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1 Introduction

In the last few years, the role of EFT in the description of particle interactions has become
even more relevant than it has been in the past, when specific scenarios like low-energy
supersymmetry or composite dynamics in the electroweak symmetry breaking sector were
dominating the searches for New Physics (NP). Within few assumptions concerning sym-
metries, field content and power counting, EFT allow to parametrize possible NP effects
in the most general way. Any theory of this type includes potentially an infinite number of
parameters ck, related to the independent operators of increasing dimensionality consistent
with the assumed symmetries and field content. Although information on these parame-
ters from the experimental side is clearly crucial, it is also very important to understand
whether theoretical bounds apply to them. Among such bounds, of primary importance
are those related to fundamental properties of any respectable quantum field theory, such
as causality, unitarity and, in the particle physics context, Lorentz invariance. Indeed,
recently there has been a great activity in deriving limits on ck related to analyticity, uni-
tarity and crossing properties of scattering amplitudes [1–12]. These bounds typically apply
to coefficients of operators of dimension greater or equal to eight and define a permitted
region, or landscape, in theory space.

Another fundamental requirement of the present description of particle interactions is
gauge invariance. Strong and electroweak interactions are described by theories invariant
under local continuous transformations. Gauge invariance can be realized in the exact
or in the spontaneously broken phase, but in either cases it should be free from anoma-
lies. Anomalies arise from fermion loops [13, 14]. In renormalizable theories there is a
well-known criterium for the absence of gauge anomalies [15]. It entirely relies on the
transformation properties (charges and generators) of fermion fields, and it is independent
from the parameters characterizing the theory. When moving from the renormalizable case
to the non-rinormalizable one, comprising the whole set of EFTs, we might ask whether
this criterium is still sufficient to ensure the absence of gauge anomalies, or whether it
should be complemented by an additional set of conditions on the coefficients ck. If the
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latter possibility applied, we would have discovered new bounds, sharping the landscape of
admissible theories. In particular all this discussion applies to the SMEFT, which currently
provides one of the most reliable tools to parametrize NP.

Given the relevance of such a question, it is not surprising that it has been discussed
at length in the literature, also in relation with the SMEFT. Anomalies are non-trivial
BRST cohomology classes of ghost number one, in the space of local functionals of the
theory. The BRST cohomology for Yang-Mills and gravity theories coupled to scalars and
fermions is known for all dimensions of space-time and for all possible local polynomial
interactions, thus including the full set of possible EFT. The result is that for gravity and
for semi-simple non-abelian gauge theories, all possible Lorentz-invariant anomalies are
polynomials of dimension equal to the dimension of space-time [16, 17]. There are only a
finite number of them for a given theory, and they are all well known. As we will argue,
this strongly disfavor the possibility that gauge anomalies, for semi-simple groups, depend
on the coefficients ck in questions. A very different result holds when there is an abelian
factor in the gauge group. Then there are potential anomalies of all dimensions [18] and
the dependence on ck requires further investigation, beyond cohomological arguments [19].
This in particular applies to the SMEFT, whose gauge group is not semi-simple.

The authors of ref. [20] computed the axial anomaly in a non-renormalizable version
of quantum electrodynamics (QED), finding the same result as in renormalizable QED.
Chiral anomalies in theories involving higher-derivative couplings with non-abelian gauge
fields have been studied in ref. [21]. The corresponding expressions for the covariant and
consistent anomalies agree with those based on the minimal Lagrangian. An extensive
discussion of anomalies arising in non-renormalizable theories can be found in ref. [22]. The
authors show that in 2d-dimensional spacetime the inclusion of a general set of local, gauge
invariant, non-renormalizable operators does not lead to any new gauge anomaly, besides
the ones already identified from the renormalizable part. They conclude that there is no
restriction on the parameters of these operators from the requirement of gauge anomaly
cancellation. Two arguments supporting this result are presented in ref. [22]. One comes
from the analysis of the imaginary part of the Euclidean effective action [23]. The other
one relies on the discussion of triangle diagrams and exploits two different regularization
procedures. Diagrams involving only renormalizable couplings are dealt with a regulator
that breaks gauge invariance, while diagrams including some non-renormalizable interaction
are discussed within a gauge-invariant regularizing framework. It would be interesting to
see what is the outcome when a unique regularization is used for all diagrams. This is
actually one of the points illustrated in the present note. In ref. [24] anomalies arising
from truncating the SMEFT at dimension six are discussed. No genuine contribution
to the anomaly arises from dimension six operators. Anomaly cancellation at this order
does not relate coupling constants of dimension six operators as one might naively expect,
and hence does not constrain the physics beyond the SM. Nevertheless, the argument of
ref. [24] cannot be considered conclusive, since the operators analyzed in this work, carrying
no dependence on the Higgs field, do not form a complete set.

Dimension six operators depending on scalar fields, such as ck(ϕ† · Dµϕ − Dµϕ
† ·

ϕ)ψ̄kγµψk, have been recently discussed in ref. [25]. The authors observed that, in the

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
1
2
8

spontaneously broken phase, the presence of these operators leads to a shift of the fermion
gauge couplings proportional to the parameters ck. On this basis they argue that the can-
cellation of gauge anomalies requires new conditions involving ck. A very recent paper [26]
shows that these conditions are violated in a number of consistent, anomaly-free, models
of NP. The authors of ref. [26] also show that the premature conclusion of ref. [25] derives
from the non-inclusion of the (would-be) Goldstone bosons in the expression of the gauge
current. This analysis, which goes in the right direction, is however still incomplete, since
it does not include a general background in the computation of the anomaly. Indeed, as
we shall see in detail here, the full bosonic background can reintroduce the potential de-
pendence of the anomaly on the parameters ck. This is an important point, perhaps the
main one we would like to clarify here.

Purpose of this work is to evaluate the gauge anomaly in an EFT including a full
set of dimension six-operators and allowing for the most general bosonic background, a
task not yet carried out in the literature. This will be done in a simple model with U(1)
gauge invariance displaying all the features of the SMEFT: i) gauge invariance realized
in the broken or unbroken phase, depending on the region in parameter space; ii) a set of
chiral fermions including “quarks” and “leptons”; iii) cancellation of gauge anomalies in the
renormalizable part requiring a specific assignment of U(1) fermion charges. We discuss
the properties of the regularized effective action, obtained by integrating over the fermionic
degrees of freedom. By an explicit one-loop computation, carried out within dimensional
regularization, we derive the variation of this functional under a gauge transformation. The
result depends on the full set of bosonic fields, scalars and gauge boson. As we shall see,
even using the correct form of the current advocated in ref. [26], there are new contributions
depending on ck and we can still wonder whether their cancellation requires a condition on
ck. The main result of the present work is to show how all the contributions depending on
the coefficients of the higher-dimensional operators are trivial, since they can be canceled
by adding to the regularized effective action a local polynomial in the bosonic fields. The
cancellation of the remainder, non-trivial, part requires the well-known condition between
the fermion charges. No other relations between Lagrangian parameters are needed.

2 A heuristic argument

Given a relativistic quantum field theory, renormalizable or not, invariant under the action
of a gauge group G and depending on a set of fields (Aµ, ϕ, ψ) describing particles of spin
(1,0,1/2), the gauge invariance of the related classical action S can be expressed through
a set of local operators L(x):1

δαS =
∫
d4x α(x)L(x)S = 0 . (2.1)

The classical, covariantly conserved, gauge currents are defined as:

jµ(x) = −1
g

δS

δAµ(x) . (2.2)

1Indices are omitted, when not essential.
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In the quantized theory, anomalous contributions are caused by fermion loops and can be
studied by means of the effective action W [Aµ, ϕ, ϕ†] defined through the path integral:

eiW [Aµ, ϕ, ϕ†] =
∫
DψDψ̄eiS , (2.3)

where the integrated fields are the fermionic ones. If we are interested in the divergence of
the gauge current in a general background B = (Aµ, ϕ, ϕ†) at the lowest non-trivial order,
we do not need to integrate over the bosonic fields. In particular we do not address here
possible contributions to the anomaly from higher loops [27, 28] and we do not need to
quantize the fields (Aµ, ϕ, ϕ†). We will comment on this point later on. Gauge anomalies
express the non-invariance of the effective actionW [Aµ, ϕ, ϕ†] under gauge transformations:

δαW =
∫
d4x α(x)L(x)W [Aµ, ϕ, ϕ†] 6= 0 . (2.4)

Care should be taken when computing the gauge variation L(x)W [Aµ, ϕ, ϕ†]. This expres-
sion is formally divergent and requires a regularization. First, what we really compute is
rather:

L(x)Wr[Aµ, ϕ, ϕ†] , (2.5)

where Wr is the regularized version of W .2 The renormalized effective action W [Aµ, ϕ, ϕ†]
and its gauge variation are recovered by adding to Wr the space-time integral of local
polynomials in the fields (Aµ, ϕ, ϕ†), thus fixing the renormalization scheme. If we can
find a local polynomial Pc such that L(x)(Wr +

∫
d4yPc(y)) = 0, we can define W =

Wr +
∫
d4yPc(y) and the theory is free from gauge anomalies. In this case, L(x)Wr is

also said an irrelevant anomaly. Thus relevant anomalies are non-trivial classes {L(x)Wr}
under the equivalence L(x)Wr ∼ L(x)W ′r where W ′r = Wr +

∫
d4yP (y), P (y) being a local

polynomial in the bosonic fields. In general, we expect L(x)Wr to contain relevant and
irrelevant contributions.

The functional dependence of L(x)Wr, is strongly constrained by the Wess-Zumino
consistency conditions [29]:

La(x)Lb(y)Wr − Lb(y)La(x)Wr = δ4(x− y)f cabLc(x)Wr , (2.6)

consequence of the algebra of the operators L(x). Here f cab are the structure constants
of the gauge group. We can regard the class {La(x)Wr} as the unknown in eq. (2.6).
The general solution can be derived from cohomological arguments.3 For semi-simple non-
abelian gauge theories, renormalizable or not, all possible Lorentz-invariant anomalies are
polynomials of dimension equal to the dimension of space-time [17]. They coincide with
the well-known Adler-Bell-Jackiw anomalies [16]. Moreover, by the non-renormalization
theorem of Adler-Bardeen [27] and its generalization to non-renormalizable theories [28],
such anomalies are exhausted by one-loop contributions. These results are the ingredients

2A limiting procedure where the regulator is removed after the evaluation of L(x)Wr[Aµ, ϕ, ϕ†] is un-
derstood here.

3In the fully quantized theory, gauge invariance is replaced by BRST invariance, and eq. (2.6) is replaced
by δ2

BRSTWr = 0, δBRST being the nilpotent BRST operator.
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of a heuristic argument excluding the dependence of the anomaly on the coefficients ck
controlling non-renormalizable operators, for semi-simple gauge groups.

The argument goes as follows. In a general EFT the relevant fermion bilinear interac-
tion reads:

f̄ (S + Pγ5 + Vµγ
µ + Aµγ

µγ5 + Tµνσ
µν) f , (2.7)

where S , P, Vµ, Aµ, Tµν are polynomials in the bosonic fields and their derivatives.
Only the Vµ, Aµ couplings matter for the anomaly. We can expand them in contributions
coming from operators of increasing dimensionality:

Vµ = cV0 Aµ + ΩV
µ ΩV

µ =
∑
k>0

cVk OVk,µ

Aµ = cA0 Aµ + ΩA
µ ΩA

µ =
∑
k>0

cAkOAk,µ . (2.8)

Here the coefficients cV,A0 come from the renormalizable part and have zero mass dimension.
They are fixed by the minimal coupling between fermions and gauge bosons, completely
determined by the gauge transformation properties of the fermion fields. The parameters
cV,Ak (k > 0) derive from the non-renormalizable sector and have mass dimension −k. The
operators OV,Ak,µ have dimension k+ 1. The functional Wr, evaluated at one-loop order, can
be expanded in powers of Vµ and Aµ. The gauge variation of any given order of such an
expansion can be decomposed into two parts. The first one depends only on the gauge
field Aµ. If not vanishing, this part should be a polynomial of degree four in Aµ and its
derivatives. The second one originates also from ΩV,A

µ and will contain some monomial
in fields and derivatives of degree higher than four, contrary to the general cohomological
results. Therefore either these new monomials are vanishing or they are irrelevant, and we
conclude that there is no dependence on cV,Ak (k > 0) in the anomaly.

In this work we will not rely on the previous heuristic argument, since in any case it
does not apply to non semi-simple gauge groups like the one of the SMEFT. The solutions
of the Wess-Zumino consistency conditions in the abelian case allow potential anomalies
of any dimensionality. Indeed, the right-hand side of eq. (2.6) vanishes for abelian groups
and L(x)Wr can be any gauge invariant polynomial in Aµ, ϕ, ϕ†, whose dimension is not
bounded. It is not difficult to build some candidates for relevant anomalies {L(x)Wr}.
Consider a U(1) gauge theory where ϕ is a complex scalar field carrying a non-vanishing
charge. The following local operators:

ϕ†ϕ εµνρσ∂µAν ∂ρAσ , i ϕ†ϕ εµνρσ∂µ(ϕ†Dνϕ−Dνϕ
†ϕ) ∂ρAσ , (2.9)

are solutions of eq. (2.6) and cannot be expressed as gauge variations of an integrated local
polynomial. The previous heuristic argument does not apply to these examples. These
expressions can only come from the contribution of higher-dimensional operators to the
anomaly and, if present, carry a dependence on the coefficients ck. Their occurrence in
a given model can only be verified through a direct computation, which constitutes the
main aim of this paper. By considering a simple explicit model that mimics the SMEFT
properties, we will see that L(x)Wr is the sum of two contributions. The first one includes
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only the gauge fields Aµ and is independent from the Lagrangian coefficients ck. It leads to
the well-known conditions for gauge anomaly cancellation. The second one involves both
Aµ and ϕ and depends on the coefficients ck. We explicitly show that this part is irrelevant
and does not require additional conditions for the absence of gauge anomalies. A posteriori,
this provides a confirmation of the above heuristic argument, at least in a specific case.

3 A miniature SMEFT

To illustrate the mechanism of anomaly cancellations in EFT, we consider a toy model dis-
playing many features of the SMEFT, but sufficiently simple to allow a concise description
of the problem. The model enjoys a U(1)Q gauge symmetry. The matter fields consist of
two four-component fermions, l and q, mimicking leptons and quarks in the SMEFT, plus
a complex scalar ϕ, the analogue of the SMEFT Higgs multiplet. In a four-component
notation, Q(lL) = −Q(qL) = Q(ϕ) = −1 and Q(lR) = Q(qR) = 0. The gauge theory is
chiral but with this assignment gauge anomalies generated by the renormalizable part of
the theory are absent. In what follows we will focus on the sector of the theory where
baryon and lepton numbers B and L are conserved.4 The effective Lagrangian reads:

L = L4 + L6 + . . . (3.1)

where L4 denotes the renormalizable part, L6 collects dimension six operators and dots
stand for higher-dimensional contributions. We have:

L4 = −1
4FµνF

µν + lLiγ
µDµlL + lRiγ

µ∂µlR + qLiγ
µDµqL + qRiγ

µ∂µqR

+Dµϕ
†Dµϕ− V (ϕ†ϕ)−

(
yl ϕlLlR + yq ϕ

†qLqR + h.c.
)
, (3.2)

where Dµψ = (∂µ + igQ(ψ)Aµ)ψ, (ψ = lL, lR, qL, qR, ϕ) and V (ϕ†ϕ) = µ2(ϕ†ϕ) + λ(ϕ†ϕ)2

(λ > 0). Depending on the sign of µ2, the gauge symmetry is spontaneously broken or not.
When µ2 < 0(µ2 > 0) the theory is in the broken(unbroken) phase. We will discuss both
cases at once. At dimension six we have [30]:

L6 =
∑
k

ckOk + . . . (3.3)

where Ok are the operators in table 1, dots stand for four-fermion operators, that will be
discussed in section 3.1. The coefficients ck have mass dimension −2 and implicitly carry
the dependence on some reference scale Λ.5 We define the classical current jµ as:

jµ(x) = −1
g

δS

δAµ(x) . (3.4)

4At variance with the SM, the conservation of B and L at the renormalizable level are not automatic in
our setting, but it could be easily enforced by suitable discrete symmetries.

5It is customary to set: ck = c̃k/Λ2, where c̃k are dimensionless.
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Oϕ (ϕ†ϕ)3

Oϕ� (ϕ†ϕ)�(ϕ†ϕ)

OϕD (ϕ†Dµϕ)∗(ϕ†Dµϕ)

OϕA g2(ϕ†ϕ)FµνFµν

O
ϕÃ

g2(ϕ†ϕ)FµνF̃µν

Olϕ (ϕ†ϕ)ϕlLlR

Oqϕ (ϕ†ϕ)ϕ†qLqR

OlA gϕlLσ
µν lRFµν

OqA gϕ†qLσ
µνqRFµν

OϕlL i(ϕ†
↔
Dµϕ)lLγµlL

OϕlR i(ϕ†
↔
Dµϕ)lRγµlR

OϕqL i(ϕ†
↔
Dµϕ)qLγµqL

OϕqR i(ϕ†
↔
Dµϕ)qRγµqR

Table 1. Dimension-six operators other than the four-fermion ones.

Here S is the classical action and the derivative is the variational one. We have:

jµ = jµ3 + jµ5 , (3.5)

jµ3 = ∂λF
λµ − lLγµlL + qLγ

µqL − i(ϕ†
↔
D
µ
ϕ) ,

jµ5 = −icϕD ϕ†ϕ(ϕ†
↔
D
µ
ϕ) + 4gcϕA∂λ(ϕ†ϕF λµ) + 4gc

ϕÃ
∂λ(ϕ†ϕF̃ λµ)

+2clA∂λ(ϕlLσλµlR) + 2cqA∂λ(ϕ†qLσλµqR)− 2ϕ†ϕ
∑
i

cϕfi f̄iγ
µfi . (3.6)

From the invariance of the classical action under infinitesimal gauge transformations
δαAµ(x) and δαχI(x), χI(x) denoting collectively the matter fields, we get:

δαS =
∫
d4x

[
δS

δAµ(x)δαAµ(x) + δS

δχI(x)δαχI(x)
]

= 0 , (3.7)

Along the solutions of the equations of motion, where the second term vanishes, we recover
the conservation of the current jµ(x) (3.5), (3.6) in the classical theory.

We analyze the anomalous contributions caused by fermion loops by means of the
effective action W [Aµ, ϕ, ϕ†] defined in eq. (2.3). The infinitesimal variation of a generic
functional F [Aµ, ϕ, ϕ†] under gauge transformations of the fields Aµ, ϕ and ϕ† can be
expressed trough the operator L(x):

δαF =
∫
d4xα(x)L(x)F L(x) =

[
−1
g
∂µ

δ

δAµ(x) + iϕ(x) δ

δϕ(x) − iϕ
†(x) δ

δϕ†(x)

]
. (3.8)

From the invariance of the action S under gauge transformations, the following identity
follows:

L(x)W [Aµ, ϕ, ϕ†] = Anomaly(x) , (3.9)
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where the anomaly is a local polynomial in the bosonic fields B = (Aµ, ϕ, ϕ†), which
vanishes provided the measure is invariant under a gauge transformation of the fermionic
sector.6

This is precisely the issue analyzed here. When L6 is set to zero, the condition for
anomaly cancellation, Q(lL)+Q(qL) = 0, is automatically satisfied and eq. (3.9) holds with
vanishing right-hand-side. We would like to check whether the cancellation of the gauge
anomaly requires additional conditions on the coefficients ck, when L6 is turned on. To
this purpose we directly compute the functional W , controlled by the interaction involving
fermion bilinear terms:

Lf̄f = f̄ (S + Pγ5 + Vµγ
µ + Aµγ

µγ5 + Tµνσ
µν) f , (3.10)

where f = (l, q)T and:

S = 1
2
(
Y + Y †

)
P = 1

2
(
Y − Y †

)
Vµ = 1

2

[
−gQAµ + i(CφR + CφL)(ϕ†

↔
Dµϕ)

]
Aµ = 1

2

[
+gQAµ + i(CφR − CφL)(ϕ†

↔
Dµϕ)

]
Tµν = g

2
[
(Σ + Σ†)Fµν + i(Σ− Σ†)F̃µν

]
, (3.11)

The quantities Q, CφR, CφL are field-independent matrices, whereas Y , and Σ are matrices
depending on the scalar field ϕ and its conjugate:

Q =

−1 0
0 +1

 CφR(L) =

 cϕlL(R) 0
0 cϕqL(R)


Y =

−ylϕ+ clϕϕ
†ϕϕ 0

0 −yqϕ+ cqϕϕ
†ϕϕ

 Σ =

 clAϕ 0
0 cqAϕ

†

 .

The functionalW depends on Aµ, ϕ, ϕ† through the combinations S , P, Vµ, Aµ and Tµν .
To check the gauge invariance of W , we Taylor expand W in powers of these combinations.
Since only triangle diagrams with Vµ and Aµ insertions can contribute to the anomaly [31–
33], we only need to consider the following term:

W =
∫
d4x1d

4x2d
4x3

{ 1
3!W

LLL
µνλ (x1, x2, x3)tr[Lµ(x1)Lν(x2)Lλ(x3)] (3.12)

+ 1
2!W

LLR
µνλ (x1, x2, x3)tr[Lµ(x1)Lν(x2)Rλ(x3)]

+ 1
2!W

LRR
µνλ (x1, x2, x3)tr[Lµ(x1)Rν(x2)Rλ(x3)]

+ 1
3!W

RRR
µνλ (x1, x2, x3)tr[Rµ(x1)Rν(x2)Rλ(x3)]

}
+ . . .

6An equivalent, more familiar, statement is ∂µ〈jµ(x)〉B + iϕ(x) δW
δϕ(x) − iϕ(x)† δW

δϕ(x)† = Anomaly, where,
by definition, 〈jµ(x)〉B ≡ − 1

g
δW

δAµ(x) .
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where we have defined:

Rµ(x) = Vµ(x) + Aµ(x) , Lµ(x) = Vµ(x)−Aµ(x) . (3.13)

The coefficients WXY Z
µνλ (x1, x2, x3) are field-independent functions of the space-time points

x1,2,3, that can be evaluated by a one-loop computation. The function WLLL
µνλ (x1, x2, x3)

is symmetric under permutations of (µ, x1), (ν, x2) and (λ, x3). Analogous properties hold
for the other expressions. We also define W Y XZ

νµλ (x2, x1, x3) = WXY Z
µνλ (x1, x2, x3) and so on.

An important property of the operator L(x) is:

L(x)Lµ(y) = Q ∂µδ
4(x− y) , L(x)Rµ(y) = 0 . (3.14)

This is a consequence of the gauge invariance of the combination i(ϕ†
↔
Dµϕ) contributing to

Vµ and Aµ. We get:

L(x)W = 1
2

∫
d4yd4z

{
∂µWLLL

µνλ (x, y, z) tr[Q Lν(y)Lλ(z)]

+ 2 ∂µWLLR
µνλ (x, y, z) tr[Q Lν(y)Rλ(z)]

+ ∂µWLRR
µνλ (x, y, z) tr[Q Rν(y)Rλ(z)]

}
. (3.15)

We see that, as a consequence of eq. (3.14), when evaluating the triangle diagrams we do
not need to insert the whole current jµ(x) (3.5) (in the vertex which is acted upon by the
derivative) but only the lowest dimensional part jµ3 (x) [26]. This is not yet sufficient to
prove the independence of L(x)W on the parameters ck of L6, since they still appear in
the combinations Lµ and Rµ at the other two vertices of the triangle.

To evaluate the correlators ∂µWXY Z
µνλ (x, y, z) of eq. (3.15) we first regularize the effective

actionW by using dimensional regularization [34–36] with the t’Hooft-Veltman prescription
for γ5.7 In momentum space the correlators are easily computed through well-known
triangle diagrams. Denoting by Wr the regulated effective action, we get:

L(x)Wr = − 1
24π2 ε

µνρσ
{
ξAA ∂µAν(x) · ∂ρAσ(x)

+ i ξϕA ∂µ(ϕ†
↔
Dνϕ)(x) · ∂ρAσ(x)

− ξϕϕ ∂µ(ϕ†
↔
Dνϕ)(x) · ∂ρ(ϕ†

↔
Dσϕ)(x)

}
, (3.16)

where:

ξAA = g2 tr Q3

ξϕA = 2g tr Q2(CφR − CφL)
ξϕϕ = tr Q(CφR − CφL)2 .

7That is: {γ5, γ
µ̄} = 0 and [γ5, γ

µ̂] = 0, γµ̄ (γµ̂) denoting the four-dimensional ((d − 4)-dimensional)
part of γµ. Note that such prescription is at the origin of chirality-mixing contribution: terms like (1 −
γ5)/kγµ̂(1 + γ5) do not vanish and give rise to evanescent terms of order (d− 4). Due to the pole 1/(d− 4)
arising from the integration, such terms are converted into finite, chirally-mixed terms.
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As a consequence, the gauge variation of Wr is given by:

δαWr =
∫
d4xα(x)L(x)Wr , (3.17)

and we see that it is still dependent on the coefficients ck through the combinations ξϕA
and ξϕϕ. However, the right-hand side of this expression should not be identified with
the anomaly, since the effective action W and the functional Wr differ by counterterms,
space-time integrals of local polynomials in the bosonic fields, that can be added to Wr. If
a counterterm Wc exists such that δαWc + δαWr = 0, we can define W = Wr + Wc and
the theory is free from gauge anomalies. In general, we expect L(x)Wr to contain relevant
and irrelevant contributions. This is the case in the model under consideration. The first
line in eq. (3.16) is relevant. A local counterterm whose gauge variation cancels this term
does not exist. Gauge anomaly cancellation requires the condition trQ3 = 0, satisfied by
construction in this model. The remaining part of L(x)Wr is irrelevant. Indeed consider:

Wc = 1
24π2 ε

µνρσ
∫
d4y

{
+ i ξϕA gAµ(y)(ϕ†

↔
Dνϕ)(y) · ∂ρAσ(y)

− ξϕϕ gAµ(y)(ϕ†
↔
Dνϕ)(y) · ∂ρ(ϕ†

↔
Dσϕ)(y)

}
. (3.18)

We have:

L(x)Wc = − 1
24π2 ε

µνρσ
∫
d4y

{
+ i ξϕA ∂µδ

4(x− y)(ϕ†
↔
Dνϕ)(y) · ∂ρAσ(y)

− ξϕϕ ∂µδ4(x− y)(ϕ†
↔
Dνϕ)(y) · ∂ρ(ϕ†

↔
Dσϕ)(y)

}
= 1

24π2 ε
µνρσ

{
+ i ξϕA ∂µ(ϕ†

↔
Dνϕ)(x) · ∂ρAσ(x)

− ξϕϕ ∂µ(ϕ†
↔
Dνϕ)(x) · ∂ρ(ϕ†

↔
Dσϕ)(x)

}
. (3.19)

We see that L(x)Wc cancels the second and third lines in eq. (3.16). Hence, by choosing
W = Wr +Wc we end up with:

L(x)W = −g
2trQ3

24π2 εµνρσ ∂µAν(x) · ∂ρAσ(x) . (3.20)

Thus the condition for gauge anomaly cancellation has no dependence on the coefficients
of the higher dimensional operators defining the EFT. It is completely controlled by the
charge assignment Q of the fermion sector. Some comments are in order.

• The gauge invariance of the combination i(ϕ†Dνϕ − Dµϕ
†ϕ) is a crucial ingredient

for the result (3.20).

• Non-trivial gauge-invariant local polynomials like those of eq. (2.9), which would have
contributed to the anomaly, have not shown up in L(x)Wr.

• The result (3.20) holds whether the gauge symmetry is realized in the unbroken phase
or not. If the theory is in the broken phase, the whole combination i(ϕ†Dνϕ−Dµϕ

†ϕ)
should be included in L(x)Wr. Had we kept only the first term of this expression in
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the expansion around the vacuum ϕ = v/
√

2, that is i(ϕ†Dνϕ−Dµϕ
†ϕ) = v2gAµ+. . .,

the second and third lines in eq. (3.16) would have collapsed to expressions propor-
tional to the first line and we would have missed the cancellation displayed above.

• The ck-dependent terms shown in eqs. (3.16) and (3.19) depend on the regularization
used. For example, if we compute L(x)Wr using a set of Pauli-Villars regulators [37],
we get different coefficients ξϕA and ξϕϕ. In this case, the same cancellation mech-
anism is at work, but with a different choice of counterterms. This reflects the
unphysical nature of the ck-dependent part. Only the sum of the regulated diagrams
and counterterms is a physical quantity. This has a direct impact on the ampli-
tude for a physical process, evaluated beyond the tree-level approximation. If we do
not include the contribution of the counterterm Wc to the set of relevant diagrams,
in general we will get a gauge-dependent result. Hence the counterterms highlighted
above have not a purely academic interest, but play an essential role in the evaluation
of a physical quantity.

To complete the discussion, we still need to include the contribution from four-fermion
operators, which we do in the next section.

3.1 Four-fermion operators

Four-fermion operators can be easily accounted for, without spoiling our conclusion. Con-
sider a complete set of four-fermion operators. Here again we focus on the B and L

conserving sector. Through Fierz transformations we can cast their contribution to the
Lagrangian in the form:

L4F
6 = 1

2 l̄ΓI l C llIJ l̄ΓJ l + 1
2 q̄ΓIq CqqIJ q̄ΓJq + l̄ΓI l C lqIJ q̄ΓJq , (3.21)

where ΓI represents the set (1, γ5, γ
µ, γµγ5, σ

µν) and C ll,qq,qlIJ are matrices of coefficients.
We can equivalently express the combination in (3.21) in terms of fermion bilinears, by
making use of a set of bosonic auxiliary fields χI = (s, p, vµ, aµ, tµν) with suitable masses
and couplings [24]:

Laux
4 = χI f̄

X l
IJ 0
0 Xq

IJ

ΓJf −
1
2χIM

2
I χI . (3.22)

We can always choose X l,q
IJ andM2

I such that, by eliminating the auxiliary fields χI through
their equations of motion, we reproduce eq. (3.21). Notice that the gauge invariance of
L4F

6 implies the gauge invariance of all the auxiliary fields χI in Laux
4 . The new term Laux

4
modifies the bilinear fermion interaction of eq. (3.10) by adding to the combinations S ,
P, Vµ, Aµ and Tµν new gauge invariant contributions. In particular, the quantities Vµ
and Aµ, relevant to the computation of L(x)W are now modified into:

Vµ = 1
2

[
−gQAµ + i(CφR + CφL)(ϕ†

↔
Dµϕ) + CV vµ

]
Aµ = 1

2

[
+gQAµ + i(CφR − CφL)(ϕ†

↔
Dµϕ) + CAaµ

]
, (3.23)
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where CV,A are matrices easily identifiable from the couplings X l,q
IJ . The effective action

W now depends on the bosonic background through the gauge field Aµ and the gauge
invariant quantities i(ϕ†Dνϕ−Dµϕ

†ϕ), vµ and aµ. The gauge variation L(x)Wr is a linear
combination of:

εµνρσ∂µB
a
ν (x) · ∂ρBb

σ(x) , (3.24)

where Ba
µ = (Aµ, i(ϕ†Dνϕ −Dµϕ

†ϕ), vµ, aµ). Only the term with Ba
µ = Bb

µ = Aµ is non-
trivial. By following the same steps of the previous section, we see that the rest is irrelevant
and we conclude that the presence of four-fermion interactions does not alter the condition
of gauge anomaly cancellation.

4 Discussion

There are several arguments supporting the idea that the cancellation of gauge anomalies in
a general EFT only depends on the set of fermion representations and not on the features of
the non-renormalizable sector. Nevertheless, an explicit computation of the gauge anomaly
in a non-trivial EFT, including the full set of allowed operators up to a given dimensionality
and allowing for the most general bosonic background is still missing. This note was
meant to fill this gap and to elucidate the mechanism that removes the dependence of the
anomaly on the higher dimensional operators. An additional motivation is provided by
the ineffectiveness of cohomological arguments to rule out contributions to the anomaly of
arbitrarily high dimension. Indeed, when the gauge group is non semi-simple, candidate
anomalies are local gauge-invariant polynomials whose dimension is in principle unbounded.

In this note we have carried out an explicit computation of the anomaly in a simple
abelian model, with several features in common with the SMEFT. We have included the
most general set of dimension six operators comprising also four-fermion operators. We
have evaluated the anomaly within dimensional regularization both for diagrams involving
minimal fermion interactions and for those where fermions are non-minimally coupled.
After the inclusion of appropriate counterterms, the resulting anomaly is independent on
the coefficients of the non-renormalizable sector. Counterterms are expected to depend on
the adopted regularization and only the sum of all diagrams, counterterms included, has
a physical meaning. Thus the counterterms highlighted here have a direct impact when
amplitudes for physical processes are evaluated beyond the tree-level approximation within
dimensional regularization.

We can identify two crucial ingredients in our derivation. Firstly, in the presence of
the higher-dimensional operators, the gauge current acquires a new gauge invariant term,
that does not contribute to the gauge variation of the effective action. This point has been
recently stressed in ref. [26]. Secondly, the variation of the effective action evaluated in
a general bosonic background includes relevant and irrelevant terms. Only the irrelevant
component depends on the coefficients of the non-renormalizable operators. This com-
ponent can be subtracted by adding a local counterterm to the Lagrangian density. We
expect that also in the SMEFT a similar mechanism takes place. Indeed we do not foresee
a qualitatively different behaviour of the SMEFT under a generic gauge transformation.
Nevertheless, we think that it is important to fully identify the set of counterterms needed
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to cancel the spurious non-invariance induced by higher-dimensional SMEFT operators.
Indeed, counterterms of this type have already been adopted in the automation of one-loop
computations in the SMEFT, on a case by case basis [38, 39]. The general computation il-
lustrated in this note might allow to determine the whole set of such counterterms, covering
all possible processes involving operators of dimension six.
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