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1 Introduction

Infrared-safe event shape variables, which we will generically denote by e, play a central
role in perturbative QCD: they are essential tools for the precise determination of the
strong coupling constant, and they are classic testing grounds for both analytical and
numerical models of hadronization. Owing to their infrared and collinear safety, they can
be computed in perturbation theory, and furthermore large logarithmic corrections to the
distributions can be resummed to all orders by a variety of methods. At fixed orders, the
state of the art is next-to-next-to-leading order (NNLO) accuracy [1–5], while the next
to leading log (NLL) resummation has been known for a while [6–9]. In recent years,
the NNLL resummation framework has also been developed [10–21]). Here we will be
concerned with analytic estimates of non-perturbative corrections, which are suppressed
by powers of Λ/Q (where Λ is the QCD scale and Q is the center-of-mass energy) with
respect to the perturbative result. The basic idea of such analytic estimates goes back to
the Operator Product Expansion (OPE), and was first applied to observable that do not
admit an OPE in the early papers [22–24]. Very roughly speaking, one notes that a generic
(dimensionless) observable in perturbative QCD is a sum of a ‘leading power’ perturbative
series plus power corrections, of the general form

σ

(
Q

µ
,αs

)
= σpert

(
Q

µf
,
µf
µ
, αs

)
+
∑
n

σn

(
µf
µ
, αs

)(
µf
Q

)n
, (1.1)
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where µf is a perturbative factorization scale, ultimately to be traded for the strong in-
teraction scale Λ. Generically, with a dimensional regulator, different terms in the sum in
eq. (1.1) mix with each other under renormalization. In dimensional regularization, the
same effect arises in a subtler fashion: each term in eq. (1.1) is ambiguous due to the
divergence of the corresponding perturbative expansion, which manifests itself via singu-
larities in the Borel plane. These ambiguities are power-suppressed and are compensated
by corresponding ambiguities in subsequent terms in the sum in eq. (1.1). This opens the
way for a perturbative estimate of hadronization corrections based on the study of singu-
larities in the Borel plane. Phenomenological studies of event shapes and other basic QCD
observables with these tools were first systematically pursued in [25], and subsequently
developed in a vast literature, reviewed in [26]. The phenomenological importance of these
power-suppressed corrections cannot be understated: for example, they are crucial for a
precise determination of the strong coupling [11, 27–30].

In the case of event shape distributions, denoted by dσ/de below, the situation is more
subtle. Such distributions peak in the two-jet region, which can be taken to correspond
to e → 0, and which is dominated by soft and collinear emissions; in this region, the
distributions are typically affected by enhanced power corrections of the form (Λ/(eQ))n,
associated with the emission of soft gluons, as well as corrections scaling as

(
Λ2/(eQ2)

)n,
associated with hard collinear gluon emission. We will refer to the first of these as ‘soft’
power corrections, and to the second ones as ‘collinear’ power corrections for the sake
of brevity. When e ∼ Λ/Q, which is typically close to the peak of the distribution at
least at LEP energies, all soft power corrections become equally important and need to
be resummed in order to get a stable prediction. At even smaller values of e, e ∼ Λ2/Q2,
collinear power corrections become relevant as well.

An elegant and efficient method to handle simultaneously large perturbative logarithms
(up to NLL accuracy) and power corrections in the two-jet region is Dressed Gluon Expo-
nentiation (DGE) [31], which has already been applied to a variety of event shapes [32–34],
as well as to other important QCD observables [35–37]. DGE, aside from consistently
including the NLL resummation of Sudakov logarithms, provides a renormalon-based esti-
mate of both soft and collinear power corrections. Collinear power corrections have been
shown to enjoy a degree of universality [32, 33, 36] across several inclusive observables.
When, however, this universality breaks down, as for example in [34, 38], collinear power
corrections can be very cumbersome to compute; furthermore, they only become relevant
at extremely small values of the event shape, usually out of experimental range, or in a
region where very few data points are available.

These facts suggest that it would be useful to construct a systematic approximation
to DGE which would suffice to capture all soft power corrections, while remaining simple
to implement in practice. In this paper, we will introduce such an approximation, which
essentially consists in combining DGE with the eikonal approximation for the relevant
matrix elements. We call the resulting construction Eikonal Dressed gluon exponentiation
or EDGE. The universality and simplicity of soft emission can then be used to express soft
power corrections to a large class of event shapes in terms of a very simple integral, which
reproduces known results for all event shapes for which soft power corrections are known.
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The paper is structured as follows: section 2 briefly summarizes the essential aspects of
DGE, section 3 shows how to implement EDGE using energy fractions by taking examples
from three very well known event shapes: thrust, C-parameter and angularities, section 4
describes the implementation of EDGE using the transverse momentum and the rapidity,
in section 5 we present Sudakov exponent and discuss power corrections.

2 Dressed Gluon Exponentiation

The starting point for DGE is the event shape distribution in the single dressed gluon
approximation, which is constructed from the one-loop real emission contribution to the
event shape for a gluon with virtuality k2 6= 0. From this, one easily obtains [23] the
(renormalon) resummation of quark vacuum polarization corrections which dominates in
the large Nf limit. One can write the result as

1
σ

dσ

de
(e,Q2)

∣∣∣
SDG

= − CF
2β0

∫ 1

0
dξ
dF(e, ξ)
dξ

A(ξQ2) , (2.1)

where β0 = 11
12CA −

1
6Nf , ξ = k2/Q2, and A(ξQ2) is the large-β0 running coupling (A =

β0αs/π) on the time-like axis. In the MS scheme, it admits the Borel representation

A(ξQ2) =
∫ ∞

0
du(Q2/Λ2)−u sin πu

πu
e

5
3uξ−u . (2.2)

The cornerstone of eq. (2.1) is the characteristic function F(e, ξ), which is the one-loop
event shape distribution with a non-vanishing gluon virtuality k2 [25, 39],

F(e, ξ) =
∫
dx1dx2M(x1, x2, ξ) δ (e− ē(x1, x2, ξ)) , (2.3)

where xi are the customary energy fraction variables, M is the matrix element for the
emission of a gluon with k2 6= 0, and ē is the explicit expression of the event shape in
terms of the kinematic variables. Interchanging the order of integrations in eq. (2.1) we
can construct a Borel representation as

1
σ

dσ

de
(e,Q2)

∣∣∣
SDG

= CF
2β0

∫ ∞
0

du(Q2/Λ2)−uB(e, u) , (2.4)

where the Borel function B(e, u) is defined by

B(e, u) = −sin πu
πu

e
5
3u
∫ ∞

0
dξ ξ−u

dF(e, ξ)
dξ

. (2.5)

The Borel function B(e, u) has a simple structure in the u plane, without renormalon
singularities. Renormalon poles are however generated when the single dressed gluon dis-
tribution is exponentiated via a Laplace transform [31].

The additive property of the event shapes with respect to the multiple gluon emissions
together with the factorization of soft and collinear emissions from the hard part of the
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matrix element leads to the exponentiation of the logarithmically enhanced terms in the
Laplace space and the resummed cross section is given by [32, 33],

1
σ

dσ(e,Q2)
de

=
∫ C+i∞

C−i∞

dν

2πi e
νe exp[S(ν,Q2)] , (2.6)

where C lies to the right of the singularities of the integrand. The Sudakov exponent has
the form [40],

S(ν,Q2) =
∫ 1

0
de

1
σ

dσ(e,Q2)
de

∣∣∣
SDG

(e−νe − 1). (2.7)

The Sudakov region e→ 0 corresponds to ν →∞. Using eq. (2.4), the Sudakov exponent
takes the form

S(ν,Q2) = CF
2β0

∫ ∞
0

du

(
Q2

Λ2

)−u
Be
ν(u), (2.8)

where the Borel function in the Laplace space, Be
ν(u), is defined as

Be
ν(u) =

∫ 1

0
deB(e, u) (e−νe − 1). (2.9)

This exponentiation effectively resums both large Sudakov logarithms and power correc-
tions in the two-jet region.

3 Borel function using Eikonal Dressed Gluon Exponentiation

In this article we undertake the calculation of the Borel function that was defined in
eq. (2.5) for three very well known event shape variables: (a) the thrust [41–44], (b) the
C-parameter [45–48] and, (c) the angularities [49–51], and we propose a simplified version
of the well-established method of Dressed Gluon Exponentiation (DGE), which we call
Eikonal DGE (EDGE), which determines all dominant power corrections to event shapes
by means of strikingly elementary calculations. We believe our method can be generalized
to hadronic event shapes and jet shapes of relevance for LHC physics. There are two
aspects to this simplification. First, as we will see in the later parts of this article, we
only need to work with the squared matrix element in the eikonal limit. Second, and more
importantly, the event shape definitions can be simplified (eikonalized) to significantly
simplify the computations, however, still capturing the dominant power corrections. The
definition of thrust is simple enough and does not require any eikonalization, however we
will introduce the eikonalized versions of C-parameter and angularities for the computation
of their respective Borel functions.

As discussed above we need to construct the characteristic function F(e, ξ) for these
three event shape variables for the order αs process γ∗ → qq̄g. The color stripped squared
matrix element after removing the coupling is

M(x1, x2, ξ) = (x1 + ξ)2 + (x2 + ξ)2

(1− x1)(1− x2) − ξ

(1− x1)2 −
ξ

(1− x2)2 , (3.1)

where the energy fractions are defined by

x1 = 2p1 ·Q
Q2 , x2 = 2p2 ·Q

Q2 , x3 = 2k ·Q
Q2 . (3.2)
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√
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√

ξ

1 + ξ

2
√

ξ

1− x2 =
ξ
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Figure 1. Dalitz plot showing phase space for γ → qq̄g with off-shell gluon. The energy momentum
conservation condition x1 + x2 + x3 = 2 is satisfied throughout this x1 − x2 plane and the actual
length along x3 axis is

√
2 times the measured length. The collinear limit (when the gluon is

collinear to the quark) corresponds to x1 = 1 − ξ, x2 = 0, while the soft limit (when the gluon
is soft to the quark) corresponds to x1 = x2 = 1 −

√
ξ. The soft boundary of the phase space

1− x2 = ξ/(1− x1) is denoted by the red curve.

Here k denotes the momentum of the off-shell gluon and, p1 and p2 are the momenta of
the quark and anti-quark respectively. Momentum conservation Q = p1 + p2 + k gives the
constraint x1 + x2 + x3 = 2. Figure 1 gives the Dalitz plot for this processes. In the soft
gluon limit we approximate the squared matrix element to,

Msoft(x1, x2, ξ) = 2
(1− x1)(1− x2) . (3.3)

Note that this is the same as what we would write in the soft gluon limit for the case of
massless gluon.

Next we will take the mentioned three shape variables in turn and construct eikonalized
versions of them and then compute the corresponding characteristic functions, and their
Borel functions.

3.1 Thrust

Thrust is one of the most studied event shapes and it has a historical connection with the
determination of strong coupling constant αs. It is defined as [43]

T = Max
n

∑
i |pi · n|∑
iEi

, (3.4)
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where pi denotes the 3-momentum of the i-th particle in the final state and n is a unit
vector. In order to determine the range of T , we need to consider two extreme cases: a
most spherical configuration and a pencil like configuration. For a spherical configuration,
T attains a minimum value 1/2 and for a pencil like configuration, T attains a maximum
value 1. Thus, thrust varies in the range 1/2 ≤ T ≤ 1. For a three particles final state, the
numerator in eq. (3.4) is maximum when n is along the direction of the largest pi. Thus,
the thrust for all massless particles final state is given by

T = Max{x1, x2, x3}. (3.5)

In presence of a massive off-shell gluon in the final state, the definition of thrust needs
some simple modifications which was first given in [52] and has the form,

T = Max
{
x1, x2,

√
x2

3 − 4ξ
}
. (3.6)

Substituting in the definition eq. (2.3) of the characteristic function, the squared matrix
element eq. (3.3) and the definition of thrust eq. (3.6), we obtain

F(T, ξ) =
∫ ∫

dx1 dx2
2

(1− x1)(1− x2)δ
(
T −Max

{
x1, x2,

√
x2

3 − 4ξ
})

. (3.7)

When the radiated (dressed) gluon is soft, this integral receives contributions from the
regions I and II as shown in figure 1. Region I contributes when x1 is the largest, and region
II contributes when x2 is the largest of x1, x2,

√
x2

3 − 4ξ. Naming these contributions as
F1(T, ξ) and F2(T, ξ) respectively, we have

F(T, ξ) ' F1(T, ξ) + F2(T, ξ), (3.8)

where

F1(T, ξ) =
∫ 1−ξ−T

1−T

2−T−
√
T 2+4ξ

dx2 M(T, x2, ξ)

F2(T, ξ) =
∫ 1−ξ−T

1−T

2−T−
√
T 2+4ξ

dx1 M(x1, T, ξ), (3.9)

Note that the integrals F1 and F2 are same due to the symmetry of M(x1, x2, ξ) under
interchange of x1 and x2. The limits of the integration are determined by the boundary
of the phase space shown in red in the figure 1. The characteristic function immediately
evaluates to

F (t, ξ) = −4
t
log
(

ξ

t(q − t)

)
, (3.10)

where t ≡ 1 − T and q =
√
T 2 + 4ξ. Now, using eqs. (2.5) and (3.10) the Borel function

for the thrust takes the form,

B(t, u) = 4 sin πu
πu

1
t
e

5u
3

∫ t

t2
ξ−u−1dξ, (3.11)
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where the lower limit is determined using the collinear gluon boundary conditions, x1 =
1 − ξ, x2 = 0 and the upper limit is determined from the soft gluon boundary condition
x1 = x2 = 1−

√
ξ. Evaluating the integral we immediately obtain

B(t, u) = sin πu
πu

e
5u
3

4
u

1
t

( 1
t2u
− 1
tu

)
, (3.12)

this agrees with the leading singular terms of the same function presented in [40]. Thus, it
is possible to calculate the leading singular terms in F (t, ξ) and B(t, u) using the eikonal
matrix element.

3.2 C-parameter

The C-parameter was originally defined in [45, 48] using the eigenvalues of the matrix

θαβ = 1∑
j |p(j)|

∑
i

p(i)
α p(i)

β

|p(i)|
, (3.13)

where p(i)
α are the spatial component of the momentum of i-th particle. If the eigenvalues

of the above matrix are denoted by λ1, λ2 and λ3, then the C-parameter is given by

C = 3(λ1λ2 + λ2λ3 + λ1λ3). (3.14)

This can be cast into a Lorentz invariant form

C = 3− 3
2
∑
i,j

(
p(i) · p(j)

)2

(p(i) · q)(p(j) · q)
, (3.15)

where p(i) denotes the four momentum of the i-th particle and q denotes the total four-
momentum. C takes a minimum value 0 for a two-jet event and C attains a maximum
value 1 for a spherical event. If, however, the final state has a planar configuration the
largest value that the parameter can attain is 3/4. This upper limit also applies for the
case of 3-body final state that concerns us. The above expression of the C-parameter and
its rescaled version can be written down using the energy fractions and the virtuality of
the off-shell gluon.

c = C

6 = (1− x1)(1− x2)(x1 + x2 − 1 + 2ξ)− ξ2

x1x2(2− x1 − x2) . (3.16)

Now, we define the eikonalized version of the c-parameter

ceik(x1, x2) = (1− x1)(1− x2)
(1− x1) + (1− x2) , (3.17)

which coincides with the above definition in the soft gluon limit. Note that ceik is not a
function of the virtuality ξ. We will use ceik to calculate the characteristic function for
C-parameter; it is convenient to change variables from x1 and x2 into y = 2− x1 − x2 and

– 7 –
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z = (1 − x2)/y. In these new variables ceik(y, z) = yz(1− z). The characteristic function
(eq. (2.3)) in this limit takes the form,

F =
∫
dy dz y Msoft(y, z, ξ) δ(ceik(y, z)− c), (3.18)

where,
Msoft(y, z, ξ) = 2

y2z(1− z) (3.19)

The symmetry of M under x1 ↔ x2 appears as symmetry under z → 1 − z. In order to
perform the integral in eq. (3.18), it is required to determine the limits of the z-integration
using the boundary of the soft region that is given by x2 = (1 − ξ − x1)/(1 − x1). The
integral in eq. (3.18) has an explicit form,

F =
∫ 1+ξ

2
√
ξ
dy

∫ 1
2 + 1

2

√
1−4ξ/y2

1
2−

1
2

√
1−4ξ/y2

dz
2

yz(1− z)
1

y
√

1− 4c/y

(
δ(z − z1) + δ(z − z2)

)
, (3.20)

where
z1 = 1

2 + 1
2

√
1− 4c/y and z2 = 1

2 −
1
2

√
1− 4c/y. (3.21)

This integral has a symmetry under z ↔ (1− z) interchange, therefore the integral over z
equals twice the integral between z = 1/2 and the upper limit in eq. (3.20), where only the
δ(z − z1) is relevant. The condition z ≤ 1

2 + 1
2
√

1− 4ξ/y2 implies that y ≥ ξ/c. With this
the integral in eq. (3.20) takes the form

F = 4
c

∫ 1+ξ

ξ/c
dy

1
y
√

1− 4c/y
. (3.22)

Evidently, it is only the lower limit of the integration that gives rise to singular contribution
in the ξ → 0 limit. As we are only interested in the derivative of F , we get, without even
evaluating the integral

dF
dξ

= − 4
cξ

√
ξ√

ξ − 4c2 . (3.23)

Contrast this to the computation of dF/dξ presented in [33] where the computation pro-
ceeds with the full definition of the c-parameter. In that paper the authors had to deal
with the complicated elliptic integrals and had to carefully consider small c and small ξ
limits. These complications are completely absent in our method.

Now we are in the position to compute the Borel function B(c, u) for the c-parameter.
We have to substitute dF/dξ into eq. (2.4),

B(c, u) = 4 sin πu
πu

1
c
e

5u
3

∫ c
1−c

4c2
dξ

ξ−u√
ξ(ξ − 4c2)

(3.24)

where the lower limit in the above integral is determined using x1 = x2 = 1 −
√
ξ (soft

limit), and the upper limit is determined using x1 = 1 − ξ, x2 = 0 (collinear limit). We
are interested in the logarithmically enhanced terms, thus we can replace the upper limit
of the integration by c/(1− c) ≈ c. Carrying out the integral yields the Borel function

B(c, u) = 4sinπu
πu

e
5u
3

1
c

[ 1
(2c)2u

√
πΓ(u)

Γ(u+ 1
2)
− 1
ucu

]
. (3.25)

– 8 –
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Our result agrees with the soft contribution of the same function presented in [33]. We
conclude thus, that the leading singular terms in F(c, ξ) and B(c, ξ) can be captured
with significant ease if we use the eikonal version ceik that we have introduced for the
c-parameter.

3.3 Angularities

As a demonstration of the wide applicability of our method we consider one more event
shape variable — the angularities. Angularities are novel observables that allow us to trans-
form between recoil-insensitive to recoil-sensitive observables in a continuous manner. An-
gularities were first introduced almost twenty years ago in [49–51] and they were defined as

τa = 1
Q

∑
i

Ei(sin θi)a(1− | cos θi|)1−a, (3.26)

where θi is the angle made by i-th particle with the thrust axis, Ei is the energy of the par-
ticle i and a is a continuous parameter. The thrust axis is defined as the axis with respect
to which eq. (3.26) is minimized at a = 0. One can easily realize that angularities with
a = 0 corresponds to 1−T , where T is the thrust, while a = 1 refers to jet broadening [53].
The continuous parameter a has a range −∞ < a < 2, where the upper limit on a is fixed
by infrared safety. In terms of xi and ξ angularities were defined in [34] as,

τa(x1, x2, ξ) = 1
x1

(1− x1)1−a/2
[
(1− x2 − ξ)1−a/2(x1 + x2 − 1 + ξ)a/2

+ (1− x2 − ξ)a/2(x1 + x2 − 1 + ξ)1−a/2
]
, (3.27)

where, thrust axis is considered along p1 (quark momentum). As we did for the c-parameter
we introduce an eikonal version of the angularities:

τ eika (x1, x2, ξ) = (1− x1)1−a/2(1− x2)a/2. (3.28)

Now, Using eq. (2.3) and (3.3) the characteristics function takes the form,

F =
∫
dx1dx2

2
(1− x1)(1− x2)δ

(
τ eika (x1, x2, ξ)− τa

)
. (3.29)

It is straight-forward to perform the x1 integration to obtain

F = 4
τa(1− a

2 )

∫
dx2

1
1− x2

. (3.30)

We determine the upper limit of this integration using the soft boundary 1−x2 = ξ/(1−x1).
As shown in [34], the lower limit of this integration does not contribute to the logarithmi-
cally enhanced terms. The upper limit of the integration is

1−
(
ξ1−a2

τa

) 1
1−a

.

– 9 –
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We finally have the characteristics function

F(τa, ξ) = − 4
τa

1
1− a log ξ. (3.31)

Taking the derivative with respect to ξ and substituting in eq. (2.5) we get the Borel
function

B(τa, u) = 4 sin πu
πu

1
1− a

1
τa
e

5u
3

∫ τ
2

2−a
a

τ2
a

dξ ξ−u−1, (3.32)

where the limits are determined using the collinear and soft gluon boundary conditions
mentioned in figure 1. Upon performing the integration in eq. (3.32) we obtain

B(τa, u) = sin πu
πu

e
5
3u

4
1− a

1
u

1
τa

 1
τ2u
a

− 1

τ
2u

2−a
a

 , (3.33)

which agrees with the soft contribution of the same function presented in [34]. We have,
thus obtained, the leading singular terms in F(τa, ξ) and B(τa, ξ), which are responsible
for power corrections by considering the eikonal matrix element and the eikonal version of
the angularities τ eika (x1, x2, ξ) which again substantially simplifies the computation.

4 Borel function using Eikonal Dressed Gluon Exponentiation in the
light-cone variables

In this section, we will follow the same steps of section 3 and calculate Borel function for
thrust, C-parameter and angularities using a different set of kinematic variables. Instead
of the energy fractions that we used in the previous section we would employ the transverse
momentum k⊥ and rapidity y of the massive eikonal gluon. In the soft gluon approximation,
a number of event shapes for massless particles were defined in [54, 55]. We will consider
a class of event shapes which, for massive soft gluon emission, can be written as

ē(k,Q) =

√
k2
⊥ + k2

Q2 he(y) , (4.1)

where k⊥ and y denote transverse momentum of the gluon and pseudo-rapidity measured
with respect to the thrust axis respectively. The function he(y) characterizes the given event
shape. Some of the approximations described below apply to more general event shapes as
well, but the results are especially simple for those which can be cast in the form of eq. (4.1).

The contribution from the emission of a soft off-shell gluon can easily be computed
applying the eikonal approximation to the vertex for the emission from the hard parton.
Since off-shell soft-gluon phase space factorizes [31] from the hard partons, and also the
matrix element factorizes, the soft cross section takes on a simple and universal form,

dσ

σ
= 1

3
4

k2 + k2
⊥
dk2
⊥dy . (4.2)
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The characteristic function is also then given, in the soft limit, by a simple and universal
expression

F(e, ξ) =
∫
dk2
⊥dy

2
k2 + k2

⊥
δ
(
e− ē

(
k2, k2

⊥, y
))

, (4.3)

which integrates to the remarkably simple form,

F(e, ξ) = 8
e

∫
ymin

dy (4.4)

where the only information on the chosen observable is the phase space boundary given by
the minimum rapidity ymin. The upper limit of integration is not relevant, since it does
not give any singular contributions in the ξ → 0 limit, which is the only significant limit
for power corrections.

Up to now, we have kept the discussion generic, for any shape belonging to the class
given in eq. (4.1). Let us now illustrate the results by looking at some specific examples.

4.1 Thrust

The thrust for a generic process is defined in eq. (3.5). In the two jet events all event
shape variables that we consider tends to 0, except thrust which tends to 1. Thus, it is
convenient to define t = 1− T . In the soft gluon approximation, thrust in terms of the k⊥
and rapidity y is given by [54]

t = 1
Q

√
k2
⊥ + k2 e−|y|. (4.5)

Note that, for our case the gluon is massive and k2 6= 0. In order to perform the integral in
eq. (4.4), we need to determine the lower limit of the rapidity. The lower limit of rapidity
y is determined by putting k⊥ = 0 in eq. (4.5), thus minimum rapidity is given by,

ymin = ln
(1
t

√
ξ

)
. (4.6)

Now, using eq. (4.4) and (4.6) the characteristics function has the form,

F = −8
t
log
(√

ξ

t

)
. (4.7)

The Borel function B(t, u) is then given by

B(t, u) = sin πu
πu

e
5
3u

4
u

1
t

[ 1
t2u
− 1
tu

]
, (4.8)

which is in well agreement with the soft approximated version of the characteristics function
and Borel function presented in [40].
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4.2 C-parameter

The C-parameter for a generic process is defined in eq. (3.2). The C-parameter in the soft
approximation and expressed using k⊥ and y is given by [54]

c = C

6 = 1
2Q

√
k2 + k2

⊥
1

cosh y . (4.9)

As for the case of thrust we determine the lower limit of rapidity by putting k⊥ = 0 and
obtain

ymin = cosh−1
(√

ξ/(2c)
)
. (4.10)

Now, substituting ymin in eq. (4.4) we obtain the characteristic function in the soft gluon
limit:

F = −8
c
cosh−1

(√
ξ

2c

)
. (4.11)

This yields the Borel function

B(c, u) = 4sinπu
πu

e5u/3 1
c

[ 1
(2c)2u

√
πΓ(u)

Γ(u+ 1
2)
− 1
ucu

]
, (4.12)

in full agreement with the soft contribution to the same function in [33]. Notice that, while
collinear effects present in [33] are not properly reproduced, as expected, the cancellation of
the pole at u = 0, which is a consequence of the IR safety of the event shape, is preserved.

4.3 Angularities

In the soft gluon limit, angularities takes the form [54, 55],

τa = 1
Q

√
k2 + k2

⊥ e
−|y|(1−a), (4.13)

and the minimum rapidity is given by

ymin = 1
1− a ln

( 1
τa

√
ξ

)
. (4.14)

Now, using eq. (4.4), one easily finds

dF(τa, ξ)
dξ

= − 1
1− a

4
τaξ

. (4.15)

The Borel function B(τa, u) is then given by

B(τa, u) = sin πu
πu

e
5
3u

4
1− a

1
u

1
τa

 1
τ2u
a

− 1

τ
2u

2−a
a

 , (4.16)

again in agreement with the soft contribution to the results of [34], and reproducing, in
the limit a→ 0, the results for thrust of ref. [32].
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5 The Sudakov exponent

In this section, we will describe the computation of Sudakov exponent for thrust. Similar
conclusions hold true for the other two shape variables as well that we have considered in
this article. We can calculate the Borel function in the Laplace space Bt

ν(u) in the eikonal
limit using B(t, u) that we wrote above in eq. (3.12), we obtain,

Bt,eik
ν (u) = 4 sinπu

πu
e

5u
3

1
u

[(
ν2uγ(−2u, ν) + 1

2u

)
−
(
νuγ(−u, ν) + 1

u

)]
, (5.1)

where, we have used ∫ 1

0

dt

t
eu log 1

t (e−νt − 1) = νuγ(−u, ν) + 1
u
, (5.2)

and γ(−u, ν) = Γ(−u)−Γ(−u, ν). In the Sudakov region (ν →∞), we can replace γ(−u, ν)
by Γ(−u, ν). Retaining only the logarithmically enhanced terms (powers of log ν), in the
small u limit Bt

ν(u) takes the form,

Bt,eik
ν (u) = 2 e

5
3u

sinπu
πu

[
Γ(−2u)

(
ν2u − 1

)2
u
− Γ(−u)

(
νu − 1

)2
u

]
. (5.3)

The first term inside the square brackets corresponds to large-angle soft gluon emissions
and the second term to collinear gluon emissions. Note that this expression is free from
any u = 0 singularities. There are two sources of the poles in this expression: Γ(−2u) has
poles for all positive integers and half-integers, and Γ(−u) has poles for all positive integers.
However, the pre-factor sin πu regulates the poles at the integer values of u. Thus, Bν,eik

t

has renormalon poles only at half-integer values of u.
We will now compare our result with the full result for Bt

ν presented in [33, 40] which
is given by,

Bt
ν(u) = 2e

5
3u

sin πu
πu

[
Γ(−2u)

(
ν2u − 1

) 2
u
− Γ(−u) (νu − 1)

(2
u

+ 1
1− u + 1

2− u

)]
.

(5.4)
Note the poles at u = 1 and u = 2 which are absent in the collinear term of our eikonalized
Bt,eik
ν (u). We further notice that no spurious renormalon poles are present in the eikonalized

version. Recall that, for thrust approximation was done only for the matrix element and
not for the definition of the variable. To show that our eikonal versions of the shape
variables do not spoil the above feature we present the results for the c-parameter. The
eikonal version and full result [33] are as follows:

Bc,eik
ν (u) = 2 sin πu

πu
e

5u
3

[
Γ(−2u)(ν2u − 1)21−2u

√
πΓ(u)

Γ(u+ 1
2)
− 2
u

Γ(−u)(νu − 1)
]
, (5.5)

Bc
ν(u) = 2 sin πu

πu
e

5u
3

[
Γ(−2u)

(
ν2u − 1

)
21−2u

√
πΓ(u)

Γ(1
2 + u)

− Γ(−u) (νu − 1)
(2
u

+ 1
1− u + 1

2− u

)]
. (5.6)
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Again, no spurious poles are introduced. As expected, the EDGE does not reproduce
the collinear renormalon singularities as it cannot capture the hard-collinear emissions
correctly.

The perturbative coefficients of the Sudakov exponent in the large-β0 limit can be
determined by expanding Bt

ν(u) in powers of u and replacing un by n!/(β0αs/π)n+1. We
notice that the large-angle soft gluon emission terms — the coefficient of Γ(−2u), are
identical in the eikonalized and full versions of the Borel function in the Laplace space.
This implies that the leading logs — the terms of the form Ln+1αns where L = log ν , will
be the same between the two. The differences in the sub-leading logarithms appear due to
the absence of the u = 1 and u = 2 poles in the collinear terms. We will now expand the
two functions to the first few orders to demonstrate the matching of the LL terms and the
discrepancy in the sub-leading logarithms. The expansion of the full result gives,

Bt
ν (u) = −2L2 + 0.691L

+
(
−2L3 − 5.297L2 − 6.485L

)
u

+
(
−1.167L4 − 5.527L3 − 14.491L2 − 31.655L

)
u2

+
(
−0.5L5 − 3.262L4 − 12.329L3 − 39.003L2 − 80.940L

)
u3

+
(
−0.172L6 − 1.405L5 − 6.832L4 − 28.452L3 − 87.21L2 − 175.80L

)
u4

+O(u5) + . . . (5.7)

whereas, the expansion of the eikonal result gives,

Bt,eik
ν (u) = −2 L2 − 2.31 L

+ (−2L3 − 6.79L2 − 15.71L) u
+ (−1.167L4 − 6.02L3 − 19.10L2 − 44.59L) u2

+ (−0.5L5 − 3.38L4 − 13.86L3 − 45.47L2 − 93.66L) u3

+ (−0.172L6 − 1.429L5 − 7.216L4 − 30.61L3 − 93.57L2 − 187.395L) u4

+ O(u5) + . . . . (5.8)

As expected, the leading logarithms are appearing correctly in the eikonal approximated
version of the Borel function in the Laplace space. We observe that the differences in NLL
and NNLL terms between Bt

ν and Bt,eik
ν are decreasing as we go higher order in u.

Let us now discuss the power corrections. The Sudakov exponent is an integral over u
and the poles of Bt

ν that occur on the real u-axis make it an ill defined integral. The integral
can be defined by shifting the poles above or below the axis or equivalently indenting
the contour below or above the poles. This however, introduces an ambiguity that is
proportional to the residue of the poles. The poles of Bt

ν that occur at u = m/2, where
m is an odd integer give the ambiguity [33] originating from the large-angle soft gluon
emissions. From eq. (2.8) we see that the ambiguity would be of the form (Λν/Q)m which
implies the existence of non-perturbative power corrections of the same form. In table 1
we present the residues of poles at u = m/2 arising from Bt,eik

ν (u) which contribute to the
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Correction Residue
ν1 8Λ

Q

ν3 − 4
27
(Λ
Q

)3
ν5 1

375
(Λ
Q

)5
ν7 − 1

30870
(Λ
Q

)7
Table 1. The size of the residues of renormalon singularities for soft power corrections. The
numbers quoted are π times the residue and Λ = Λ e5/6. We ignore here the O(1) factor CF /2β0
in eq. (2.8).

soft power corrections. The full result Bt
ν(u) also has poles at u = 1 and u = 2 which

give indications to the size of the collinear power corrections whereas these are absent in
Bt,eik
ν (u). Thus, the collinear power corrections exist only for ν1 and ν2, and using the full

expression for Bt
ν(u) we find that they are given by −2

(Λ
Q

)2 and −1
2
(Λ
Q

)4 respectively. Note
that, in the calculation of the residues for the collinear terms we have ignored the O(1)
factor CF /2β0. We see, thus, that the residue of the collinear power correction is suppressed
by Λ̄/Q as compared to the soft correction for ν1 term. For example at the LEP where
Q = 209 Gev and Λ̄ = 200 e

5
6 Mev, the ratio of the size of the collinear correction to the

soft correction for ν1 is approximately −0.0017. Thus, at colliders like LEP, the soft power
corrections are more important as compared to the collinear corrections. As pointed out
in [40], the dominant power correction arising from the residue at u = 1/2 is proportional
to ν and thus generates a shift in the resummed cross-section.

For the other event shapes considered in this article one can calculate the Borel function
in Laplace space using EDGE. It remains true that soft power corrections are dominant
over the collinear corrections for all the event shapes considered in this paper.

6 Conclusions

In this paper, we have introduced Eikonal Dressed Gluon Exponentiation which is a com-
bination of Dressed Gluon Exponentiation and Eikonal approximation. Using our method,
we have demonstrated for several event shapes at e+e− colliders that the leading singular
contributions for the respective Borel functions in the single dressed gluon approximation
are produced with remarkably simple calculations. It is straightforward to construct the Su-
dakov exponent in the large-β0 limit for the power corrections using the procedure presented
in [31, 52]. This exponentiation effectively resums both the large Sudakov logarithms and
the power corrections. We observe that EDGE does not introduce any spurious renormalons
and correctly produces the dominant power corrections originating from soft emissions.

We have shown that in order to accurately capture the leading singular terms of the
characteristic function F(e, ξ) and Borel function B(e, ξ) for an event shape variable e,
it is sufficient to use the eikonal squared matrix element M, together with the eikonal
version of the event shape variable. Typically the shape variables such as C-parameter
and angularities have complicated expressions especially so when the final state gluon is
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off the mass shell. We have demonstrated that the simplification of the computations is
achieved, both when one uses the energy fractions as the variables, and also when we uses
light-cone variables to parameterize the phase space of the eikonal dressed gluon. When
using the latter variables, we observe that the minimum value of rapidity ymin is the source
of the leading singular terms in F(e, ξ). We believe that this method is sufficiently simple
and flexible to be implemented also in the more intricate environment of hadron collisions,
where hadronic event shapes and jet shapes provide important tools for QCD analyses.
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