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I-00146, Rome, Italy
cINFN, Sezione di Roma Tre,

Via della Vasca Navale 84, I-00146 Rome, Italy
dDepartment of Physics and Astronomy, University of California,

Irvine, CA 92697-4575 U.S.A.

E-mail: marco.fedele@icc.ub.edu, alessio.mastroddi@uniroma3.it,

mvalli@uci.edu

Abstract: The flavour problem of the Standard Model can be addressed through the

Froggatt-Nielsen (FN) mechanism. In this work, we develop an approach to the study

of FN textures building a direct link between FN-charge assignments and the measured

masses and mixing angles via unitary transformations in flavour space. We specifically

focus on the quark sector to identify the most economic FN models able to provide a

dynamical and natural understanding of the flavour puzzle. Remarkably, we find viable

FN textures, involving charges under the horizontal symmetry that do not exceed one in

absolute value (in units of the flavon charge). Within our approach, we also explore the

degree of tuning of FN models in solving the flavour problem via a measure analogous

to the Barbieri-Giudice one. We find that most of the solutions do not involve peculiar

cancellations in flavour space.

Keywords: Beyond Standard Model, Effective Field Theories, Gauge Symmetry, Global

Symmetries

ArXiv ePrint: 2009.05587

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP03(2021)135

mailto:marco.fedele@icc.ub.edu
mailto:alessio.mastroddi@uniroma3.it
mailto:mvalli@uci.edu
https://arxiv.org/abs/2009.05587
https://doi.org/10.1007/JHEP03(2021)135


J
H
E
P
0
3
(
2
0
2
1
)
1
3
5

Contents

1 Introduction 1

2 FN in the EFT formulation 3

3 How FN theories confront data 5

3.1 A customary approach 6

3.2 A novel approach 7

3.3 The flavour tuning 10

4 Charting FN models 12

4.1 Explicit methodology 12

4.2 Selected results 14

5 Conclusions 18

A A worked-out example 19

1 Introduction

In recent years much of the focus of the community has been put into understanding the

naturalness of the electroweak (EW) scale, namely how to radiatively stabilize the dynamics

underlying EW symmetry breaking. In absence of the related new-physics signals at the

LHC [1–3], a critical rethinking of the EW hierarchy problem and of the implications in

the search for Physics Beyond the SM (BSM) may be the necessary step forward [4–8].

Nevertheless, the prediction of the peculiar flavour structure of the SM Yukawa sector

might actually underlie another interesting theoretical problem in virtue of the hierarchy of

masses among the three fermion generations, and the different mixing patterns in the quark

and lepton sectors [9, 10]. Indeed, the quest on the origin and the size of the breaking of the

flavour group GF = U(3)Q×U(3)u×U(3)d×U(3)L×U(3)e×U(1)H — the maximal global

symmetry commuting with space-time symmetries, that leaves invariant the gauge-kinetic

sector of SM quark (Qi,ui,di), lepton (Li,ei) and Higgs (H) fields (i = 1, 2, 3 family index)

— characterizes the so-called flavour problem of the SM [11, 12].

In light of the experimental information at disposal on the mass spectrum of SM

fermions and the textures shaping the Cabibbo-Kobayashi-Maskawa (CKM) [13, 14] and

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) [15, 16] matrices, a dynamical explanation of

the origin of flavour may provide one of the most convincing calls for BSM physics, see,

e.g., the broad reviews in [17, 18], and also the more recent one in [19].

In literature, popular approaches aimed at UV-completing the SM with main focus

on the flavour puzzle have extensively relied on the existence of “flavons”: heavy scalar
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fields whose vacuum expectation value (VEV) yields spontaneous symmetry breaking of

a large enough (discrete or continuous) symmetry group, subgroup of GF , responsible of

the low-energy fermion mass spectrum and the mixing-angle patterns. Flavons may be

considered ubiquitous in the context of Grand Unified Theories [20–25] and of stringy UV

completions [26–30]. Then, the flavour puzzle may offer a phenomenological handle on

those UV theories involving very-high energy dynamics difficult to probe at colliders, that

may feature the predicted flavour pattern as a key IR signature of the theory [31, 32].

Note that the aforementioned flavon models do not set the only possible framework

where the SM flavour puzzle can be solved. Radiative corrections may give a clue on why

some Yukawa couplings may be tiny but not identically vanishing, as originally pointed

out in refs. [33–36] and modernly revisited, for instance, in [37, 38]. Also, the mixing of

SM fermions with heavy resonances arising from strongly interacting sectors, as for the

case of theories of partial compositeness, may offer a pragmatic solution to the flavour puz-

zle [39–41], avoiding the need of horizontal-symmetry breaking. Most notably, hierarchies

without symmetries may follow from embedding the SM in a theory of extra-spatial di-

mensions. In a 5D extension of the SM, the observed quark and lepton masses and mixings

could be the reflection of the geometry of the extra dimension and of the specifics on the

localization of fermion and Higgs profiles on the IR brane, see [42–45] and the more recent

study in [46].

In this work, we restrict our considerations to four-dimensional theories and aim at

critically reviewing the simplest of the flavon models at hand, in a bottom-up perspective

close in spirit to the original work of Froggatt and Nielsen (FN) in [47], further expanded

in [48, 49]. According to the FN mechanism, the SM flavour puzzle is addressed by the

introduction of an Abelian flavour symmetry U(1)X , spontaneously broken by the VEV vφ
of a single flavon field φ; the flavour structure observed at low energy arises once heavy new

degrees of freedom — the FN messengers [50] — properly charged under the horizontal

symmetry broken by the flavon, have been integrated out at the high-energy scale Λ > vφ.

Such a simple setup has recently gained particular attention in the context of a possible

flavour window on the QCD axion and on axion-like particles [51–55]; for collider programs

dedicated to the flavour problem [56]; for the vacuum stability of the Higgs potential [57];

in connection to the present tensions in B physics [58–60]; in relation to the clockwork

mechanism [61, 62] for flavour via an inverted FN construction [63–65]; as an unorthodox

bridge to the fundamental questions in the physics of the Early Universe [66–72].

In our study we will characterize a FN model by the set of charges assigned to the

matter fields under the horizontal symmetry U(1)X , and by a single perturbative parameter

ε. We will work within an effective field theory (EFT) approach, and as such we will leave

unspecified the details of the UV dynamics that will cure any gauge anomaly naively

present in the X charge assignments considered at low energy [73]. Our focus here is

explicitly devoted to the quark sector, where we try to assess in detail the minimal amount

of theoretical assumptions needed to precisely reproduce the quark-mass hierarchies and

the high hierarchical structure of the CKM matrix in a natural manner. The main points

and novelties of the present paper are the followings:
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• We offer a new method that guarantees the exact reproduction of observed masses

and mixing and a close inspection of the size of the dimensionless couplings involved

in FN models, supposedly O(1). The novelty is to start from a basis where inputs

are indeed the precise measurements of fermion masses and mixing angles, an then

exploit unitary rotations in GF to map SM fields into eigenstates of the new FN

interactions;

• We introduce a fine-tuning measure to keep track of peculiar cancellations in flavour

space that would weaken the goodness of a FN model resolving the flavour puzzle;

• We provide a bottom-up exploration of the possible minimal charge assignments in

FN models via an EFT approach, reproducing quark textures and investigating the

role of fine tuning in flavour space.

The present paper is organized as follows: In section 2 we review the FN mechanism in

its EFT incarnation; section 3 is devoted to introduce in detail our new approach to the

study of FN models and it also includes a discussion on the fine-tuning measure for the

SM flavour puzzle; section 4 contains the main results of our study; In section 5 we leave

our ending comments on the possible interesting future directions to pursue.

2 FN in the EFT formulation

Let us briefly review in this section the FN mechanism using the language of EFT, and set

the relevant notation adopted in the rest of the paper. The SM Lagrangian of the quark

Yukawa sector can be written as follows:

− LY u,dSM = Y u
ij Q̄iH̃uj + Y d

ij Q̄iHdj + h.c. , (2.1)

where Q is the left-handed quark SU(2)L doublet, d and u are the right-handed down-type

and up-type quark singlets, respectively; H is the SM Higgs SU(2)L doublet and H̃ ≡
iσ2H

∗; i, j = 1, 2, 3 are generation indices, and sum over repeated indices is understood.

The gauge-kinetic terms of the fermion fields are invariant under the flavour symmetry

group U(3)Q ⊗ U(3)u ⊗ U(3)d ⊂ GF . In particular, a field transformation involving the

3× 3 unitary matrices VQ,u,d so that:

Qi → (VQ)ij Qj ,

ui → (Vu)ij uj , (2.2)

di → (Vd)ij dj ,

leaves invariant the gauge-kinetic term. Then, the Yukawa sector in eq. (2.1) provides an

explicit breaking of the flavour symmetry group down to the Abelian global symmetry

U(1)B, which implies the accidental conservation of baryon number, broken in the SM

theory only at the non-perturbative level [74].
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In general, the explicit values of the entries in the Yukawa matrices Y u and Y d depend

on the basis chosen for the quark fields. With an appropriate choice of the matrices

VQ, Vu, Vd one can always bring the Lagrangian of eq. (2.1) in the following form

− LY u,dSM = ŷuij Q̄iH̃uj + (VCKM ŷd)ij Q̄iHdj + h.c. , (2.3)

where VCKM corresponds to the CKM matrix and

ŷd = diag(yd, ys, yb) , ŷu = diag(yu, yc, yt) , (2.4)

with yq =
√

2mq/vH , mq the mass of the quark q, and vH = 246 GeV, the VEV of the Higgs.

The choice of the basis leading to eq. (2.3) may turn out to be particularly convenient if

we would like to have a direct handle on the 18 complex entries of the Yukawa matrices

in terms of the observed values of quark masses and mixing parameters in the CKM, since

Y u = ŷu and Y d = VCKM ŷd. In the following we refer to this specific choice — a useful

starting point for the present analysis — as the up-aligned basis.1

Let us now discuss the FN mechanism. We can reconsider eq. (2.1) from the point of

view of an EFT invariant under a global U(1)X transformation that distinguishes fermion

families. The rephasing of SM fields under the action of U(1)X corresponds to:2

Qj → e
i θXQj Qj ,

uj → ei θXuj uj , (2.5)

dj → e
i θXdj dj ,

where θ ∈ [0, 2π] is the continuous parameter of the global Abelian transformation and

XQj ,uj ,dj are the U(1)X charges of the various quark fields with generation index j. At the

renormalizable level, Yukawa terms in the Lagrangian are forbidden as long as XQi 6= Xuj

or XQi 6= Xdj for any pair i, j. As anticipated in the Introduction, to have non-zero values

for all the elements of the Yukawa matrices, we can introduce a scalar field φ with U(1)X
charge, that we will set to Xφ = 1 without loss of generality. According to the charge

assignments of the fields illustrated above, we can now write down the following terms

LFN-EFT ⊃


cuij Q̄iH̃uj (φ/Λ)XQi−Xuj + h.c. XQi −Xuj ≥ 0 ,

cdij Q̄iHdj (φ/Λ)
XQi−Xdj + h.c. XQi −Xdj ≥ 0 ,

cuij Q̄iH̃uj
(
φ†/Λ

)Xuj−XQi + h.c. XQi −Xuj ≤ 0 ,

cdij Q̄iHdj
(
φ†/Λ

)Xdj−XQi + h.c. XQi −Xdj ≤ 0 ,

(2.6)

responsible for the Yukawa terms of eq. (2.1) once the flavon φ acquires a VEV along its

real component:3 〈φ〉 = 〈φ†〉 = vφ 6= 0. Eq. (2.6) provides the most general formulation of

the EFT Lagrangian invariant under the SM gauge symmetry and the global group U(1)X
allowing for non-renormalizable operators suppressed by a cut-off scale Λ and involving a

single flavon field φ.

1An equivalent convenient choice could be the down-aligned basis, where Y u = V †
CKMŷ

u and Y d = ŷd.
2A slight generalization of this set would also include the Higgs field, here set to XH = 0 for simplicity.
3Note that this can be always achieved by a proper redefinition of the complex scalar field φ.
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Therefore, the induced EFT Lagrangian stemming from the FN mechanism reads as

− LFN-EFT = cuij ε
nuij Q̄iH̃uj + cdij ε

ndij Q̄iHdj + h.c. , (2.7)

where the following definitions have been introduced:

ε ≡ vφ/Λ , (2.8)

nuij ≡ |XQi −Xuj | , (2.9)

ndij ≡ |XQi −Xdj | . (2.10)

Inspecting eq. (2.7), we can easily see how the mechanism to explain the SM flavour

structure can be at work: if ε < 1, hierarchical structures in the Yukawa couplings can be

generated through the different powers of εn
u
ij and εn

d
ij while the coefficients cuij and cdij can

be naturally of the same order, i.e. not hierarchical and of O(1) in size. In the following

we refer to the FN basis as the one where such a mechanism is manifest.4

Before concluding this section, a few remarks are in order:

• Eq. (2.3). and eq. (2.7) describe the quark Yukawa Lagrangian in two different basis:

this simple observation is the culprit of the discussion carried out in the next section;

• Eq. (2.7) shows that from the low-energy point of view, it is sufficient to know the

expansion parameter ε and the matrices nu,dij (up to O(1) coefficients) to describe

the Yukawa sector in the FN picture; however, for a fixed value of the expansion

parameter, different sets of charge assignments XQi,ui,di yielding the same nu,dij entries,

characterize distinct FN models in the UV;

• Charging also the Higgs field under U(1)X would simply correspond in a plus (minus)

shift in all the entries of ndij (nuij) of amount XH ; hence, the generated hierarchy in

masses and mixing is primarily controlled by the fermion charge assignment;

• Eq. (2.6) does not assume couplings to φ or φ† only: such a UV restriction would be

a typical outcome of supersymmetric extensions of the SM due to the holomorphic

property of the superpotential [48, 49]; a supersymmetric version of eq. (2.7) would

also need a second Higgs doublet at work, implying a dedicated inspection of the role

of the misalignement between the VEV of the two Higgs fields in the analysis of the

flavour puzzle [75–77]. In our study we do not consider this class of models, that

would offer a generalization of eq. (2.7).

3 How FN theories confront data

Let us now move our discussion to the most relevant point of the paper, namely how a

generic FN model yielding at low energy the structure highlighted in eq. (2.8), should be

discriminated by the dataset of interest, namely the six quark masses, together with the

three mixing angles and the CP-violating phase of the CKM matrix.

4In other words, the FN basis is the one where all the fields ψi have a well-defined transformation

property under the action of U(1)X , ψi → eθXψiψi, i.e. eigenstate of the new FN interactions.
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3.1 A customary approach

In the inspection of the quark sector, in literature it has been often the case of relying on

approximate relations that put under the spotlight the strong hierarchies among quark-

mass ratios and the CKM entries. This fact induced some authors to pinpoint specific

hierarchical structures for the Yukawa matrices Y u,d
ij , see e.g. ref. [78]. Along these lines, a

very popular choice is to identify the Cabibbo angle λ = sin θc ' 0.22 with the expansion

parameter ε, and then obtain a description of quark masses and mixings according to:

yd ∼ λ6 , ys ∼ λ4 , yb ∼ λ2 , yu ∼ λ7 , yc ∼ λ3 , yt ∼ λ0 , (3.1)

|Vud| ∼ |Vcs| ∼ |Vtb| ∼ λ0 , |Vus| ∼ |Vcd| ∼ λ , |Vcb| ∼ |Vts| ∼ λ2 , |Vub| ∼ |Vtd| ∼ λ3 .

The approximate relations reported above represent a valuable benchmark for a top-down

approach that aims at qualitatively explaining the SM flavour puzzle. On the other hand, it

is quite easy to single out a FN model that from the bottom-up point of view — up to multi-

plicative factors of O(1) — is able to reproduce the relations highlighted in eq. (3.1). For in-

stance, assigning XQ1,2,3 = {3, 2, 0}, Xu1,2,3 = {−4,−1, 0}, Xd1,2,3 = {−3,−2,−2}, together

with ε ∼ λ, one would accomplish the goal of reproducing the pattern in eq. (3.1) [18, 69].

Needless to say, a more quantitative investigation of the SM flavour problem may be

highly desirable. Within the FN mechanism, this requires to go well beyond the order-of-

magnitude scalings of eq. (3.1). In fact, one may attempt to reproduce the value of quark

masses (evaluated at the high-energy scale under scrutiny) more precisely, and also succeed

in describing the detailed textures of the CKM matrix [79]. The latter, in fact, does not

have entries that in absolute value really yield a symmetric matrix, with the size of the

mixing of the first and third generation badly breaking such (widespread) approximation,

see the most updated results on unitarity-triangle analyses in [80–82].

In a more ambitious endeavour on the assessment of a solution to the SM flavour

puzzle, one may perform a precise fit to the observed masses and mixing angles in the

theoretical framework at hand. On mathematical grounds, one could formulate for the

purpose an optimization problem with the following cost function:

χ2
O =

∑
K

(
〈OK〉 − ÔK

∆OK

)2

, (3.2)

where OK stands for the observable with measured value 〈OK〉 ± ∆OK , and theory pre-

diction ÔK , with K = 1, . . . , 10 running over the six quark masses, the three CKM mixing

angles and, eventually, also on the CP-violating phase. In order to study the SM flavour

puzzle in the context of the FN mechanism, one may ideally proceed as follows:

• Specify a model, fixing the set of nine fermion charges under the global U(1)X ;

• Use eq. (2.7) to write down ÔK as a function of 18 complex parameters, characterizing

the entries of cu,dij matrices, and also of the perturbative parameter ε;

• Minimize χ2
O to find the optimal values for cu,dij and ε that reproduce the masses and

mixing pattern of the quark sector of the SM;
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• Consider to accept or reject the FN model on the basis of the textures found in cu,dij :

a successful FN model should feature non-hierarchical O(1) entries for |cu,dij |.

Note that the problem so formulated involves 37 real parameters to be determined

from 10 measurements. To drastically reduce the number of parameters involved, one

could leave the discussion on CP violation aside, i.e. focusing only on masses and mixing

angles. Furthermore, one may also set ε to a reasonable benchmark of interest (e.g., the

Cabibbo angle highlighted in the relations of eq. (3.1)), instead of inferring it from data.

Then, one would end up with 18 parameters to be extracted from a fit to 9 measurements,

assessing the goodness of the flavour model on the basis of how many of these 18 fitted

coefficients would turn out to be O(1).

Along the lines of what presented recently in ref. [24], a further improvement of this

method can be provided by introducing an additional weight to χ2
O that takes into account a

notion of distance for the coefficients from the expected O(1) value; e.g., one may consider:

χ2
tot = χ2

O + χ2
O(1) , (3.3)

χ2
O(1) =

∑
q=u,d

3∑
i,j=1

(
|cqij | − µc

σc

)2

,

implying a normal distribution for the absolute value of the coefficients cu,dij and standard

deviation σc. A reasonable choice may be then to set the mean to unity and, pending on

the strictness of the “O(1) requirement”, σc could be matching, e.g., 10% level.

The improved cost function in eq. (3.3) allows to turn the original optimization problem

into an overdetermined system, with 27 independent constraints potentially nailing the

global minimum in the 18-dimensional parameter space (or 19-dimensional one if the FN

scale-ratio ε is not fixed a priori). Note, however, that the goodness of this approach in the

end critically depends on the choice of σc, that establishes which of the two terms in eq. (3.3)

weights the most in the minimization procedure. Moreover, the original problem at hand

got the main simplification from the requirement of dealing only with real dimensionless

coefficients. In the following, we are going to discuss how a different approach would allow

one to simplify the problem at hand without relying on any assumption of this sort. In

particular, within such an approach we are going to show how U(3)3 rotations in flavour

space can be generally exploited in order to survey FN models very efficiently.

3.2 A novel approach

Let us now consider an alternative approach to eq. (3.3) that allows a general exploration

of the flavour problem within the FN EFT where we aim at:

• Explaining the pattern of SM quark masses and mixing, to be precisely reproduced;

• Obtaining the size of the dimensionless coefficients cuij and cdij in a natural range;

• Avoiding any fine tuning possibly occurring among the parameters involved.
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As a starting point, let us introduce the approximation ∆OK/〈OK〉 � 1 as our working

hypothesis, namely let us focus only on the central values for the available measurements

of quark masses and CKM mixing parameters. Given the O(1) characterization of the

coefficients in eq. (2.7), such an approximation should be considered reasonable in the

present context: charm, bottom and top quarks currently show an uncertainty on the

determination of the mass of the percent level, and such a precise determination holds

true for CKM angles as well, while ∆OK/〈OK〉 floats around O(10%) for the lightest three

quarks and the CKM phase [83].

Given the set of measurements 〈OK〉, K = 1, . . . , 10 , we can easily construct the quark

Yukawa sector in the up-quark aligned basis reported in eq. (2.3). Then, we observe that

the aligned basis and the FN basis are related by a transformation of U(3)3. In other

words, we know that there exist three unitary matrices VQ, Vu and Vd such that:(
V †Q ŷ

u Vu

)
ij

= cuij ε
nuij ,

(
V †Q VCKMŷ

d Vd

)
ij

= cdij ε
ndij . (3.4)

Consequently, for a set of assignments of FN charges and for a given value of ε, we can

always rewrite the dimensionless coefficients cuij and cdij in terms of the above unitary

matrices.

The statement above is the key observation of the present study. Indeed, using eq. (3.4)

the three unitary matrices can completely specify the values of the coefficients cuij and cdij .

For every point in the U(3)3 parameter space we can then compute the values of the

elements of cuij and cdij . In this way, the problem of addressing the SM flavour puzzle via

the FN mechanism can be formulated in terms of the parameters that span the U(3)3

flavour space of the quark sector. In particular, from the compact ranges of the 3 ×
9 = 27 independent parameters one can generate all the possible existing VQ,u,d matrices.

Note that in the customary approach previously presented, for a given set of coefficients

cu,dij , these rotation matrices are uniquely determined by the diagonalization procedure

involved in the computation of ÔK , contrary to what proposed in the new formulation of

the problem.

Let us now make a few observations directed at further simplifying the analysis without

any loss of generality. In first place, given yt ' 1,5 we can establish a relation between the

FN charges in (what-would-be) the top-quark sector:

nu33 ' 0 ⇒ XQ3 = Xu3 . (3.5)

Moreover, the accidental baryon symmetry U(1)B allows us to remove one of the physical

assignments for the FN charges. Hence, under the approximation highlighted in eq. (3.5)

we can safely set:

XQ3 = Xu3 = 0 . (3.6)

As a result, only seven U(1)X charges out of the initial nine ones are actually independent

and need to be assigned to characterize the construction of the FN EFT in eq. (2.7).

5The approximation holds also for the running of the top-quark mass from the EW scale up to the TeV.
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In order to directly compare eq. (2.1) with eq. (2.7), we need to introduce three distinct

U(3) transformations as already illustrated in eq. (3.4). An element V ∈ U(3) can be

uniquely defined by a transformation involving three angles, θ1,2,3, and six phases, δ1,...,6;

in the fundamental representation this one can be constructed as follows [84, 85]:

V =

 1 0 0

0 eiδ2 0

0 0 eiδ3


 c1c2 c1s2 s1e

−iδ1

−c3s2 − c2s1s3e
iδ1 c2c3 − s1s2s3e

iδ1 c1s3

s2s3 − c2c3s1e
iδ1 −c2s3 − c3s1s2e

iδ1 c1c3


 eiδ4 0 0

0 eiδ5 0

0 0 eiδ6

 ,

(3.7)

where the shorthands c1,2,3 ≡ cos θ1,2,3, s1,2,3 ≡ sin θ1,2,3 have been adopted. Hence, a

priori, the three unitary transformations in eq. (3.4), VQ,u,d, would indeed involve a total

of 27 independent parameters. However, note that each of the nine quark fields can be

redefined under a U(1) transformation, innocuous on the gauge-kinetic sector of the SM

Lagrangian, with U(1)9 ⊂ GF . This allows one to eliminate three of the six phases present

in each of VQ,u,d, which consequently can take the reduced form:

V =

 c1c2 c1s2 s1e
−iδ1

−c3s2e
iδ2 − c2s1s3e

i(δ1+δ2) c2c3e
iδ2 − s1s2s3e

i(δ1+δ2) c1s3e
iδ2

s2s3e
iδ3 − c2c3s1e

i(δ1+δ3) −c2s3e
iδ3 − c3s1s2e

i(δ1+δ3) c1c3e
iδ3

 . (3.8)

Therefore, the number of degrees of freedom characterizing the problem corresponds

only to 3×3 = 9 mixing angles, varying in the compact interval [0,π], and 3×3 = 9 phases,

spanning the range [0,2π], yielding a total of 18 independent parameters.

We can now present a step-by-step analysis of the SM flavour puzzle in FN theories

within such a general setting. As a starting point, one randomly generates a set of angles

θQ,u,d1,2,3 and phases δQ,u,d1,2,3 , that identify a point in the U(3)3 quark flavour space. Within

the FN EFT under consideration, one should proceed characterizing the FN model. As

previously mentioned, this can be done fixing a set of FN charges, defining nu,dij in eq. (2.8),

together with ε, that could be randomly extracted in the interval (0, 1) being an expansion

parameter. As a second step, exploiting the precise measurements of ŷu,d and VCKM, one

can evaluate cu,dij inverting the relations presented in eq. (3.4):

cuij(ε, θ
Q,u,d
1,2,3 , δQ,u,d1,2,3 ) =

(
V †Q ŷ

u Vu

)
ij
/ εn

u
ij ,

cdij(ε, θ
Q,u,d
1,2,3 , δQ,u,d1,2,3 ) =

(
V †Q VCKM ŷd Vd

)
ij
/ εn

d
ij , (3.9)

where we have highlighted that for a given FN charge assignment, cu,dij are now considered

as functions of the perturbative parameter ε and of the 18 nuisance parameters corre-

sponding to 9 independent angles and phases. This formulation may be advantageous from

the following point of view: while inferring the value of ε from data retains a clear phe-

nomenological relevance, angles and phases can be easily spanned in compact intervals to

extensively chart the parameter space and assess whether cu,dij entries may turn out to be

O(1) coefficients.
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So, as a last step, one can introduce the new cost function:

χ2
FN =

3∑
i,j=1

(
|cuij(ε, θQ,u,d1,2,3 , δQ,u,d1,2,3 )| − 1

)2
+
(
|cdij(ε, θQ,u,d1,2,3 , δQ,u,d1,2,3 )| − 1

)2
, (3.10)

and minimize it with respect to U(3)3 angles, phases, and the expansion parameter ε.

Finally, one should establish a criterion of acceptance for a natural range of cu,dij , that

will characterize them as O(1) parameters. For instance, given some departure ∆x from

unity, one might retain as phenomenological successful a FN model that features all the

complex coefficients satisfying the relation 1 −∆x < |cuij |, |cdij | < 1 + ∆x ∀ i, j = 1, . . . , 3 ,

i.e. implementing in a specific way the idea that all the coefficients have to be similar in

size. If spanning the entire U(3)3 parameter space the criterion would not be met, then the

model had to be discarded. From this point of view, the minimization of eq. (3.10) ensures

to perform this task efficiently. In particular, if all the sizes of the 18 complex entries in

cu,dij turn out to fall in the acceptance range chosen, then the minimization performed in

eq. (3.10) allows us to find an optimal point in flavour space, more precisely the set of

values θ̄Q,u,d1,2,3 , δ̄Q,u,d1,2,3 , together with the inferred ε̄, for which the FN model considered is

manifestly natural in reproducing the pattern of quark masses and mixing observed. Of

course, the specific range at the basis of the O(1) criterion for the solution of the flavour

puzzle remains a subjective matter.

3.3 The flavour tuning

As anticipated in the Introduction, the criterion dictating a viable FN model may not be

sufficient to claim for a satisfactory solution of the SM flavour puzzle. Indeed, even when

the O(1) criterion may be met, it is still possible that parameters of similar size conspire in

order to reproduce the measured value for the predicted observable. In such a case, there

would not be a symmetry reason behind the solution of the flavour puzzle, but rather an

unfortunate case of tuning of the parameters involved. This fact is in good analogy with

the study case of the hierarchy problem in the EW sector: there, the well-known Barbieri-

Giudice measure [86, 87] acts as a discriminant to establish the goodness of a natural UV

completion of the SM, looking at logarithmic derivatives of some key observables, e.g., the

Z boson mass, with respect to the parameters of the BSM theory.

In the following, we wish to introduce a similar notion for what concerns the flavour

problem, and the FN mechanism in particular. For the purpose, we can promote the 10

observables {OK}K=1,...,10 involved in eq. (3.2) to be functions of the 18 complex coefficients

appearing in eq. (3.9), and then proceed defining the dimensionless quantity:

∆FN ≡ max
K,i,j

|δK,ij | , δK,ij ≡
cu,dij
OK

δOK

δcu,dij
, (3.11)

where the notation above gives understood that δK,ij has to be computed for both the real

and imaginary part of the 18 complex coefficients. The underlying meaning of eq. (3.11)

should be clear at this point: for a given solution to the flavour puzzle where all |cu,dij | ∼
O(1), if a small variation in the real or imaginary part of the entries of cu,dij produces a
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change in one of the observables at hand, one would end up with ∆FN > 0; then, if the

latter is greater than a certain threshold value quantifying fine tuning in flavour space, e.g.

∆FN > O(10), the solution to the flavour problem found may be considered unnatural.

In our new approach, given an optimal point in flavour space represented by the set

θ̄Q,u,d1,2,3 , δ̄Q,u,d1,2,3 and ε̄, the computation of ∆FN in eq. (3.11) would require already the eval-

uation of 2 × 18 × 10 = 360 numerical derivatives, corresponding to the number of dif-

ferent δK,ij . Note that evaluating ∆FN at the optimal point found via the minimization

of eq. (3.10) is not sufficient to claim that the FN model considered is really unnatural.

Indeed, the ideal approach would be to construct a fine grid in the 19 dimensional space

and evaluate ∆FN and the size of the coefficients in each point of the parameter space.

Such a procedure would allow to have a global assessment on the O(1) size of cu,dij and on

the degree of fine tuning involved at the same time. Computationally, such a task would

be very demanding for a single FN model, and essentially prohibitive for a comprehensive

survey of FN models.

In order to overcome this technical difficulty, we propose here an alternative way to

encode the notion of fine tuning corroborated in eq. (3.11). The basic idea is to add a

statistical weight to eq. (3.10), in order to optimize a new cost function that takes into

account also the degree of fine tuning in flavour space. While such a strategy may be

realized in several ways, in this work we considered the following modification to eq. (3.10):

χ2
FN,α = χ2

FN + α
∑
K,i,j

δ2
K,ij , (3.12)

with coefficient α ≥ 0 and, once again, with the contribution of real and imaginary part of

cu,dij in the sum of the second term understood.

Equipped with eq. (3.12) and the fine-tuning estimator reported in eq. (3.11), in our

novel approach to the SM flavour puzzle one could imagine to proceed as follows. First,

one would perform the minimization of χ2
FN,0 in order to assess if the FN model under con-

sideration were able to address the flavour puzzle according to the O(1) criterion attached

to it. Then, one may compute ∆FN and compare it to the desired threshold of accep-

tance for fine tuning in flavour space: if ∆FN would result greater than the established

threshold, the model should be considered fine-tuned. At that point, one would not reject

immediately the model, but rather turn on α > 0 and repeat the exact same procedure.

One should minimize again eq. (3.12) taking this time into account also the contribution

from the term involving δK,ij , check on the size of cu,dij , and check on the value of ∆FN.

Depending on the outcome, one could perform this exercise iteratively for increasing α

values, and consider the model natural if, for some values of the parameter α, both the

O(1) criterion is respected and, at the same time, the value for ∆FN is found to be smaller

than the fine-tuning threshold chosen. At the practical level, one can consider a finite set

of α values logarithmically spaced in an interval with extremes α = 0, and α = ᾱ such that

χ2
FN,ᾱ � χ2

FN,0. This may provide a pragmatic handle on the assessment of the degree of

fine tuning for the FN solutions found.
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4 Charting FN models

In this section we present our comprehensive investigation on the FN mechanism based on

the novel approach to the flavour problem detailed in the previous section. We highlight

as the most interesting outcome of our study the existence of viable FN models with small

U(1)X charge, that turned out to not suffer of fine tuning in flavour space.

4.1 Explicit methodology

Let us now give a more specific realization of the strategy highlighted in the previous

section. We start identifying the set of FN models that we are interested in.

In our analysis, the expansion parameter ε is treated as an unknown and will be inferred

from data. Hence, within our approach, specifying the set of charges determines completely

the FN model under study. Recalling from eq. (3.6) that the top-quark Yukawa value and

baryon number conservation fix 2 out of the 9 FN charges, we need to fix the value of

7 FN charges in order to define a specific model. Allowing each charge to assume any

integer number in the range [−n, n], this naively implies that there exist (2n+ 1)7 different

configurations that would need to be inspected. However, the final number of independent

models is actually lower. Indeed, the invariance under GF of the gauge-kinetic term in

the SM Lagrangian implies that, once a set of charges is assigned, the physics is invariant

under permutations of the charges within a family. Therefore, since such permutations

would simply correspond to a reordering of the quarks within the family without any

physical implication, it is enough to select a specific ordering of FN charges to inspect all

the physically different FN models. We adopt in our analysis the ordering:

XQ1,2,3 = {a, b, 0}; Xu1,2,3 = {c, d, 0}; Xd1,2,3 = {e, f, g}, with


a ≥ b
c ≥ d
e ≥ f ≥ g

. (4.1)

One can then conclude that the number of possible charges for both XQi and Xui actually

is (2n+ 1)(2n+ 2)/2 each, while the combinations for Xdi are (2n+ 1)(2n+ 2)(2n+ 3)/6,

with total independent charge assignments equal to (2n+ 1)3(2n+ 2)2(2n+ 3)/24.

In the present analysis we will consider the exploration of FN models up to n = 3,

scrutinizing in this way more than 65k different models.

One important comment before moving on is in order: since nu,dij depend only on

the absolute value of the difference between a FN-charges pair, see eqs. (2.9)–(2.10), this

implies that starting from a specific FN model and inverting the sign of all the charges will

produce the “mirror case”, corresponding to a distinct model in the UV, described by the

same low-energy EFT. Mirror models, after reordering the charges according to eq. (4.1),

would be already included in the set of models we aim to explore. Hence, it is sufficient

to analyse only one of the two models in each mirror pair, further reducing the number of

independent models that practically one has to consider.

The following step is the definition of the phenomenological input values. The dataset

at hand to perform our study consist of the six quark masses, the three CKM mixing angles
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and the CP-violating phase. For the quark masses, we consider their running via the SM

renormalization group up to the high energies probed at colliders; specifically, we adopt

the results at 1 TeV given in ref. [88]:

mu/GeV = 1.17 · 10−3 , mc/GeV = 0.543 , mt/GeV = 148.1 ,

md/GeV = 2.40 · 10−3 , ms/GeV = 0.049 , mb/GeV = 2.41 . (4.2)

We describe the CKM matrix via the standard parameterization [89] and take at face value

the outcome of the unitarity triangle analysis performed in ref. [90]:6

sin θ12 = 0.22497 , sin θ13 = 0.00368 , sin θ23 = 0.04229 , δ = 65.9◦ . (4.3)

Note that the underlying assumption of a flavour-breaking scale around the TeV may be

suggestive in light of direct searches at the LHC, while being theoretically sound in relation

to the hierarchy problem of the EW scale. At the same time, if we were assuming a breaking

scale for the horizontal Abelian symmetry an order of magnitude greater, this would have

only a marginal impact on the results obtained in our numerical analysis. In fact, taking

the SM theory to be valid up to O(10) TeV [88, 91, 92], the values of the quark masses

runned at that scale would differ at most of 10% with respect to the corresponding ones at

O(1) TeV. On the other hand, the validation of the conclusions drawn from our analysis may

possibly need to be revised if the dynamics responsible of the flavour problem were to be

originated really far away from the EW scale, e.g, at the typical scale of Grand Unification,

ΛGUT ∼ O(1013) TeV. In such a scenario, assuming the SM to be the correct theory up

to ΛGUT, one may find out the impact of the renormalization group on the runned quark

masses to be much more important: The value of the top-quark mass, in particular, may

no longer underlie yt ' 1, and the relation between FN charges illustrated in eq. (3.5) may

be much less motivated. Furthermore, the playground for a model-independent analysis as

the one pursued in the present work may also cease to hold due to the possible relevance

of mass-threshold effects of some new dynamics between ΛGUT and the EW scale.

Using the values from eqs. (4.2)–(4.3), we can now minimize eq. (3.10) for all the mod-

els under scrutiny. Given the complexity of the parameter space, for each definite set of

FN charges we perform a two-step minimization. At first, we employ the Basin-Hopping

method, namely a global optimization technique where local minimization of the likelihood

is supported by an acceptance test analogous to the Metropolis criterion employed in ordi-

nary Monte Carlo algorithms, see [93] for more details. By construction, the Basin-Hopping

algorithm allows us to reasonably tackle the hard problem of dealing a priori with several

different local minima. As a second step, we also use the MIGRAD algorithm [94], the fast

gradient-descent minimization with variable metric implemented in the MINUIT package,

see e.g. [95]. For each model, we have randomly initialized MIGRAD by hundreds of trials,

in order to cross-check the outcome of the minimization procedure obtained with Basin-

Hopping, further optimizing on the minimum previously found. Within this elaborated

6In particular, we adopt the result of the NP fit of ref. [90] and neglect small effects related to the

running due to weak interactions, see for instance [91].
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procedure, while checking on the size of each individual O(1) coefficient, we should have

numerically coped also with possible issues arising in the presence of degenerate minima.

In the following, we adopt as O(1) criterion for the size of cu,dij the range of acceptance

[0.4, 1.6], namely we will consider a deviation from unity of at most ∆x = 0.6 for |cu,dij | to

dub a certain FN model under consideration phenomenologically successful.

Finally, for the assessment of the degree of fine tuning of the solutions found, we further

minimize, when necessary, eq. (3.12) for log10 α ∈ {−6,−5,−4,−3,−2,−1, 0}. From our

numerical analysis we explicitly observe that α = 10−6 typically gives back an outcome

identical to what obtained minimizing originally eq. (3.10), while setting α = 1 makes the

presence of the first term in eq. (3.12) irrelevant in the minimization procedure.

4.2 Selected results

We now analyse and summarize the results we obtained applying the procedure described

in the previous sections. As a first observation, we report that we found a large number of

phenomenologically viable FN models: this may come as a surprise if one considers that

we are restricting our investigation to rather low charge assignments for the FN models in

the UV, while the O(1) criterion under consideration should be considered quite restrictive

a priori, allowing for a 60% deviation from coefficients equal to unity.

We singled out ∼ 650 models capable to address the flavour puzzle in the quark sector

of the SM by means of coefficients cu,dij that show a natural size. This number of solution

doubles, once we take into account for each of them the corresponding mirror solution.

Hence, as one of the major highlights of this study, out of the ∼ 65k cases examined, we

observe that about 1.3k FN models with U(1)X charge in absolute value ≤ 3 can actually

account for the SM flavour puzzle with a natural range for |cu,dij |.
In figure 1 we report the stacked histogram of the number of viable FN models as a

function of the value for the perturbative parameter ε, inferred from data. We divide the

models in three separate classes, according to the values required for the charges of each

model. In particular, we report in red the models where XQi,ui,di only assume values of 0

or of ±1, in pink the models where at least one charge is equal to ±2, and in orange the

remaining ones, i.e. where there is at least one FN charge equal to ±3.

A few comments are then in order. First, we observe that the inferred values for ε are

all in the range going from a minimum close to 0.005 to a maximum around 0.25. As one

may have reasonably guessed, models described by small values of the charges XQi,ui,di are

correlated with a small FN perturbative parameter. Indeed, small FN charges will produce

small entries in the matrices nu,dij , hence requiring lower values for ε in order to reproduce

the desired phenomenology. On the other hand, once we allow for larger values of the

charges XQi,ui,di , i.e. larger entries for the matrices nu,dij , a larger expansion parameter ε is

consequently probed by data. Note that the histogram of figure 1 hints for two prominent

modes: one for ε ∼ 0.01 and another one for ε ∼ 0.08. Interestingly, for the small FN

charges considered, the typical choice of ε & 0.2 often exploited in literature probes only

the tail of the distribution captured in figure 1. It is also remarkable the fact that we find

∼ 10 solutions featuring only {0, 1} for the FN charges in absolute value. These findings

allow for the construction of the most economic FN theories possible in the UV, that to

the best of our knowledge have never been considered in literature so far.
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Figure 1. Histogram of the number of viable FN models with charges in absolute value ≤ 3 as a

function of the perturbative parameter ε = vφ/Λ. The models are divided into three distinct classes

according to their degree of “minimality”: in red FN models have charges that are only 0 or ±1, in

pink FN models have at least one charge that is equal to ±2, in orange the case where at least one

charge gets equal to ±3. In our analysis, the ε parameter is inferred from data and ranges from a

minimum value equal to 0.005 to a maximum close to 0.25. See text for more details.

Given the large number of viable models found in our analysis, in the following we focus

on a few interesting cases that are illustrative examples of minimal FN constructions. As a

first class of selected models, we list in table 1 the 15 cases characterized by the lowest values

found for the FN expansion parameter, i.e. ε . 0.01. In particular, we report 4 models

whose charges involve only {0,±1} assignments, and 11 more models for which charges

can also be equal to ±2. It is worth to mention that, for the models where all XQi = 0,

one obtains that n
u(d)
ij ≡ |Xuj(dj)|; therefore, for any given model in table 1 satisfying this

requirement, not only the mirror case is viable and corresponds to a physically distinct

UV model (obtained inverting the sign of all the set of FN charges reported), but one may

further obtain physically different models in the UV, viable in the IR, just inverting the

sign of any subset of the FN charges listed in the table, since they will be described by the

same low-energy EFT. For instance, if one takes the model given in the first line of table 1,

one can easily construct the mirror model that, following the prescription of eq. (4.1) for

the ordering of the charges, reads:XQi

Xui

Xdi

 =

 0 0 0

1 −1 0

1 1 1

 ; (4.4)
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XQ1 XQ2 XQ3 Xu1 Xu2 Xu3 Xd1 Xd2 Xd3 ε

0 0 0 1 -1 0 -1 -1 -1 0.005

1 0 0 -1 -1 0 -1 -1 -1 0.006

1 0 0 0 -1 0 -1 -1 -1 0.006

1 1 0 0 -1 0 -1 -1 -1 0.012

0 0 0 1 -2 0 -1 -1 -2 0.006

0 0 0 1 -2 0 -1 -1 -1 0.005

0 0 0 1 -2 0 2 1 -1 0.006

0 0 0 1 -1 0 -1 -1 -2 0.006

0 0 0 1 -1 0 2 1 -1 0.006

0 0 0 1 1 0 -1 -1 -2 0.005

0 0 0 2 -1 0 -1 -1 -2 0.006

0 0 0 2 -1 0 -1 -1 -1 0.005

0 0 0 2 -1 0 2 1 -1 0.006

1 0 0 -1 -2 0 -1 -1 -2 0.008

1 0 0 -1 -1 0 -1 -1 -2 0.007

Table 1. A selection of viable FN models characterized by a small expansion parameter, ε� 0.1.

In the first 4 lines we report a subset of the models with |XQi,ui,di | ∈ {0, 1}, reporting only

combinations that underlie different nu,dij for such values of the charges; see text for more details.

In the last 11 lines we present some of the viable FN models singled out in our analysis with

|XQi,ui,di | ∈ {0, 1, 2}.

moreover, other six different physical models can be further obtained just changing the

sign of one or more (but not all) of the five non-trivial FN charges assigned.

In a similar fashion, we report in table 2 a list of 15 cases characterized by values for

the expansion parameter an order of magnitude larger, i.e. ε ∼ 0.1. For these cases, we

selected 10 models whose charges are in the subset {0,±1,±2}, and 5 more models for

which FN charges up to ±3 are considered. In appendix A we report an explicit example

showing how, starting from one of the models listed in table 2 together with the explicit

values for the dimensionless coefficient matrices cu,d and for the rotation matrices VQ,u,d
obtained from the optimization of eq. (3.10), the desired values for quark masses and the

CKM parameters are perfectly reproduced.

We close this section tackling possible fine-tuning issues in the FN solutions found.

In order to address this point, we computed the fine-tuning parameter ∆FN defined in

eq. (3.11) for each of the ∼ 650 viable models identified. For roughly half of the analysed

models, the tuning parameter is found to be at most O(10) from a direct inspection of the

optimal point in parameter space found minimizing eq. (3.10). For the remaining viable

FN models obtained, we applied the iterative minimization procedure related to eq. (3.12)

and discussed in detail in section 3.3. In the end, we found only ∼ 100 FN models with a

fine-tuning parameter that remained well above the threshold ∆FN = 102.
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XQ1 XQ2 XQ3 Xu1 Xu2 Xu3 Xd1 Xd2 Xd3 ε

1 1 0 -2 -2 0 -2 -2 -2 0.098

1 1 0 -1 -1 0 -2 -2 -2 0.081

1 1 0 0 -2 0 -2 -2 -2 0.094

1 1 0 0 -1 0 -2 -2 -2 0.093

2 1 0 -2 -2 0 -2 -2 -2 0.109

2 1 0 -1 -2 0 -2 -2 -2 0.094

2 1 0 0 0 0 -2 -2 -2 0.094

2 2 0 -1 -1 0 -2 -2 -2 0.112

2 2 0 0 -2 0 -2 -2 -2 0.109

2 2 0 0 -1 0 -2 -2 -2 0.109

0 0 0 3 -3 0 -2 -2 -3 0.104

1 0 0 -2 -3 0 -2 -3 -3 0.098

1 1 0 -2 -3 0 -2 -2 -3 0.100

2 0 0 -2 -3 0 -2 -3 -3 0.104

2 1 0 -2 -3 0 -2 -2 -2 0.104

Table 2. A selection of viable FN models characterized by a larger expansion parameter, ε ∼ 0.1.

Similarly to what already done for table 1, here we report in the first 10 lines some of the viable

FN models with |XQi,ui,di | ∈ {0, 1, 2}, while in the last 5 lines we list some of the solutions found

with the largest charge assignment considered, namely |XQi,ui,di | ∈ {0, 1, 2, 3}.

Interestingly, two thirds of these fine-tuned models exhibit systematically ∆FN ∼
O(103).7 The most relevant observables for these technically pathological cases, i.e. the

observables responsible of a large fine-tuning estimator, always correspond to the quark

masses mu,d. This fact may be connected to the observation that most of these special

cases belong to the class of minimal FN models for which the charge assignment implies

the existence of a 0 eigenvalue in the limit cu,dij → 1. In these fine-tuned FN models the

role of the O(1) coefficients turns out to be of particular importance: cu,dij 6= 1 allow to

avoid peculiar cancellations related to the presence of 0 eigenvalues, and critically increase

the rank of the resulting up-quark and/or down-quark Yukawa matrices.

In other words, in models where the same FN-charge assignment characterizes the first

two generations, the mass hierarchy among the latter arises in fact as a result of a matrix

with rank approximately smaller than the maximal one. Consequently, these models are

naturally more exposed to fine-tuning problems. However, we wish to stress that a careful

evaluation of ∆FN, including both the mixing with the third generation and the interplay of

real and imaginary parts of the complex coefficients cu,dij , must be always performed before

dubbing these FN models as fine-tuned. A zoom on a model involving same FN charges in

the first two generations, but with ∆FN ∼ O(10), is explicitly given in the appendix.

On general grounds, we can affirm that about 80% of the viable FN solutions found

by our method is not susceptible of severe cancellations in the U(3)3 flavour space, that

would have signalled a fine-tuning issue in the resolution of the SM flavour puzzle.

7None of these potentially fine-tuned models corresponds to the ones selected in tables 1–2.
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5 Conclusions

Today, the SM flavour puzzle may offer one of the most relevant clues on the footprints of

BSM physics at low energy. In this work, we took this opportunity to explore the origin

of mass and mixing hierarchies in the quark sector of the SM Lagrangian in the context

of the FN mechanism. As the main novelty of our study, we proposed a new method to

evaluate whether a FN model can be considered viable from the phenomenological point

of view. Our approach is bottom-up and intimately connected to the symmetries of the

problem in the IR, namely the invariance of the SM quark gauge-kinetic Lagrangian under

U(3)3. It provides a rather general strategy that can be, in principle, replicated also for

any other interesting proposal aimed at addressing the SM flavour problem.

With the focus of the present numerical investigation on the FN theory, we reviewed

here its low-energy connotation in the EFT language. We exploited such formulation to

apply our new approach to the flavour puzzle and scrutinize in this way a large set of FN

models with small charge values under the horizontal symmetry U(1)X . In particular, we

have systematically explored all FN models with U(1)X charges in the range {0, 1, 2, 3} in

absolute value. The class of FN models considered are also characterized by a single flavon

VEV vφ and a FN-messenger scale Λ via the expansion parameter ε = vφ/Λ, that in our

analysis can be directly inferred from data.

Out of the ∼ 65k scenarios analyzed, we found that ∼ 1.3k FN distinct models in the

UV can naturally reproduce the observed quark masses and the CKM mixing pattern. The

FN perturbative ratio ε is found to lie in the range bracketed by ∼ 0.005 from below and

∼ 0.25 from above, with the popular choice ε ' 0.22, related to the Cabibbo angle, probing

only the tail of the distribution obtained in figure 1, for the small FN charges considered.

Remarkably, we have also found 10 solutions where the FN constructions actually feature

a very minimal charge assignment of {−1, 0, 1}, see table 1, providing to the best of our

knowledge the most economic window to flavour model building in the UV.

Finally, in our work we have also introduced an estimator for fine tuning in flavour

space, similar in spirit to the well-known Barbieri-Giudice measure for a natural theory of

the EW scale. We noted that the vast majority of the minimal FN constructions inspected,

namely about 80% of the total ones considered, do not involve peculiar cancellations in

flavour space in the resolution of the SM flavour puzzle.

In light of the interesting outcome of the present work, future promising directions are

foreseeable. One may include in our exact same setting a detailed study of the leptonic

sector as well, that would open up also the quest for the origin of neutrino masses. It would

be certainly instructive to extend the present analysis to the case of two-Higgs-doublet

models, and take into account in this manner a study case closer to UV completions where

supersymmetry will be manifest. Eventually, one may generalize the present analysis to the

case of non-Abelian symmetries and build up a strong connection with top-down approaches

typically adopted in the phenomenology of Grand Unified Theories. Finally, we wish to

reiterate that the novel approach to the SM flavour puzzle presented in this paper could

be insightful even in a context very different from the one we were able to frame within the

FN mechanism, leaving for a future study a direct application of our method to the case

of theories of extra-dimensions and of partial compositeness.
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A A worked-out example

In this appendix we explicitly discuss how the quark masses, the three CKM mixing angles

and the CP-violating phase can be reproduced, following the approach defined in this work.

For the sake of definitiveness, we explicitly pick up one of the models listed in table 2,XQi

Xui

Xdi

 =

 1 1 0

−2 −2 0

−2 −2 −2

 , ε = 0.0894772 . (A.1)

In order to perform this task, we also need the coefficient matrices cu and cd relative to

this specific model, together with the rotation matrices VQ, Vu and Vd obtained minimizing

eq. (3.10) in order to generate such coefficients. The coefficient matrices relative to the

example described in eq. (A.1) read

cu =


0.296996− 0.962979i −0.171824 + 0.987427i −0.218137 + 0.965404i

−0.288732 + 0.962114i 0.178763− 0.987484i 0.225587− 0.995365i

−0.173489 + 0.992865i 0.270735− 0.967206i −0.185740 + 0.820763i

 , (A.2)

cd =


−0.444605− 0.892952i −0.479893− 0.882641i 0.0586865 + 1.00937i

0.554765 + 0.830214i 0.438668 + 0.892558i −0.129055− 0.983295i

−0.786523− 0.605194i −0.483583− 0.866336i 0.417669 + 0.895754i

 , (A.3)

while the relative rotation matrices are found to be equal to

VQ =


0.712910 0.701254 0.00107484 + 0.0000491122i

0.690800 + 0.0611042i −0.702053− 0.0621101i −0.148837− 0.0131664i

−0.0766250 + 0.0703512i 0.0789678− 0.0725969i −0.728127 + 0.668957i

 , (A.4)

Vu =


0.706160 0.708052 (−5.87950− 676.174i) · 10−6

0.220636− 0.672735i −0.220035 + 0.670942i −0.00404038 + 0.0123197i

−0.00498184− 0.00773051i 0.00413596 + 0.00817755i −0.497287− 0.867489i

 ,

(A.5)

Vd =


0.648493 0.109379 0.687503 + 0.307949i

0.419039− 0.263742i −0.787325 + 0.184842i −0.306722 + 0.0819806i

0.576321− 0.0464451i 0.548613 + 0.181694i −0.531034− 0.222960i

 . (A.6)

Inverting now eq. (3.4), we observe that we can combine eqs. (A.1)–(A.6) in order to

obtain the Yukawa matrices

ŷuij =
(
VQ cuεn

u
V †u

)
ij
,
(
VCKM ŷd

)
ij

=
(
VQ cdεn

d
V †d

)
ij
, (A.7)
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where the matrices nu,d are defined according to eqs. (2.9)–(2.10). Squaring those matrices

and multiplying them by v2
H/2, one obtains the squared mass matrices:(

mu(mu)†
)
ij

=
v2
H

2

(
ŷu ŷu †

)
ij
,
(
md(md)†

)
ij

=
v2
H

2

(
VCKM ŷdŷd † V †CKM

)
ij
. (A.8)

Diagonalising the above matrices, one can identify the (square of the) quark masses with

the eigenvalues, m2
u,c,t and m2

d,s,b, and eventually one can properly combine the eigenvector

matrices to construct the CKM matrix. It is worth recalling that the CKM CP-violating

phase δ suffers from convention choice; therefore, only the values of the CKM mixing angles

θ12,13,23 can be directly extracted in an unambiguous way, related to the absolute value of

the CKM matrix elements found. In order to reconstruct the CP-violating CKM parameter

in a phase-convention independent manner, one can compute the Jarlskog invariant, J , that

can be obtained from eq. (A.8) evaluating the commutator of the quark mass matrices, more

precisely (see, e.g., ref. [96]):

= det
([
mu(mu)†,md(md)†

])
= (A.9)

= 2J (m2
t −m2

c)(m
2
t −m2

u)(m2
c −m2

u)(m2
b −m2

s)(m
2
b −m2

d)(m
2
s −m2

d) .

Using the numerical values from eqs. (A.1)–(A.6), we find that we can indeed reproduce

the values for the six quark masses, the three CKM mixing angles, as well as the Jarlskog

invariant J = cos θ12 cos θ2
13 cos θ23 sin θ12 sin θ13 sin θ23 sin δ ' 3.1 × 10−5, with a per-mill

level precision.
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