
J
H
E
P
0
3
(
2
0
2
1
)
1
5
8

Published for SISSA by Springer

Received: January 4, 2021
Accepted: February 1, 2021
Published: March 16, 2021

Integrating simple genus two string invariants over
moduli space

Anirban Basu
Harish-Chandra Research Institute, HBNI,
Chhatnag Road, Jhusi, Prayagraj 211019, India

E-mail: anirbanbasu@hri.res.in

Abstract: We consider an Sp(4,Z) invariant expression involving two factors of the
Kawazumi-Zhang (KZ) invariant each of which is a modular graph with one link, and
four derivatives on the moduli space of genus two Riemann surfaces. Manipulating it, we
show that the integral over moduli space of a linear combination of a modular graph with
two links and the square of the KZ invariant reduces to a boundary integral. We also
consider an Sp(4,Z) invariant expression involving three factors of the KZ invariant and
six derivatives on moduli space, from which we deduce that the integral over moduli space
of a modular graph with three links reduces to a boundary integral. In both cases, the
boundary term is completely determined by the KZ invariant. We show that both the
integrals vanish.

Keywords: Extended Supersymmetry, Superstrings and Heterotic Strings

ArXiv ePrint: 2012.14006

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP03(2021)158

mailto:anirbanbasu@hri.res.in
https://arxiv.org/abs/2012.14006
https://doi.org/10.1007/JHEP03(2021)158


J
H
E
P
0
3
(
2
0
2
1
)
1
5
8

Contents

1 Introduction 1

2 Genus two string amplitudes and the Kawazumi-Zhang invariant 3

3 Analyzing simple string invariants with two links 4

4 Analyzing simple string invariants with three links 7

5 Integrating simple string invariants over moduli space 12
5.1 Integral involving simple string invariants with two links 16
5.2 Integral involving a simple string invariant with three links 17

A Relations involving the graphs B5, B6, B7, B8, B9, B10 and B11 19

1 Introduction

Multiloop scattering amplitudes involving massless external states in perturbative string
theory contain very useful information about the structure of the effective action. While in
general a detailed analysis of such amplitudes is difficult to perform, the analysis simplifies
in compactifications which preserve large amount of supersymmetry. The structure of the
amplitudes involving gravitons as external states in toroidally compactified type II string
theory, which preserves maximal supersymmetry, has been analyzed at genus one as well as
at genus two, while very little is known beyond. The α′ expansion of these amplitudes yields
terms that are analytic as well as non-analytic in the external momenta in the effective
action. In order to obtain the precise coefficients of the various analytic terms, one has to
integrate over the entire moduli space of the Riemann surface, where the integrand is built
out of string invariants or modular graph forms [1, 2]. These graphs have links given by the
scalar Green function or its worldsheet derivative, while the vertices are the positions of
insertions of the vertex operators on the worldsheet. Hence analyzing various properties of
these string invariants plays a crucial role in determining terms in the effective action. This
has led to a detailed analysis of their properties [1–34] revealing a rich underlying structure.

In this paper, rather than directly analyze the string invariants, we shall be concerned
with performing their integrals over moduli space at genus two. Such integrals have been
considered at genus one and two leading to various interactions in the effective action [1, 3–
5, 8–10, 12, 23, 29, 35, 36]. While at genus one, these integrals are over the fundamental
domain of SL(2,Z), at genus two, they are over the fundamental domain of Sp(4,Z).

Let us consider the terms in the effective action that arise in the low momentum ex-
pansion of the four graviton amplitude at genus two [4]. The leading contribution which
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is the D4R4 interaction involves simply integrating over the volume element of the funda-
mental domain of Sp(4,Z) [5]. At the next order in the α′ expansion, we have the D6R4

interaction which involves integrating the Kawazumi-Zhang (KZ) invariant over moduli
space [11, 37, 38], which is done by reducing it to a boundary term using an eigenvalue
equation the KZ invariant satisfies [12]. While the structure of the string invariants that
arise in the integrand of the D8R4 interaction has been analyzed in asymptotic expansions
around the degenerating nodes [21, 22], their integrals over moduli space have not been
performed. Similar is the status of interactions that arise in the low momentum expansion
of the five graviton amplitude [27, 29]. While the KZ invariant yields a graph with only
one link, the integrands for the amplitudes at higher orders in the α′ expansion involve a
sum of terms each of which has graphs with a total of at least two links, where the number
of links in such terms increases as one goes to higher and higher orders in the α′ expansion.

Thus it is important to understand how to perform the integrals over moduli space
involving integrands given by string invariants for interactions that are α′ suppressed com-
pared to the D6R4 interaction in the low momentum expansion of the four graviton ampli-
tude. The graphs that arise in this expansion to all orders in the α′ expansion have links
that are given by the Green function. The situation gets more involved when one consid-
ers the graphs that arise in the low momentum expansion of the five graviton amplitude,
where additional contributions arise involving graphs with links given by the worldsheet
derivative of the Green function. Thus it is interesting in general to understand the issue
of integrating various string invariants over moduli space.

One of the major obstacles in performing these integrals over moduli space at genus
two arises from the fact that beyond the graph for the D6R4 interaction, there are no
known eigenvalue equations involving the Laplacian operator on moduli space the string
invariants satisfy that are useful in performing the integrals.1

In this paper, we shall perform the integrals over moduli space for certain simple genus
two graphs. They are simple in the sense that the links in them are disconnected2 and
hence they do not form closed loops on the worldsheet. We first consider the integral of a
graph with two links that arises in the analysis of the D8R4 term in the low momentum
expansion. We show that the integral with the Sp(4,Z) invariant measure of a linear
combination of this graph and the square of the KZ invariant reduces to a boundary term
on moduli space. Hence the integral can be evaluated based on only the knowledge of the
asymptotic expansions around the separating and non-separating nodes of the boundary
contribution, which turns out to be completely determined by the KZ invariant. We next
perform a similar analysis for a simple graph with three links that should arise in the
analysis of the D6R6 term in the low momentum expansion of the six graviton amplitude.
We evaluate the integral by reducing it to a boundary contribution, which again is entirely
determined by the KZ invariant. In both cases, the integral vanishes.

For the analysis of the graphs with two links, we start with an Sp(4,Z) invariant ex-
pression involving two factors of the KZ invariant and four derivatives on moduli space.

1The eigenvalue equation obtained in [39] is trivially satisfied on using the identities derived in [29]. I
am thankful to Boris Pioline for useful comments on this issue.

2This does not mean that such graphs always factorize in terms of graphs with lesser number of links
which follows from their detailed structure.
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Using the differential equation satisfied by the KZ invariant, this expression reduces to a
graph with two links and no worldsheet derivatives. Proceeding differently, we next manip-
ulate this expression to reduce it to a boundary term along with an additional contribution
involving the square of the KZ invariant. Equating the two results obtained by evaluat-
ing the same expression differently yields our desired answer. In obtaining these relations
which are valid everywhere in the bulk of moduli space, we use the eigenvalue equation the
KZ invariant satisfies, as well as the identities deduced in [29]. We next perform a similar
analysis using an Sp(4,Z) invariant expression involving three factors of the KZ invariant
and six derivatives on moduli space, leading to our desired answer. The intermediate steps
involve obtaining several algebraic relations between simple graphs with three links which
we obtain separately. We expect the analysis to generalize to simple graphs with arbitrary
number of links.

We begin by reviewing facts about genus two string amplitudes that are relevant for our
purposes. We then perform the analysis everywhere in the bulk of moduli space for graphs
with two links, and then for graphs with three links. Finally, we perform the integrals over
moduli space by evaluating the boundary contributions.

2 Genus two string amplitudes and the Kawazumi-Zhang invariant

We denote the genus two worldsheet by Σ2, and the conformally invariant Arakelov Green
function by G(z, w). The period matrix is defined by ΩIJ = XIJ + iYIJ (I, J = 1, 2), where
the matrices X and Y have real entries. Also we define Y −1

IJ = (Y −1)IJ , as well as the
dressing factors

(z, w) = Y −1
IJ ωI(z)ωJ(w), µ(z) = (z, z), P (z, w) = (z, w)(w, z), (2.1)

where ωI = ωI(z)dz is the Abelian differential one form. Every string invariant is given by
a graph with links involving the Arakelov Green function, along with a specific choice of
dressing factors for the integrated vertices. The integration measure over the worldsheet
is given by d2z = idz ∧ dz = 2d(Rez) ∧ d(Imz).

The Kawazumi-Zhang invariant which appears in the analysis of the D6R4 interaction
is given by

B1(Ω,Ω) =
∫

Σ2
2

2∏
i=1

d2ziG(z1, z2)P (z1, z2) (2.2)

as depicted by figure 1.3 We now write down several expressions involving it that are
satisfied everywhere in the bulk of moduli space, which are very useful for our purposes.

Defining
∂IJ = 1

2
(
1 + δIJ

) ∂

∂ΩIJ
(2.3)

we see that
∂KLΩIJ = 1

2
(
δIKδJL + δILδJK

)
(2.4)

3In the various figures depicting the graphs, the solid and dashed lines represent the Green function and
the dressing factor connecting the vertices respectively.
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Figure 1. The string invariant B1.

everywhere in the bulk of moduli space. The KZ invariant (2.2) satisfies the differential
equation [12]

∂IJ∂KLB1 = 1
16
(
ΘIJ ;KL + ΘIJ ;LK + ΘJI;KL + ΘJI;LK

)
, (2.5)

where ΘIJ ;KL is defined by

ΘIJ ;KL = 5Y −1
AKY

−1
IB

∫
Σ2

2

2∏
i=1

d2ziG(z1, z2)ωA(z1)ωB(z2)

×
(
Y −1
JL (z2, z1)− Y −1

LCωC(z2)Y −1
JDωD(z1)

)
. (2.6)

We shall see that (2.5) will play a central role in our analysis.
Defining the Sp(4,Z) invariant Laplacian by

∆ = 4YIKYJL∂IJ∂KL, (2.7)

we find that (2.2) satisfies the eigenvalue equation(
∆− 5

)
B1 = 0 (2.8)

in the bulk of moduli space, which we shall often use. In obtaining (2.8), we have used the
vanishing integral ∫

Σ
d2zµ(z)G(z, w) = 0 (2.9)

the Arakelov Green function satisfies.
Now the Siegel upper half spaceH2, where the various amplitudes are naturally defined,

is Kähler, and the Sp(4,R) invariant Kähler metric is

ds2 = Y −1
IJ Y

−1
KLdΩIKdΩJL. (2.10)

Thus from the inverse metric we see that YIJ naturally contracts with one holomorphic and
one anti-holomorphic index in moduli space. Let us try to construct Sp(4,Z) invariants
while insisting that we only allow such contractions.

Hence using only ∂∂B1 involving derivatives over moduli space to construct an Sp(4,Z)
invariant, we end up with ∆B1 using the definition (2.7), which is the only possibility.

3 Analyzing simple string invariants with two links

Based on the discussion above, let us try to construct invariants of the form (∂∂B1)2. In
fact, there are two possibilities for constructing invariants that do not factorize. We define
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(i) (ii) (iii)

Figure 2. The string invariants (i) B2, (ii) B3 and (iii) B4.

one of them by4

χ(2)(Ω,Ω) = 16YAKYBLYCIYDJ
(
∂AB∂CDB1

)(
∂IJ∂KLB1

)
. (3.2)

Thus preserving the symmetries, from (2.5) we have that

χ(2) = 1
4
(
YAKYBL + YALYBK

)(
YCIYDJ + YCJYDI

)
ΘAB;CDΘIJ ;KL. (3.3)

Using the expression (2.6), this gives us that

χ(2) = 25
4
(
2B2 + 2B3 + B2

1

)
, (3.4)

on using (2.9). In (3.4), the two string invariants are given by

B2 =
∫

Σ4

4∏
i=1

d2ziG(z1, z2)G(z3, z4)P (z1, z3)P (z2, z4),

B3 =
∫

Σ4

4∏
i=1

d2ziG(z1, z2)G(z3, z4)(z1, z4)(z4, z2)(z2, z3)(z3, z1). (3.5)

In the intermediate steps of the analysis, we also come across the string invariant

B4 =
∫

Σ4

4∏
i=1

d2ziG(z1, z2)G(z3, z4)(z1, z3)(z3, z4)(z4, z2)(z2, z1) (3.6)

which cancels in the final answer. While the graph B2 arises in the low momentum ex-
pansion of the four and five graviton amplitudes, the graphs B3 and B4 arise in the low
momentum expansion of the five graviton amplitude. These three graphs, depicted by
figure 2, differ only in their dressing factors.

4The other one is given by

YACYBKYDIYJL

(
∂AB∂CDB1

)(
∂IJ∂KLB1

)
(3.1)

which we do not consider.
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Using the relation between the graphs B2 and B3 given by [29]

B3 = B2 −
B2

1
2 , (3.7)

from (3.4) we get that
χ(2) = 25B2 (3.8)

yielding a simple string invariant with two links. Thus we obtain this result by evaluating
χ(2) directly.

Let us now evaluate χ(2) differently. First manipulating ∂CD in (3.2), we express
χ(2) as5

χ(2)

16 = (detY )3∂CD
[
(detY )−3YAKYBLYCIYDJ

(
∂ABB1

)(
∂IJ∂KLB1

)]
− YIKYJL

4
(
∂IJB1

)(
∂KL∆B1

)
. (3.9)

In fact using (2.8), the last term in (3.9) is equal to

− 5YIKYJL
4

(
∂IJB1

)(
∂KLB1

)
. (3.10)

Now in (3.10), we further manipulate ∂KL to obtain

YIKYJL
(
∂IJB1

)(
∂KLB1

)
= (detY )3∂KL

[
(detY )−3YIKYJLB1

(
∂IJB1

)]
− 1

4B1∆B1. (3.11)

The last term in (3.11) is equal to −5B2
1/4 on using (2.8). Hence putting the various

contributions together, we obtain an alternate expression for χ(2). Equating this expression
with (3.8), we get that

25
16
(
B2 − B2

1

)
= −5

4(detY )3∂KL
[
(detY )−3YIKYJLB1

(
∂IJB1

)]
+ (detY )3∂CD

[
(detY )−3YAKYBLYCIYDJ

(
∂ABB1

)(
∂IJ∂KLB1

)]
. (3.12)

Thus we see that B2 is entirely determined by the KZ invariant B1. In fact the combination
(B2 − B2

1)/(detY )3 is a total derivative in moduli space, which will be very helpful for us
later.

We can simplify (3.12) by using

YIJYKL − YILYJK = εIKεJL(detY ) (3.13)

and (2.8). This leads to

25
(
B2 − B2

1

)
16(detY )3 = εAIεBJεCKεDL∂CD


(
∂ABB1

)(
∂IJ∂KLB1

)
detY


− 2εAIεCK∂CD

[
YBDYJL
(detY )2

(
∂ABB1

)(
∂IJ∂KLB1

)]
. (3.14)

5In obtaining this as well as similar results below, we use (2.4) heavily.
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It will be interesting to analyze the invariant (3.1) by proceeding along the same lines
to see what we obtain, though the details are going to be more involved. To see this, note
that in the above analysis involving χ(2), very schematically manipulating the derivatives
we have obtained

χ(2) ∼
(
YAKYBL∂AB∂KLB1

)(
YCIYDJ∂IJ∂CDB1

)
+ . . . ∼ (∆B1)2

16 + . . . ∼ 25B2
1

16 + . . . ,

(3.15)
leading to the final expression, where the terms we have ignored involve total derivatives
on moduli space up to an overall factor of (detY )3. Such a simplification does not occur
in the analysis of (3.1) given the index structure of the invariant.

4 Analyzing simple string invariants with three links

Let us now perform a similar analysis involving graphs with three links, where we construct
invariants of the type (∂∂B1)3. While there are four such invariants one can consider that
do not factorize, we only focus on the one we define by6

χ(3)(Ω,Ω) = 64YAKYBLYIPYJQYCMYDN
(
∂AB∂CDB1

)(
∂IJ∂KLB1

)(
∂MN∂PQB1

)
. (4.3)

We first calculate χ(3) using (2.5). Keeping the symmetries manifest, we get that

χ(3) = 1
8
(
YAKYBL + YALYBK

)(
YIPYJQ + YIQYJP

)(
YCMYDN + YCNYDM

)
×ΘAB;CDΘIJ ;KLΘMN ;PQ. (4.4)

Then using (2.6) we obtain

χ(3) = 125
8
[
12
(
B5 + B6

)
− 6

(
B7 + B8

)
− 4

(
B9 + B10

)
+ 3B1B4

]
, (4.5)

6The other three invariants are given by

YAKYBLYCIYJPYDMYNQ

(
∂AB∂CDB1

)(
∂IJ∂KLB1

)(
∂MN∂PQB1

)
,

YACYBKYDIYJPYLMYNQ

(
∂AB∂CDB1

)(
∂IJ∂KLB1

)(
∂MN∂PQB1

)
,

YACYBKYILYJPYDMYNQ

(
∂AB∂CDB1

)(
∂IJ∂KLB1

)(
∂MN∂PQB1

)
. (4.1)

Along the lines of the discussion in the previous section, we see that the analysis of these invariants is
going to be more involved than the analysis of (4.3). As we shall soon analyze in detail, manipulating
the derivatives in χ(3) yield terms of the form B3

1 and B1B2 as well as other contributions that yield total
derivatives on moduli space, up to an overall factor of (detY )3. This simplification does not happen for the
invariants in (4.1) given their index structure.

In fact, the natural generalization of χ(2) and χ(3) involving n factors each of B1, ∂AB and ∂CD is given by

χ(n)(Ω,Ω) = 4n
n∏
i=1

(
YAiCi+1YBiDi+1

) n∏
j=1

(
∂AjBj∂CjDjB1

)
, (4.2)

where Cn+1 ≡ C1 and Dn+1 ≡ D1. Among the several string invariants that arise at this order, we expect
the manipulations involving (4.2) to be the simplest given the index structure.
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where the various string invariants are given by7

B5 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z5, z6)(z6, z3)(z3, z1)(z1, z5)P (z2, z4),

B6 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z5, z6)(z6, z3)(z3, z2)(z2, z4)(z4, z1)(z1, z5),

B7 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z3)(z3, z5)(z5, z6)(z6, z4)(z4, z2)(z2, z1),

B8 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z2, z1)(z1, z3)(z3, z2)(z6, z5)(z5, z4)(z4, z6),

B9 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z5)(z5, z3)(z3, z1)(z2, z6)(z6, z4)(z4, z2),

B10 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z5)(z5, z3)(z3, z2)(z2, z6)(z6, z4)(z4, z1).

(4.6)

In obtaining them, we have often used (2.9).
In fact the string invariant B11 defined by

B11 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z5, z6)(z6, z3)(z3, z4)(z4, z2)(z2, z1)(z1, z5)

(4.7)
also arises in the intermediate stages of the calculation, but cancels in the final answer.
Each of these simple string invariants involve three disconnected links, and only differ in
their dressing factors. They are depicted by figure 3.

To simplify the expression (4.5), we use the various relations between the graphs that
have been deduced in appendix A, the relation (3.7) as well as the relation [29]

B4 = B
2
1

2 . (4.8)

Thus we see that (4.5) yields

χ(3) = 125
2
[
B1
(
3B2 − B2

1

)
− 2B9

]
. (4.9)

Hence evaluating χ(3) using (2.5), we see that apart from graphs B1 and B2 that arise in
the integrands of terms at lower orders in the α′ expansion, it only depends on a single
simple graph B9 with three links.

7We expect the R6 and D2R6 interactions to be related to the 1/4 BPS D4R4 and 1/8 BPS D6R4

interactions respectively, and hence have the same string invariants as their integrands. However, we
expect that the integrands for the non-BPS D4R6 and D6R6 interactions should contain additional graphs
beyond those that arise in the integrands of the non-BPS D8R4 and D10R4 interactions respectively. Thus
we expect that the D6R6 amplitude should contain in its integrand disconnected graphs with three links
involving six vertices. Hence we refer to them as string invariants.
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(i) (ii) (iii)

(iv)
(v)

(vi) (vii)

Figure 3. The string invariants (i) B5, (ii) B6, (iii) B7, (iv) B8, (v) B9, (vi) B10 and (vii) B11.

We now evaluate χ(3) differently, where we often use (2.8). To start with, manipulating
∂AB in (4.3) and adding the complex conjugate contribution, we get that

χ(3)

32 = (detY )3∂AB
[
(detY )−3YAKYBLYIPYJQYCMYDN

(
∂CDB1

)(
∂IJ∂KLB1

)
×
(
∂MN∂PQB1

)]
− 5

4YIPYJQYCMYDN
(
∂CDB1

)(
∂IJB1

)(
∂MN∂PQB1

)
−YAKYBLYIPYJQ

(
∂CDB1

)(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)
+c.c. . (4.10)

Let us consider the second term in (4.10). Manipulating ∂CD, we get that

YIPYJQYCMYDN
(
∂CDB1

)(
∂IJB1

)(
∂MN∂PQB1

)
= 25

32B1
(
B2

1 − 2B2
)

− 5
8(detY )3∂IJ

[
(detY )−3YIKYJLB2

1

(
∂KLB1

)]
+ (detY )3∂CD

[
(detY )−3YIPYJQYCMYDNB1

(
∂IJB1

)(
∂MN∂PQB1

)]
, (4.11)

where we have used the identity

YIKYJLB1
(
∂IJB1

)(
∂KLB1

)
= 1

2(detY )3∂IJ
[
(detY )−3YIKYJLB2

1

(
∂KLB1

)]
− 5

8B
3
1 , (4.12)

and (3.8).
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We next consider the third term in (4.10). Manipulating ∂CD, we obtain

YAKYBLYIPYJQ
(
∂CDB1

)(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)
= (detY )3∂CD

[
(detY )−3YAKYBLYIPYJQB1

(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)]
− iYBLYIPYJQB1

(
∂IJ∂KLB1

)
∂AB

(
YAMYKN∂MN∂PQB1

)
− iYAKYBLYJQB1

(
∂IJ∂KLB1

)
∂AB

(
YIMYPN∂MN∂PQB1

)
+ iYAKYBLYIPYJQB1

(
∂IJ∂KLB1

)
∂AB

(
YMN∂MP∂NQB1

)
+ iYAKYBLYIPB1

(
∂IK∂CDB1

)
∂AB

(
YCMYDN∂MN∂PLB1

)
− 25

32B1B2 − YAKYBLB1∂AB
(
YCMYDN∂MN∂PQB1

)
∂KL

(
YIPYJQ∂IJ∂CDB1

)
. (4.13)

In obtaining (4.13), at an intermediate step we have manipulated an expression by using

∂CD∂AB
(
YCMYDN∂MN∂PQB1

)
= ∂AB∂PQ

(
YCMYDN∂MN∂CDB1

)
+ . . .

= 5
4∂AB∂PQB1 + . . . (4.14)

to obtain a simplified expression.
We now consider the last term in (4.13) which we express differently which will be very

useful for our purposes. We start with the expression

25
64B1∆B2 = YAKYBLB1∂AB∂KL

[
YCMYDNYIPYJQ

(
∂MN∂PQB1

)(
∂IJ∂CDB1

)]
(4.15)

which directly follows from (3.2) and (3.8). We first consider the term on the left hand
side of (4.15) which we manipulate to have the Laplacian acting on B1. Thus using (2.8),
we get that

25
64B1∆B2 = 25

16(detY )3∂AB
[
(detY )−3YAKYBLB1

(
∂KLB2

)]
− 25

16(detY )3∂KL
[
(detY )−3YAKYBL

(
∂ABB1

)
B2
]

+ 125
64 B1B2. (4.16)

Next we consider the right hand side of (4.15), which gives us

25
64B1∆B2 = 2YAKYBLB1∂AB

(
YCMYDN∂MN∂PQB1

)
∂KL

(
YIPYJQ∂IJ∂CDB1

)
+ 2iYAIYBPYCMYDNB1

(
∂MN∂PQB1

)
∂AB

(
YJQ∂IJ∂CDB1

)
+ 2iYAPYCMYDNYKQB1

(
∂MN∂PQB1

)
∂CD

(
YBL∂AB∂KLB1

)
− 2iYCMYDNYIKYJQYLPB1

(
∂MN∂PQB1

)(
∂IJ∂CD∂KLB1

)
− 2iYAMYBLYIPYJQYKN

(
∂MN∂PQB1

)(
∂AB∂IJ∂KLB1

)
+ 125

32 B1B2 . (4.17)
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In obtaining (4.17), at an intermediate step we have used

YAKYBL∂AB∂KL
(
YIPYJQ∂IJ∂CDB1

)
= YIPYJQ∂IJ∂CD

(
YAKYBL∂AB∂KLB1

)
+ . . .

= 5
4YIPYJQ∂IJ∂CDB1 + . . . (4.18)

which simplifies the resulting expression.
The first term on the right hand side of (4.17) is precisely of the form of the last term

on the right hand side of (4.13) which we want to express differently. Thus equating (4.16)
and (4.17), we get an expression for it in terms of the other terms in these equations, which
we substitute in (4.13) along with its complex conjugate. Thus we consider

YAKYBLYIPYJQ
(
∂CDB1

)(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)
+ c.c.. (4.19)

Among other contributions, (4.19) contains terms of the form iB1(∂∂B1)∂
(
. . . ∂∂B1

)
+ c.c.

schematically, where the ignored factors can involve factors of YIJ . Thus they yield terms
of the form iB1(∂∂B1)∂

(
∂∂B1

)
+c.c. as well as terms where the ∂ (or ∂) acts on the factors

of YIJ in . . . ∂∂B1. The total contribution of all terms of the form iB1(∂∂B1)∂
(
∂∂B1

)
+c.c.

vanishes, leading to a striking simplification.
This gives us that

YAKYBLYIPYJQ
(
∂CDB1

)(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)
+ c.c.

= (detY )3∂CD
[
(detY )−3YAKYBLYIPYJQB1

(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)]
− 25

32(detY )3∂AB
[
(detY )−3YAKYBLB1

(
∂KLB2

)]
+ 25

32(detY )3∂KL
[
(detY )−3YAKYBL

(
∂ABB1

)
B2
]
− 125

128B1B2 + c.c.. (4.20)

In the intermediate stages of the analysis, the expression

YIKYJQYMLYNPB1
(
∂IJ∂KLB1

)(
∂MN∂PQB1

)
(4.21)

arises, which apart from the factor of B1 involves (3.1). However it vanishes in the final
answer.

Thus adding the various contributions, we obtain the expression for χ(3) given by

χ(3)

32 = (detY )3∂AB
[
(detY )−3YAKYBLYIPYJQYCMYDN

(
∂CDB1

)(
∂IJ∂KLB1

)
×
(
∂MN∂PQB1

)]
−(detY )3∂CD

[
(detY )−3YAKYBLYIPYJQB1

(
∂IJ∂KLB1

)
×∂AB

(
YCMYDN∂MN∂PQB1

)]
− 5

4(detY )3∂CD
[
(detY )−3YIPYJQYCMYDNB1

(
∂IJB1

)
×
(
∂MN∂PQB1

)]
+ 25

32(detY )3∂AB
[
(detY )−3YAKYBLB1

(
∂KLB2

)]
+ 25

32(detY )3∂IJ
[
(detY )−3YIKYJLB2

1

(
∂KLB1

)]
− 25

32(detY )3∂KL
[
(detY )−3YAKYBL

(
∂ABB1

)
B2
]
− 125

128B1
(
B2

1−3B2
)

+c.c.. (4.22)
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We now equate the two expressions (4.9) and (4.22) which have been obtained by calculating
χ(3) in two different ways. The term involving B1(B2

1 − 3B2) cancels leading to a reduction
in the number of string invariants that appear in the final expression. We get that

− 125B9
32(detY )3 = ∂AB

[
(detY )−3YAKYBLYIPYJQYCMYDN

(
∂CDB1

)(
∂IJ∂KLB1

)
×
(
∂MN∂PQB1

)]
− ∂CD

[
(detY )−3YAKYBLYIPYJQB1

(
∂IJ∂KLB1

)
× ∂AB

(
YCMYDN∂MN∂PQB1

)]
− 5

4∂CD
[
(detY )−3YIPYJQYCMYDNB1

(
∂IJB1

)
×
(
∂MN∂PQB1

)]
+ 25

32∂AB
[
(detY )−3YAKYBLB1

(
∂KLB2

)]
+ 25

32∂IJ
[
(detY )−3YIKYJLB2

1

(
∂KLB1

)]
− 25

32∂KL
[
(detY )−3YAKYBL

(
∂ABB1

)
B2
]

+ c.c..

(4.23)

Thus we see that the string invariant B9 is completely determined by the KZ invariant B1
and B2, which in turn is determined by the KZ invariant using (3.12). Also B9/(detY )3 is
a total derivative on moduli space which will be very useful for our purposes.

To simplify (4.23), along with (3.13) we use

∂CD
[ B2

1
(detY )3YAPYBQ∂AB

(
YCMYDN∂MN∂PQB1

)]
= 5

4∂CD

[
B2

1
(detY )3YCMYDN∂MNB1

]
.

(4.24)
This gives us that

− 125B9
32(detY )3 = 25

32∂KL
[
YIKYJL
(detY )3

(
B1∂IJB2− B2∂IJB1−

1
3∂IJB

3
1

)]
−εAIεBJεKP εLQ∂CD

[ B1
detY

(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)]
−2εAIεKP∂CD

[ B1
(detY )2YJLYBQ

(
∂IJ∂KLB1

)
∂AB

(
YCMYDN∂MN∂PQB1

)]
+εAIεBJεKP εLQ∂AB

[
∂CDB1
detY

(
∂IJ∂KLB1

)(
YCMYDN∂MN∂PQB1

)]

+2εAIεKP∂AB

[
∂CDB1
(detY )2YJLYBQ

(
∂IJ∂KLB1

)(
YCMYDN∂MN∂PQB1

)]
+c.c..

(4.25)

5 Integrating simple string invariants over moduli space

We now consider integrating some simple string invariants we have discussed above over
moduli space. Such integrals are of the form∫

F2
dµ

B
(detY )3 . (5.1)
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In (5.1), B is constructed out of string invariants, and the integral is over F2, the funda-
mental domain of Sp(4,Z). The Sp(4,Z) invariant measure dµ/(detY )3 involves

dµ =
∏
I≤J

2d(ReΩIJ) ∧ d(ImΩIJ). (5.2)

Such integrals in (5.1) for generic B are difficult to evaluate, as they involve data all over
moduli space, and also given the involved structure of F2. However, if the integral can be
reduced to a boundary term in moduli space, its evaluation becomes considerably simpler
as it only involves boundary data. For example, this method of evaluating the integral
facilitated the evaluation of the integral of the KZ invariant over moduli space [12].

We now consider (5.1) when B is B2 − B2
1, and also when it is B9. Now from (3.14)

and (4.25), we see that both these integrals reduce to boundary terms in moduli space. To
evaluate them, we first briefly describe the structure of the boundary of moduli space, and
the asymptotic expansions of the relevant string invariants, and then proceed to evaluate
the integrals.

To analyze the boundary structure, we parametrize the period matrix Ω as

Ω =
(
τ v

v σ

)
. (5.3)

The boundary of moduli space involves contributions from the separating and the non-
separating nodes, as well as their intersection.

The separating node is obtained from (5.3) by taking v → 0, while keeping τ, σ fixed.
At this node, an SL(2,Z)τ × SL(2,Z)σ subgroup of Sp(4,Z) survives with the action

v → v

(cτ + d)(c′σ + d′) , τ → aτ + b

cτ + d
, σ → a′σ + b′

c′σ + d′
, (5.4)

where a, b, c, d, a′, b′, c′, d′ ∈ Z and ad− bc = a′d′ − b′c′ = 1. Thus τ and σ parametrize the
complex structure moduli of the resulting tori.

The non-separating node is obtained by taking σ → i∞, while keeping τ, v fixed.8 At
this node, an SL(2,Z)τ subgroup of Sp(4,Z) survives whose action on v, τ and σ is given
by [21, 22, 40]

v → v

(cτ + d) , τ → aτ + b

cτ + d
, σ → σ − cv2

cτ + d
, (5.5)

where a, b, c, d ∈ Z and ad − bc = 1. At this node, v parametrizes the coordinate on the
torus with complex structure τ , and thus

− 1
2 ≤ v1 ≤

1
2 , 0 ≤ v2 ≤ τ2. (5.6)

Also σ2 along with v2 and τ2 forms the SL(2,Z)τ invariant quantity

t = σ2 −
v2

2
τ2

(5.7)

which we shall use later.
8Another contribution comes from taking τ → i∞, while keeping σ, v fixed. These two contributions are

simply related by τ ↔ σ exchange, and hence we focus on only one of them.
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We now consider the asymptotic expansion of various quantities around these nodes
that will be relevant for our analysis. To start with, detY behaves as

detY = τ2σ2 +O(v2
2) (5.8)

at the separating node, and as

detY = τ2σ2 +O(σ0
2) (5.9)

at the non-separating node. We now state the expressions for the asymptotic expansions
of the string invariants B1 and B2 [11, 13, 21, 22, 41, 42].

The asymptotic expansions of B1 and B2 around the separating node are given by

B1 = 4ln|λ|+O(|λ|),
B2 = 16ln2|λ|+O(|λ|), (5.10)

where9

λ = 2πvη2(τ)η2(σ), (5.11)

and η(τ) is the Dedekind eta function.
On the other hand, the asymptotic expansions around the non-separating node are

given by10

B1 =− 2πt
3 − 2g(v)− 5F2(v)

πt
+O(e−t),

B2 =4π2t2

9 + 8πtg (v)
3 +O(t0). (5.12)

In (5.12), g(v) is the genus one Green function given by

g(v) ≡ g(v; τ) =
∑

(m,n) 6=(0,0)

τ2
π|m+ nτ |2

e2πi(my−nx), (5.13)

where we have parametrized v as
v = x+ τy, (5.14)

with x, y ∈ (0, 1]. The Green function is single-valued and doubly periodic on the torus.
Thus we have that ∫

Σ
d2zg(z) = 0,

∫
Σ
d2z∂z∂zg(z) = 0, (5.15)

which follows from (5.13), where Σ is the toroidal worldsheet.
In (5.12), we also have that11

F2(v) = E2 − g2(v), (5.16)
9Note that |λ| is SL(2,Z)τ × SL(2,Z)σ invariant under the transformations (5.4).

10In the asymptotic expansion of B2, apart from terms that are O(e−t), we have also ignored the O(t0),
O(t−1) and O(t−2) terms [21, 22], as they are not relevant for our analysis.

11Note that g2(v) and E2 are SL(2,Z)τ invariant.
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where g2(v) is the iterated Green function defined by

g2(v) ≡ g2(v; τ) =
∫

Σ

d2z

2τ2
g(v − z; τ)g(z; τ) (5.17)

and
E2 ≡ E2(τ) = g2(0) (5.18)

is the non-holomorphic Eisenstein series.
Now g(v), g2(v) and E2 satisfy the differential equations

∆τg(v) = 0, ∆vg(v) = −8πτ2δ
2(v) + 4π, ∆τg2(v) = 2g2(v),

∆vg2(v) = −4πg(v), ∆τE2 = 2E2, (5.19)

which are useful in our analysis. In (5.19) we have defined the SL(2,Z)τ invariant opera-
tors12

∆τ = 4τ2
2 ∂τ∂τ , ∆v = 4τ2∂v∂v, (5.20)

while the delta function is normalized to satisfy
∫

Σ d
2zδ2(z) = 1.

In order to evaluate the integrals of B2−B2
1 and B9 over moduli space, we shall think of

the boundary contributions as limits of contributions in the bulk [12]. To see the structure,
consider the integral (or its complex conjugate) given by13

∫
F2
dµ∂IJΨIJ =

∫
F2
dµ

[
∂τΨ11 + ∂σΨ22 + 1

2∂v
(
Ψ12 + Ψ21

)]
(5.22)

where we have used (2.3). The first two terms receive contributions from the non-separating
node while the remaining terms receive contributions from the separating node, and hence
the integral is entirely determined by the asymptotic expansions of ΨIJ around these nodes.
In this limiting procedure, the contribution from the separating node is evaluated in the
complex v plane as |v| = R → 0. Hence this is an integral in the complex v plane on a
circle around the origin with vanishing radius. On the other hand, the contribution from
the non-separating node σ2 → ∞ is evaluated as t = L → ∞ using (5.7) in an SL(2,Z)τ
invariant way.14

We shall see that there are no divergences in this limit in the two cases we consider.
For B2 − B2

1, it follows from (5.10) since B2 − B2
1 ∼ O(|λ|) at the separating node, and

from (5.12) as B2 − B2
1 ∼ O(t) at the non-separating node. Thus they lead to absolutely

convergent integrals in (5.1) on simply using (5.8) and (5.9). For B9, a similar conclusion
should follow from its asymptotic expansions around the various nodes.

12The τ derivative is taken at constant x, y in (5.14), and not at constant v.
13We define

∂τ = ∂

∂τ
, ∂σ = ∂

∂σ
, ∂v = ∂

∂v
(5.21)

and similarly for its complex conjugates.
14This essentially reduces to neglecting v2 = yτ2 contributions in the final answer that result from various

expressions involving YIJ . After taking this limit, what remains is an SL(2,Z)τ invariant integral over v
and τ .
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Before we proceed to calculate these integrals, let us very briefly consider the case
when B = B1 [12] in (5.1). Using (2.8), we have that

∫
F2
dµ

B1
(detY )3 = 4

5

∫
F2
dµ∂IJ

[
YIKYJL
(detY )3∂KLB1

]
, (5.23)

hence reducing to an integral over the boundary of moduli space. Now from (5.12), we
see that the contribution from the non-separating node vanishes. On the other hand,
from (5.10) we see that the contribution from the separating node is of the form

∫
F1

d2τ

τ2
2

∫
F1

d2σ

σ2
2

∮
dv

v
, (5.24)

where F1 is the fundamental domain of SL(2,Z) and the contour has been mentioned
above. Thus (5.24) is non-vanishing because of the presence of the simple pole in the
contour integral. We shall see this crucial feature is absent in the integrals which we now
analyze.

5.1 Integral involving simple string invariants with two links

We first consider the integral ∫
F2
dµ

(
B2 − B2

1

)
(detY )3 (5.25)

over moduli space, which using (3.14) reduces to a boundary term which we evaluate based
on the discussion above. Its evaluation requires the asymptotic expansions of B1 given
by (5.10) and (5.12).

First let us consider the contribution to the integral from the separating node, where
the only potentially non-vanishing contributions arise from the terms given in (5.10) in the
limit R→ 0. The first term in (3.14) gives us

1
4∂v


(
∂vB1

)(
∂v∂vB1

)
τ2σ2

 , (5.26)

which using ∂v∂vB1 ∼ δ2(v), yields a divergent contribution of the form δ2(v)/v on the
boundary using (5.22). However the second term in (3.14) produces a cancelling contribu-
tion, and so the total contribution at the separating node vanishes.

We next consider the contribution to the integral from the non-separating node us-
ing (5.12) as the ignored terms do not contribute. While the first term in (3.14) does not
contribute, the second term gives us

− π

6 ∂t

[
∂v∂vg(v)

τ2
2

]
. (5.27)
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Thus using (5.22), it yields an SL(2,Z)τ invariant contribution proportional to15

∫
F1

d2τ

τ2
2

∫
Σ

d2v

τ2
∆vg(v) (5.29)

in the final expression. Using (5.15), the integral over Σ vanishes. Hence there is no
contribution from the non-separating node. Thus this yields

∫
F2
dµ

(
B2 − B2

1

)
(detY )3 = 0 (5.30)

leading to a vanishing integral.

5.2 Integral involving a simple string invariant with three links

We next consider the integral ∫
F2
dµ

B9
(detY )3 (5.31)

over moduli space, which using (4.25) again reduces to a boundary term which we now
evaluate. Note that its evaluation requires only the asymptotic expansions of B1 and B2
given by (5.10) and (5.12), and does not require any information about B9, hence simplifying
the analysis considerably.

To begin with, consider the contribution to the integral from the separating node,
where the potentially non-vanishing contributions arise from (5.10). Now using

B1∂IJB2 − B2∂IJB1 −
1
3∂IJB

3
1 =

(
B2

1 − B2
)
∂IJB1 + B1∂IJ

(
B2 − B2

1

)
(5.32)

and that B2 − B2
1 ∼ O(|λ|) at this node, we see that the contribution from the first term

in (4.25) vanishes.
The second term contributes

−1
8∂v

[
B1
(
∂v∂vB1

)
∂v
(
∂v∂vB1

)]
(5.33)

which yields a contribution involving δ2(v)∂vδ2(v)ln|λ| on the boundary of moduli space.
However, the third term produces a cancelling contribution.

The fourth term contributes

1
8∂v

[
∂vB1
τ2σ2

(
∂v∂vB1

)2
]

(5.34)

which yields a contribution involving (δ2(v))2/v on the boundary of moduli space. The
fifth term produces a cancelling contribution. Thus the total contribution at the separating
node vanishes.

15The integral over σ1 simply yields ∫ 1

0
dσ1 = 1. (5.28)

The σ1 dependence in the asymptotic expansions of the string invariants comes from terms of the form
e2πiσ which are exponentially suppressed for large t and do not contribute to the answer.
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We next consider the contribution to the integral from the non-separating node. As
t = L→∞, the relevant contributions from (4.25) to the final expression must be SL(2,Z)τ
invariant, and hence we focus on them.

The contribution from the first term in (4.25) is of the form

∂t

[ 1
tτ3

2

(
B1∂tB2 − B2∂tB1 −

1
3∂tB

3
1

)]
, (5.35)

resulting in

1
t

∫
F1

d2τ

τ2
2

∫
Σ

d2v

τ2

[(
B2

1 − B2
)
∂tB1 + B1∂t

(
B2 − B2

1

)]∣∣∣
t=L→∞

(5.36)

in the final expression. From (5.12) we see that B2 − B2
1 ∼ O(t0) and hence the first term

in (4.25) does not contribute.
The SL(2,Z)τ invariant contributions from the second term in (4.25) arise from

− i

8∂t
[B1
tτ2

(
∂v∂vB1

)
∂v
(
Y2MY2N∂MN∂vB1

)]
, (5.37)

which is exactly cancelled by a contribution coming from the third term in (4.25). This
is much like the analysis for the separating node where competing contributions cancel.
However, (5.37) produces only vanishing contributions by itself and one need not consider
other terms. This is like the analysis of the non-separating node in the previous section.
To see this, from (5.12) we have that

B1
tτ2

(
∂v∂vB1

)
∼ ∂v∂vg(v)

τ2
+ 1
tτ2

(
g(v)
τ2

+ g(v)∂v∂vg(v)
)

+O(t−2), (5.38)

where we have used
∆vF2(v) = 4πg(v). (5.39)

We also have that
∂v
(
Y2MY2N∂MN∂vB1

)
∼ t

τ2
(5.40)

as the O(t0) contribution cancels.
Thus from (5.38), (5.40) and (5.37), we get a contribution of the form

∂t

[
t∂v∂vg(v)

τ2
2

]
(5.41)

yielding a potentially linearly divergent contribution

L

∫
F1

d2τ

τ2
2

∫
Σ

d2v

τ2
∆vg(v) (5.42)

at the boundary. However, the integral is the same as (5.29) and vanishes.
We also get finite contributions as L→∞. One of them is of the form

∂t

[
g(v)
τ3

2

]
, (5.43)
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which yields the boundary term ∫
F1

d2τ

τ2
2

∫
Σ

d2v

τ2
g(v), (5.44)

which vanishes using (5.15). The other finite contribution is of the form

∂t

[
g(v)∆vg(v)

τ3
2

]
(5.45)

leading to the boundary term ∫
F1

d2τ

τ2
2

∫
Σ

d2v

τ2
g(v)∆vg(v). (5.46)

However on using (5.19), and setting g(0) = 0,16 we see this contribution vanishes us-
ing (5.15).

Proceeding similarly, we see that the remaining terms in (4.25) do not give any addi-
tional non-vanishing contributions. Thus the total contribution from the non-separating
node vanishes.

Hence this leads to the vanishing integral∫
F2
dµ

B9
(detY )3 = 0 (5.47)

over moduli space.
Thus we see that manipulating the expressions χ(i)(Ω,Ω) by evaluating them in two

different ways leads to results for integrals of some simple string invariants over moduli
space. We expect that generalizing this analysis for graphs with more links will prove
useful in evaluating various integrals over moduli space by reducing them to boundary
terms, which depend only on asymptotic data.

A Relations involving the graphs B5, B6, B7, B8, B9, B10 and B11

We now obtain various relations involving the graphs B5,B6,B7,B8,B9, B10 and B11 defined
by (4.6) and (4.7) that arise in the analysis of χ(3). They prove to be very useful in
simplifying (4.5).

To start with, we define

∆(zi, zj) = εIJωI(zi)ωJ(zj), (A.1)

which satisfies the identity [29]

ωI(zi)∆(zj , zk) + ωI(zk)∆(zi, zj) + ωI(zj)∆(zk, zi) = 0. (A.2)
16Coincident Green functions, resulting from colliding vertex operators, are not in the moduli space of

these graphs as they produce other local operators using the operator product expansion, the propagation
of which leads to kinematic poles, rather than contact interactions in the amplitude. These cannot be seen
by a naive perturbative expansion in α′ by keeping a finite number of terms. In fact, this follows from an
analysis of the structure of the Koba-Nielsen factor in the string amplitude using the cancelled propagator
argument (see [34], for example, for a recent discussion).
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In our analysis, we also use the identity

(detY )−1∆(zi, zj)∆(zk, zl) = (zi, zk)(zj , zl)− (zi, zl)(zj , zk). (A.3)

First let us consider the graph B5. Using (A.3) with zi = z3, zj = z4, zk = z1 and
zl = z2, we get that17

B5 − B6 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z5, z6)(z6, z3)(z2, z4)(z1, z5)

×∆(z3, z4)∆(z1, z2)
detY . (A.4)

For the term on the right hand side, we use (A.2) with zi = z2, zj = z3 and zk = z4 as well
as (A.3) to get the relation

B5 = B6 + B11. (A.5)

Let us again consider the graph B5. Using (A.3) with zi = z6, zj = z4, zk = z3 and
zl = z2 instead, we obtain

B5 − B7 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z5, z6)(z3, z1)(z2, z4)(z1, z5)

×∆(z6, z4)∆(z3, z2)
detY . (A.6)

For the term on the right hand side, using (A.2) with zi = z2, zj = z6 and zk = z4 as well
as (A.3) we get that

B5 = B7 + B6, (A.7)

and hence
B7 = B11 (A.8)

which follows from (A.5).
We next consider the graph B7. Using (A.3) with zi = z4, zj = z3, zk = z2 and zl = z5,

yields

B7 − B8 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z3)(z5, z6)(z6, z4)(z2, z1)

×∆(z4, z3)∆(z2, z5)
detY . (A.9)

For the term on the right hand side, we use (A.2) with zi = z6, zj = z4 and zk = z3 as well
as (A.3) to obtain the relation

B7 = B8 − B11 + B1B4. (A.10)
17We often use (2.9) in our analysis.
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(i) (ii)

Figure 4. The string invariants (i) B12 and (ii) B14.

Finally let us consider the graph B9. Using (A.3) with zi = z3, zj = z4, zk = z1 and
zl = z2, we get that

B9 − B10 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z5)(z5, z3)(z2, z6)(z6, z4)

×∆(z3, z4)∆(z1, z2)
detY . (A.11)

For the term on the right hand side, using (A.2) with zi = z6, zj = z3 and zk = z4 as well
as (A.3) we get that

B9 = B10 − B5 + B6 = B10 − B11 (A.12)

on using (A.5).
To obtain more relations between these graphs, we introduce the graphs B12, B13 and

B14 defined by

B12 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z2, z3)(z3, z1)(z1, z6)(z6, z2)P (z4, z5),

B13 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z3)(z3, z5)(z5, z1)(z6, z4)(z4, z2)(z2, z6),

B14 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z3)(z3, z2)(z2, z6)(z6, z4)(z4, z5)(z5, z1),

(A.13)

two of which are depicted by figure 4. We have refrained from drawing B13, as it looks
exactly the same as the graph B9 depicted by figure 3. However, these two graphs are
different. This can be easily seen by assigning arrows to the dressing factors in the graphs
(which we have ignored for the sake of brevity) such that in (w, z) the arrow goes from
the vertex w to the vertex z along the dashed line, which gives an orientation to each
closed loop formed by the dressing factors. Then we see that the orientations of the two
loops formed by the dressing factors in the graphs B9 and B13 are different. In fact, all the
other graphs that arise in our analysis do not have this ambiguity and are uniquely defined
without the need to specify the orientation of the loops.
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To proceed, we rewrite B12 as

B12 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z6)(z6, z2)

×∆(z2, z3)∆(z4, z5)∆(z3, z1)∆(z5, z4)
(detY )2 . (A.14)

Using (A.3) for ∆(z4, z5)∆(z5, z4)/detY and ∆(z2, z3)∆(z3, z1)/detY , we obtain the ex-
pression given in (A.13). We next evaluate (A.14) using (A.3) for ∆(z4, z5)∆(z3, z1)/detY
and ∆(z2, z3)∆(z5, z4)/detY instead. Equating the resulting expression with B12 in (A.13)
gives the relation

B6 = 1
2B1B3 (A.15)

between the graphs.
We next consider B13 which we rewrite as

B13 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z5, z1)(z2, z6)

×∆(z1, z3)∆(z6, z4)∆(z3, z5)∆(z4, z2)
(detY )2 . (A.16)

Using (A.3) for ∆(z1, z3)∆(z3, z5)/detY and ∆(z6, z4)∆(z4, z2)/detY , this reduces to
the expression in (A.13). We now evaluate (A.16) differently using (A.3) for
∆(z1, z3)∆(z4, z2)/detY and ∆(z6, z4)∆(z3, z5)/detY . Equating the resulting expression
with B13 in (A.13) yields

B7 = 1
2B1B4. (A.17)

Now the relations (A.8), (A.10), (A.17) immediately gives us that

B8 = 0. (A.18)

In fact let us deduce the relation (A.18) directly. To see this rewrite B14 in (A.13) as

B14 =
∫

Σ6

6∏
i=1

d2ziG(z1, z2)G(z3, z4)G(z5, z6)(z1, z3)(z3, z2)

×∆(z2, z6)∆(z4, z5)∆(z6, z4)∆(z5, z1)
(detY )2 . (A.19)

Using (A.3) for ∆(z2, z6)∆(z6, z4)/detY and ∆(z4, z5)∆(z5, z1)/detY , we see it reduces to
the expression in (A.13). Evaluating (A.19) using (A.3) for ∆(z2, z6)∆(z5, z1)/detY and
∆(z4, z5)∆(z6, z4)/detY instead, and equating the resulting expression with B14 in (A.13)
gives back (A.18).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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