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1 Introduction

The holographic duality provides a unique method to investigate the dynamics of strongly
coupled field theories, which links geometrical quantities to quantum observables. The
uses of this interplay to study thermal phases of strongly coupled field theories by their
holographically dual AdS black hole/brane geometries have attracted lots of attention since
it was first porposed [1]. It was then suggested that the small perturbations of the AdS
metric are dual to the hydrodynamics or linear response theories of the boundary CFTs [2–
4]. Also, by probed strings in the AdS background, the diffusion behavior of Brownian
particles in the boundary fields can be derived (see [5]for reviews). In particular, the time
evolution of entanglement entropy between Brownian particles and boundary fields had
been studied by means of the probed string method [6].
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Along this line of thoughts, it is very interesting to consider the holographic analysis
of strongly coupled field theories far from equilibrium. For example, a system, which starts
from a highly excited state after a quench, is expected to evolve toward a stationary state at
the thermal equilibrium. A holographic description of this far from equilibrium problem is a
process of gravitational collapse ending in the formation of a black hole/brane, which in the
simplest case can be described by a time-dependent Vaidya geometry. According to Ryu and
Takayanagi [7], the entanglement entropy between a spatial region, Σ of dimension d−1, and
its outside region in the d-dimensional boundary theory is dual to the area of the extremal
surface Γ in the d+ 1-dimensional bulk geometry, which is holomorphic to Σ and has the
same boundary ∂Σ as Σ. The prescription for time-dependent holographic backgrounds
was proposed in [9]. The uses of this prescription to study the thermalization process
following the quenches in various Vaidya-like backgrounds have been found in [10–37]. In
these studies, the region Σ in the boundary theories is bounded by ∂Σ, which is either a
d−2-dimensional sphere of radius R or two planes separated by a distance 2R. Computing
the time-dependent entanglement entropy as a function of spatial scales thus provides a
probe of scale-dependent thermalization. The bulk Vaidya geometry describes the falling
of a d − 1-dimensional thin shell along a light cone from the boundary at the time t = 0.
In the case of the boundary of a plane, a black brane eventually forms when the thin shell
falls within the horizon distance, yh. In the boundary theory, this process is dual to the
input of energy at t = 0 (quench) driving the system to a far from equilibrium state that
subsequently thermalizes.

In this paper, we extend some of these works by considering the Vaidya-like geome-
tries that describe the formation of black branes with the general asymptotic anisotropic
scaling symmetries including Lifshitz and hyperscaling violation. A holographic model in
the static anisotropic background has been used to study the diffusion of heavy quarks in
the anisotropy plasma when they are slightly out of equilibrium [38], and also the dissipa-
tion and fluctuation of Brownian particles within the linear response regions [39]. Here, in
the cases of far-from-equilibrium states from holographic time-dependent anisotropic back-
grounds, we consider the time evolution of entanglement entropy between a strip region
of width 2R and its outside region. To have the analytical expressions we focus on both
the large R and small R limits as compared to the horizon scale. In both cases, the early
time and late time entanglement growth and its dependence on the scaling parameters are
explored. Notice that in this study, the anisotropic effects are encoded in the effective
bulk spacial dimension, d̃ as will be defined later, which is just d in an isotropic theory.
In addition, the entangled region we propose is to probe the anisotropic spatial coordinate
with the scaling parameter, say a1 relative to the scaling parameter ay in the bulk direction
where there exists a free parameter ∆ = a1 +ay−4 that is zero in [25] and [29]. Apart from
the strip case, we study the entanglement region bounded by a sphere of radius R when the
backgrounds are isotropic but with ∆ 6= 0. We thus mainly focus on the contributions from
the nonzero ∆ to the dynamics. Additionally, the constraints on these scaling parameters
from the null energy conditions together with the constraints from the existence of the
solution of the extremal surface are derived. Then the obtained holographic entanglement
entropy can be used to justify (or falsify) the holographic method from the experiment
tests and other methods on strongly coupled problems.
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The layout of the paper is as follows. In section 2 we introduce a Lifshitz-like anisotropic
hyperscaling violation theory, and the corresponding static black hole metric. The null
energy conditions are developed to impose the constraints on the scaling parameters of
the theory. The dynamics of the extremal surface and its equations of motion are studied
in section 3. In section 4, we first compute the entanglement entropy at the thermal
equilibrium. The early time entanglement entropy growth and late time saturation will be
computed later and then discussed in section 5 and 6 respectively. In section 7, we choose
the Einstein-Axion-Dilaton theory as an example to realize the allowed scaling parameter
regions given by the constraints from the null energy conditions as well as the condition for
the existence of the extremal surfaces. Finally, section 8 concludes the work. In appendix A,
we provide the detailed analysis about the regions of the scaling parameters for the system
to have either continuous or discontinuous saturation in the strip case.

2 The holography background

To make our analysis of thermalization as general as possible, we consider the gravitational
collapse that eventually forms the following black brane with the metric

ds2 = gµνdx
µdxν = −y−a0h(y)d2t+ 1

y4−ayh(y)d
2y +

d−1∑
i=1

y−aid2xi , (2.1)

where near the boundary y = 0, the blackening factor is assumed to be h(0) = 1. Then, in
the boundary, the metric has scaling symmetries,

y → λ−1y, t→ λ1−ay2 −
a0
2 t, xi → λ1−ay2 −

ai
2 xi, gµν → λay−2gµν . (2.2)

We also assume that there is a simple zero for h(y) at y = yh, corresponding to the position
of the horizon. Thus, near the boundary, h(y) has the leading term,

h(y) = 1−My∆h (2.3)

with
∆h ≥ 1 . (2.4)

The temperature of the black brane is given by T = |h′(yh)|

4πy
a0
2 +

ay
2 −2

h

. In order to describe the

formation of the black brane of (2.1), we introduce the Eddington-Finkelstein coordinates
given by

v = t−
∫ y

0

y′
ay
2 +a0

2 −2

h(y′) dy′ . (2.5)

Then the metric in (2.1) becomes

ds2 = −y−a0h(y)d2v − 2y
ay
2 −

a0
2 −2dvdy +

d−1∑
i=1

yaidx2
i . (2.6)

In this work, we consider the gravitational collapse with the following Vaidya-type metric

ds2 = −y−a0f(v, y)d2v − 2y
ay
2 −

a0
2 −2dvdy +

d−1∑
i=1

yaidx2
i , (2.7)
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where f(v, y) = 1−Θ(v)g(y), and g(y) = 1− h(y). The metric describes the formation of
the black brane of (2.1) by the infalling of a d − 1-dimensional delta-function shell along
the trajectory v = 0. The region v > 0 outside the shell has the metric as in (2.1) whereas
the region v < 0 inside the shell has the pure hyperscaling violating anisotropic Lifshitz
metric of the form (2.1) by setting h = 1. From the viewpoint of the boundary theory, this
gives a quench on the system at t = 0 and subsequently the system evolves into a thermal
equilibrium state.

Nevertheless, the null energy conditions (NECs) constrain the parameters in the met-
ric [40], obtained as

Tµν`
µ`ν ≥ 0 for `µ`

µ = 0 . (2.8)

In the Einstein gravity, NECs are equivalent to Rµν`µ`ν ≥ 0 where Rµν is the curvature
tensor obtained from (2.7), and then give the following constraint equations,

d−1∑
j=1

[
aj (2a0−∆0−aj−2)

]
≥ 0 , (2.9)

a1(d̃−1)g(y)∂vΘ(v) y
∆0
2 +1

f(v,y) +(a0−ai)
(
∆0+2+a1(d̃−1)

)
f(v,y)

+∆hg(y)Θ(v)
(
2(a0−ai)+∆0+2−2∆h+a1(d̃−1)

)
≥ 0 , i= 1,2,3 . . .d−1 ,

(2.10)

4a1(d̃−1)g(y)∂vΘ(v)y
∆0
2 +1+f(v,y)2

d−1∑
j=1

[
aj (2a0−∆0−aj−2)

]
≥ 0 (2.11)

with d̃ =
∑d−1
i=1

ai
a1

+1, and ∆0 = a0 +ay−4. In the case of an isotropic background with all
ai’s to be equal, NECs reduce to the ones in the hyperscaling violating Lifshitz theory [29].

3 Dynamics of the extremal surface

In this section, we derive the equations of motion for the extremal surfaces when the
entanglement region Σ in the boundary theory is either a strip of width 2R in x1 direction
or a region bounded by a sphere of radius R. In this work, we consider the d+1-dimensional
bulk geometry. Thus the boundary theory living at y = 0 is in a d-dimensional spacetime.
The entanglement region Σ in the boundary theory is bounded by a d − 2-dimensional
surface ∂Σ. We consider that the infalling planar shell propagates from the boundary at the
boundary time t = 0. Starting from this section, the time t means the boundary time and
is different from the coordinate time t in the previous section. Then the d− 1-dimensional
extremal surface Γ in the bulk, if exists, is uniquely fixed by the boundary conditions where
the extremal surface should match ∂Σ at the boundary y = 0 and at the boundary time
t. Once we find the time-dependent extremal surface Γ and its area AΓ, the entanglement
entropy between Σ and its outside region is given by the Ryu-Takayanagi formula

S(R, t) = AΓ
4 . (3.1)
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The approach we adopt in this paper mainly follow the works of [25] and [29]. Here we
highlight key equations and show relevant solutions in the following sections, which are
straightforward generalizations of their results to our model.

3.1 Sphere

We first consider ∂Σ as a sphere with radius R. Thus, to accommodate the d−2-dimensional
rotational symmetry, we assume the metric (2.7) with such a symmetry by setting all ai’s
to be euqal, say ai = a1. In the spherical coordinates, the metric in the following form

ds2 = −y−a1+∆−∆0f(v, y)d2v − 2y−a1+∆−∆0
2 dvdy + ya1

(
d2ρ+ ρ2d2Ωd−2

)
(3.2)

where ∆ = a1 +ay−4. The embedding of the d−1-dimensional extremal surface Γ in (3.2)
can be described by two functions v(ρ) and y(ρ) together with an extension in all Ωd−2
directions. The area of Γ is then given by

AΓ = A∂Σ
Rd−2

∫ R

0
dρ

ρd−2

y
a1
2 (d−1)

√
Q , (3.3)

where
Q =

∣∣1− y∆−∆0 v̇2f(y, v)− 2y∆−∆0
2 v̇ ẏ

∣∣ (3.4)

with v̇ = d
dρv(ρ) and ẏ = d

dρy(ρ). A∂Σ = 2π
d−1

2

Γ( d−1
2 )R

d−2 is the area of a d − 2-sphere with
radius R. The functions v(ρ) and y(ρ) are determined by minimizing the area in (3.3),
giving the equations of motion,

√
Qy∆0−∆+a1(d−1)

2

ρd−2
d

dρ

ρd−2y−
a1(d−1)

2 −∆0+∆
√
Q

(
v̇f(y,v)+y

∆0
2 ẏ

)= 1
2 v̇

2∂f(y,v)
∂v

, (3.5)

√
Qy

a1(d−1)
2 +∆0−∆

ρd−2
d

dρ

(
ρd−2y

1
2 (−a1(d−1)+2∆−∆0)√

Qρ
v̇

)

= 1
2

(
a1(d−1)Qy∆0−∆−1−(∆0−2∆)y

1
2 (∆0−2)v̇ẏ+ v̇2

y

(
(∆−∆0)f(y,v)+y∂f(y,v)

∂y

))
.

(3.6)

The boundary conditions are

v̇(0) = ẏ(0) = 0, v(R) = t, y(R) = 0 . (3.7)

Again, here and later, the time t will label the boundary time.
Since f(y, v) = 1 for v < 0 and f(y, v) = h(y) for v > 0, ∂f(y,v)

∂v = 0 in both the v < 0
and v > 0 regions. From (3.5) there exists a constant of motion E,

ρd−2
√
Qy

a1
2 (d−1)

(
v̇f(y, v)
y∆0−∆ + ẏ

y
1
2 (∆0−2∆)

)
≡ E = constant . (3.8)
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Solving (3.8) for v̇ gives

v̇

y
a0
2 +ay

2 −2
= 1
f

−ẏ +
BE

√
ẏ2

f + y4−a1−ay√
1 + B2E2

f

 (3.9)

with B = y
1
2 (a1(d−1)−∆+∆0)

ρd−2 . Substituting v̇ in (3.9) to (3.6), we obtain the equation of
motion for y(ρ) as

ÿ
(
f + E2B2y2∆−2∆0

)
+
(
f + ẏ2y∆

)(d− 2
ρ

ẏ − ∆0 − 2∆
2y1+2∆0−∆B

2E2 + a1(d− 1)
2y1+∆ f

)
+
(
B2E2y∆−2∆0 − ẏ2

) 1
2
∂f

∂y
+ ∆

2

(
−y−2∆0+∆−1fB2E2 + fẏ2

y

)
= 0 . (3.10)

Here we define ∆ = a1 +ay− 4 to highlight the nonzero ∆ effects as compared to [29] with
∆ = 0 although in the sphere case the metric has the same spatially isotropic symmetry
as in [29]. The solution of y(ρ) in the v > 0 and v < 0 regions are matched at ρc with
v(ρc) = 0. Integrating both (3.5) and (3.6) across ρc, the matching conditions are that
v̇(ρ) is continuous across ρc and

ẏ+(ρc) = ẏ−(ρc)
(

1− 1
2g(yc)

)
, (3.11)

where yc = y(ρc) and the subscripts + and − denote the solution in the regions of v > 0
and v < 0 separately. Once the solution y(ρ) is found, further integrating v̇ in (3.9) with
the initial conditions in (3.7) for v > 0 gives the boundary time

t =
∫ R

ρc
dρ
y

∆0
2

h

(
−ẏ + BE

√
ẏ2 + hy−∆

√
h+B2E2

)
. (3.12)

In the end, the integral formula for the area (3.3) can be calculated from the contributions
of v < 0 and v > 0 regions respectively as

AΓ
A∂Σ

= AΓv<0
A∂Σ

+ AΓv>0
A∂Σ

=
∫ R

ρc

ρd−2

y
a1
2 (d−1)

√
1 + ẏ2y∆ dρ+

∫ ρc

0

ρd−2

y
a1
2 (d−1)

√
h+ ẏ2y∆

h+B2E2 dρ ,

(3.13)
where we have used the fact that for the v > 0 region, Q = h+ẏ2y∆

h+B2E2 by plugging (3.9)
in (3.4), and for the v < 0 region, Q = 1 + ẏ2y∆ with h = 1 and E = 0. Translating ρc to
the boundary time t with the relation (3.12), we are able to find the time-dependent area,
and also the corresponding entanglement entropy.

3.2 Strip

We now consider the entanglement region Σ of a strip extending along say x1-direction
from −R to R while other xi’s from −W to W with W →∞. In what follows, we denote
x1 as x for simplifying the notation. In this case, the area of the extremal surface Γ is
expressed as

AΓ = A∂Σ

∫ R

0
dx

√
Q

y
a1
2 (d̃−1) (3.14)
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with
Q =

∣∣∣1− v̇2f(y, v)
y∆0−∆ − 2v̇ẏ

y
∆0
2 −∆

∣∣∣ . (3.15)

We define v̇ = d
dxv(x), ẏ = d

dxy(x), A∂Σ = 2W d−2, and d̃ =
∑d−1
i=1

ai
a1

+1 that can be treated
as an effective bulk spacial dimension as also defined in [38].

Varying AΓ with respect to the functions v(x) and y(x) leads to the following equations
of motion,

√
Qy∆0−∆+a1

2 (d̃−1) d

dx

(
y−

a1
2 (d̃−1)−∆0+∆
√
Q

(
v̇f(y,v)+y

∆0
2 ẏ

))
= 1

2 v̇
2∂f(y,v)

∂v
, (3.16)

√
Qy∆0−∆+a1

2 (d̃−1) d

dx

y 1
2(−a1(d̃−1)−∆0+2∆)

√
Q

v̇

 (3.17)

= 1
2

(
a1(d̃−1)Qy∆0−∆−1−(∆0−2∆)y

1
2 (∆0−2)v̇ẏ+ v̇2

y

(
(−∆0+∆)f(y,v)+y∂f(y,v)

∂y

))
.

(3.18)

The translational symmetry in (3.14) of AΓ in the variable x gives the conserved quantity

y
a1
2 (d̃−1)√Q = J

= constant = y
a1
2 (d̃−1)
t . (3.19)

The value of J can be determined by the boundary condition at x = 0, which is the tip of
the extremal surface y(0) = yt. Again, for ∂vf = 0 in both v < 0 and v > 0 regions, there
exists another conserved quantity E given by (3.16). Together with (3.19), we have

y−∆0+∆
(
v̇f(y, v) + y

∆0
2 ẏ

)
= E = constant. (3.20)

In the vacuum region with v < 0, the value of E can be determined at a particular point
x = 0, where the boundary conditions give E = 0. Also, f = 1 in the vacuum region leads
to the relation between v̇ and ẏ at arbitrary x to be

v̇ = −y
∆0
2 ẏ . (3.21)

Substituting all above relations into (3.19), for v < 0 and x > 0 and with no loss of
generality, it implies

ẏ = −

√
y
a1(d̃−1)
t − ya1(d̃−1)

y
1
2 (a1(d̃−1)+∆)

. (3.22)

However, requiring dx/dy to be finite as y → 0 gives the constraints

a1(d̃− 1) > 0 and a1(d̃− 1) ≥ −∆ . (3.23)

Integrating (3.16) and (3.18) across the null shell allow us to find the matching conditions,
which are the same as those in (3.11) by replacing ρ with x. Thus, the matching conditions
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in this case determine the constant E of (3.20) for the v > 0 region in terms of the properties
of y(x) at xc, given by

E = gc
2 y

∆−∆0/2
c ẏ− . (3.24)

Then, via (3.20), the relation between v̇ and ẏ in the black brane region becomes

v̇ = 1
h

(
−ẏy

∆0
2 + Ey∆0−∆

)
. (3.25)

The equation for y(x) in the black brane region with v > 0 as in (3.22) can be found
from (3.25) with the relation (3.19) as

ẏ2 = H(y)

= h(y)

ya1(d̃−1)
t

ya1(d̃−1)
− 1

 y−∆ + E2y∆0−2∆ . (3.26)

With (3.25) and the square root of (3.26), we obtain for x > 0

dv

dy
= v̇

−
√
H(y)

= − 1
h(y)

(
y

∆0
2 + Ey∆0−∆√

H(y)

)
. (3.27)

In the end, from (3.22) and (3.26), we can write down the relation between the strip width
R and the values of yc and yt as

R =
∫ yt

yc

y
a1
2 (d̃−1)+ ∆

2

y
a1
2 (d̃−1)
t

√
1− ya1(d̃−1)

y
a1(d̃−1)
t

dy +
∫ yc

0

1√
H(y)

dy . (3.28)

From (3.27) and the boundary condition v(R) = t, yc can also be expressed as an implicit
function of the boundary time t,

t =
∫ yc

0

1
h(y)

(
y

∆0
2 + Ey∆0−∆√

H(y)

)
dy . (3.29)

Moreover, substituting (3.22), (3.25), (3.21) and (3.26) into (3.15), we then write the inte-
gral formula for the area in (3.14) in terms of the contributions from the v < 0 and v > 0
regions respectively as

AΓ
A∂Σ

= AΓv<0
A∂Σ

+AΓv>0
A∂Σ

=
∫ yt

yc

1

y
a1
2 (d̃−1)−∆

2

√
1− ya1(d̃−1)

y
a1(d̃−1)
t

dy+
∫ yc

0

y
a1
2 (d̃−1)
t

ya1(d̃−1)
√
H(y)

dy . (3.30)

Then, through (3.28) and (3.29), the area are expressed in terms of the boundary time t
and the strip width R. Notice that with the additional constant J in the strip case, the
area in (3.14) and the corresponding entanglement entropy can be computed just by the
values of y(x) at x = 0 and x = xc.
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4 Entanglement entropy in thermal equilibrium states

In this section we consider the entanglement entropy for a final equilibrium state dual in the
bulk to a black brane in (2.6). We take the large R (R� y

∆
2 +1
h ) and small R (R� y

∆
2 +1
h )

limits respectively, where the former limit corresponds to the case that the tip of the black
brane, yb to be defined later, approaches the black brane horizon, yh and the latter one is
to assume yb � yh so that the relevant metric is that of the pure hyperscaling violating
anisotropic Lifshitz spacetime of the form (2.1) in the case of h → 1. The corresponding
AΓ in both spherical and strip entanglement regions will be computed accordingly.

4.1 Sphere

In the case of a spherical ∂Σ, the extremal surface in the black brane background (2.6)
by setting all ai’s to be equal to a1 is denoted as ΣBH . The boundary conditions v̇(0) =
ẏ(0) = 0 give E = 0 in the equation of motion (3.10). We also denote the solution of the
equation (3.10) with E = 0 and f = h(y), which satisfies the boundary conditions (3.7),
by yBH(ρ). The area of the extremal surface can then be obtained from (3.13) by setting
ρc = R and E = 0 as

AΓeq = A∂Σ
Rd−2

∫ R

0

ρd−2

yBH(ρ)
a1
2 (d−1)

√
1 + ẏBH(ρ)2yBH(ρ)∆

h(yBH(ρ)) dρ . (4.1)

We first consider the extremal surface in the large R limit (R� y
∆
2 +1
h ). In this case, it is

anticipated that the tip of the ΣBH , denoted as yBH(0) ≡ yb, is very close to the horizon
yh, namely

yb ' yh(1− ε) , (4.2)

where ε� 1. The solution of yBH near the horizon can then be approximated by

yBH(ρ) ' yh − y1(ρ)ε+O(ε2) (4.3)

with the first order perturbation y1(ρ) given by

y1(ρ) = Γ2
(
d− 1

2

)(
ργ

2

)3−d
I2
d−3

2
(γρ) , (4.4)

where Iµ(x) is the modified Bessel function of the first kind. Let us denote the inverse
function of yBH(ρ) as ρBH(y). We also have the expansion of ρBH(y) near the boundary
y = 0 as

ρBH(y) = R− ρ0(y) +O(1/R) , (4.5)

where

ρ0(y) =
∫ y

0

ψ
1
2 (∆+a1(d−1))√

yba1(d−1) − ψa1(d−1)
√
h(ψ)

dψ . (4.6)

To find the relation between ε and R, the existence of a matching region for the above
two solutions is crucial [41]. We extend the solution (4.4) (near the horizon) to the region of
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relatively large ρ where ρ� R−O(R0) is still satisfied, and then extend the solution (4.6)
(near the boundary) to the region of ε� 1− y/yh � 1 where R− ρ� O(R1) is still valid
for being consistent with (4.5). We find that with such extensions, both solutions (4.3)
and (4.5) have the similar structure (R − ρ) ∝ − ln(yh − y) in the matching region where
the relation of ε and R can be read off by comparing their leading order behaviour given by

ε ' e−2γR (4.7)

with −2γ2 ≡ h′(yh)
y∆+1
h

a1
2 (d− 1). Apparently, the large R limit drives ε to a small value. The

nonzero ∆ contributes to the value of γ in (4.7), which is different from the one in AdS
spacetime [25].

The area of the extremal surface in the large R limit can be computed from the
solutions (4.3) and (4.5) by splitting the integral (4.1) into the areas near the horizon (IR)
and near the boundary (UV). Then the UV divergence part of AΓeq is

AΓdiv '
2A∂Σ

a1(d− 1)− (2 + ∆)

 1

y
1
2 (a1(d−1)−2−∆)
UV

 , (4.8)

where yUV is a UV-cutoff in the y integration. The finite part is obtained as

∆AΓ = AΓ −AΓdiv = V∂Σ

y
a1
2 (d−1)
h

+O(Rd−2) (4.9)

where V∂Σ = π
d−1

2

Γ( d+1
2 )R

d−1 is the volume of a (d− 1)−ball with radius R. Similar results are
also obtained in [29] for ∆ = 0.

In the small R limit, namely (R � y
∆
2 +1
h ), the area of the extremal surface is deter-

mined by (4.1) in the limit of h→ 1. In particular, for ay = 2 we can find an exact solution
of (3.10),

ρ(0)(y) =
√
R2 − 4

a2
1
y(0)a1 , (4.10)

where the relation of the tip of the extremal surface y(0)
b and R, an essential information

to analytically find the finite part of the area, can be read off as

y
(0)
b = y(0)(0) =

(
a2

1R
2

4

)1/a1

. (4.11)

Substituting (4.10) into (4.1) (h→ 1), and again dividing the area into divergent and finite
parts, we have

A
(0)
Γeq = A

(0)
Γdiv + ∆A(0)

Γeq (4.12)
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where

A
(0)
Γdiv = 2A∂Σ

a1(d−2)y
a1
2 (d−2)

UV

− 4(d−3)A∂ΣR
−2

a3
1(d−4)y

a1
2 (d−4)

UV

+. . .

+


(−1)

d
2A∂Σ

2d−1(d−3)!!
ad−1

1 (d−2)!!
R−d+2 ln(yUV) d is even

(−1)
d+1

2 A∂Σ
2d−2R−d+3

ad−2
1 y

a1/2
UV

d is odd.
(4.13)

∆A(0)
Γeq = A∂Σ

Rd−2


(−1)

d
2 +1 2d−1(d−3)!!

ad−1
1 (d−2)!!

ln(R)+O(R0/y0
UV) d is even

2d−2Γ(1− d2 )Γ( d−1
2 )

√
πad−1

1
d is odd.

(4.14)

A∂Σ = 2π
d−1

2

Γ( d−1
2 )R

d−2 is the area of a d − 2-sphere with radius R. Here we restrict ourselves
to d ≥ 3 so that the dimension of ∂Σ is larger than or equal to 2. The above results
can reproduce the ones in AdS space [42] by choosing appropriate values of the scaling
parameters. Although ay = 2 is chosen, our results with ∆ 6= 0 generalize the result of [29].
Through the Ryu-Takayanagi formula (3.1), the corresponding entanglement entropy can
also be obtained where its finite part is important to make a comparison with the field
theory results.

4.2 Strip

To find the area of the extremal surface for the strip case in the thermal equilibrium, we
substitute the relation between R and yb in (3.28) to (3.30) by setting yc = yt = yb and
E = 0, we have

AΓeq = A∂Σ

∫ yb

0

y
a1
2 (d̃−1)
b

ya1(d̃−1)
√
H(y)

dy , (4.15)

where H(y) is defined in (3.26). In the large R limit, the tip of the extremal surface yb
is assumed to be close to yh in terms of the expansion of (4.3) for small ε where again ε

can be related to R by (4.7). The straightforward calculations show that the UV divergent
part of the area is

AΓdiv = 2A∂Σ

a1(d̃− 1)− (2 + ∆)

 1

y
1
2 (a1(d̃−1)−2−∆)
UV

 , (4.16)

and the finite part is

AΓeq −AΓdiv '
A∂ΣR

y
a1
2 (d̃−1)
h

. (4.17)

Note that AΓdiv vanishes when a1(d̃− 1) < 2 + ∆ as yUV → 0. The contribution from the
scaling parameter a1 to the area of the extremal surface plays the same role as in the sphere
case, leading to the same entanglement entropy for both the sphere and strip cases in our
setting. Nevertheless, it will be seen that the subsequent time evolution after a quench for
two cases are very different, in particular during the late-time thermalization processes.
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In the small R limit, from (3.28) with yt → y
(0)
b and yc → 0, we obtain the relation

between R and y(0)
b as

R ' R̃0 a1(d̃− 1)y
∆
2 +1
b (4.18)

with R̃0 =
√
πΓ(1

2 + ∆+2
2a1(d̃−1))Γ−1(1 + ∆+2

2a1(d̃−1)) a dimensionless constant. In particular,

∆ > −2 (4.19)

is required for a sensible result. The area of (4.15) for a1(d̃− 1) 6= 2 + ∆ becomes

AΓeq −AΓdiv ' A∂Σ
y

(0) ∆
2 +1−a1

2 (d̃−1)
b

√
π

a1(d̃− 1)

Γ
(
−1

2 + ∆+2
2a1(d̃−1)

)
Γ
(

∆+2
2a1(d̃−1)

) (4.20)

with AΓdiv in (4.16). However, for a1(d̃− 1) = 2 + ∆

AΓeq ' A∂Σ ln
(
y

(0)
b

yUV

)
. (4.21)

The critical value determined by a1(d̃− 1) = 2 + ∆ with the logarithmic divergence rather
than the power-law ones generalizes the result in [29] where an isotropic background is
considered. In particular, when ay = 2 and all ai’s equal to a1, the area of the extremal
surface still has quite different behavior from that of the sphere case in the small R limit.

Starting from the next section, we will focus on the nonequilibrium aspect of ther-
malization processes, which is encoded in the time-dependent entanglement entropy. It is
known from previous studies that the black brane horizon radius yh sets a time scale for
the nonequilibrium system to reach the “local equilibrium” as to cease the production of
thermodynamical entropy. In the large R limit with R� y

∆
2 +1
h , thermodynamical entropy

of a system generally evolves through “pre-local” equilibrium growth in the early times
t� y

∆
2 +1
h , the linear growth in the intermediate times when R� t� y

∆
2 +1
h , and the final

saturation stage when t→ ts ∝ R. On the contrary, in the small R limit with R� y
∆
2 +1
h ,

it is anticipated that after the saturation, the tip of the extremal surface yt in the end is
still far away from the horizon yh, namely yt � yh. Thus, after the “pre-local” equilibrium
growth, the system will directly reach the saturation stage near the saturation time scale,
ts determined by the size of the system R, which will be studied later. For a quantitative
comparison of the entanglement entropy between the small and large R limits, we just
consider the time-dependent entanglement entropy during the early time growth and the
final saturation stage in the following sections.

5 The early time entanglement entropy growth

In this section, we study the entanglement growth at the early times when the infalling
shell meets the extremal surface at yc with the condition that y

∆
2 +1
c � R for both large

and small R limits. This means that the infalling shell is very close to the boundary y = 0
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so that the extremal surface Γ is mostly in the v < 0 region with the pure hyperscaling
violating anisotropic Lifshitz metric. During such early times, the infalling shell does not
have much enough time to probe the whole geometry so we expect that the same growth
rate will be found for both the large and small R limits in either the sphere or the strip case.

5.1 Sphere

Here we start by considering the zeroth order solution of Γ that satisfies the equation of
motion for y in (3.10) with f = 1 and E = 0. Let y(0)(ρ) be the solution of this equation
with the boundary condition ẏ(0)(0) = 0 and y(0)(R) = 0, and ρ(0)(y) be the inverse
function of y(0)(ρ). The superscript (0) means the extremal surface dual to the vacuum
state of the system. The area of the extremal surface is given in (4.12). In the early times,
the infalling shell intersects Γ at a place with the value of y

∆
2 +1
c � R in both small and

large R cases. For such a small yc, the relevant zeroth order solution near the boundary
for small y is obtained from (4.5) and (4.6) as

ρ(0)(y) = R+ Cy∆+2 +O(y2∆+3) (5.1)

with C = −2(d−2)
R ((∆ + 2) (a1(d− 1)−∆− 2))−1. Also, when

∆ + 2 < ∆h − 1 , (5.2)

the blackening factor can be safely approximated by h(y) → 1 for small y. The existence
of the extremal surface holomorphic to Σ requires that C > 0 and the finiteness of dρ/dy
as y → 0 gives further constraints on the scaling parameters

∆ > −2 , a1 >
∆ + 2
d− 1 > 0 . (5.3)

Then, we rewrite the area integral (3.3) in terms of the variable ρ(y), which is the inverse
function of y(ρ), as

AΓ(t) = A∂Σ
Rd−2

∫ yt

0
dy

ρd−2

y
a1
2 (d−1)

√
ρ′2 − y∆−∆0fv′2 − 2y∆−∆0

2 v′ (5.4)

where the prime means the derivative with respect to y and yt is the tip of the extremal
surface, namely, yt = y(0). For the early times with small t, let us consider the perturba-
tions around the zeroth order solution where the time-dependent AΓ(t) just slightly departs
from A(0) as

δAΓ(t) ≡ AΓ(t)−A(0) ' ∂AΓ(t)
∂yt

δyt + ∂AΓ(t)
∂v

δv + ∂AΓ(t)
∂ρ

δρ+ ∂AΓ(t)
∂f

δf . (5.5)

The partial derivatives are evaluated at y = y(0) or ρ = ρ(0) and f = 1 where yt = y(0)(0)
and v = v(y(0)) = v(0). The first term vanishes due to the vanishing of the area at the tip
y = y(0). The second and the third terms vanish due to the equations of motion for ρ and
v. For the last term, we have

δf = h(y) for y < yc, δf = 0 for y > yc . (5.6)
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yc is the position where the infalling sheet intersects the extremal surface, namely v(0)(yc) =
0. Since yc � yh, the near boundary behavior for h(y) in (2.3) is applied. Solving (3.9) in

the case of E = 0 and f = 1, and with the boundary conditions (3.7), v(0)(y) ' t− y
∆0
2 +1

∆0
2 +1

near y = 0. Putting all together, we can find δAΓ in (5.5) as a function of yc. As a result
of v(yc) = 0, the yc dependence can be translated into that of the boundary time t by

t ' y
∆0
2 +1
c
∆0
2 +1

. Note that

∆0 > −2 (5.7)

is required so that the boundary time t increases in yc. Thus, in terms of the boundary time,
the early time entanglement entropy growth for both small and large R limits is given by

δS(t) ' δAΓ(t)
4 ' A∂ΣM

4(∆ + 2∆h + 2− a1(d− 1))

(∆0
2 + 1

)∆+2∆h+2−a1(d−1)
∆0+2

t
∆+2∆h+2−a1(d−1)

∆0+2

(5.8)
where

∆ + 2∆h + 2− a1(d− 1) > 0 (5.9)

to ensure that the entanglement entropy increases in time. The extra ∆ dependence of
the growth rate of the entanglement entropy generalizes the results in [29] with ∆ = 0. In
particular, for the positive (negative) value of ∆, the power of t increases (decreases) with
∆ (|∆|) that speeds up (slows down) the growth rates as compared with the case of ∆ = 0.

5.2 Strip

In the strip case, the area of the extremal surface can be obtained from (3.30) by setting
yc = yt, giving

AΓ(t) = A∂Σ

∫ yt

0
dy

1
y
a1
2 (d̃−1)

√
x′2 − y∆−∆0fv′2 − 2y∆−∆0

2 v′ (5.10)

where again the prime means the derivative with respect to y. As in the sphere case, the
non-vanishing term in the variation of AΓ(t) evaluated at the zeroth order solutions y(0)

and v(0) = v(y(0)) in (3.22) and (2.5), is

δAΓ(t) ' ∂AΓ
∂f

∣∣∣∣
(0)
δf . (5.11)

With δf in (5.6), straightforward calculations give the same entanglement entropy growth
at the early times as in (5.8) by replacing d with d̃. As the comparison to [29] with ∆ = 0,
the nontrivial dependence of ∆ in the early time growth rate can in principle be tested
experimentally.

6 The late time saturation

Although the entanglement entropy in the early times exhibits the same growth rate in
both the sphere and strip cases, the late time thermalization process will find different time

– 14 –



J
H
E
P
0
3
(
2
0
2
1
)
1
6
4

dependent behaviors for two cases. Due to the fact that the entanglement entropy growth
can be realized as an “entanglement tsunami” led by a sharp front moving inward from the
boundary Σ [25], the saturation behavior will be the same but the saturation time scales
might be very different. Also, for a given geometry, we will work on the large and small R
limits separatively.

6.1 Sphere

Let us start with the sphere case in the large R limit. Near the saturation, the extremal
surface Γ is mostly in the v > 0 black hole region, and will become very close to the one
in the purely black hole background (2.6). Thus, the infalling shell, which is very near the
tip of Γ at ρ = 0, can be parametrized as

ρc = y
∆
2 +1
c δ (6.1)

with δ � 1. Also, near ρ = 0 for v < 0, the extremal surface y(ρ) satisfies (3.10) with
E = 0 and f = 1 where the leading order solution y(ρ) can be approximated by

y(ρ) ' yt −
a1
4 y
−∆−1
t ρ2 . (6.2)

From (6.1) and the definition yc = y(ρc), the relation between the tip of the extremal
surface yt and the infalling sheet yc is obtained as

yt ' yc
(

1 + a1
4 δ

2
)
. (6.3)

Also, from the matching condition (3.11) at ρ∗ ≈ ρc and the approximation solution (6.2),
the variables y(ρ) and v(ρ) at the matching point are given respectively by

ẏ− ' −
a1
2

ρc

y∆+1
c

, ẏ+ = ẏ−

(
1− 1

2g(yc)
)
, v̇+ = v̇− = −y

∆0
2
c ẏ− . (6.4)

Plugging them into (3.8), the constant of motion E for v > 0 in the black hole region is
found to be

E ' −a1g(yc)
4 δd−1y

1
2 ((d−1)(−a1+∆+2)−∆0−2)
c . (6.5)

Next, we also expand y(ρ) around yBH(ρ) in the v > 0 region, which in the small ρ
approximation is given by

y(ρ) = yBH(ρ) + a1g(yb)
2(d− 3)y

( ∆
2 +1)(d−1)−1

b δd−1ρ−d+3 +O
(
δ2(d−1)

)
. (6.6)

In the sphere case, d > 3 is considered. Given y(ρ→ 0) = yt and yBH(ρ→ 0) = yb in (6.6),
the relation between yt and yb can be obtained from (6.3) as

yc = yb
(
1 + c2δ

2 +O(δ4)
)

(6.7)

with c2 = a1
4

(
(d−2)g(yb)

(d−3) − 1
)
where the boundary time t depends on the infalling sheet yc

through (3.12).
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We then calculate the time dependent entanglement entropy near the saturation after
a quench. The area of the extremal surface can be divided into the v < 0 and v > 0
parts, AΓ = AΓv<0 + AΓv>0. Near the saturation, the solution around ρ = 0 in (6.2) for
v < 0 and (6.6) for v > 0 will be relevant. We denote ∆AΓ = AΓv<0 + AΓv>0 − AΓeq, by
subtracting the extremal surface in thermal equilibrium due to the pure black hole in (4.1)
where ∆AΓ becomes

∆AΓ ' −
A∂Σ
Rd−2

a2
1g (yb)

8(d− 3)

(
g (yb)

4h (yb)
+ d− 3
d+ 1

)
y

1
2 (d−1)(−a1+∆+2)
b δd+1 . (6.8)

From (3.12), the boundary time can be written as t = t1 + t2 given by

t1 =
∫ yc

0
dy
y

∆0
2

h(y) , t2 = E

∫ R

ρc
dρ

y
∆0
2

h(y(ρ))
y
a1
2 (d−1)+ ∆0

2 −
∆
2

ρd−2

√
ẏ2 + h(y(ρ))y−∆√
h(y(ρ)) +B2E2 . (6.9)

We can evaluate the saturation time, ts in the large R limit by (3.9) with E = 0, f = h

and the conditions vBH(R) = t and vBH(yb) = 0 at t = ts, given by

ts =
∫ yb

0
dy
y

∆0
2

h(y) = R

cE
− d− 2

4πT lnR+O(R0) with cE =

√√√√4πTy∆+1−∆0/2
h

a1(d− 1) . (6.10)

Here T is the black brane temperature defined above, and the above integral is dominated
in the near horizon region. In terms of T , cE ∝ T

∆0−∆
∆0+2 . The saturation time ts ∝ R in the

large R limit. For a positive (negative) ∆, cE becomes smaller (larger) than the case of
∆ = 0, leading to relatively larger (smaller) the saturation time scale ts for fixed R and T .

The integral of t1 can be further separated into two parts as t1 = ts+
∫ yc
yb
dy y

∆0
2

h(y) . Then,
near the saturation as δ → 0 and with the approximate solutions (6.6), (6.7) and (6.5), we
find, to leading order in δ,

t ' ts −
a1
4 y

∆0
2 +1
b δ2 . (6.11)

Together with (6.8) and through (3.1) give

∆S(t) = ∆AΓ
4 ∝ (t− ts)

d+1
2 . (6.12)

Note that d ≥ 4 is required. Based upon the constraints in (2.4) from the property of the
black brane, (2.9), (2.10), and (2.11) due to null energy conditions, and (5.2) and (5.3) from
the solution of the extremal surface as well as (5.7) and (5.9) for the sensible entanglement
entropy, a1 is always positive so that the boundary time t approaches to ts from below.
Thus, the saturation can be reached continuously. It will be compared with the strip
case where the continuous saturation will occur only for some parameter regions to be
discussed later. The saturation behaviour of the entanglement entropy does not depend on
the nonzero ∆ in the sense that the power law saturation depends only on the dimension d.
Nevertheless, the saturation time scale ts depends on the nonzero value of ∆ as expected.

In the small R limit, the analysis of saturation behaviors will be different from the
large R case to be explained as follows. In the large R limit, the tip of the extremal
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surface in the pure black hole geometry, yb is exponentially close to the horizon yh where
h(yb) ∝ e−2γR. However, in the small R limit, yb � yh giving h(yb) ' 1. Moreover, we
should have the same relation between yb and yc as in the large R limit (6.7) but with the
different d1 to account for the fact that h(yb) ' 1. Also, in the small δ expansion of ∆AΓ,
the power of δ in the leading order is the same as in (6.8). In the end, the same saturation
behavior as in (6.12) is found in the small R. The saturation time ts is different from what
is obtained in the large R limit. Having the analytical expression of ts as a function of R
resides in the exact solution of y(ρ) in pure hyperscaling violating Lifshitz spacetime with
anisotropic scalings in spatial coordinates. An exact solution can be found for ay = 2 as
we have discussed in (4.10). With the relation of yb and R in (4.11), (6.10) instead gives,

ts '
2
a0

(
a2

1R
2

4

) a0
2a1

(6.13)

for small R. This nontrivial power-law dependence of R on the saturation time scale ts
brings in an interesting probe of the systems toward thermalization with different sizes R.
Moreover for small R, since a1 is always positive, the saturation time ts becomes larger
(smaller) as a1 increases (decreases).

6.2 Strip

In the strip case, the relation between xc and yc near the saturation is the same as in (6.1)
by replacing ρc by xc. From (3.22), we are able to find the solution near the IR region for
v < 0

y(x) = yt −
a1(d̃− 1)

4y∆+1
t

x2 +O(x4) . (6.14)

Due to the relation between xc and yc, and the definition of yc = y(xc), from (6.14) we
obtain

yc = yt

(
1− a1

4 (d̃− 1)δ2 +O(δ4)
)
. (6.15)

Also, from (6.15) and (3.22), the conserved quantity E (3.24) in the region v > 0 can be
approximated in terms of the small δ by

E ' −a1
4 (d̃− 1)g(yt)y

∆
2 −

∆0
2

t δ . (6.16)

Recall that in the large (small) R limit, h(yb) ' ∆he
−2γR (h(yb) ' 1). We then assume

the relation between yb and yt to be

yt = yb(1 + ξ) (6.17)

with a small parameter ξ. To find the relation between ξ and δ, we rewrite (3.28) as

R = R1 −R2 +R3 + R(yt) , (6.18)
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where

R1≡
∫ yt

yc

y
∆
2 dy√

y
a1(d̃−1)
t

ya1(d̃−1)−1
, R2≡

∫ yt

yc

dy√
H(y)

, R3≡
∫ yt

0

 1√
H(y)

− y
∆
2√

h(y)
(
y
a1(d̃−1)
t

ya1(d̃−1)−1
)
dy

(6.19)
and the function R is defined by

R(yt) ≡
∫ yt

0

y
a1
2 (d̃−1)+ ∆

2

y
a1
2 (d̃−1)
t

√
h(y)

√
1− ya1(d̃−1)

y
a1(d̃−1)
t

dy . (6.20)

Also, notice that R can be expressed at the thermal equilibrium by R = R(yb). The
integration (6.19) can be expanded in the small δ, and to the leading order they are

R1 ' R2 ' y
1+ ∆

2
t δ, and R3 '

2y
1+ ∆0

2
t E

a1(d̃−1)h(yt)
. Moreover, we expand R(yt) at yt = yb for the

small ξ as R(yt) = R(yb) + R′(yb)yb ξ + O(ξ2) . With their expansions for small ξ and δ,

from (6.18) and (6.20) the relation between ξ and δ is found to be ξ ' g(yb)y
∆
2
b

2R′(yb)h(yb)
δ .

We then divide the boundary time t (3.29) into four parts

t = ts + t1 + t2 − t3 , (6.21)

where

t1 ≡
∫ yc

yb

y
∆0
2

h(y) dy, t2 ≡ E
∫ yt

0

y∆0−∆

h(y)
√
H(y)

dy, t3 ≡ E
∫ yt

yc

y∆0−∆

h(y)
√
H(y)

dy (6.22)

and ts is the saturation time, obtained from (3.29) by setting yc = yb and E = 0. In the
large R limit, since the relation between yb and R is identical to that in the sphere case
in (4.2) and (4.7), the leading behaviour of ts is also the same as (6.10). For a positive
(negative) ∆, the saturation time scale ts for fixed R and T becomes larger (smaller) than
the case of ∆ = 0. In the small R limit, the relation between the tip of the extremal
surface yb and the size of the boundary R in (4.18) allow us to write down the approximate
saturation time ts

ts '
2

∆0 + 2

(
a1(d̃− 1)

R̃0

)∆0+2
∆+2

R
∆0+2
∆+2 (6.23)

with R0 defined in (4.18). Again, the contribution of ∆ 6= 0 to the powers of R can be
checked from the saturation time ts obtained in the field theories. For a positive (negative)
∆, in the small R limit, the saturation time ts becomes larger (smaller) than the case of
∆ = 0 for fixed R and T .

Expanding (6.22) for the small δ gives t1 = y
1+ ∆0

2
b

ξ

h(yb) +O(δ2), t2 = I(yt)E +O(δ2), and
t3 = O(δ2) where the function I is defined by

I(yb) ≡
∫ yb

0

y∆0−∆
2

h(y)

√√√√h(y)
(
y
a1(d̃−1)
b

ya1(d̃−1) − 1
) . (6.24)
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After collecting the results of t1, t2 and t3 in their expansions for the small δ and the
relation between δ and ξ above, we arrive at

t− ts = u1δ +O(δ2) , (6.25)

where

u1 = a1
4 (d̃− 1)g(yb)y

∆
2 −

∆0
2

b

[
2y1+∆0
b

a1(d̃− 1)h(yb)2R′(yb)
− I(yb)

]
. (6.26)

For a continuous saturation, ts is great than t, so u1 should be smaller than zero. Never-
theless, when u1 > 0, it has been discussed in [25] that yc is still far away from yt near the
saturation so yt might jump to yb at t = ts, causing a discontinuous saturation. In particu-
lar, in the AdS background, the entanglement entropy undergoes discontinuous saturation
for both the large R and small R limits. In the case of the general anisotropic model, the
constraints on the scaling parameters due to u1 < 0, giving the continuous saturation are[

a1(d̃− 1) + 2∆0 − 3∆− 2
]
< 0 (6.27)

for large R, and
4a1(d̃− 1)

(2 + ∆)Ĩ0R̃0
< 1 (6.28)

for small R where Ĩ0 and R̃0 are defined in (A.1) and (A.2) (see the details in appendix). Re-
call that the scaling parameters are constrained by (2.4) from the black brane, (2.9), (2.10),
and (2.11) due to null energy conditions, and (3.23) and (4.19) from the solution of the
extremal surface as well as (5.7) and (5.9) by replacing d− 1 with d̃− 1 for the sensible en-
tanglement entropy. Also recall that the dimension d ≥ 3 is considered in the strip case. We
will further analyze the criteria of the continuous saturation in the Einstein-Axion-Dilaton
theory later. To deal with the integration of area, it is convenient to reformulate (3.30) as

AΓ
A∂Σ

= AΓv<0
A∂Σ

− A1
A∂Σ

+ A2
A∂Σ

+ A(yt) , (6.29)

where

A1 ≡
∫ yt

yc

dy√
H(y)

, A2 ≡
∫ yt

0

 1√
H(y)

− 1

y
a1
2 (d̃−1)−∆

2
√
h(y)

√
1− ya1(d̃−1)

y
a1(d̃−1)
t

 (6.30)

and the function A is defined by

A(yt) ≡
∫ yt

aUV

1

y
a1
2 (d̃−1)−∆

2
√
h(y)

√
1− ya1(d̃−1)

y
a1(d̃−1)
t

. (6.31)

Again, A(yb) = AΓeq
A∂Σ

. Next we do the small δ expansion of AΓv<0 in (3.30) and A1, A2

in (6.30) where AΓv<0
A∂Σ

' A1
A∂Σ
' y

∆
2 +1−a1

2 (d̃−1)
b δ, and A2

A∂Σ
' 2y

1+ ∆0
2 −

a1
2 (d̃−1)

t E

a1(d̃−1)h(yt)
. Note that the
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leading order term of A1 is the same as AΓv<0 in both h(yb) → 1 (small R) or h(yb) → 0
(large R). In the end, we conclude that in both the large and small R limits, the area
reaches its saturated value in the way of

AΓ−AΓeq = A∂Σg(yb)
2h(yb)

(
A′(yb)
R′(yb)

y
a1
2 (d̃−1)
b −1

)
y

∆
2 +1−a1

2 (d̃−1)
b δ+O(δ2)∝ (t−ts)2 . (6.32)

Following [25], a straightforward calculation also shows that in the large and small R limits
A′(yb)
R′(yb)

y
a1
2 (d̃−1)
b is equal to 1, which leads to AΓ → AΓeq quadratically in t− ts. However, in

generalR, the leading order terms of A1 and AΓv<0 in the small δ expansion will be different,
leading to the non-zero coefficient of the linear δ term in (6.32) where AΓ −AΓeq ∝ t− ts.
In general, the powers of t− ts in AΓ −AΓeq are independent of the scaling parameters as
well as the spatial dimension [29].

7 An example from the Einstein-Axion-Dilaton theory

Here we study the allowed scaling parameter regions given by all the constraints in the
cases of the sphere and strip separately. We give an explicit example by considering an
anisotropic background in the Einstein-Axion-Dilaton theory [43]. The background metric
obtained there is

ds2 = a2CRe
φ(r)/2r−

2θ
dz

(
−r2

(
f(r)dt2 +

d−1∑
i=2

dx2
i

)
+ Czr

2/zdx2
1 + dr2

f(r)a2r2

)
(7.1)

where CR and Cz are constants. Also, f(r) = 1−
( rh
r

)d+(1−θ)/z and eφ(r)/2 = r

√
θ2+3z(1−θ)−3√

6z .
The temperature of the black brane is given by T = |d+1−θ|

4πrh . According to our notations,
the scaling parameters read

ay = −
√
θ2 + 3z(1− θ)− 3√

6z
+ 2θ
dz

+ 2 , (7.2)

a0 =
√
θ2 + 3z(1− θ)− 3√

6z
− 2θ
dz

+ 2 , (7.3)

a1 =
√
θ2 + 3z(1− θ)− 3√

6z
− 2θ
dz

+ 2
z
, (7.4)

ai = a0 for i = 2, 3, . . . d− 1 . (7.5)

Thus, ∆h = d+ 1−θ
z , ∆ = 2

z − 2, and ∆0 = 0. Since ∂vΘ(v) = 0 for v 6= 0, the null energy
conditions in (2.9), (2.10), and (2.11) reduce to two constraints

θ2 + 3z(1− θ)− 3 ≥ 0, (z − 1)(1 + 3z − θ) ≥ 0 . (7.6)

In the sphere case with a1 = a2 = . . . = ad−2, the value of z becomes z = 1 giving
∆h = d + 1 − θ and ∆ = 0. While z = 1, the null energy conditions (7.6) constrain the
allowed regions of the parameter θ as

θ ≤ 0 and θ ≥ 3 . (7.7)
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Figure 1. The allowed regions of θ by fixing z = 1 in the sphere case in different dimension d,
constrained by (7.7), (7.8) and (7.9).

Also, for ∆ = 0, (5.2) leads to ∆h > 3 being consistent with the requirement of (2.4),
giving

d− 2 > θ (7.8)

with which, the constraint (5.3) holds for d ≥ 4. The constraint (5.7) is satisfied since
∆0 = 0 in this model. Together with (5.9),

− 2θ
d
− d

√
(θ − 3)θ√

6
+
√

(θ − 3)θ√
6

+ 6 > 0 . (7.9)

We summarize the constraints on the scaling parameter θ in the Einstein-Axion-Dilaton
theory for the sphere case by choosing different dimension d in figure 1.

As for the strip case, collecting all constraints from (3.23), (4.19), (5.7) and (5.9) by
replacing d − 1 with d̃ − 1 and combining them with the null energy conditions (7.6) in
this model gives the allowed parameter regions for θ and z in dimension d = 3 and d = 4
as shown in figure 2. Also, due to (6.27) for large R and (6.28) for small R, within the
allowed parameter regions, the model undergoes discontinuous saturation as in the AdS
background [25] although more general scaling parameters are involved.

8 Conclusions

In this paper, we employ the holographic method to study the thermalization of the strongly
coupled Lifshitz-like anisotropic hyperscaling violation theories after a global quench. The
gravity dual is the Vaydai-like geometry that describes the infalling of the massless delta
function planar shell from the boundary and the subsequent formation of the black brane.
We use the Ryu-Takayanagi formula to calculate the time evolution of the entanglement
entropy between a strip of width 2R or a spherical region of radius R and its outside
region. Our model with the nonzero ∆ = a1 + ay − 4 generalizes the previous studies on
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Figure 2. The allowed regions of θ and z in the Einstein-Axion-Dilaton theory in dimension d = 3
(left figure) and d = 4 (right figure), respectively constrained by NECs (7.6), the conditions of the
existence of the solution for the strip case (3.23) and (4.19), the condition of δS(t) increasing in time
for the early growth (5.9) via the replacement d − 1 with d̃ − 1, and the thermodynamic stability
condition (2.4). Note that the constraint in (5.7) is satisfied since ∆0 = 0 in the Einstein-Axion-
Dilaton theory. Together with (A.13) or (A.17), we find that the parameters in the blue regions
always lead to discontinuous saturation for the system.

the strongly coupled Lifshitz-like isotropic hyperscaling violation theories with ∆ = 0. We
find that quite generally the entanglement entropy grows polynomially in time with the
power depending on the scaling parameters in both the early times and late times. In
particular, in the early time, for the positive (negative) value of ∆, the power of t increases
(decreases) in ∆ (|∆|) to speed up (slow down) the growth rate as compared with the case of
∆ = 0 for both the sphere and strip cases in the small and large R limits. In the late times,
as the boundary time t reaches the saturation time scale ts, the entanglement entropy is
saturated in the same way as in the ∆ = 0 case, which is through the continuous saturation
in the sphere case but the discontinuous saturation in the strip case in an example of an
anisotropic background in the Einstein-Axion-Dilaton theories. As for the saturation time
ts, by fixing the length scale R and the temperature T , ts becomes larger (smaller) for a
positive (negative) ∆ than the case of ∆ = 0 in both the strip and sphere cases in the
large R limit. For the sphere case in the small R limit, in order to have an analytical
expression of the saturation time ts, one needs an exact solution of the extremal surface
that can be found when ay = 2. Thus, in this case, since a1 is always positive resulting
from the above mentioned constraints, the saturation time ts becomes larger (smaller) as
a1 increases (decreases). For the strip case in the small R limit, for a positive (negative) ∆
the saturation time scale ts becomes larger (smaller) than the case of ∆ = 0, again for the
fixed R and T . These behaviors can in principle be tested experimentally and compared
with other methods to characterize the thermalization of nonequilibrium systems.
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A The criteria of continuous/discontinuous saturation for the strip case

In section 6.2, we assume that yc is close to yt near the saturation, and derive (6.25).
However, in the case of u1 > 0, yc is still far away from yb near the saturation, and yt will
jump to yb at t = ts. In this appendix, we will find the condition for u1 < 0 in the large
and small R limits. The functions, R(yt) and I(yb) in (6.20) and (6.24) can be rewritten
in the summation forms

R(yt) ≡
∫ yt

0

y
a1
2 (d̃−1)+ ∆

2

y
a1
2 (d̃−1)
t

√
h(y)

√
1− ya1(d̃−1)

y
a1(d̃−1)
t

dy

= y
∆
2 +1
t

a1(d̃− 1)

∞∑
j=0

R̃jβ
j∆h , R̃j =

Γ
(
j + 1

2

)
Γ
(

1
2 + ∆+2

2a1(d̃−1) + j∆h

a1(d̃−1)

)
Γ(j + 1)Γ

(
1 + ∆+2

2a1(d̃−1) + j∆h

a1(d̃−1)

) , (A.1)

I(yb) ≡
∫ yb

0

y∆0−∆
2

h(y)

√
h(y)(y

a1(d̃−1)
b

ya1(d̃−1) − 1)

= 2y1+∆0−∆
2

b

a1(d̃− 1)

∞∑
j=0

Ĩjβ
j∆h , Ĩj ≡

Γ
(
j + 3

2

)
Γ
(

2∆h+∆0−∆
2a1(d̃−1) + j∆h

a1(d̃−1)

)
Γ (j + 1) Γ

(
1
2 + 2∆h+∆0−∆

2a1(d̃−1) + j∆h

a1(d̃−1)

) , (A.2)

where β = yb
yh
. In (A.1) and (A.2), the binomial identity and the Euler integral of the first

kind have been applied. From (A.1) and R(yb) = R, it is straightforward to obtain

R′(yb) =
(∆

2 + 1
)
R

yb
+ y

∆
2
b ∆h

a1(d̃− 1)

∞∑
j=0

jR̃jβ
j∆h . (A.3)

In the large R limit, the tip of extremal surface yb is very close to the horizon yh for β → 1.
In the small R limit, the tip of the extremal surface instead is very close to the boundary
y = 0 for β → 0.

The leading order behaviour of I(yb) in the large R limit relies on the asymptotic
approximation in (A.2) at j →∞ given by

Ĩjβ
j∆h '

√
a1(d̃− 1)

∆h
β∆hj −

√
a1(d̃− 1)

8∆3/2
h j

(
∆h + 2∆0 − 2∆− a1(d̃− 1)

)
β∆hj . (A.4)

Then in the large R limit (A.2) can be approximated by

I(yb)'
2y1+∆0−∆

2
b

a1(d̃−1)

∞∑
j=1

√a1(d̃−1)
∆h

β∆hj−

√
a1(d̃−1)

8∆3/2
h j

(
∆h+2∆0−2∆−a1(d̃−1)

)
β∆hj


(A.5)

'
y∆0−∆
h

∆hγ

[1
ε

+ ln(ε)
8

(
∆h+2∆0−2∆−a1(d̃−1)

)]
(A.6)

'
y∆0−∆
h

∆hγ
e2γR−

y∆0−∆
h

4∆h

(
∆h+2∆0−2∆−a1(d̃−1)

)
R. (A.7)
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Apparently when β → 1, the summation above diverges. This divergence can be translated
into the singular behavior of I(yb) in the case of yb = yh(1− ε), when ε→ 0, whereas the
most singular behaviour is given by (A.6). Moreover, the last expression is obtained using
the relation ln(ε) = −2Rγ +O(R0). Similarly, to discover how R′(yb) behaves in the large
R limit, the associated large j behaviour in (A.3) is obtained as

jR̃jβ
j∆h '

√
a1(d̃− 1)

∆h
β∆hj −

√
a1(d̃− 1)

8∆3/2
h j

(
4 + ∆h + 2∆ + a1(d̃− 1)

)
β∆hj . (A.8)

Then the leading term when β → 1 becomes

R′(yb)'
(∆

2 +1
)
R

yb

+ y
∆
2
b ∆h

a1(d̃−1)

∞∑
j=1

√a1(d̃−1)
∆h

β∆hj−

√
a1(d̃−1)

8∆3/2
h j

(
4+∆h+2∆+a1(d̃−1)

)
β∆hj


(A.9)

' 1
2yhγ

[1
ε

+ ln(ε)
8

(
4+∆h+2∆+a1(d̃−1)

)]
+
(∆

2 +1
)
R

yh
(A.10)

' e2γR

2yhγ
+

∆
2 +1−

(
4+∆h+2∆+a1(d̃−1)

)
8

 R
yh

(A.11)

As a result, due to (A.7) and (A.11), the behavior of u1 (6.26) in the large R limit is

u1 '
a1(d̃− 1)

16∆h
y

∆0
2 −

∆
2

h

[
a1(d̃− 1) + 2∆0 − 3∆− 2

]
R (A.12)

Note that we have used h(yb) ' ∆he
−2γR. Since ∆h > 0 is required, from (3.23) with

a1 > 0, we find that

u1 < 0⇔
[
a1(d̃− 1) + 2∆0 − 3∆− 2

]
< 0 (A.13)

for the large R limit. In the small R limit, we can approximate (A.2) and (A.3) as

I(yb) '
y

1+∆0−∆
2

b

a1(d̃− 1)
Ĩ0 (A.14)

and
R′(yb) '

∆ + 2
2a1(d̃− 1)

y
∆
2
b R̃0 . (A.15)

Then we find (6.26) in the small R limit to be

u1 '
g(yb)

4

[
4a1(d̃− 1)

(2 + ∆)Ĩ0R̃0
− 1

]
Ĩ0y

1+ ∆0
2

b . (A.16)

By (3.23), (A.2) and (A.3) where Ĩ0> 0, R̃0> 0 and a1> 0, we then arrive at 4a1(d̃−1)
(2+∆)Ĩ0R̃0

> 0.
Finally, from (A.16), we conclude

u1 < 0⇔ 4a1(d̃− 1)
(2 + ∆)Ĩ0R̃0

< 1 (A.17)

for the small R limit.
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