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1 Introduction

Integrable quantum mechanical systems have as many conserved quantities as degrees of
freedom. This highly constrains the dynamics, leading to significant progress in their
solutions. A subtle limit occurs when progressing to quantum field theories where one
has an infinite number of degrees of freedom. Certainly, one needs an infinite number of
conserved quantities for the theory to be integrable, but is infinity enough? This tension
between infinities is particularly sharp in two-dimensional conformal field theory (CFT)
where there is always an infinite number of conserved charges (the quantum KdV charges)
associated to the infinite dimensional Virasoro symmetry [2, 3]. Certain conformal field
theories, for example the unitary minimal models, show features of integrability, while
others, such as those possessing holographic duals, show features of chaoticity [4]. For
massive quantum field theories, integrability may be defined by the factorization of the
S-matrix into 2 → 2 scattering i.e. no particle production, but the S-matrix is not well-
defined in conformal field theories, so it is not clear how the notions of integrability translate
to 2D CFTs. In particular, how does the breakdown of integrability manifest itself? One
edifying approach to this question is studying far-from-equilibrium dynamics, in particular,
entanglement dynamics.

Though characterizing the flow and generation of entanglement in interacting non-
equilibrium situations seems intimidating, remarkably, universal features have been shown
to emerge. In particular, the quasi-particle picture has been proposed to quantitatively
capture the evolution of entanglement entropy in integrable quantum systems in the scal-
ing limit [5–7]. This phenomenological description posits that in highly excited states,
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entanglement is purely bipartite and carried by local quasi-particle pairs. When a quasi-
particle is within a subregion A and its partner is outside of A, then A is entangled with its
complement and has nontrivial entanglement entropy. Their velocities and entanglement
content may be obtained using thermodynamic Bethe ansatz methods. While the quasi-
particle picture provides an elegant universal description of integrable models, it fails to
capture entanglement dynamics in more generic systems. In this paper, we demonstrate
the mechanism for this breakdown in 2D CFT.

In this approach, we study mixed state correlation measures following the insertions
of local operators upon the ground state. The three quantities of interest are defined as
follows:

1. The Rényi mutual information is a one-parameter family of correlation measures
defined as

I(n)(A : B) ≡ S(n)(A) + S(n)(B)− S(n)(A ∪B) (1.1)

where S(n)(Ω) is the Rényi entropy of the reduced density matrix ρΩ

S(n)(Ω) ≡ 1
1− n logTrρnΩ. (1.2)

The von Neumann limit corresponds to taking the Rényi index, n, to one.

2. The logarithmic negativity is a proper measure of entanglement for mixed states
defined as [8–13]

E(A : B) ≡ log
∣∣∣ρTBAB∣∣∣1 (1.3)

where |·|1 is the trace norm and ·TB is the partial transpose operation.

3. The Rényi reflected entropy is the Rényi entropy of a “canonical purification” of
a generic density matrix [14]

S
(n)
R (A : B) = S(n)(AA∗), (1.4)

where the purification is defined on a doubled Hilbert space HA ⊗HA∗ ⊗HB ⊗HB∗

ρAB =
∑
i

pi |ψi〉 〈ψi|AB → |
√
ρAB〉AA∗BB∗ ≡

∑
i

√
pi |ψi〉AB |ψ

∗
i 〉A∗B∗ . (1.5)

In practice, this purified state can be realized by the analytic continuation of the
even integer m to one for the following state,

|ρm/2AB 〉AA∗BB∗ ≡
∑
i

p
m/2
i |ψi〉AB |ψ

∗
i 〉A∗B∗ . (1.6)

Emergent web of correlation measures. In integrable systems, the logarithmic neg-
ativity was argued to equal half of the Rényi mutual information following a quasi-particle
picture [15]

∆E(A : B) = ∆I(1/2)(A : B)
2 , (1.7)
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where ∆ means the change with respect to the ground state.1 This was argued through the
existence of infinitely-living quasi-particles; thus, a priori, it may break down for chaotic
systems. While this is already a very nice unification of two different correlation measures,
we propose that there are significantly richer connections. In particular, we propose that
the reflected entropy also obeys the quasi-particle picture and is equivalent to the mutual
information for all values of the replica index

∆S(n)
R (A : B) = ∆I(n)(A : B). (1.8)

Furthermore, though (1.7) is expected to break down in chaotic theories, we conjecture
that an analogous relation may be made regardless of the theory as long as the system is
sufficiently excited and in the scaling limit

∆E(A : B) = ∆S(1/2)
R (A : B)

2 . (1.9)

This has previously been argued to hold in 2D CFTs possessing holographic duals [16],
but it is unexpected and interesting that it may hold for both rational and irrational
theories with finite central charge. We note that it cannot hold for generic quantum states
because the reflected entropy is sensitive to both quantum and classical correlations while
the negativity is only sensitive to quantum correlations, so the universality only emerges
in highly excited states.

There are several methods for probing non-trivial dynamics of these correlation mea-
sures in conformal field theory, all of which require the computation of n > 3-point correla-
tion functions.2 Thus, each one of these computations requires the dynamical input of the
full operator content of the theory of interest. Generally, in the past, only the universal
contributions have been evaluated. This only reproduces quasi-particle dynamics. In fact,
for quenches prepared by a path integral on a manifold that may be conformally mapped
to the upper half plane,3 the quantities for disjoint intervals are completely agnostic to the
specific conformal map [1, 24]

E = − c8 log
(
η1,4η2,3
η1,3η2,4

)
, I(n) = S

(n)
R = −c(n+ 1)

12n log
(
η1,4η2,3
η1,3η2,4

)
, (1.10)

where ηi,j are various conformally invariant cross-ratios whose definitions may be found
in e.g. ref. [1]. Therefore, (1.7) and (1.8) will hold for any quantum quench in this class.
While this begins to explain why these confluences are natural from the CFT perspective,
it begs several questions: (i) What is so special about n = 1/2 in (1.7) when all Rényi’s

1While the ∆’s were not explicitly written in ref. [15], they were implied because all discussion was about
states highly excited above the ground state.

2The exceptions are semi-infinite intervals after Calabrese-Cardy local and global quenches and local
operator quenches as these only require two and three-point functions respectively, though these are not
interesting because the total state is pure, so the negativity, by definition, is simply equal to the Rényi
entropy at index 1/2 and the reflected entropy, by definition, is just twice the von Neumann entropy.

3These include, for example, inhomogeneous global quenches [17], finite-size global quenches [18, 19],
splitting local quenches [20], double local quenches [21], and Floquet CFT [22, 23].
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are proportional? (ii) What happens when we move beyond the universal contribution and
account for theory dependence? (iii) What happens if we probe dynamics that cannot be
computed by correlation functions of twist-fields on the upper half plane? We will provide
definitive answers to all three of these questions.

1.1 Summary of main results

Quasi-particle picture for negativity in CFT. In rational CFTs, we find that the
negativity after the local quench is fully captured by the quasi-particle picture with quasi-
particles moving at the speed of light. The entanglement content of the quasi-particle
created by the local operator is the logarithm of the quantum dimension. Using this fact
and prior results for Rényi mutual information, we are able to confirm (1.7) for RCFT and
show that analogous statements for other Rényi entropies would be inconsistent. Further-
more, by computing the Rényi reflected entropy, we are able to provide evidence for our
conjecture (1.8) and confirm (1.9) in RCFT.

Breakdown of quasi-particle picture. When progressing to c > 1 CFTs with finite
twist gap,4 we demonstrate the breakdown of the quasi-particle picture for all three quan-
tities. Namely, in the Regge limit, the dominant operator exchange in the cross-channel
conformal block is no longer the identity operator, as it was for RCFT. This fact essentially
destroys the notion of local propagating quasi-particles and leads to logarithmic growth in
all correlation measures. In this way, we find (1.7) and (1.8) to break down, but (1.9) to
persist. This mechanism for the breakdown of integrability is intimately tied to the fact
that these CFTs have an infinite number of primary fields.

Role of backreaction for holographic negativity. The conjectured holographic pre-
scription for logarithmic negativity involves computing the area of a gravitating entan-
glement wedge cross-section [16, 25], a highly nontrivial gravitational task. However, to
leading order, the backreaction may be accurately accounted for by simply computing the
entanglement wedge cross-section without backreaction [26]. Explicit checks of this approx-
imation are few, and we provide the first check for dynamical nonsymmetric spacetimes.
We find that while the leading approximation correctly predicts the logarithmic growth of
negativity, the overall coefficient is corrected due to the gravitational interactions between
a falling particle and the tensionful entanglement wedge cross-section.

1.2 Organization

The rest of the paper is organized as follows. In section 2, we review the construction
of local operator quenches in conformal field theory and how to compute the correlation
measures using various twist-field (replica trick) formalisms. In section 3, we study rational
CFTs, deriving a quasi-particle picture. In section 4, we study c > 1 CFTs with finite twist
gap and demonstrate the mechanism for the breakdown of the quasi-particle picture. In
section 5, we compare our results to the holographic description of logarithmic negativity,

4We sometimes refer to this class of CFTs as pure because their complete symmetry algebra is V ir×V ir.
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Figure 1. We study the setup 0 < u2 < −v1 < −u1 < v2. We excite the vacuum by inserting a
local operator at the origin at t = 0.

Figure 2. Left: the path integral representation for the moments of the reduced density matrix
ρAB . The n sheets are glued cyclically in the same order for both region A (red) and region B (blue).
Right: the path integral representation for the moments of the partially transposed reduced density
matrix. Note that region A is now glued anti-cyclically. This is the action of the partial transpose.

characterizing the effect of backreaction in the bulk. In section 6, we simulate integrable
and chaotic lattice models, finding strong similarities to the CFT results.

2 Review

For the remainder of the paper, we focus on the following mixed state,

ρAB = trAB |Ψ(t)〉 〈Ψ(t)| , (2.1)

where |Ψ(t)〉 is a time-dependent pure state prepared by inserting a local Virasoro primary
operator on the vacuum

|Ψ(t)〉 =
√
N e−εH−iHtO(0) |0〉 , (2.2)

where N is the normalization and ε is a UV regulator. A and B are two disjoint intervals
as shown in figure 1. Entanglement in this state has been the subject of many prior
works [27–51].

2.1 Replica tricks

Throughout the paper, we assume that the replica tricks described below are valid even
when approximating correlation functions by single conformal blocks.
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Mutual information. We compute the mutual information using the replica trick in the
path integral representation (figure 2). In particular, the formulation of the entanglement
entropy for a single interval after a local quench was given in ref. [27]. The generalization
of their formulation to two disjoint intervals A ∪ B is straightforward. We use correlation
functions of twist operators to compute the multi-sheeted partition function

S(n)(AB)[O] = 1
1− n log

〈
σn(u1)σ−1

n (v1)O⊗n(w1, w̄1)O⊗n†(w2, w̄2)σn(u2)σ−1
n (v2)

〉
CFT⊗n(

〈O(w1, w̄1)O†(w2, w̄2)〉
)n ,

(2.3)
where we abbreviate V (z, z̄) ≡ V (z) if z ∈ R and the operators O are inserted at

w1 = t+ iε, w̄1 = −t+ iε, w2 = t− iε, w̄2 = −t− iε. (2.4)

We denote O⊗n ≡ O⊗O⊗ · · · ⊗O as the operator on n copies of the CFT (CFT⊗n). The
twist operator σn, a byproduct of the Zn orbifold, is a Virasoro primary with dimensions
hn = h̄n = c

24

(
n− 1

n

)
. The mutual information is then defined by

I(AB)[O] = lim
n→1

(
S(n)(A)[O] + S(n)(B)[O]− S(n)(AB)[O]

)
, (2.5)

where S(A) (S(B)) is the entanglement entropy for the subsystem A (B).

Logarithmic negativity. The logarithmic negativity in conformal field theory was first
considered in ref. [52]. In the path integral representation (figure 2), the corresponding
correlation function of twist fields is given by exchanging the twist and anti-twist operators
for one interval with respect to the correlation function for entanglement entropy (2.3)

σn(u2)σ−1
n (v2)→ σ−1

n (u2)σn(v2). (2.6)

It is this exchange that implements the partial transposition. This means that the moments
of the negativity for disjoint intervals following a local operator quench can be evaluated as

E(n)(A : B)[O] = log

〈
σn(u1)σ−1

n (v1)O⊗n(w1, w̄1)O⊗n†(w2, w̄2)σ−1
n (u2)σn(v2)

〉
CFT⊗n(

〈O(w1, w̄1)O†(w2, w̄2)〉
)n ,

(2.7)
where the normalization is determined by TrρTBAB = 1. To take the trace norm, we must
analytically continue even integers ne to one,5

E(A : B)[O] = lim
ne→1

E(ne)(A : B)[O]. (2.8)

Reflected entropy. The path integral representation of the reflected entropy was for-
mulated in ref. [14]. The Rényi reflected entropy is expressed in terms of the ratio of
multi-sheeted partition functions (figure 3) as

S
(n,m)
R (A : B)[O] = 1

1− n logTr ([ρAA∗ ]n) = 1
1− n log Zn,m

(Z1,m)n . (2.9)

5See ref. [53] for an interesting discussion of the odd moments.
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Figure 3. The replica trick for reflected entropy requires two replica numbers, n and m. The
copies are glued cyclically in m for region B for each value of n (blue line). For region A, the gluing
mixes different n’s in the order shown by the red line. Note that it is necessary for m to be even.

where we define ρAA∗ in terms of (1.6) by

ρAA∗ = trBB∗ |ρm/2AB 〉 〈ρ
m/2
AB | . (2.10)

For disjoint intervals, the replica partition function may be computed by six-point corre-
lation functions

Zn,m ≡
〈
σgA(u1)σg−1

A
(v1)O⊗mn(w1, w̄1)O⊗mn†(w2, w̄2)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

. (2.11)

To avoid unnecessary technicalities, we do not show the precise definition of the twist
operators σgA and σgB (which can be found in ref. [14]) because in this paper, we only use
the conformal dimensions and OPEs

hσgA = hσ
g−1
A

= hσgB = hσ
g−1
B

= cn

24

(
m− 1

m

)
(= nhm), (2.12)

σg−1
A
× σgB = σg−1

A gB
+ . . . , (2.13)

where the twist operator σg−1
A gB

is essentially two copies of the usual twist operator σn
used previously for mutual information and negativity. The reflected entropy is defined by
the von Neumann limit

SR(A : B)[O] = lim
n,m→1

S
(n,m)
R (A : B)[O]. (2.14)

It is crucial that we continue m from the even integers to one, similar to the replica trick
for negativity.

2.2 Regge limit

In general, correlations measured between disjoint intervals, A and B, for the state (2.2)
are given in terms of six-point functions, which are too complicated to evaluate in com-
plete generality. The key to making these computations tractable is to make use of recent
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progress in understanding the structure of Virasoro conformal blocks [44, 45, 48, 54], specif-
ically, Regge limit asymptotics. Roughly, the limit ε→ 0 of the correlation measures after
the excitation can be evaluated in terms of a single conformal block as [48–50]

(Cσσ′p)2

ᇱ

ᇱற

ற

×

ᇱ

ᇱற

ற

,

(2.15)
where Cσσ′p is the OPE coefficient and the arrow implies the monodromy of O† around
the exchanged operator p, which is the operator with the lowest dimension in the OPE
between σ and σ′. This monodromy effect is encapsulated by the monodromy matrix, and
is completely determined by the four external operators {O,O†, p, p†} and intermediate
state {0}. Therefore, we can study the local quench protocols for disjoint intervals, even
when this corresponds to n(> 4)-point correlation functions. This is the reason why we
can reveal the precise dynamics of the correlation measures.

3 Integrable conformal field theories

We begin our analysis with rational conformal field theories. These theories are special in
that they have a finite number of primary fields under the given chiral algebras. In some
sense, this renders the theories integrable. For simplicity, we consider minimal models but
we can straightforwardly generalize our result to general RCFTs.6

We will see that the crucial difference between RCFTs and generic c > 1 CFTs is that
in RCFTs, the dominant contribution to the Regge asymptotics comes from the vacuum
instead of a nontrivial primary.

Mutual information. Here we consider the difference of mutual information between
the local quench state and the vacuum state, which is denoted by ∆ in the following.
As a concrete example, we consider the setup described in figure 1. Namely, we set our
subregions to A = [u1, v1] and B = [u2, v2] with 0 < u2 < −v1 < −u1 < v2. We focus on the
time region −v1 < t < −u1, where the nontrivial entanglement between A and B is created.

In order to evaluate the mutual information after a local quench, let us consider the
Regge limit of the correlator corresponding to the third term of the definition (2.5),

〈
σn(u1)σ−1

n (v1)O⊗n(w1, w̄1)O⊗n†(w2, w̄2)σn(u2)σ−1
n (v2)

〉
CFT⊗n

. (3.1)

6Generic RCFTs require understanding the monodromy matrix that corresponds to the extended sym-
metry algebras.
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The lowest dimension operator in the σn and σ−1
n OPE is the vacuum. Therefore, this

six-point function can be approximated by

௡

⊗௡

௡

௡
ିଵ

௡
ିଵ⊗௡ற × ௡

⊗௡

௡

௡
ିଵ

௡
ିଵ⊗௡ற

. (3.2)

The monodromy acts on the vacuum which does not change the conformal block. As a
result, we obtain

S(AB)[O] = S(AB)[I]. (3.3)

On the other hand, a non-trivial monodromy effect can be found in the four-point correla-
tors that correspond to the first and the second terms in (2.5)〈

σn(u1)σ−1
n (v1)O⊗n(w1, w̄1)O⊗n†(w2, w̄2)

〉
CFT⊗n

. (3.4)

The Regge limit of the function corresponding to S(A)[O] (or S(B)[O]) can be approxi-
mated by

⊗௡ ற

0
௡

⊗௡

௡
ିଵ

×
⊗௡ ற

0
௡

⊗௡

௡
ିଵ

. (3.5)

The effect of the monodromy is given as

M(n)
0,0[O]

⊗௡ ற

0
௡

⊗௡

௡
ିଵ

. (3.6)

That is, the dominant contribution comes from the vacuum. As a result, the remaining term
in the difference between the excited state and the vacuum is only the constant M(n)

0,0[O].
This (0, 0)-element of the monodromy matrix is related to the quantum dimension of O,
just like the fusion matrix. Thus, we can express the growth of the mutual information in
terms of the quantum dimension as

∆I(A : B)[O] =



0, if t < −v1,

2 log dO, if − v1 < t < −u1,

0, if − u1 < t.

(3.7)

We have used the fact that M(n)
0,0[O] = M0,0[O]n in RCFTs. This is fixed from the alter-

native approach of calculating the Rényi entropy directly from the replica manifold [48]. In
the pure state limit (B → A), the mutual information should match twice the entanglement
entropy S(A)[O]. Our result is consistent with this fact.
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We are able to generalize this result to any Rényi entropy by using the explicit form
of the monodromy matrix, obtaining an identical result

∆I(n)(A : B)[O] =



0, if t < −v1,

2 log dO, if − v1 < t < −u1,

0, if − u1 < t.

(3.8)

Logarithmic negativity. To obtain the logarithmic negativity, we need the Regge limit
of the following correlator,〈

σn(u1)σ−1
n (v1)O⊗n(w1, w̄1)O⊗n†(w2, w̄2)σ−1

n (u2)σn(v2)
〉

CFT⊗n
. (3.9)

We have to analytically continue n from even integers to one. This analytic continuation
requires us to take special care of the effect of the orbifolding. We introduce the following
notations:

O⊗n = O
⊗n/2
(1) ⊗O⊗n/2(2) , (3.10)

where the subscript 1(2) implies that the operator acts like the local primary operator O
on the odd (even) numbered sheets and the identity on the even (odd) sheets. Analogously,
this is how the double twist field (for even n) decomposes

σ2
n = σ

(1)
n/2 ⊗ σ

(2)
n/2. (3.11)

The crucial point is that {O⊗n/2(1) , σ
(1)
n/2} do not interact with {O⊗n/2(2) , σ

(2)
n/2}. Therefore, the

component of the (three-point) conformal block decouples into two parts, for example,

〈σ(1)
n/2 ⊗ σ

(2)
n/2|O

⊗n/2
(1) ⊗O⊗n/2(2) |σ

(1)
n/2 ⊗ σ

(2)
n/2〉 = 〈σ(1)

n/2|O
⊗n/2
(1) |σ

(1)
n/2〉 〈σ

(2)
n/2|O

⊗n/2
(2) |σ

(2)
n/2〉 . (3.12)

In other words, the vacuum sector in the conformal block decomposition can be perfectly
decomposed into two manifolds, one composed of even sheets and the other composed of
odd sheets.

Using the Regge limit, we can approximate (3.9) by a single conformal block

(Cn)4
௡

𝑂(ଵ)
⊗௡/ଶ

⊗ 𝑂(ଶ)
⊗௡/ଶ

௡

௡
ିଵ

௡
ିଵ

𝜎௡/ଶ
ଵ
⊗ 𝜎௡/ଶ

ଶ

𝜎௡/ଶ
ଵ
⊗ 𝜎௡/ଶ

ଶ
ିଵ

𝑂 ଵ
⊗௡/ଶ

⊗ 𝑂 ଶ
⊗௡/ଶ

ற

× ௡

𝑂(ଵ)
⊗௡/ଶ

⊗ 𝑂(ଶ)
⊗௡/ଶ

௡

௡
ିଵ

௡
ିଵ

𝜎௡/ଶ
ଵ
⊗ 𝜎௡/ଶ

ଶ

𝜎௡/ଶ
ଵ
⊗ 𝜎௡/ଶ

ଶ
ିଵ

𝑂 ଵ
⊗௡/ଶ

⊗ 𝑂 ଶ
⊗௡/ଶ

ற

,

(3.13)
where Cn is the OPE coefficient

〈
σn

∣∣∣∣ (σ(1)
n/2 ⊗ σ

(2)
n/2

)−1
∣∣∣∣σn〉. As mentioned in the review,

the Regge singularity between O⊗n and (O⊗n)† is only determined by four external oper-
ators {(

σ
(1)
n/2 ⊗ σ

(2)
n/2

)
,
(
σ

(1)
n/2 ⊗ σ

(2)
n/2

)−1
, O⊗n,

(
O⊗n

)†} (3.14)
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and its intermediate state (which is now given as the vacuum). Moreover, this part is
decomposed into two parts due to (3.12). For the same reason as for the mutual information,
the corresponding Regge limit isM(n/2)

0,0[O]
⊗௡/ଶ ற

0

௡/ଶ
⊗௡/ଶ

௡/ଶ
ିଵ


2

, (3.15)

which gives the following behavior for the negativity

∆E(A : B)[O] =



0, if t < −v1,

log dO, if − v1 < t < −u1,

0, if − u1 < t.

(3.16)

It is known that in the pure state limit (B → A), the negativity reduces to the Rényi
entropy at index 1/2,

E(A,A) = S(1/2)(A). (3.17)

As shown in ref. [32], the n-th Rényi entropy after a local quench does not depend on n,

∆S(n)(A)[O] = log dO, if − v1 < t < −u1. (3.18)

One can see that our calculation utilizing the Regge limit of conformal blocks is consistent
with this fact.

Reflected entropy. For the reflected entropy, we need to compute the following corre-
lation function

Zn,m ≡
〈
σgA(u1)σg−1

A
(v1)O⊗mn(w1, w̄1)O⊗mn†(w2, w̄2)σgB (u2)σg−1

B
(v2)

〉
CFT⊗mn

. (3.19)

To explain various subtleties, we introduce the following notation,

O⊗men = O⊗n(0) ⊗ · · · ⊗O
⊗n
(me/2) ⊗ . . . , (3.20)

where the subscript labels the replica copy in the me direction where the operator acts. In
the limits me → 1 and ε→ 0, (3.19) can be approximated by

(Cn)4

𝑂(଴)
⊗௡ ⊗ 𝑂(ଵ/ଶ)

⊗௡

𝜎௡
଴
⊗ 𝜎ത௡

ଵ/ଶ

𝜎௡
଴
⊗ 𝜎ത௡

ଵ/ଶ
ିଵ

𝑂 ଴
⊗௡ ⊗ 𝑂 ଵ/ଶ

⊗௡
ற

×
𝑂(଴)
⊗௡ ⊗ 𝑂(ଵ/ଶ)

⊗௡

𝜎௡
଴
⊗ 𝜎ത௡

ଵ/ଶ

𝜎௡
଴
⊗ 𝜎ത௡

ଵ/ଶ
ିଵ

𝑂 ଴
⊗௡ ⊗ 𝑂 ଵ/ଶ

⊗௡
ற

,

(3.21)
where Cn is the OPE coefficient limme→1

〈
σme

∣∣∣∣ (σ(0)
n ⊗ σ̄(1/2)

n

)−1
∣∣∣∣σme〉 and ∼ 0 means a

state with very small conformal dimension. Similarly to (3.12), the three-point block in
the above 6-point conformal block can be decomposed into two parts,

〈σ(0)
n ⊗ σ̄(1/2)

n |O⊗n(0) ⊗O
⊗n
(1/2)|σ

(0)
n ⊗ σ̄(1/2)

n 〉 = 〈σ(0)
n |O⊗n(0) |σ

(0)
n 〉 〈σ(1/2)

n |O⊗n(1/2)|σ
(1/2)
n 〉 . (3.22)
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As a result, we obtain a square of the monodromy matrix
(
M(n)

0,0[O]
)2

in the Regge limit
correlator.

The canonical purification for the reflected entropy also leads to a subtle squaring in
the normalization factor. The analytic continuation me → 1 reduces to [16, 50]

lim
me→1

O⊗men = O⊗n(0) ⊗O
⊗n
(1/2). (3.23)

A similar squaring can be found in the twist operators for reflected entropy

lim
me→1

σg−1
A gB

= σ(0)
n ⊗ σ̄(1/2)

n . (3.24)

As a result from this squaring, we obtain the squared correlation function,

lim
me→1

Z1,me =
〈
O(w1, w̄1)O†(w2, w̄2)

〉2
. (3.25)

In summary, we have

∆S(n)
R (A : B)[O] =



0, if t < −v1,

2 log dO, if − v1 < t < −u1,

0, if − u1 < t.

(3.26)

Note that if we naively evaluate the reflected entropy by regarding the block as the Virasoro
block, we obtain an incorrect result, M(n)

0,0[O], instead of
(
M(n)

0,0[O]
)2
. Therefore, we

have to take care of the squaring of this conformal block. We refer the interested reader to
ref. [50] for more technical details.

Correlation web. Having completed all calculations for RCFTs, we would like to check
our conjectures relating each measure. From (3.8) and (3.16), we can confirm (1.7). Note,
however, that from (3.8) and (3.16), we can rule out the more general validity of the
relation from ref. [1] which showed the negativity to be proportional to all Rényi mutual
informations for a specific class of quantum quenches that did not involve any local operator
insertions. Together with the results from this paper and refs. [1, 15], we believe that the
statement of (1.7) for generic integrable theories is on very strong footing.

We also are able to confirm consistency of both (1.8) and (1.9) in integrable systems
from (3.16) and (3.26). Next, we show how all of these relations except for (1.9) break
down when we eliminate the integrability of the CFT.

4 Chaotic conformal field theories

We progress to c > 1 CFTs with finite twist gap. While these theories are believed to
be generic, we do not know of any explicit constructions. This class of theories displays
chaotic properties even for finite central charge [1, 48, 55, 56]. It will be convenient for us
to introduce Liouville coordinates,

c = 1 + 6Q2, Q = b+ 1
b
, hi = αi(Q− αi). (4.1)
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Mutual information. For the same reason as in RCFTs, the contribution from
S(AB)[O] is equal to S(AB)[I] during the time regime of interest and can therefore be
neglected. The nontrivial contributions to the change in mutual information will come
from S(A)[O] and S(B)[O]. The Regge limit of the relevant correlation functions can be
approximated by

⊗௡ ற

0
௡

⊗௡

௡
ିଵ

×
⊗௡ ற

0
௡

⊗௡

௡
ିଵ

. (4.2)

Although this is similar to the evaluation in RCFTs, the monodromy effect is dramat-
ically different due to the absence of vacuum exchange in the cross-channel

M(n)
0,αn [O]

⊗௡ ற

𝛼௡
௡

⊗௡

௡
ିଵ

−−→
ε→0

(2iε)hαnM(n)
0,αn [O]ρσnσ−1

n αn
(zi), (4.3)

where the constant M(n)
0,αn [O] is related to the monodromy matrix7 and αn is the min-

imal Liouville momentum in the Regge OPE between σn and σ−1
n . In the von Neumann

limit, this minimal value reduces to hαn = 2hn. We abbreviate the three point block as
ρσnσ−1

n αn
(zi), which is given by

ρσnσ−1
n αn

(t, u1, v1) =
( (v1 − u1)

(t− u1)(t− v1)

)hαn
(v1 − u1)−2hn . (4.4)

Consequently, we obtain the Rényi entanglement entropy as

∆S(n)(A)[O] = hαn
n− 1 log (t− u1)(t− v1)

2iε(v1 − u1) + 1
1− n log

[
M(n)

0,αn [O]
]
. (4.5)

Hence, the n-th Rényi mutual information is given by

∆I(n)(A : B)[O] = hαn
n− 1 log (t− u1)(t− v1)

2iε(v1 − u1) + hαn
n− 1 log (t− u2)(t− v2)

2iε(v2 − u2)

+ 2
1− n log

[
M(n)

0,αn [O]
]

≡ hαn
n− 1 log g

MI(zi)
(2iε)2 + 2

1− n log
[
M(n)

0,αn [O]
]
,

(4.6)

where we define
gMI(zi) ≡

(t− u1)(t− v1)
(v1 − u1)

(t− u2)(t− v2)
(v2 − u2) . (4.7)

7More precisely, this constant is given by the coefficient of the first order pole of the monodromy ma-
trix [48]. In RCFTs, the monodromy transformation is given by the summation over a discrete spectrum.
On the other hand, the monodromy transformation in pure CFTs is given by an integral over a contin-
uous spectrum. Nevertheless, the leading order in the Regge limit is approximated by a single residue,
Res(−2πi M(n)

0,α;α = αn). We express this constant as M(n)
0,αn to avoid this cumbersome expression.

– 13 –



J
H
E
P
0
3
(
2
0
2
1
)
1
4
6

The von Neumann limit is

∆I(A : B)[O] = c

6 log g
MI(zi)
(2iε)2 + lim

n→1

2
1− n log

[
M(n)

0,αn [O]
]
. (4.8)

Some comments are in order. (i) The mutual information grows logarithmically without
bound, sharply contrasting the RCFT result. Unbounded logarithmic growth cannot be
described by the quasi-particle picture and is a signature of multipartite entanglement gen-
eration. (ii) The second term corresponding the leading residue of the V irn/Zn monodromy
matrix is constant in time. While these monodromy matrices are not known explicitly, in
ref. [48], it was argued that this term may simplify in the limit of large central charge, in
which case M(n)

0,αn [O] ' (M0,αn [O])n, where M0,αn [O] corresponds to the leading residue
of the Virasoro monodromy matrix. In the von Neumann limit, this term can then be
evaluated as it should reduce to M0,αn [O]

lim
n→1,c→∞

2
1− n log

[
−2iM(n)

0,αn [O]
]

= 4π
√
c

6

(
hO −

c

24

)
, (4.9)

which is equal to twice the Cardy entropy. This also matches gravitational calculations.
The details that lead to this result are quite cumbersome. We refer the interested reader
to appendix A of ref. [48].

Logarithmic negativity. In a similar way as the above computation for mutual in-
formation, the growth of the negativity is encapsulated in the square of the four-point
conformal block as M(n/2)

0,αn [O]
⊗௡/ଶ ற

𝛼௡/ଶ
௡/ଶ

⊗௡/ଶ

௡/ଶ
ିଵ


2

. (4.10)

More precisely, the ε→ 0 (Regge) limit leads to

(2iε)2hαn/2−2nhO
(
M(n/2)

0,αn/2 [O]
)2

௡

௡/ଶ ௡/ଶ

௡

௡
ିଵ

௡
ିଵ

𝜎௡/ଶ
ଵ
⊗ 𝜎௡/ଶ

ଶ

𝜎௡/ଶ
ଵ
⊗ 𝜎௡/ଶ

ଶ
ିଵ

≡ (2iε)2hαn/2−2nhO
(
M(n/2)

0,αn/2 [O]
)2
gE

(n/2)(zi)
−hαn/2 ,

(4.11)

where we abbreviate the five-point conformal block as gE(n/2)(zi)
−hαn/2 . There are multiple

unknowns in the above expression, hαn/2 ,M
(n/2), and gE(n/2) . However, the most important

information is the scaling with time. For this purpose, we use the asymptotics of the block

gE
(n/2)(zi) −−−−−−−−−−−−→

|u2−v1|,|u1−v2|�t
(−t)2 . (4.12)

This assures us that the negativity scales logarithmically in time. These asymptotics come
from the fusion of the external twist operator so that we are effectively left with a three
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point function that is completely fixed by conformal symmetry. For this reason, we do not
have to worry about descendent states, in particular, the tricky orbifold descendents. In
general, we have

∆E(A : B)[O] = −hα1/2 log g
E(1/2)(zi)
(2iε)2 + 2 log

[
M(1/2)

0,α1/2 [O]
]
. (4.13)

Just as for mutual information, the imaginary factor in the denominator is canceled by an
implicit imaginary factor in the second term, ensuring the final answer is real.

We would also like to fix the constant out in front. According to ref. [48], we can
expect that the explicit form of hαn can be expressed by

hαn = 2βn(Q− 2βn), (4.14)

where βn(Q−βn) ≡ hn. This formula is valid for integer n. Assuming it holds for fractional
n, we find the classical value

hα1/2 −−−→c→∞

(
−5 +

√
10

12

)
c. (4.15)

Reflected entropy. For the Rényi reflected entropy, we have a similar expression in the
Regge limit (and m→ 1 limit) to that for the negativity

∆S(n)
R (A : B)[O] = hαn

n− 1 log g
S(n)(zi)
(2iε)2 + 2

1− n log
[
M(n)

0,αn [O]
]
. (4.16)

where gS(n) is notation for the relevant five-point block. As a result, we obtain

∆SR(A : B)[O] = c

6 log g
S(1)(zi)
(2iε)2 + lim

n→1

2
1− n log

[
M(n)

0,αn [O]
]
. (4.17)

The von Neumann limit of gS(n)(zi) is calculated by the global block as [50]

gS
(n)(zi) −−−→

n→1

(t+ u1)(t+ u2)(t+ v1)(t+ v2)
(u2 − v1)(u1 − v2) . (4.18)

Correlation web. We now return to the collection of relations between the various corre-
lation measures. From (4.13) and (4.16), one can confirm the relation between the negativ-
ity and the Rényi reflected entropy (1.9) for pure CFTs so long as gE(n) and gS(n) are equiv-
alent in the n→ 1/2 limit. This may be expected because in the relevant limit, all operator
dimensions and OPE coefficients are the same. Moreover, the orbifold structure of the op-
erators is equivalent in the sense of (3.10) and (3.23). From (4.6) and (4.13), one can find

1
2∆I(1/2)(A : B)[O]−∆E(A : B)[O] = −hα(1/2) log gMI(zi)

gE
(1/2)(zi)

. (4.19)

While we expect this difference to be non-zero in general, we have several comments
suggesting their similarity. (i) The dependencies on the regulator ε for ∆E and ∆I(1/2)
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match one another. (ii) According to ref. [48], the constant M is related to the mass of
the black hole in the bulk side. This implies that the topological contribution to ∆E is
the same as that of ∆I(1/2). (iii) In a special limit |u2 − v1| , |u1 − v2| � t, we have

gMI(zi) = gE
(1/2)(zi), (4.20)

which leads to
∆E = ∆1

2I
(1/2). (4.21)

This is consistent with the expectation for RCFTs but is a nontrivial statement for pure
CFTs.

Finally, we can see from (4.6) and (4.16) that (1.8) breaks down for pure CFTs for
the same reason that (1.7) breaks down. We stress that we are directly able to identify
the mechanism of the breakdown of the quasi-particle picture. Namely, for pure CFTs, the
OPE in the Regge limit does not contain the vacuum state. This fact alone destroys the
quasi-particle picture. In contrast, the vacuum state is able to propogate for RCFTs and
the quasi-particle picture is restored.

5 Holographic negativity and backreaction

In ref. [25], it was proposed that the holographic dual of logarithmic negativity is the area
of a tensionful entanglement wedge cross-section (≡ EW ). Due to the finite tension of this
surface, there is nontrivial backreaction in the bulk AdS spacetime. While the full proposal
was placed on strong footing in AdS3/CFT2 [16], this backreaction is very difficult to com-
pute in practice as it involves solving Einstein’s equations with codimension-two sources.
Fortunately, it was observed that the backreaction may be accounted for in sufficiently sym-
metric states and subsystem configurations by an overall proportionality constant [16, 25]

E = 3
2EW . (5.1)

This is equivalent to taking the dominant global conformal block while ignoring the
descendent states [26]. (5.1) has been confirmed to precisely compute the logarithmic
negativity for e.g. single intervals at zero and finite temperature, adjacent and disjoint
intervals at zero and finite temperature, and the thermofield double state.

The local operator quench is certainly not a symmetric state due to the explicit break-
ing of translation symmetry, so a priori, it would seem that one would need to go through
the full gravitational computation with cosmic branes. However, it is interesting and com-
putationally relevant to ask how well (5.1) still approximates the holographic negativity, a
much milder gravitational computation.

For this purpose, we study the holographic dual of a local operator quench, which may
be understood as a falling particle in AdS [57]. In Poincaré coordinates

ds2 = −dt
2 + dx2 + dz2

z2 , (5.2)

the falling particle has trajectory
z2 − t2 = ε2, (5.3)
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where ε corresponds to the smearing of the operator in the CFT language and is related
to the energy. The massive particle backreacts on the vacuum AdS geometry as it falls
radially. This backreaction can be accurately modeled by boosting a black hole geometry.
See ref. [57] for a more detailed discussion.

We will compare the area of the entanglement wedge cross section in these coordinates
to the large-c limit of our results for pure CFTs (4.13). The gravitational computation is
identical, up to proportionality, to that of refs. [49, 50]. For convenience, we reproduce the
results for −v1 < t < −u1

EW = c

12 log

4(t+ u1)(t+ u2)(t+ v1)(t+ v2)
ε2(u2 − v1)(u1 − v2)

(sinh πγ̄
γ̄

)2 1 +
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

1−
√

(v1−u1)(v2−u2)
(u2−u1)(v2−v1)

 , (5.4)

where γ̄ ≡
√

24h̄
c − 1. To isolate the time dependence and compare to the CFT result, we

are interested in the limit v1, u2 � t� u1, v2 where

∆EW = c

6 log
[
t

ε

(sinh πγ̄
γ̄

)]
. (5.5)

We are able to find that the time dependent piece of the negativity, while logarithmic in t,
has a different overall coefficient than (5.1). Instead of a proportionality factor of 3/2, we
find that it is corrected to approximately

E
EW

' 5−
√

10 ' 1.84 > 3/2. (5.6)

The backreaction from the particle has a net positive effect on the area of the tensionful
entanglement wedge cross section. Note that the constant part in eq. (5.5) corresponds to
the Bekenstein-Hawking entropy (see ref. [48]). If we assume equation (5.55) of ref. [48],
then we obtain the same entropy in the above negativity from the monodromy matrix.

6 Lattice models

So far, we have only been concerned with conformally invariant theories. In this section, we
will argue that these special systems are able to detect certain universal aspects of integrable
and chaotic dynamics. We argue this by numerically simulating local operator quenches in
lattice models. For free fermions, we are able to implement finite scaling analysis to confirm
the consistency of (1.7), but are only able to provide preliminary evidence for interacting
integrable systems and chaotic spin chains.

Free fermions. For free fermions, we use the tight-binding Hamiltonian

Ĥ = 1
2

(
N∑
i

ĉ†i ĉi+1 + h.c.

)
(6.1)

and apply anti-periodic boundary conditions. For simplicity, we use adjacent intervals of
lengths l1 and l2 and insert the operator at their interface. The results are shown in figure 4
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Figure 4. Comparison between negativity, mutual information, and reflected entropy in free
fermion systems after a local excitation by the fermion parity operator (−1)F is inserted at the
interface between two adjacent intervals. Left: ∆E (blue) ∆I(1/2)/2 (orange) ∆S(1/2)

R /2 (green),
N = 750, l1 = l2 = N/5. The dotted line is at 2 log 2. Right: l1 = l2 = N/5, tf = 3N/10. fit:
aN−b + c with a = −0.216(−0.2202,−0.2118), b = 0.1901(0.1342, 0.246), c = 0.5168(0.4925, 0.541).
The value of c is consistent with (1.7). Similar finite-size effect deviations between E and I(1/2)/2
were found after a global quench in ref. [15].

where we see that E , I(1/2)/2, and S(1/2)
R /28 are nearly identical at early times, but differ

once the local quasi-particle excitation has left the subsystems. We perform finite scaling
analysis in figure 4 to confirm that this late-time behavior of the quantities converges in the
scaling limit. The long-time tail of the correlations is due to “high-energy quasi-particles,”
a feature also observed in joining quenches [24].

Spin chains. While free systems are computationally tractable, they are trivially in-
tegrable and in the above case, conformal at low energies. We are ultimately interested
in interacting systems. For this purpose, we compute the negativity and Rényi mutual
information in the transverse field Ising model

H =
∑
i

(−ZiZi+1 + gXi + hZi). (6.2)

We probe integrable dynamics by taking g = 1.0, h = 0 and chaotic9 dynamics by taking
g = −1.05, h = 0.5. Because this system is interacting, we are limited to small system
sizes. However, we are able to make some progress by representing the local quench state
as a matrix product state (MPS) [60–62] and evolve in real time using time evolving block
decimation (TEBD) [63]. Furthermore, we find the ground state using density matrix
renormalization group methods (DMRG) [64, 65]. We use the python package quimb [66]
to implement the tensor network techniques. The reason we are able to use MPS methods

8The entanglement negativity can be efficiently computed for fermionic Gaussian states by using the
correlator method [58]. Similarly, we were able to compute the reflected entropy and its Rényi counterparts
efficiently by using the correlator method where the correlation matrix for the purified state was recently
constructed in ref. [59].

9Here, by chaotic, we mean that the level statistics of the Hamiltonian mimic those of random matrix
theory.
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Figure 5. Left: integrable spin chain. We see a rapid growth to a constant, similar to the behavior
for RCFTs, though less sharp due to both finite size effects and a nonlinear dispersion relation.
Right: chaotic spin chain. We observe approximately logarithmic growth of the negativity and
Rényi mutual information similar to that of pure CFTs. We simulate 31 lattice sites with 5 sites
separating “semi-infinite” subsystems. The local operator used is a Pauli Z.

even in this non-equilibrium scenario is because local quenches do not create that much
entanglement. While we necessarily increase the bond dimension of the tensors at later
times, we are able to simulate large enough systems to find the central features of integrable
and chaotic systems.

For the integrable spin chain, we observe a rapid growth of entanglement that essen-
tially saturates to a constant. This is reminiscent of the RCFT picture where the quasi-
particle created by the local quench produces a step function in the correlation measures.
Being nonconformal, the dispersion relation of the theory is nontrivial, so the softening of
the step function is expected. This may furthermore be attributed to finite-size effects.
For the chaotic spin chain, it is interesting that we can observe a logarithmic growth of
the entanglement, similar to the pure CFTs. This clearly demonstrates the breakdown of
the quasi-particle picture. It is impressive that conformal field theory computations can
capture certain core features that distinguish integrable and chaotic spin chains. It would
certainly be interesting to further pursue this direction in lattice models to understand how
universal these structures truly are.
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