zeros as well as for poles. In [15, 16], the pole-skipping
points of a scalar field in the BTZ background were computed from the near-horizon anal-
ysis and from the exact expression of the Green’s function. The mathematical structure
of the Green’s function there is similar to our case. The authors of [15] claim that some
of the pole-skipping points are ‘anomalous’ partly7 because they arise as an intersection of
two lines of poles without any line of zeros. See figure 4 in [15]. There is, however, a line of
zeros that passes through these points. In doing the plots of the pole-skipping points, one
needs to consider the zero-conditions that comes from the cancellation between the two
digamma functions, as in (2.32). By taking that into consideration, figure 4 in [15] becomes
the same as figure 2(b) because (2.28) with ∆ = 4, d = 4 is the same as (C.5) in [15] with
∆ = 3. This may mean that this point is not very ‘anomalous’ since it is also defined as
the point where a line of zeros intersects with lines of poles. We call this type of point a
type-II pole-skipping point, and we discuss its properties in more detail in section 3.

2.2 Vector field

2.2.1 Near horizon analysis

In this section, we obtain the pole-skipping points of a massless vector field in the hyperbolic
black hole geometry (2.5). We assume the following action

SA = −1
4

∫
dd+1x

√
−g F 2 , (2.36)

where Fµν := ∂µAν − ∂νAµ. The corresponding equation of motion is

∇µFµν = 0 . (2.37)

In hyperbolic space, a general perturbation of the bulk vector field Aµ can be de-
composed into “longitudinal” and “transverse” channels. More explicit expressions of each
channels can be seen after decomposing the metric (2.5)

ds2 = −f(z)
z2 dv2 − 2

z2 dvdz + 1
z2

(
dχ2 + sinh2 χdΩ2

d−2

)
,

f(z) = 1− z2 .

(2.38)

into the following form:

ds2 = gabdyadyb + 1
z2 γijdx

idxj , (2.39)

7Another reason to call it ‘anomalous’ is that the Green’s function near the pole-skipping point does not
depend on δω/δk along a linear path. This will be explained in detail in section 3.
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where y1 = v, y2 = z, and γijdxidxj = dχ2 + sinh2 χ dΩ2
d−2 = dH2

d−1. The vector field
in terms of “longitudinal channel” (ALa , AL) and “transverse channel” ATi can be written
as [35]:

Aµdx
µ = ALa dy

a + D̂iA
Ldxi +ATi dx

i, D̂iATi = 0 , (2.40)

where the differential operator D̂i denotes the covariant derivative with respect to γij .
The equations of motion for the two channels are decoupled so one can consider each

channel separately. Here we focus on the “longitudinal channel” and set ATi = 0 in (2.40).
The “transverse channel” is similar to the scalar field case 2.1.

For simplicity, we consider perturbations that do not depend on the coordinates θi on
Sd−2, i.e., Aµ = Aµ(v, z, χ). Let us consider the components Aµ in momentum space:

Av = ALv (v, z, χ) =
∫

dω dk Ãv(z) e−iωvSk(χ) ,

Az = ALz (v, z, χ) =
∫

dω dk Ãz(z) e−iωvSk(χ) ,

Aχ = D̂χA
L(v, z, χ) =

∫
dω dk Ãχ(z) e−iωvS′k(χ) ,

(2.41)

where Sk is the scalar harmonics defined in (2.10):(
�Hd−1 + k2 +

(
d− 2

2

)2)
Sk(χ) = 0. (2.42)

The Maxwell equations (2.37) yield three coupled equations for Ãv(z), Ãz(z), and
Ãχ(z). They can be expressed in terms of two equations for the gauge invariant quan-
tities

Uv(z) ≡ Ãv(z) + iωÃχ(z) , Uz(z) ≡ Ãz(z)− Ã′χ(z) . (2.43)

For ω 6= 0 and k2 +
(
d−2

2

)2
6= 0, the Maxwell equations reduce to

Uz =
iωU ′v(z)−

(
k2 +

(
d−2

2

)2
)
Uv(z)

ω2 −
(
k2 +

(
d−2

2

)2
)
f(z)

,

U ′′v (z) + Ω(ω, k)U ′v(z) + Ξ(ω, k)Uv(z) = 0 ,

Ω(ω, k) := ω2f ′(z)(
ω2 −

(
k2 +

(
d−2

2

)2
)
f(z)

)
f(z)

+ 2iω
f(z) −

d− 3
z

,

Ξ(ω, k) :=
iω

(
k2 +

(
d−2

2

)2
)
f ′(z)(

ω2 −
(
k2 +

(
d−2

2

)2
)
f(z)

)
f(z)

−

(
k2 +

(
d−2

2

)2
)
z + iω(d− 3)

zf(z) ,

(2.44)

For ω = 0 and k2 +
(
d−2

2

)2
= 0, they become

U ′′v (z)− 2
z
U ′v(z) = 0 . (2.45)
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(a) d = 4,∆ = 3
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(b) d = 5,∆ = 4
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(c) d = 6,∆ = 5

Figure 3. Locations of the pole-skipping points of longitudinal channels.

Let us start with the case in which ω = 0 and k2 +
(
d−2

2

)2
= 0. Eq. (2.45) implies

that the near horizon behavior of Uv is

Uv(z) = U (0)
v + U (1)

v (1− z) + . . . , (2.46)

where U (0)
v and U (1)

v are independent of each other. Thus the points ω = 0, k2 +
(
d−2

2

)2
= 0

are pole-skipping points8 since (2.46) has two independent regular solutions. For ω 6= 0, it
turns out that the formalism to obtain pole-skipping points, which was developed for the
scalar field, works also for the vector field. The result of the indicial equation is the same
as (2.12) so we only need to identify the matrix element in (2.14). Instead of repeating
the procedure, we show the final results for the pole-skipping points obtained using the
near horizon analysis when d = 4, d = 5, and d = 6 in figure 3. Some numerical values are
summarized in the table below

d = 4,∆ = 3 d = 5,∆ = 4 d = 6,∆ = 5
ω1 = 0 , k{1} = ±i ω1 = 0 , k{1} = ±3i

2 ω1 = 0 , k{1} = ±2i
ω2 = −i , k{2} = 0 ω2 = −i , k{2} = ± i

2 ω2 = −i , k{2} = ±i
...

...
...

(2.47)

where ∆ = d− 1, since we are considering a massless vector field.9

2.2.2 Field theory results

In this section, we consider a CFT in S1 × Hd−1 and we review the pole-skipping struc-
ture of the Green’s function for massless vector field perturbations in the “longitudinal
channel” [34].

8This is similar to the fact that the origin of momentum space in flat space is a pole-skipping point
of conserved U(1) current and energy momentum tensor operators [15, 16, 19]. In hyperbolic space, the
eigenvalue of the Laplacian �Hd−1 is zero at k2 +

(
d−2

2

)2 = 0 as seen in (2.42), and the points ω =
0, k2 +

(
d−2

2

)2 = 0 in hyperbolic space are analogs of the origin in flat space.
9The scaling dimension ∆ for a massive vector field in the holographic dual satisfies the relation: m2 =

(∆− 1) (∆− d+ 1).
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(a) d = 4,∆ = 3 (δ′ = 0) (b) d = 5,∆ = 4 (δ′ = 0.5) (c) d = 6,∆ = 5 (δ′ = 1)

Figure 4. log |G∆=d−1
V (Im[ω], Im[k])| at d = 4, 5, 6. The blue lines and red lines represent zeros

and poles of the Green’s function respectively. The white circles and squares are type I and type II
pole-skipping points, respectively. The meaning of type I and II will be explained in section 3.

Similarly to the scalar field case (2.27), (2.28), the Green’s function of the vector field
depends on the conformal dimension ∆ and on the spacetime dimension d. Since ∆ = d−1
for the massless case, the Green’s function depends only on the spacetime dimension d.
For d ≥ 3,10 the Green’s function is

G∆=d−1
V (ω, k) ∝ Γ(x+ δ′/2)Γ(y + δ′/2)

Γ(x− δ′/2))Γ(y − δ′/2)Γ(−δ′ − 1)

×
(
k2 + (δ′ + 1)2

)
,

(2.48)

for odd d and

G∆=d−1
V (ω, k) ∝ Γ(x+ δ′/2)Γ(y + δ′/2)

Γ(x− δ′/2))Γ(y − δ′/2)
[
ψ(x+ δ′/2) + ψ(y + δ′/2)

]
×
(
k2 + (δ′ + 1)2

)
,

(2.49)

for even d. Here,

x = −iω + ik + 1
2 , y = −iω − ik + 1

2 , δ′ ≡ d/2− 2 . (2.50)

The main difference from the scalar case is the existence of additional zero-conditions
from the quadratic k-term in the second line of (2.48) and (2.49). These zero-conditions are
represented by the blue vertical lines in figure 4, which correspond to Im(k) = ±(δ′+ 1) =
±(d/2 − 1). Aside this pair of vertical blue lines, the procedure to identify the other
pole-skipping points is similar to the scalar field’s case:

Case 1: non-integer δ′ (odd d). There is no cancellation between the gamma functions
in (2.48). This results in an infinite number of zero-lines and pole-lines. See for example
figure 4(b) for δ′ = 0.5.

10The condition d ≥ 3 is natural to make Hd−1 a legit hyperbolic space. As the massless vector field
always satisfies the unitarity bound ∆ ≥ d− 1, there is no restriction from the unitarity bound.
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Case 2: δ′ ∈ Z+ (even d 6= 4). The four gamma functions in (2.49) become a δ′-th
order polynomial of x and y, which gives conditions for zeros. For example, if δ′ = 1 this
condition gives two straight blue lines with slopes ±1 in figure 4(c). The two digamma
functions in (2.49) give the condition for poles:

−iω ± ik + δ′ + 1 = −2j, (j = 0, 1, 2 . . . ) . (2.51)

This condition corresponds to the straight red lines in figure 4(c). Finally, there is the
condition for zeros that appears from the sum of the two digamma functions, i.e.

ψ(x+ δ′/2) + ψ(y + δ′/2) = 0 . (2.52)

They are represented by the blue curves in figure 4(c).

Case 3: δ′ = 0 (d = 4). Except for the quadratic k-term, the Green’s function (2.49)
is given by the sum of two digamma functions.

ψ(x) + ψ(y) = 0 , (2.53)

from which all the conditions for zeros and poles appear. Figure 4(a) shows this case. Note
that there are no non-vertical straight blue lines contrary to figure 4(b) and figure 4(c).
The blue curves come from the zero-sum condition of the two digamma functions and the
red straight lines appear if x and y are non-positive integers.

At the end of the day, the pole-skipping points in the longitudinal channel of massless
vector fields can be summarized as:

ω0 = 0 and k{0} = ±id− 2
2 , (2.54)

ωn = −in and k{n} = ±i
(
−n+ 2q + d− 6

2

)
, (2.55)

where n = 1, 2, · · · and q = 1, 2, · · · , n. The above results agree with the results of the
near horizon analysis (2.47). This agreement can be also seen by comparing figure 3 and
figure 4.

3 Type-I and type-II pole-skipping points from Green’s functions

It was reported [15] that there is an ‘anomalous’ pole-skipping point whose properties are
different from usual ones in the sense that the Green’s function near the pole-skipping
point is not determined by the slope δω/δk as shown in (4.22). To our knowledge, the
precise meaning and mathematical structure of this anomalous pole-skipping point has not
been clarified yet. In this section, we carefully analyse this anomalous point and classify it
as a type-II pole-skipping point, calling the usual ones type-I pole-skipping points. We also
clarify how to distinguish them using a near horizon analysis in the next section.
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Figure 5. Zoom-in of figure 2(b) including a type-I point (B) and a type-II point (A). The dotted
lines represent curves on which the Green’s function has a constant value. Different colors represent
different values: {black, orange, yellow, green, purple} = {0, 1.05, 3,−1.05,−3}.

3.1 Simple examples and definitions

We start with simple examples exhibiting the characteristic properties of type-I and type-II
points. Let us consider two points (0,−3) and (1,−2) in figure 2(b). They are reproduced
as the points A and B in figure 5, where the dotted curves represent the curves on which
the Green’s functions take constant values. Different colors represent different values:
{black, orange, yellow, green, purple} = {0, 1.05, 3,−1.05,−3}. From these representative
curves, it is clear that there are infinitely many curves of constant values from −∞ to ∞,
passing through A and B. Thus, the Green’s function is not well-defined both at A and B.
In this sense, we might say that both A and B are pole-skipping points.

A difference between A and B is how the line where the Green’s function takes constant
values approaches the pole-skipping point. Near B the lines approach with different slopes
(δωI/δkI) while near A the lines approach with a zero slope, δωI/δkI = 0. To find out how
the lines approach to the point B, let us investigate the Green’s function (2.28) near the
point A:

G∆(ωI , kI) = H(ωI , kI)
(
ψ

(1
2(−kI + ωI + 3)

)
+ ψ

(1
2(kI + ωI + 3)

))
,

H(ωI , kI) =
π2Γ

(
1
2(−kI + ωI + 3)

)
Γ
(

1
2(kI + ωI + 3)

)
6Γ
(

1
2(−kI + ωI − 1)

)
Γ
(

1
2(kI + ωI − 1)

) ,

(3.1)

where ωI := Imω and kI := Imk. In the limit where we approach the point A, we have

lim
kI→0
ωI→−3

G∆(ωI , kI) = lim
kI→0
ωI→−3

{
ψ
(1

2(−kI + ωI + 3) + 1
)

+ ψ
(1

2(kI + ωI + 3) + 1
)

− 2
ωI − kI + 3 −

2
ωI + kI + 3

}
H(ωI , kI)

= lim
kI→0
ωI→−3

{
−2γ − 4(ωI + 3)

(ωI + 3)2 − k2
I

}
π2

96 (3.2)

= lim
kI→0
ω̃I→0

2γk2
I − 4ω̃I

ω̃2
I − k2

I

π2

96 (ω̃I := ωI + 3) , (3.3)
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where we used ψ(x) = ψ(x + 1) − 1
x and ψ(1) = −γ.11 We dropped the term of order ω̃2

I

in the numerator in (3.3) because we are taking a small ω̃I limit.
The limiting value in (3.3) is not unique and depends on the path in which one ap-

proaches the pole-skipping point (ω̃I , kI) = (0, 0). If we choose a linear path ω̃I = q1kI ,
the Green’s function diverges. However, if we consider a quadratic path ω̃I = q2k

2
I , the

Green’s function is finite and depends on the ‘curvature’ q2:

lim
kI→0

G∆(ω̃I , kI) = π2

96 (−2γ + 4q2) . (3.4)

For example, along a line of zeros (blue line) (3.4) vanishes, so q2 = γ/2. We confirmed that
this is indeed the case: the black dashed curve in figure 5 is given by ω̃I = q2 k

2
I = (γ/2)k2

I ,
which overlaps the blue curve around A. We also confirmed that the other dotted curves
{orange, yellow, green, purple} = {1.05, 3,−1.05,−3} are consistent with (3.4), i.e. q2 =
{24π2(1.05) + 1/2γ, 24π2(3) + 1/2γ, 24π2(−1.05) + 1/2γ, 24π2(−3) + 1/2γ} respectively.
In addition, the two lines of poles passing through A are explained by the zeros of the
denominator in (3.3).

Based on this observation, we define the type-I and type-II pole-skipping points as
follows. If all the contour curves of the Green’s function approach the pole-skipping point
linearly, we call it type-I. Otherwise, we call it type-II. In the above example, the contour
curves in which the Green’s function is finite approach the type-II point quadratically.
More generally speaking, in the type-II case, the lines with constant values can be any
higher order (ω = qnk

n, n ≥ 2) than linear and they are tangential to a line of zeros or to
a line of poles. To distinguish the type-I and type-II points we use white circles for type-I
and white squares for type-II in figures 2 and 4.

3.2 General forms of the Green’s functions

More examples. The type-II points appear in both scalar and massless vector cases
and they are marked by the white squares in figures 2(b), 2(d), and 4. All cases except
figure 4(b) are similar, involving two pole-lines and one curve of zeros, which comes the
sum of two digamma functions, as in (3.3).

Figure 4(b) shows another pattern for type-II points, which involves the intersection
of two lines of zeros and one line of poles. Contrary to the previous case, if we approach
the pole-skipping point linearly, the Green’s functions vanishes instead of diverging.

There is yet another pattern for pole-skipping points in figure 4(a), in which two lines
of zeros and two lines of poles intersect. It turns out that this is also a type-I point.

General Green’s function near the type-I and type-II points. Built on the above
observations, we develop a general criteria to distinguish type-I and type-II points in terms
of the general form of the Green’s function. Let us consider a retarded Green’s function of
the form

GR(ω, k) ∼ B(ω, k)
A(ω, k) , (3.5)

11γ ≈ 0.577 denotes the Euler-Mascheroni constant.
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where A(ω, k) and B(ω, k) are functions which are related to poles and zeros of the retarded
Green’s function.

For any pole skipping-point (ω∗, k∗), we may shift the momentum (ω, k)→ (ω−ω∗, k−
k∗) so that the pole-skipping point is located at (ω∗, k∗) = (0, 0). See for example (3.3). In
general, A(ω, k) and B(ω, k) can be expanded around the pole-skipping point (0, 0):

GR(δω, δk) ∼ B(δω, δk)
A(δω, δk)

=
B|∗ + (δω∂ωB + δk∂kB) |∗ + 1

2
(
(δω)2∂2

ωB + (δk)2∂2
kB + 2(δωδk)∂ω∂kB

)
|∗ + · · ·

A|∗ + (δω∂ωA+ δk∂kA) |∗ + 1
2
(
(δω)2∂2

ωA+ (δk)2∂2
kA+ 2(δωδk)∂ω∂kA

)
|∗ + · · ·

.

(3.6)

where |∗ means |(ω,k)=(0,0). At the pole-skipping point (δω = δk = 0), A|∗ = B|∗ = 0 so the
retarded Green’s function is ill-defined:

GR(ω∗, k∗) ∼
0
0 . (3.7)

However, the Green’s function can be well defined near the pole-skipping point, if δω 6= 0
and/or δk 6= 0.

It is possible that the Green’s function near the pole-skipping point is determined by
the ‘slope’ δω/δk [3, 15, 18–20] However, if some of the first derivatives in (3.6) vanish this
may not be the case. Here, we consider the most general case that the first non-vanishing
orders of B and A in (3.6) are N and M , respectively. In this case, the retarded Green’s
function should have the following structure for small enough (δω, δk),

GR(δω, δk) ∼
∏N
i=1(z1,iδω − z2,iδk)∏M
j=1(p1,jδω − p2,jδk)

, (3.8)

where N,M ∈ N. The coefficients z1,i, z2,i, p1,j , p2,j are some number. We further assume
that there is no common factor in the numerator and denominator. If there is a common
factor there is a subtlety, which will be dealt with separately. The slope dependence of the
Green’s function is revealed by taking a limit along the path δω = q1δk

lim
δk→0

GR(q1δk, δk) ∼ lim
δk→0

δkN−M
∏N
i=1(z1,iq1 − z2,i)∏M
j=1(p1,jq1 − p2,j)

. (3.9)

The equation (3.9) gives us a classification of the pole-skipping points.

• If N = M (the numbers of factors in the denominator and numerator are the same)
then (3.9) depends on q1. This defines a type-I pole-skipping point.

• If N 6= M (the numbers of factors in the denominator and numerator are different)
then (3.9) is zero or infinite so it does not depend on q1. This defines a type-II
pole-skipping point.

• Graphically speaking, if the number of zero-lines and the number of pole-lines inter-
secting at the pole-skipping point are the same (different), then the point is type-I
(type-II). All our type-I points in figures 2 and 4; and all our type-II points in
figures 2 and 4 follow this rule.
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There may be a special case, where there is a common factor in the numerator and
the denominator of (3.8). If a general form (3.8) remains valid after a cancellation of the
common factor due to other remaining factors, nothing changes in our conclusion. However,
if the form (3.8) just becomes a constant because of the cancellation, then we have a type-II
point even though M = N . Let us explain this special case with an example. Suppose the
Green’s function is of the form

GR2 (ω, k) = ω − k2

ω
. (3.10)

Here, (ω, k) = (0, 0) is a type-II pole-skipping point because near this point

GR2 (δω, δk) = δω

δω
= 1 , (3.11)

which does not depend on q1 along the linear path δω = q1δk. In this case, we may include
higher-order terms, like (δk)2. Then, for a quadratic path δω = q2δk

2

lim
δk→0

GR2 (q2δk
2, δk) ∼ q2 − 1

q2
. (3.12)

Graphically speaking, even if the number of zero-lines and the number of pole-lines are
the same, the point can be of type-II if the lines are tangential to each other at the
pole-skipping point.

Physical constraints and path-dependence. The above analysis describes a purely
mathematical structure of the Green’s function near the pole-skipping point. If we consider
our gravity system in the context of holography, the form of (3.8) is more constrained thanks
to the properties of the black hole horizon. For example, the type-I point will always have
the simple form of (4.21) (N = M = 1)12 and the type-II point will have one of the simple
forms given in (4.22), which are at most of quadratic order in (δω, δk) (N and M are not
greater than 2).

Another important physical constraint comes from the non-uniqueness of incoming
boundary condition, which implies that the iω at the pole-skipping point is integer for
bosons and half integer for fermions. However, there is an exceptional case with non-
integer (or half integer) iω pole-skipping point. We call it type-III and in this case, a UV
condition is also involved.

If we just want to judge whether the pole-skipping point is of type-I or type-II it is
enough to retain the leading power in every factor as in (3.8). However, in the type-II case,
if we want to specify the path at which the Green’s function is constant we have to retain
the second order term in every factor as in (3.12) and (4.22). For example, let us come
back to the type-II point (3.3). This is the case with N = 1,M = 2 in (3.8) and the second
case in (4.22). If we want to figure out the path at which the Green’s function is constant
we need to keep terms up to quadratic order.

12This statement is only true for the case without a prefactor such as the scalar case. With a prefactor,
the type may be changed, see section 5, For example, figure 4(a) has Type-I with (N = M = 2), i.e. the
intersection of two zero lines and two pole lines.
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4 Identifying type-I and type-II from the near horizon analysis

In section 2, we obtained the pole-skipping points performing a near horizon analysis. In
this section, we ask if the near horizon analysis can also identify the type of the pole-
skipping points. The answer is almost yes, but there is a small subtlety.

Classifying the different types of pole-skipping points is related to the behavior of the
Green’s function near them. Thus, we need to do the near horizon analysis in the vicinity
of the pole-skipping points. The formalism to consider points nearby the pole-skipping
points has been already developed in section 2.1.1. We may use all the formulas there but
with a different interpretation. For example, let us consider (2.13)

φ(z;ω, k) = φ0(ω, k) + · · ·+ (1− z)n(φn(ω, k) + φn+1(ω, k)(1− z) + · · · ) , (4.1)

where we recovered the arguments (ω, k) to emphasize that the equation can be applied to
non-pole-skipping points as well as pole-skipping points. Here, because we consider non-
pole-skipping points, φn is a function of φ0. If this were about the pole-skipping point, φn
would have been independent of φ0.

In the vicinity of the pole-skipping points the Green’s function is a function of φn/φ0.
Thus, one may think that if φn/φ0 depends on δω/δk near the pole-skipping point then
the point is of type-I. This is almost true but there is a subtlety.

The analysis of section 4.1 and 4.2 has been essentially done in [15]. Here, we first
review it in the context of our model to setup the stage. Next, we explain the relation
between the general structure of the Green’s function in section 3.2 and the near horizon
analysis. In this section, we focus on the scalar case. In section 5, we deal with a subtlety
that appears in the vector and, in general, higher spin cases.

4.1 Simple examples

For example, let us consider two points (−2,−1) in figure 2(b) and (0,−1) in figure 2(d).
The former is a type-I point and the latter is a type-II point. Because they are the highest
pole-skipping points it is enough to consider the O((1− z)0) equation (2.15).

The type-I point (−2,−1) in figure 2(b) corresponds to d = 4 and ∆ = 4. Near
the pole-skipping point ω = −i(1 + δω) and k = i(−2 + δk), (2.15) must be satisfied,
which implies

(−4δk + 3δω)φ0 + 2δωφ1 = 0. (4.2)

Along the path δω = q1δk, the ratio φ1/φ0 in the small δk limit is

φ1
φ0

= −3
2 + 2

q1
, (4.3)

which shows that indeed φ1
φ0

depends on the slope q1 = δω/δk.
The type-II point (0,−1) in figure 2(d) corresponds to d = 4 and ∆ = 2. Near the

pole-skipping point ω = −i(1 + δω) and k = 0 + δk, (2.15) must be satisfied, which implies

((δk)2 + 3δω)φ0 + 2δωφ1 = 0 . (4.4)
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Along the path δω = q1δk, the ratio φ1/φ0 in the small δk limit is

φ1
φ0

= −3
2 , (4.5)

which does not depend on q1. However, if we consider a quadratic path δω = q2(δk)2, then

φ1
φ0

= −1− 3q2
2q2

, (4.6)

which shows that φ1
φ0

depends on q2, i.e., it depends on the particular quadratic curve along
which we approach the pole-skipping point.

In next subsection, we discuss concrete relations between the near horizon analysis and
the Green’s function, as well as their general relation.

4.2 Relation between near horizon analysis and the Green’s function

The relation (2.23)

detM(n)(ω, k)φ0(ω, k) +N (n)(ω)(n− iω)φn(ω, k) = 0 , (4.7)

is valid for any (ω, k) regardless of whether it is a pole-skipping point or not. At a pole-
skipping point, (ωn, kj), φ0 and φn are independent. However, in the vicinity of a pole-
skipping point,

ω = ωn + δω , k = kj + δk , (4.8)

the ratio between two coefficients φ0 and φn is fixed by δω, δk:

φn(ωn + δω, kj + δk)
φ0(ωn + δω, kj + δk) = detM(n)(ωn + δω, kj + δk)

iδωN (n)(ωn + δω)
. (4.9)

Having the information (4.9) for points near the pole-skipping point, we now want to ask
the following question: near a pole-skipping point, how to identify the path on which the
Green’s function is constant.

For convenience, let us shift the coordinate ω → ω − ωn and k → k − kj . Then, (4.9)
yields

φn|∗
φ0|∗

≡ φn(0, 0)
φ0(0, 0) ≡ lim

δω,δk→0

detM(n)(δω, δk)
iδωN (n)(δω)

. (4.10)

We emphasize that the double limit in the second relation provides a path-dependent
definition for (φn/φ0)|∗, i.e, the value it takes depends on the functional relation between
δω and δk in the curve that we use to take the limit. This is just another way of saying
that the ratio is not well-defined at the pole-skipping point.

Next, we want to connect the ratio (φn/φ0)|∗ to the Green’s function, which means the
relation between IR (z ∼ 1) and UV (z ∼ 0) quantities. Let us start with the UV limit, in
which the field can be expressed as, at any (ω, k),

φ (z;ω, k) = φ[nn](z;ω, k)− G (ω, k)φ[n](z;ω, k) , (4.11)
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where G is proportional to the Green’s function and the ‘−’ sign is introduced for later
convenience. φ[nn] is a non-normalizable mode and φ[n] is a normalizable mode. For
example, in the case of a scalar field,

φ[nn](z;ω, k) = zd−∆ + · · · , φ[n](z;ω, k) = z∆ + · · · . (4.12)

At IR and at a pole-skipping point, (4.11) can be expanded as

φ(r)|∗ ≡
∑
i=0

φi|∗(1− z)i =
∑
i=0

(
φ

[nn]
i − Gφ[n]

i

)∣∣∣
∗

(1− z)i . (4.13)

Note that at a nearby point of a pole-skipping point, there is another independent singular
solution such as (1 − z)iω∑i=0 φ̃i(1 − z)i.13 In this case, G = −φ̃[nn]

0 /φ̃
[n]
0 is uniquely

determined to keep regularity. However, at the pole-skipping point with integer iω, we do
not have that regularity condition so G can be freely chosen. In terms of the boundary
condition at the horizon z = 1, it amounts to determining the ratio φn/φ0 freely as follows.

φn
φ0

∣∣∣∣
∗

= φ
[nn]
n − Gφ[n]

n

φ
[nn]
0 − Gφ[n]

0

∣∣∣∣∣
∗

. (4.14)

If G = 0(∞) the ratio (φn/φ0)|∗ is determined by the non-normalizable (normalizable)
mode as it must be.

By combining (4.10) and (4.14), we may define the Green’s function at the pole-
skipping point:

G|∗ ≡ lim
δω,δk→0

detM(n) (δω, δk)φ[nn]
0 |∗ − iδωN (n)(δω)φ[nn]

n |∗
detM(n) (δω, δk)φ[n]

0 |∗ − iδωN (n)(δω)φ[n]
n |∗

≡ lim
δω,δk→0

B(δω, δk)
A(δω, δk) , (4.15)

where in the second equality we define B(δω, δk) and A(δω, δk) which can be identified
with the ones in (3.6). By this identification, we find that A and B are linear combinations
of the same objects detM(n) and N (n). It gives strong constrains to the structure of the
Green’s function as follows.

For example, at the leading order

GR(δω, δk) ∼ B(δω, δk)
A(δω, δk) = (δω∂ωB + δk∂kB) |∗

(δω∂ωA+ δk∂kA) |∗
, (4.16)

where

∂ωB = ∂ω detM(n)φ
[nn]
0 |∗ − iN (n)φ[nn]

n |∗ (4.17)

∂ωA = ∂ω detM(n)φ
[n]
0 |∗ − iN

(n)φ[n]
n |∗ (4.18)

∂kB = ∂k detM(n)φ
[nn]
0 |∗ (4.19)

∂kA = ∂k detM(n)φ
[n]
0 |∗ . (4.20)

13There may be an additional log(1− z) term if the nearby points are on the line of integer iω.

– 22 –



J
H
E
P
0
3
(
2
0
2
1
)
1
7
5

If ∂k detM(n)|∗ 6= 0, both ∂kA and ∂kB are nonzero. From the structure of (4.17)
and (4.18), ∂ωA and ∂ωB cannot be zero simultaneously. Therefore, in this case the pole-
skipping point is guaranteed to be type-I at the intersection of only one lines of zeros and
one line of poles. The schematic Green’s function near the pole-skipping point is

c1δω + c2δk

c3δω + c4δk
, (4.21)

where c1 or c3 can be zero while c2 6= 0 and c4 6= 0.
If ∂k detM(n)|∗ = 0, both ∂kA and ∂kB are zero so in this case the pole-skipping point

is of type-II, regardless of ∂kA and ∂kB. If ∂2
k detM(n)|∗ 6= 0, there are three possibilities

for the form of the Green’s function

c1δω + c2(δk)2

c3δω + c4(δk)2 ,
c1δω + c2(δk)2

c3(δω)2 + c4(δk)2 + c5δωδk
,

c1(δω)2 + c2(δk)2 + c5δωδk

c3δω + c4(δk)2 , (4.22)

where at least one δω has to be retained because ∂ωA and ∂ωB can not vanish simultane-
ously.

We now can answer our question: near a pole-skipping point, how to identify the path
on which the Green’s function is constant from the information in near horizon analysis. If
∂k detM(n)|∗ 6= 0 (type I), as we see in (4.21) we may determine the linear path δω = q1δk,
where q1 gives the Green’s function. If ∂k detM(n)|∗ = 0 and ∂2

k detM(n)|∗ 6= 0 (type II),
as we see in (4.22) we may determine the quadratic path δω = q2δk

2, where q2 gives the
Green’s function. All examples in figure 2 belong to (4.21) and (4.22). These observations
are essentially made in [15] and [20]. Here, i) we shift the focus to the meaning of the path
on which the Green’s function is constant; ii) we will show this may not be the whole story
when we consider the vector field.

We comment on the connection between the condition ∂k detM(n)|∗ = 0 for type-II
pole-skipping points and singular or critical points of spectral curves studied in [16, 36].
From the condition ∂k detM(n)|∗ = 0, we obtain ∂kA|∗ = ∂kB|∗ = 0, and therefore,
the type-II points in our scalar case are singular or critical points of A(ω, k) = 0 and
B(ω, k) = 0. In fact, the type-II points in figure 2 are singular points of A(ω, k) = 0 such
that ∂kA|∗ = ∂ωA|∗ = 0 as seen in (3.3), and two lines of poles collide at these points. On
the other hand, the type-II points in figure 2 are critical points of B(ω, k) = 0 such that
∂kB|∗ = 0 and ∂ωB|∗ 6= 0. From these conditions, it follows that there are two solutions
k(ω) of B(ω, k(ω)) = 0 near the type-II points, although only one curve ω(k) of zeros passes
through these points. An example of the two solutions is kI ∼ ±

√
2ω̃I/γ in (3.3).

4.3 Merging of pole-skipping points and type-II

We may understand the type-II point from the merging of two pole-skipping points. We
explain it by three methods: by figures, by algebraic formulas of pole-skipping points, and
by near horizon analysis.

By figures. For example, we describe it by comparing figures in figure 2. Let us start
with figure 2(a), where δ = 2.2. As δ decrease the blue lines come close to the red lines.
When δ decreases even further and becomes an integer, δ = 2, we obtain figure 2(b), where
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the blue lines approaching to the red lines disappear and are replaced by the blue curves.
The disappearance of the blue lines can be understood by (2.30) and the appearance of the
blue curves can be seen by (2.32). After that, when δ = 1.8, the blue lines appear again
below the red lines. What are the consequences of these movements of the red lines and
blue lines/curves in terms of the pole-skipping points? Note that there are three pairs of
pole-skipping points near (0,−3) and (±1,−4) at the bottom of figure 2(a) and 2(c). At
δ = 2 every pair merges into one point. These merged points correspond to type-II points.
All the others points are type-I points. In figure 2(a) and 2(c) there are only type-I points.
All points in figure 2(d) are type-II points, where pairs of two pole-skipping points will
appear if we slightly deviate from δ = 2.

By formulas. What is the algebraic formula corresponding to the type-II point and,
more generally, to the case with δ ∈ Z∗? It is still (2.34) even though it was originally
obtained for δ /∈ Z∗ by imposing non-negative integer condition to the arguments of the
gamma functions in (2.27). For example, let us consider n = 3 and n = 4. From (2.34) if
n = 3

Im[k] = ±(2q − 2) = ±0(q = 1), ±2(q = 2), ±4(q = 3) , (4.23)

and if n = 4

Im[k] = ±(2q − 3) = ∓1(q = 1), ±1(q = 2), ±3(q = 3), ±5(q = 4) . (4.24)

Note that the ‘repeated’ points ±0(q = 1) in (4.23) and ∓1(q = 1), ±1(q = 2), in (4.24)
correspond to the ‘merging’ of points explained in the above paragraph.

By near horizon analysis. In general, detM(n) has the following structure

detM(n) = α

[ 2n∏
i=1

(k − ki) + (ω − ωn) f(ω, k)
]
, (4.25)

where α is a numerical constant and f(ω, k) is some function. This can be understood
by the fact that detM(n) is a 2n order equation, whose solutions are the pole-skipping
points (ωn, ki ∈ k{n}). For some values of d and ∆ some of the ki’s can be the same. In
other words, some of the pole-skipping points can be multiple solutions of the 2n order
equation, detM(n) = 0. This explains the ‘merging’ of pole-skipping points. In this case
∂k detM(n)|∗ = 0, which yields a type-II pole-skipping point.

5 Subtleties of near horizon analysis and type-III pole-skipping point

Using the example of a scalar field, we have shown that we may find the pole-skipping
points and determine its type only by the near horizon analysis without computing the full
Green’s function. This is not only practically helpful but also conceptually very important,
since it means the existence and properties of the pole-skipping points are originated from
the properties of the black hole horizon.

To be sure about this, we compare types of pole-skipping points from two methods:
direct Green’s function computation and near horizon analysis. Our goal is to check if the
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(a) d = 4,∆ = 4.2
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(c) d = 4,∆ = 3.8

Figure 6. The pole-skipping points of scalar field obtained from near horizon analysis. Black
circles denote type-I while Black squares denote type-II points.
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(a) d = 4,∆ = 3
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(b) d = 5,∆ = 4
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(c) d = 6,∆ = 5

Figure 7. The pole-skipping points of massless vector field (longitudinal channel) obtained from
near horizon analysis. Black circles denote type-I while Black squares denote type-II points. Red
dashed curves are lines of poles and blue curves are lines of zeroes coming from the prefactor.

near horizon analysis can fully capture the existence and properties of pole-skipping points
of the Green’s function. We find that indeed there are two subtleties.

Figure 6 shows the types of the pole-skipping points of the scalar field case obtained
by the near horizon analysis. The black circles represent the type-I points and the black
squares represent the type-II points. The corresponding results obtained by the Green’s
function computations are shown in figures 2(a), 2(b), 2(c), where the type-I points and
type-II points are marked as white circles and squares. We find that two plots agree with
each other.

Figure 7 shows the types of pole-skipping points of the massless vector field (longi-
tudinal channel) case obtained by the near horizon analysis. The corresponding results
obtained by the Green’s function computations are shown in figure 4. The locations of
pole-skipping point are the same. However, there are some differences for the types of
pole-skipping points. The types of the points in the green and yellow circles in figure 7 do
not agree with the corresponding ones in figure 4.
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Prefactor issue. The reason for this discrepancy is the following. In the field theory
calculation, we compute the whole Green’s function GRt,t but in the near horizon analysis of
the holographic method, we compute the pole-skipping points of a gauge invariant variable
Uv, which is related to a part (ΠL) of the retarded Green’s function as follows.14

GRt,t =
k2 +

(
d−2

2

)2

k2 +
(
d−2

2

)2
− ω2

ΠL, ΠL = U
(d−2)
t

U (0)
t

= U
(d−2)
v

U (0)
v

+ · · · , (5.1)

where Ut is a gauge invariant variable that in Schwarzschild coordinates (t, z, χ,Ωd−2) can
be written as

Ut(z) = eiωz∗Uv(z) = U (0)
t + · · ·+ U (d−2)

t zd−2 + · · · , (5.2)

where z∗ is defined in (2.4).
Note that the full Green’s function GRt,t consists of a prefactor and ΠL. The numerator

(denominator) of this prefactor gives a extra zero (pole) condition in addition to the ones
from ΠL. Thus, we have to take care of them in the near horizon analysis of ΠL in figure 7,
where the blue line is a line of zeros and the red curve is a curve of poles. Due to this new
line of zeros coming from the prefactor, the type of pole-skipping points in the green circles
must be changed (type I ↔ type II). Recall that the number of lines determine the type
of pole-skipping points as explained in section 3.2. Thus, the two results in figure 4 and
figure 7 indeed agree. However, the ones in the yellow circles have some subtle aspects,
because they are accompanied also by another red curve in figure 7. We explain this
subtlety in more detail below.

Puzzle and type-III pole-skipping points. The red curve in figure 7 from the pref-
actor may cause a problem because this curve of poles does not exist in figure 4. This new
curve of poles, if existed, would have predicted more pole skipping points on the curve at
the non-integer iω.

Indeed, it turns out that we do not need to worry about it, because the red curve of
poles is canceled out by the yet unrevealed zero curve in ΠL. First, let us show the existence
of the curve of zeros by plotting ΠL in figure 8(a), which is computed numerically by an
holographic computation. Next, the full Green’s function with the prefactor GRt,t is shown
in figure 8(b), obtained again in holography by a numerical computation. Figure 8(b)
confirms our field theory result figure 4(b) and proves that the curve of poles is precisely
canceled by the curve of zeros.

Interestingly, the existence of this curve of zeros suggests the possibility of a new
type of pole-skipping point located at non-integer values of iω, which are marked as black
diamonds in figure 8(a). In this case, they are removed by the prefactor, but in general
this might not be the case. Let us call them type-III pole-skipping points in the case they
remain as pole-skipping points.

What is the origin of the type-III points? In our case of ΠL, it comes from change of
the asymptotic behavior at UV. To discuss it explicitly, let us focus on the equation (2.44)

14The procedure to obtain (5.1) is similar to the flat case shown in [37].
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of Uv. The coefficients Ω(ω, k) and Ξ(ω, k) include the following factor
1

ω2 −
(
k2 +

(
d−2

2

)2
)
f(z)

, (5.3)

where f(0) = 1 at the UV, and f(1) = 0 at the IR. Since (5.3) on the curve ω2 = k2+
(
d−2

2

)2

diverges at the UV (z ∼ 0), the asymptotic behavior of Ut(z) with ω2 = k2 +
(
d−2

2

)2
6= 0

is different from (5.2), behaving as15

Ut(z) = U (0)
t + · · ·+ 0 · zd−2 + · · ·+ U (d)

t zd + · · · , (5.4)

where U (0)
t and U (d)

t are two independent coefficients. In this case, the coefficient of zd−2 is
always zero, yielding a curve of zeros on ω2 = k2 +

(
d−2

2

)2
. At some points on the curve,

U (0)
t of the regular solution on the horizon could be zero. These points are pole-skipping

points even though the regular solution on the horizon is unique. Such points, which are
not related to non-uniqueness of incoming boundary condition, are type-III pole-skipping
points. Their gravitational origin is different from the one explained in [3]. Since there is
no constraint of iω from the non-uniqueness of incoming boundary condition, the type-III
points can occur even when iω takes non-integer values.

The divergence of (5.3) on the curve ω2 = k2 +
(
d−2

2

)2
at the UV (z ∼ 0) is related to

the zero curve in ΠL. However, at the IR (z ∼ 1), (5.3) is finite except for ω = 0.16

This observation implies that the pole-skipping points of ΠL on the zero curve ω2 =
k2 +

(
d−2

2

)2
are not captured from the near-horizon analysis. Therefore, type-III pole-

skipping points can be defined as the pole-skipping points which are not captured by the
near-horizon analysis.

6 Conclusions

In this paper, we clarified general mathematical and physical properties of pole-skipping
points. To achieve this goal, we take advantage of i) scalar and vector fields ii) in hyperbolic
space. Regarding i) we have the following reason. Even though the original motivation of
the pole-skipping point came from the metric field which is related with the energy density
two point Green’s function, the general properties of the pole-skipping points can be more
easily understood by scalar and vector fields, partly because they have less components than
the metric. Regarding ii), the hyperbolic space allows us to obtain an analytic expression
for the thermal Green’s function by a conformal transformation of a vacuum flat space
result. In flat space with d− 1 ≥ 2, it is not easy to obtain an explicit analytic expression
of the thermal Green’s function, and one usually resort to numerics. Thanks to the analytic
formulas for the Green’s function, we can clearly understand the general properties of the
pole-skipping points and its relation to the holographic near horizon analysis.

15We do not display log terms which are irrelevant to our interest. The boundary behavior of Ut and Uv
are related by (5.2).

16The case ω = 0 is considered separately in (2.45).
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(a) ΠL (b) GRt,t

Figure 8. Numerical results by holography. ΠL and GR
t,t in eq. (5.1) when d = 5,∆ = 4. The right

panel (b) agrees with the filed theory result, figure 4(b).

We classify the pole-skipping points of the Green’s function in three types.

• Type-I and II: The pole-skipping points arise at integer (half integer) values of iω for
bosons (fermions).17 At the pole-skipping points, the Green’s function is not unique
and depends on the path we use to approach the points in momentum space. For
type-I points, the path along which the Green’s function is constant, is linear, while
for type-II points, it is not linear.

• Another convenient criterion is as follows. Type I points occur when the same number
of zero-lines and pole-lines intersect at a point. For type II points, a different number
of zero-lines and pole-lines intersect at a point18

• Type-III: The pole-skipping points arise at non-integer values of iω.

From a holographic perspective, we may understand the three types in terms of a near
horizon analysis.

• At the type-I and II pole-skipping points in the near horizon analysis, the regular in-
coming boundary condition is ambiguous so the Green’s function at the pole-skipping
points can take any value depending on the choice of incoming boundary condition.
The regularity constraints the value of iω, which takes integer values for bosons and
half integer values for fermions [15, 17, 20]

• By the near horizon analysis, we constrain the general form of the Green’s function
near the pole-skipping points. See (4.21) and (4.22).

• For a massless vector field (or higher spin case), the Green’s function is expressed
as a prefactor times ΠL (5.1). In the holographic computation, we use ΠL so the

17See [17] for fermionic cases.
18There is a rare exception when the zero curve and pole curve are tangential to each other. This is

explained around (3.10).
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analysis alone may not be enough to detect the pole-skipping point and/or its type.
Without a prefactor, as in the scalar case, if ∂k detM(n)|∗ 6= 0, whereM(n) is defined
in (2.23) and its specific form is given in (4.25), the pole-skipping point is of type
I [15, 20]. Otherwise, it is of type-II. However, if there is a prefactor, this criteria
should be modified. Some examples are shown in section 5. In principle, the would-be
pole-skipping point by the near horizon analysis may be removed by the prefactor.

• Type-III: At the type-III pole-skipping points, contrary to type-I and type-II in the
near horizon analysis, the incoming boundary condition is unique. Even with an
unique incoming boundary condition, the Green’s function at the pole-skipping points
can not be defined uniquely because it still takes the form 0/0. The value of iω can
be a non-integer because there is no constraint from the regularity condition. This
type can occur because of the specific UV structure of the theory, not only because
of the IR structure.

The type-II pole-skipping point was originally observed in [15], where it was called an
‘anomalous point’. We choose to call it type-II pole-skipping point because ‘anomalous’
gives an impression that something strange happens. In our opinion, the type-II point is
one natural possibility for pole-skipping.19 From a mathematical point of view the Green’s
function near the pole-skipping point is always well defined as pointed out in [15], and
the difference between type-I and type-II points is simply the path on which the Green’s
function is constant: is the path linear, quadratic or some higher order polynomial? In other
words, the difference between type-I and type-II points is how to define the limiting value
of the Green’s function when it approaches to the pole-skipping point. From a physical
point of view, these path-dependent definitions of the limiting value may be meaningful,
when they give different physical interpretation. For the type-II case, the path is not
necessarily linear.

The type-III point is interesting because in this case, iω can take non-integer values.
To understand this new possibility, it is helpful to revisit the definition of the pole-skipping
point from holographic Green’s function perspective. Let us consider the UV expansion of
the field Φ

Φ(z) = A(ω, k) + · · ·+ B(ω, k)z# + · · · , (6.1)

where # is a positive integer for a normalizable mode. The very definition of the pole-
skipping point is the point where the Green’s function is not well-defined. A possible way to
identify pole-skipping points is to find specific values of frequency and wave-number (ω∗, k∗)
where A(ω∗, k∗) = B(ω∗, k∗) = 0. Whatever mechanism we have, once we find (ω∗, k∗) such
that A(ω∗, k∗) = B(ω∗, k∗) = 0, we have a pole-skipping point. As in the massless vector
case, a specific UV condition may give a zero condition such that B(ω∗, k∗) = 0, which
defines a zero-curve in (ω, k) space. If a lines of poles meets this zero-curve, then we have
a pole-skipping point, when ω can naturally be a non-integer.

One might wonder what happens to the importance of the ambiguity of the incoming
boundary condition to have a non-unique Green’s function at the pole-skipping point. We

19This was first noted in [19, 20].
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Figure 9. log |G∆
V (Im[ω], Im[k])| at d = 4, ∆ = 4.5 (δ = 2.5). The blue lines and red lines represent

zeros and poles of the Green’s function, respectively. The white circles and squares are type I and
type II pole-skipping points respectively. Compared to the massless (∆ = d − 1) vector’s Green’s
function, massive (∆ 6= d − 1) vector’s one have elliptic blue line instead of the vertical blue lines
in figure 4. In general, such zero line’s shape is conical section. Thus, its shape can also be circle,
parabola and hyperbola depending on the value of ∆, d. Note that there exist the pole-skipping
points with non-integer value of Im[ω] around −2.8,−3.5 for each.

agree that this condition is very important, but it is one useful criterion to find a pole-
skipping point but not a necessary condition.

In principle, the non-uniqueness of the Green’s function is not equivalent to 0/0 itself.
If iω is a positive integer, we find that the solution has a free parameter, say α, from the
near horizon expansion:

Φ(z) = 1 + · · ·+ α(1− z)iω + · · · . (6.2)

Thus, the Green’s function is a function of α

GR(α) ∼ A(ω∗, k∗;α)
B(ω∗, k∗;α) , (6.3)

which means GR(α) can take any value depending on α. Thus it implies the non-uniqueness
of the Green‘s function but, strictly speaking, it does not imply that it takes the form 0/0.
In short, the requirement of two independent incoming boundary conditions at the horizon
is a very convenient technique with beautiful physics insight to find a Green’s function of
the form 0/0, but in principle, it is neither a sufficient nor a necessary condition.

In our paper, the type-III point was not observed in the Green’s function but rather in
the ‘gauge-invariant’ Green’s function. This would-be type-III point in the massless vector
case turned out removed by a prefactor. This cancellation may indicate that the type-III
point is possibly an artifact of the variable choice. However, we think it is still possible to
obtain a type-III point in some Green’s function by the mechanism we explained above,
by the UV condition. One potential example may be the massive vector case. In the
Green’s function for a massive vector field, the pole-skipping points with non-integer iω
were observed [34] as seen in figure 9. See the white circles around Im[ω]= −2.8,−3.5. It
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would be interesting to analyse this case in more detail from the holographic perspective.
Another possible example is the Green’s function of energy density in the large q limit of
SYK chain [38], where the non-integer iω pole-skipping point was discovered. We stress
again that the important feature of the type-III point is it naturally explains non-integer
iω. We leave further analysis of the type-III point as future work. Last but not least, it
will be interesting to figure out some phenomenological effects of the pole-skipping points
and their types we revealed in this paper.
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