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1 Introduction

Effective field theories (EFTs) are one of the most efficient tools to explore physics at
low energies. Since their construction is general and independent of the details of physics
at higher scales, they are extremely useful as discovery tools at high-energy colliders. In
particular, EFTs at the electroweak scale provide a generic parametrization of new physics
(NP) effects, and are used as a theoretical template for indirect searches of physics beyond
the Standard Model (SM).

Depending on rather generic assumptions on the nature of NP and electroweak sym-
metry breaking, there exist two EFTs at the electroweak scale, the so-called Standard
Model Effective Field Theory (SMEFT) [1, 2] and the Electroweak Chiral Lagrangian
(EWχL) [3–6]. Both EFTs have by now been developed at one-loop level and match the
precision requirements of the LHC and its upgrades in the gauge and scalar sectors.

However, when flavour is added into the picture, things become more complicated. The
main reason is that very little is known about the pattern of flavour symmetry breaking
and, since each of the EFT coefficients is a tensor in flavour space, the number of unknown
parameters becomes extremely large. A purely phenomenological approach of fitting the
flavour pattern from experiment can only work when very few operators are involved, but
it is clearly not viable for global flavour fits.

An alternative is to assume a particular source of flavour-symmetry breaking and in-
troduce a flavour power-counting scheme using spurions. A paradigmatic example of this
philosophy is minimal flavour violation (MFV) [7, 8]. In this picture, the EFT consists of
a double expansion, one related to gauge symmetries and one to flavour symmetries. In
general, the choice of flavour spurions can be motivated by theoretical arguments, phe-
nomenological hints, or a combination of both. MFV has the virtue of simplicity, since
it considers the SM Yukawa matrices as the only flavour spurions, and the flavour power
counting is inferred from the observed pattern of fermion masses and CKM angles.

The procedure to generalize MFV is well-defined (see e.g. ref. [9]), but a non-minimal
flavour structure needs to be well-motivated and the issue of power counting has to be
resolved. The discrepancies and tensions found in the last years in different observables
in B physics cannot be accommodated with MFV and therefore it is justified to explore
non-minimal flavour scenarios.

In a previous paper [10] we laid out the main ideas towards an EFT-based approach
to NP with flavour. The key element of that analysis is a bottom-up flavour structure
with a flavour power counting set by introducing Froggatt-Nielsen (FN) charges [11] for
the different fermion fields (for other studies that use FN charges in connection with lepto-
quark scenarios see [12–14]). The flavour spurions are selected based on dynamical input.
In [10], for instance, we singled out those associated with the exchange of a hypercharge
Y = 2

3 vector leptoquark U1. With this selection of flavour spurions, the FN charges were
constrained by phenomenological input from low-energy flavour observables. The resulting
viable FN assignments described different phenomenological scenarios and, in particular,
provided different predictions to be tested experimentally.

This approach provides a simple and systematic way of introducing flavour structures
into EFTs. Let us stress that this proposed framework is different from a pure EFT
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approach which, even with the FN power counting built in, would otherwise contain too
many free parameters. That is why some top-down information from leptoquark models is
kept. However, this top-down information is flavour-independent, and it is used merely to
simplify our analysis. Instead, the viable FN charges are determined entirely by low-energy
data, i.e. they are not taken from an underlying theory of flavour, though an analysis of
its regularities might lead to interesting theoretical connections. For recent applications of
FN charges in different contexts of flavour physics, see e.g. refs. [15, 16].

Besides the vector leptoquark U1, different scalar leptoquark combinations can also
successfully accommodate the current flavour tensions observed in both charged and neutral
current decays of the B meson. Among these, the combination of the two hypercharge
Y = 1

3 scalar leptoquarks, known as S1 and S3, has been singled out in the literature for
its success in explaining low-energy data [17–25]. In this paper, we apply the procedure
outlined in ref. [10] to the flavour spurions associated with the scalar leptoquarks S1 and S3.
We investigate the allowed patterns of FN charges through a fit to low-energy observables.
In the case we are studying, high-energy observables, e.g. bounds from high-pT tails, are
far less constraining [26–28]. An advantage of scalar leptoquarks (as compared to vector
leptoquarks) is that they provide a renormalizable UV model, while scenarios with vector
leptoquarks have to be embedded into e.g. some grand unified framework (for recent work
in this direction see, for instance, refs. [29–35]). Observables which are loop-induced can
therefore be reliably computed and also implemented in the fit. We stress that, even though
working with scalars ensures the renormalisability of the theory, the flavour structure we
use relies on the EFT description and FN power counting discussed in [10].

We find that the FN charges for left-handed fermions are basically fixed by the ex-
perimental constraints, with values that essentially match those of the U1 setting. As
expected, deviations occur for the FN charges of the right-handed fermions, since the U1
leptoquark and the S1 leptoquark couple to the right-handed down-quark and up-quark
sectors, respectively. We find a small number of phenomenologically allowed solutions for
the scalar leptoquarks, with very similar qualitative features. This is in contrast to the U1
case, where different solutions lead to rather distinct phenomenological scenarios [10].

The most relevant prediction of our setting is a large value for τ → µγ, basically at
the edge of the current experimental limits. Also B̄s → τ±µ∓ and B+ → K+τ+µ− modes
are enhanced and they are predicted to have a branching ratio one order of magnitude
smaller than the present bounds. Lepton flavour-conserving modes such as B̄s → τ+τ−

and B+ → K+τ+τ− also show one order of magnitude enhancement compared to their SM
expectation. However, the current experimental limits are quite weak. On the other hand,
we find a rather modest correction to the muon (g−2), typically ten times smaller than the
observed deviation between the experimental measurement and the SM prediction. While
this can — in principle — be fixed by tuning some of the overall coupling coefficients and
lowering the value for the leptoquarks masses, given the then arising tension with τ → µγ,
it does not seem to be a natural outcome of our setup.

This paper is organized as follows: in section 2 we introduce the scalar leptoquarks and
summarize their relevant interactions. In section 3 we discuss the power counting based on
FN charges and the constraints to make it compatible with the SM. The list of low-energy
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flavour observables to be considered is discussed in section 4, together with the allowed
textures for the flavour spurions. A fit is performed in section 5 where we comment on the
predictions of our setting and possible further experimental tests. Conclusions are given in
section 6. Technical details are compiled in two appendices.

2 Flavour spurions for scalar leptoquarks

Flavour spurions can be conveniently classified according to their representation under the
maximal flavour symmetry of the SM that commutes with the gauge symmetries, namely1

Gf = SU(3)Q × SU(3)U × SU(3)D × SU(3)L × SU(3)E . (2.1)

If one considers the fermionic content of the theory to be SM-like, then there are 44 different
flavour spurions associated with Dirac bilinears [10]. Since we are interested in leptoquark
scenarios, the list gets reduced to 12 spurions.

It is natural to understand these different spurions as originating from the interactions
of heavy leptoquarks and SM fermions. Each leptoquark model then has a definite number
of associated spurions. In ref. [10] we studied the phenomenology of the hypercharge Y = 2

3
vector leptoquark U1, and consequently examined the spurions ∆QL and ∆DE . In this work
we are interested in a scenario with scalar leptoquarks. Previous studies [17–25] have shown
that the tensions observed in B physics can be accommodated with the two (weak singlet
and triplet) hypercharge Y = 1

3 scalar leptoquarks. These scalars are typically referred to
in the literature as S1 and S3.

Once S1 and S3 are included, the SM Lagrangian is enlarged to [36]

L = LSM +DµS
a†
3 D

µSa3 −M2
3S

a†
3 S

a
3 +DµS

†
1D

µS1 −M2
1S
†
1S1 − V (S3, S1, H)

+ g3S̃
iα
QLQ̄

ciεσaLαSa3 + g1S
iα
QLQ̄

ci εLα S1 + gRS
iα
UE ū

ci
R `

α
R S1 + h.c. ,

(2.2)

where ε = iσ2 is the antisymmetric isospin tensor, Q and L are the left-handed quark
and lepton doublets, respectively, and Qc = iγ0γ2Q̄

T denotes the charge-conjugated Dirac
fields. The covariant derivatives are defined as

DµS1 =
(
∂µ − igsGAµTA − i

g′

3 Bµ
)
S1 ,

DµS3 =
(
∂µ − igsGAµTA − igW k

µ I
k − ig

′

3 Bµ
)
S3 ,

(2.3)

where TA and Ik are the SU(3)C and SU(2)L generators, respectively. In eq. (2.2) the
indices for the flavour matrices SQL, S̃QL and SUE are shown explicitly. The term
V (S3, S1, H) encodes the interacting potential between the Higgs boson and the lepto-
quarks. It is relevant in studies of the electroweak vacuum stability [37], oblique correc-
tions [38] or Higgs boson decays [39]. A study of this term is beyond the scope of this work
and therefore we ignore it for simplicity.

1Additional U(1) factors are not shown for simplicity.
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Both S1 and S3 are in principle allowed to couple to quark bilinears which violate
baryon number and in particular induce proton decay. In this paper we enforce baryon
number conservation at the TeV scale. Baryon number violating operators are therefore
set to vanish.

We choose to work in the down-quark basis for the SU(2)L doublets, namely

Qi ≡
(
V ∗iju

j

di

)
, Lα ≡

(
να

eα

)
, (2.4)

where V denotes the CKM mixing matrix. Working with the charge eigenstates for the
leptoquarks, defined through S1

3 = (S4/3
3 + S

−2/3
3 )/

√
2, S2

3 = i(S4/3
3 − S

−2/3
3 )/

√
2 and

S3
3 ≡ S

1/3
3 , the interaction Lagrangian thus reads

LFint = g3

[√
2(V ∗S̃QL)iαūciLναLS

−2/3
3 −

√
2S̃iαQLd̄ciLeαLS

4/3
3

− S̃iαQLd̄ciLναLS
1/3
3 − (V ∗S̃QL)iαūciLeαLS

1/3
3

]
+ g1

[
(V ∗SQL)iα ūciLeαL − SiαQL d̄ciL ναL

]
S1 + gRS

iα
UE u

ci
R e

α
RS1 + h.c. , (2.5)

LGint = −ig(W+
µ J

µ
− +W−µ J

µ
+) + ieAµJ µA + i

g

cos θW
ZµJ µZ , (2.6)

with

J µ+ = S
4/3
3

↔
∂µ S

1/3∗
3 + S

1/3
3

↔
∂µ S

−2/3∗
3 , (2.7)

J µ− = S
−2/3
3

↔
∂µ S

1/3∗
3 + S

1/3
3

↔
∂µ S

4/3∗
3 , (2.8)

J µA =
∑
j

QjS
j
3
↔
∂µ S

j∗
3 + 1

3S1
↔
∂µ S

∗
1 , (2.9)

J µZ =
∑
j

(tj3 −Qj sin2 θW )Sj3
↔
∂µ S

j∗
3 −

1
3 sin2 θWS1

↔
∂µ S

∗
1 , (2.10)

where A
↔
∂µB = A∂µB − B ∂µA and we have omitted the gluonic interactions, which are

relevant for collider observables at high-pT but do not play a key role in our analysis.
In order to accommodate the tensions in B physics, the scalar leptoquarks have to

be relatively light, around the TeV scale. At the electroweak scale they can therefore
be integrated out and matched onto the SMEFT. The tree-level matching is shown in
eq. (A.1), where the canonical basis of ref. [2] is used. The matching coefficients read

[C(1)
lq ]ijαβ = −1

4(3 |g3|2S̃jβQLS̃
∗iα
QL + |g1|2SjβQLS

∗iα
QL ) , (2.11)

[C(3)
lq ]ijαβ = −1

4(|g3|2S̃jβQLS̃
∗iα
QL − |g1|2SjβQLS

∗iα
QL ) , (2.12)

[Ceu]ijαβ = −1
2 |gR|

2SjβUES
∗iα
UE , (2.13)

[C(1)
lequ]ijαβ = −4 [C(3)

lequ]ijαβ = 1
2gR g

∗
1S
∗jβ
QLS

iα
UE . (2.14)
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3 EFT approach with flavour power-counting

A valid power counting has two basic requirements: (i) it reproduces the SM flavour
structure with a simple setup, and (ii) the scheme is self-consistent, in particular the
addition of spurions and their combinations does not upset the hierarchies already present
in the SM. This second requirement is highly nontrivial and in practice strongly constrains
the form of the power-counting scheme.

In ref. [10] we adopted a power counting based on the well-known Froggatt and
Nielsen (FN) model [11]. The FN model is a theory of flavour that introduces a (sponta-
neously broken) new U(1) symmetry with generation-dependent U(1) charge assignments
to each quark multiplet. Provided that a sufficient number of heavy fermions exists and
that spontaneous breaking is triggered by the vacuum expectation value 〈φFN〉 of a new
scalar field at a scale ΛFN � 〈φFN〉, the model can accommodate the SM flavour hierar-
chies. Flavour non-diagonal transitions are suppressed by powers of λ = (〈φFN〉/ΛFN)� 1,
which is usually associated with the Cabibbo angle, λ ≈ sin2 θC ≈ 0.2, and their magnitude
is determined by the corresponding FN charges. The suggestion made in ref. [10] (see also
ref. [9]) is to merely assign FN charges to the SM fields, without addressing the problem
of which dynamical mechanism can generate them. With this prescription it is then rather
straightforward to take also leptons into account.

With the generalised FN prescription, every flavour structure in the SMEFT is deter-
mined only by the difference of FN charges of the fields present. For instance, if we denote
the fermion FN charges by biQ, b

i
D, b

i
U and bαL, b

α
E in a flavour basis defined by the U(1)

symmetry of the FN construction (FN basis), the SMEFT operator

[C(1)
lequ]ijαβ(Q̄iujR)ε(L̄αeβR) (3.1)

has the flavour scaling

[C(1)
lequ]ijαβ ∼ λ|b

i
Q−b

α
L|+|b

j
U−b

β
E | , (3.2)

where the form of this factorized structure keeps track of the fact that the FN mechanism
is linked to a spurion decomposition of fermion bilinears.

Before we move to the NP contributions, the flavour structure of the SM (fermion
masses and CKM mixing angles) already sets constraints on some combinations of the FN
charges. Concerning the latter, the CKM matrix can be written, in terms of FN charges, as

Vij = (V †ULVDL)ij ∼ λ|b
i
Q−b

j
Q| , (3.3)

where VX denote the rotation matrices from the flavour to the mass eigenbasis for a given
quark species. The left-handed quark charges are fixed by matching the previous expression
onto the generally accepted Wolfenstein parametrization of the CKM matrix:

V ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 . (3.4)
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Since only the absolute value of charge differences can be constrained, the FN charges biQ
are fixed up to a common offset d and an absolute sign. The general solutions

bQ = (3 + d, 2 + d, d) and bQ = (3 + d, 4 + d, 6 + d) (3.5)

simply expose this inherent ambiguity. The two solutions above actually differ by a global
sign flip of all charges only. The parameter d sets the values of the U(1)FN charges in a
would-be FN model. In the phenomenological approach we are using in this paper, this
absolute value is of no significance. For simplicity, we choose

b1Q ≡ 3 , b2Q ≡ 2 , b3Q ≡ 0 . (3.6)

In turn, the entries of the Yukawa matrices scale as

(YU )ij ∼λ|b
i
Q−b

j
U | , (YD)ij ∼ λ|b

i
Q−b

j
U | , (YE)αβ ∼ λ|b

α
L−b

β
E | . (3.7)

One of the features of a power counting based on FN charges is their basis-independence.
We can therefore set bounds on the charges by working in the fermion mass eigenbasis.

Concerning the eigenvalues of the quark Yukawa matrices, we have

yu ∼ λ|b
1
Q−b

1
U | ≈ λ8 , yd ∼ λ|b

1
Q−b

1
D| ≈ λ7 ,

yc ∼ λ|b
2
Q−b

2
U | ≈ λ4 , ys ∼ λ|b

2
Q−b

2
D| ≈ λ5 ,

yt ∼ λ|b
3
Q−b

3
U | ≈ λ0 , yb ∼ λ|b

3
Q−b

3
D| ≈ λ3 . (3.8)

The above expressions fix the right-handed quark FN charges up to a twofold ambiguity:

b1U ' −5,+11 , b2U ' −2,+6 , b3U ≡ 0 ,

b1D ' −4,+10 , b2D ' −3,+7 , b3D ≡ −3,+3 .
(3.9)

The leptonic FN charges are considerably less constrained by the SM. The masses of
the charged leptons require

ye ∼ λ|b
1
L−b

1
E | ≈ λ9 , yµ ∼ λ|b

2
L−b

2
E | ≈ λ5 , yτ ∼ λ|b

3
L−b

3
E | ≈ λ3 . (3.10)

Additional flavour spurions are sensitive to different combinations of FN charges and lead to
further constraints. The phenomenologically allowed values for the FN charges therefore
depend on both the phenomenological input and the spurions used to accommodate it.
In the present paper we enlarge the SM flavour structure with the following spurions,
defined as:

S̃iαQL = c̃iαL λ|b
i
Q−b

α
L| , (3.11)

SiαQL = ciαL λ|b
i
Q−b

α
L| , (3.12)

SiαUE = ciαR λ|b
i
U−b

α
E | . (3.13)

The extra constraints on the FN charges from low-energy phenomenology for these specific
spurions are discussed in the next section.
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4 Methodology and observables

Even with a well-defined FN power counting, the number of free parameters describing
the NP spurions is substantial. Beside the FN charges, we have the flavour-dependent
coefficients ciαL , c̃iαL and ciαR . By construction, these coefficients are assumed to be O(1)
complex numbers. The power counting limits their magnitude but does not reduce the
number of them.

Notice that we can consider the FN charges as integers without loss of generality:
the effects of non-integer charges can be completely absorbed into a redefinition of the
coefficients ciαj . Likewise, a shift of λ can also be absorbed by ciαj . In order to simplify our
analysis, we make the following assumptions:

• The masses of the leptoquarks are assumed to be degenerate and we set their value
(the cutoff scale of the EFT) to be M = 2 TeV. With this conservative choice we
avoid the constraints from direct searches, e.g. from high-pT tails, which set a lower
limit on the leptoquarks masses of ∼ 1 TeV (see e.g. refs. [26–28] for a detailed
EFT-based analysis and refs. [40–42] for specific leptoquark benchmarks).

• The spurion entries are assumed to be real (in the FN basis) and flavour-universal up
to a relative sign, which is dictated by phenomenological requirements. In practice,
we set ciαj = ±1 and the only free coefficients left are g1, g3 and gR defined in eq. (2.2),
assumed to be real. In particular, this implies that any source of CP violation comes
from the SM parameters only. The flavour-independence of the coefficients is a rather
strong requirement, motivated only to reduce the number of free parameters in our
analysis. In any realistic theory these coefficients are flavour-dependent. In the
following sections we discuss in which cases this requirement has to be relaxed.

• The CKM matrix elements are taken from the NP fit by the UTFit collaboration [43].
In the fit that we perform in section 5 we fix the CKM parameters to their central
values, without treating them as nuisance parameters. We expect the size of the error
associated with this simplified procedure to be negligible.

With the previous assumptions, the free parameters are the (integer) FN charges, the
relative signs of the spurion entries, and the overall coupling strengths gj in the Wilson
coefficients. The latter are expected to be O(1) numbers.

From the previous discussion, it is clear that in our approach there is nothing funda-
mental about the values of the FN charges, since their values are correlated with the choices
for M , λ and the simplifying assumptions for the Wilson coefficients. Any interpretation
of their values should therefore be taken with a grain of salt.

All of the previous assumptions can be gradually lifted, once more and more precise
data become available. In this work we take a very simplified setting, which is justified
by the existence of a number of viable solutions (to be discussed below). Relaxing the
assumptions above would definitely increase the number of allowed scenarios, but this
would be hardly informative, except to indicate that the current data is not precise enough
to discriminate among the scenarios.
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4.1 Low-energy observables

Scalar leptoquarks contribute to a rich set of low-energy processes. As a consequence of our
power counting, we are sensitive to observables which involve fermions belonging to any of
the three families. Since the Lagrangian in eq. (2.2) is renormalisable, processes induced
at one-loop order are also considered in our analysis. In the following we list the most
stringent constraints on the spurion entries. In the next subsection we translate them into
constraints on the FN charges. In order to facilitate this comparison, all the dimensionless
parameters are expressed as integer powers of λ.

We first discuss the modes that show deviations from the SM, and therefore justify the
introduction of the leptoquark flavour spurions. We then comment on the most relevant
modes that set limiting constraints.

(i) RD(∗). The measured values of the lepton-flavour universality ratios RD(∗) currently
show a tension of 3 − 4σ with respect to their SM predictions (references to exper-
imental measurements and SM predictions are given in appendix B.1). They are
therefore one of the most sizeable effects that leptoquark scenarios have to accom-
modate. Using the matching in eq. (2.14) and the expression in eq. (B.7), we have

RD(∗) ≈ RD(∗) |SM
[
1− v2

2M2

3∑
j=1

Vcj
Vcb

(|g3|2S̃33
QLS̃

∗j3
QL − |g1|2S33

QLS
∗j3
QL)

+ v2

2M2

3∑
j=1

Vcj
Vcb

(|g3|2S̃32
QLS̃

∗j2
QL − |g1|2S32

QLS
∗j2
QL)

− v2

4M2Vcb
g1g
∗
R

(
FV SD(∗)(τ)− 1

4F
V T
D(∗)(τ)

)
S33
QLS

∗23
UE

]
.

(4.1)

In order to be consistent with b → c`ν̄ data, with ` = µ, e, we assume that the
correction is mostly driven by the couplings of the third generation (first and third
lines in eq. (4.1)). A correction of O(10%) with respect to the SM translates into∣∣∣∣∣

3∑
i=1

Vib
Vcb

(|g3|2S̃33
QLS̃

∗i3
QL − |g1|2S33

QLS
∗i3
QL)

∣∣∣∣∣ ∼ O(λ−1) , (4.2)∣∣∣∣g1g
∗
R

(
FV SD(∗)(τ)− 1

4F
V T
D(∗)(τ)

)
S33
QLS

∗23
UE

∣∣∣∣ ∼ O(λ) . (4.3)

Expanding the first equation, one finds that

S33
QL

[
S∗23
QL − λS∗13

QL + λ2S∗33
QL

]
∼ O(λ) , (4.4)

which shows that the term proportional to S∗23
QL is the dominant one. The same holds

for the spurion S̃QL. The constraints on the spurion matrices therefore read

S̃33
QLS̃

∗23
QL ∼ λ , S33

QLS
∗23
QL ∼ λ , S33

QLS
∗23
UE ∼ λ . (4.5)

In order to make sure that the contributions of both leptoquarks do not cancel each
other, we require

S̃33
QLS̃

∗23
QL < 0 and S33

QLS
∗23
QL > 0 . (4.6)
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(ii) b→ s`+`−. Global fits to b→ sµ+µ− show that the most favoured scenario is given
by C2322

9 = −C2322
10 ≈ −0.5, where the coefficients are defined in eq. (B.12), assuming

that b → se+e− is SM-like [44–47]. At the tree level, only S3 contributes. Using
eq. (B.13) for the tree-level matching, one finds

S̃∗32
QL S̃

22
QL ∼ λ4 , (4.7)

for the muon mode and
S̃∗31
QL S̃

21
QL < λ6 , (4.8)

for the electron mode.

The contribution of S1 is one-loop suppressed and proceeds via box diagrams which
are negligible in our framework. A similar suppression applies to the one-loop con-
tributions from S3, which we likewise neglect.

We have checked that the current bounds on B̄s → τ+τ− decay are less constraining
and therefore do not add additional information to our analysis.

In ref. [48] it has been shown that a universal shift in C23ii
9 , with i = 1, 2, 3, can

be obtained through penguin-type diagrams with a τ lepton in the loop. In our
framework these contributions are small and hence we can neglect them. Accordingly,
C2322

9 contains only tree-level NP effects.

(iii) Z → νν̄ and Z → `+`−. LEP bounds provide a test of NP effects in Z couplings
to leptons. In our setup, such corrections arise from penguin diagrams. Compared
to the results of global fits (recently updated in ref. [49]) we find that in our setting
scalar-leptoquark effects are generically rather suppressed, with the top contribution
being the dominant one. The strongest constraint comes from Z → νν̄, which is
bound by the measurement on the effective number of neutrino species N exp

ν . We
find

N exp
ν =

∑
ij

∣∣∣∣∣δij +
δgijνL
gSMν

∣∣∣∣∣
2

= 2.9963± 0.0074 , (4.9)

where the expression for δgijνL is given in eq. (B.62). Note that the contributions
to N exp

ν from the S3 and S1 leptoquarks are always positive, which is a generic
result, independent of considerations on flavour power counting. This excess can be
acceptable as long as

|S̃3α
QL|2 ≥ λ2 . (4.10)

This is not the case for Z → `+`− decays, where the direction of the NP corrections
matches the experimental trend. Uncertainties are however relatively large and the
resulting constraints on the spurion entries are less stringent. An interesting exception
is Z → τ+

L τ
−
L , where one finds the following conditions:

|S̃33
QL|2 ≥ λ2 , |S33

QL|2 ≥ λ2 . (4.11)
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(iv) K+→ π+νν̄. Using the expressions in eq. (B.27) and the limit from eq. (B.29), we
have ∑

α

v2

M2
π sin2 θW
αEM

∣∣∣∣ 1
yν

(
|g3|2S̃1α

QLS̃
∗2α
QL + |g1|2S1α

QLS
∗2α
QL

)∣∣∣∣ < 0.69 , (4.12)

∑
α 6=β

v2

M2
π sin2 θW
αEM

∣∣∣∣ 1
yν

(
|g3|2S̃1α

QLS̃
∗2β
QL + |g1|2S1α

QLS
∗2β
QL

)∣∣∣∣ < 0.46 , (4.13)

where eq. (4.12) corresponds to the case where neutrinos have the same flavour and
eq. (4.13) encodes the LFV contributions. With yν ∼ λ3, one finds the following
bounds on the spurions:

S̃1α
QLS̃

∗2β
QL < λ5 and S1α

QLS
∗2β
QL < λ5 . (4.14)

(v) B̄ → K(∗)νν̄. Using the limits in eq. (B.23) and the expressions in eqs. (B.16)–
(B.17), we have

∑
α

v2

M2
π

αEM|VtbV ∗ts|

∣∣∣∣∣ 1
CSM
BK

(
|g3|2S̃2α

QLS̃
∗3α
QL + |g1|2S2α

QLS
∗3α
QL

)∣∣∣∣∣ < 5.1 , (4.15)

∑
α 6=β

v2

M2
π

αEM|VtbV ∗ts|

∣∣∣∣∣ 1
CSM
BK

(
|g3|2S̃2α

QLS̃
∗3β
QL + |g1|2S2α

QLS
∗3β
QL

)∣∣∣∣∣ < 2.6 , (4.16)

where eq. (4.15) and eq. (4.16) correspond to the flavour-conserving and flavour-
violating contributions, respectively. With CSM

BK ≈ −6.35, the previous conditions
imply the constraints:

S̃2α
QLS̃

∗3β
QL < λ2 and S2α

QLS
∗3β
QL < λ2 , (4.17)

assuming that the terms from S3 and S1 do not cancel each other. Depending on
the structure of S̃iαQL and SiαQL, the LFV contributions can be numerically important.
This turns out to be the case for some of the allowed solutions to be discussed later
on. In this case, the LFV contributions have to be included in the numerical analysis.

(vi) ∆Mq. Neutral meson mixings are very sensitive probes of NP effects. In particular,
in Bd − B̄d and Bs − B̄s mixing the leading contributions are proportional to the
spurion combinations (see appendix B.5.1)

(S̃∗j3QL S̃
33
QL)2 , (S∗j3QLS

33
QL)2 , (S̃∗j3QL S̃

33
QL)(S∗j3QLS

33
QL) , (4.18)

where the three terms correspond to the different ways that S1 and S3 can be ex-
changed in box diagrams and j = 1, 2 correspond to the different light quarks. The
bounds that we obtain are

S̃∗j3QL S̃
33
QL ≥ λ3 , S∗j3QLS

33
QL ≥ λ3 . (4.19)

We notice that for ∆Ms these bounds are not fulfilled, since the same spurion com-
bination appears in the description of RD(∗) . Therefore, we require the term with
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mixed spurions to have a negative interference with the others in order to partially
reduce the tension. In contrast, the spurion combination relevant for ∆Md is not
present in any other of the considered observables, and one needs a more global anal-
ysis to understand whether the constraint can be fulfilled or partial cancellations are
required.

The contributions with pure muon and pure electron exchange in the loop, which are
constrained by b → sµ+µ− and b → se+e−, are within the experimental bounds for
∆Ms. The effect of the diagrams with different lepton species in the loop turns out
to be numerically suppressed due to the bounds from other LFV decays.

(vii) KL → µe. The bound on this decay mode provides a stringent constraint on the
spurion entries associated with light lepton generations. Comparing the current ex-
perimental upper bound with the expression in eq. (B.14), one requires that

S̃∗21
QL S̃

12
QL ≤ λ8 and S̃∗22

QL S̃
11
QL ≤ λ8 . (4.20)

(viii) µ→ eγ. The current upper bound also constrains significantly the spurion entries for
light leptons. Comparing the expression in eq. (B.72) with the current experimental
bound we find, from the left-handed operators,

|λ3S̃12
QL + λ2S̃22

QL + S̃32
QL||λ3S̃∗11

QL + λ2S̃∗21
QL + S̃∗31

QL | 6 λ4 ,

|λ3S12
QL + λ2S22

QL + S32
QL||λ3S∗11

QL + λ2S∗21
QL + S∗31

QL | 6 λ4 ,
(4.21)

which implies the minimal conditions:

S̃32
QLS̃

∗31
QL 6 λ4 , S32

QLS
∗31
QL 6 λ4 . (4.22)

More stringent limits come from the scalar and tensor contributions induced by S1,
due to the chiral enhancement of the quark loops. From the top contribution we
extract the conservative bounds:

S32
QLS

∗31
UE 6 λ10 , S∗31

QLS
32
UE 6 λ10 . (4.23)

(ix) τ → µγ. The leading contribution comes from the scalar and tensor operators, just
as in µ → eγ. However, the τ upper limits are experimentally less constrained, and
one finds the conditions

S33
QLS

∗32
UE 6 λ4 , S∗32

QLS
33
UE 6 λ4 . (4.24)

From the previous analysis of the different processes, one immediately identifies some
tensions that are generic to the S1+S3 leptoquarks scenario. The corrections to b→ s`+`−

can in general be implemented without upsetting other processes. The main problem comes
with RD(∗) . The combinations S̃33

QLS̃
∗23
QL , S33

QLS
∗23
QL and S33

QLS
∗23
UE have to be sizeable to match

the experimental measurements. The first two combinations generate large corrections to
neutral meson mixings, K → πνν̄ and B → K(∗)νν̄ decays, imposing a necessary partial
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cancellation between the S1 and S3 leptoquark contributions. The last combination leads
to large effects on the LFV decays µ → eγ and τ → µγ. Since this combination is only
generated by S1, a suppression cannot rely on partial cancellations and it is typically
harder to achieve. Some other tensions affect Z → νν̄ or W lepton-flavour universality
tests (discussed in appendices B.6–B.7). These tensions are however different in nature:
the scalar leptoquarks generate NP contributions to these modes with a definite sign, which
in some cases happens to conflict with the one from the global fits to experimental data.

In the following subsection we investigate the implications of these tensions for the FN
power counting.

4.2 Constraints on the FN charges

The conditions on FN charges discussed in section 3 are linked to the SM flavour struc-
ture. This alone determines the charges of the quark fields (up to twofold ambiguities for
right-handed fields). The FN charges can be further constrained by using the low-energy
observables listed above. This procedure clearly depends on the experimental situation and
the selection of spurions. The additional constraints that we derive below are therefore as-
sociated with the specific extension chosen in this paper and the current experimental
situation. The increase or decrease of certain tensions and improvement on certain bounds
would in general lead to different values of the charges. An important point to stress is that
compliance with flavour tests does not single out a solution for the FN charges, i.e. there is
some leftover freedom and a range of values are allowed. This leaves us with a manageable
number of potential solutions, which we analyse in the fit discussed in section 5.

Processes sensitive to SQLSQL and S̃QLS̃QL can be used to set constraints on the
left-handed lepton charges, while processes that get contributions from scalar and tensor
operators (proportional to SQLSUE) are useful to constrain the right-handed charges. Con-
tributions proportional to SUESUE affect up-quark sector processes. Since these are rather
weakly constrained, one finds no extra condition on the FN charges.

1. bL charges

(a) Constraints on all families come from the bounds on Z → νν̄. This requires
that

(
δgZνL

)
αα
≤ λ2, which translates into |b3Q − bαL| ≥ 1. Using that b3Q = 0, we

get the condition

|bαL| ≥ 1 . (4.25)

Further generic constraints come also from K+ → π+νν̄ and B → K(∗)νν̄.
Eqs. (4.14)–(4.17) are tantamount to |b1Q − bαL|+ |b2Q − bαL| ≥ 5 and |b2Q − bαL|+
|b3Q − bαL| ≥ 2. Both constraints can be fulfilled with

bαL ≤ 0 or bαL ≥ 5 . (4.26)

Overall the allowed solutions are bαL ≤ −1 and bαL ≥ 5.
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(b) Constraints specific to b2L come from b→ sµ+µ−. From eq. (4.7) we find |b2Q −
b2L|+ |b3Q − b2L| ∼ 4, which, using the values of the bQ charges, leads to

b2L = −1,+3 . (4.27)

Combined with the constraints in (a) above, only the solution b2L = −1 is viable.
(c) Constraints specific to b1L come from the LFV modes KL → µ±e∓ and µ→ eγ.

The bounds for KL → µ±e∓ discussed in the previous section can be written as
the conditions |b1Q− b1L|+ |b2Q− b2L| > 8 and |b2Q− b1L|+ |b1Q− b2L| > 8. Using the
values for b1Q, b2Q and b2L = −1 discussed above, this implies the range

b1L ≤ −2 or b1L ≥ 8 . (4.28)

The condition from µ→ eγ reads |b3Q − b2L|+ |b3Q − b1L| ≥ 5, which leads to∣∣∣b1L∣∣∣ ≥ 4 . (4.29)

The allowed values are therefore b1L ≤ −4 and b1L ≥ 8. We have checked that
the bound on b → se+e− is automatically fulfilled and thus brings no further
constraints.

(d) Constraints specific to b3L come from b → cτ−ν̄. From eq. (4.5) one finds the
relation |b3Q − b3L|+ |b2Q − b3L| ∼ 1. However, with the values for biQ, it is easy to
see that the previous constraint has no solution for (integer) b3L. We therefore
set |b3Q − b3L|+ |b2Q − b3L| ∼ 2, from which one concludes that

b3L = 0,+1,+2 . (4.30)

Notice that the previous values for b3L are incompatible with the generic bounds from
eq. (4.25) and eq. (4.26). The easiest solution is to select b3L = 1, which respects
the bounds from Z → νν̄ and B → K(∗)νν̄, and then bring K+ → π+νν̄ into
the allowed experimental bounds by imposing a cancellation between the S1 and S3
contributions. This indicates that both S1 and S3 leptoquarks are needed in order
to obtain a satisfactory description of low-energy data. The choice b3L = 2 requires a
much stronger fine-tuning and we dismiss it.

The first condition on the coefficients’ signs is therefore

sgn(c̃1α
L c̃

2α
L ) = − sgn(c1α

L c
2α
L ) . (4.31)

There is also a generic tension between RD(∗) and Bs − B̄s mixing, as already men-
tioned in the previous subsection. Actually, with the allowed FN charges, the NP
contribution would induce a correction of typically a few %. This tension can be
resolved by enforcing

sgn(c̃23
L c̃

33
L c

23
L c

33
L ) = −1 . (4.32)
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This condition contains the same spurion combination that appears in RD(∗) and is
actually automatically fulfilled if

(c̃23
L c̃

33
L ) < 0, (c23

L c
33
L ) > 0 , (4.33)

which ensures that the contributions of S3 and S1 to RD(∗) have a positive interference
with the SM, as data indicates.

When trying to fit all the observables (see section 5) it turns out that the contribution
to Bd mixing can be more easily accommodated if there is also a partial cancellation.
The condition in this case reads

sgn
(
c̃13
L c̃

33
L c

13
L c

33
L

)
= −1 . (4.34)

Finally, since the contributions to B → K(∗)νν̄ are very close to the experimental
bounds, we additionally impose

sgn
(
c̃2α
L c̃

3β
L

)
= − sgn

(
c2α
L c

3β
L

)
. (4.35)

Considering all the above discussion, the FN charges for left-handed leptons are
constrained to the values

b1L ≤ −4 ∨ b1L ≥ 8 , b2L = −1 , b3L = +1 . (4.36)

Therefore, all the FN charges for the left-handed fermion fields are fixed, with the
exception of b1L. It is interesting to remark that the FN charges that we found happen
to be essentially the same as the ones obtained for a U1 leptoquark [10]. This is not
entirely surprising, given that the flavour spurions ∆QL, SQL and S̃QL couple to
the same fermion fields and therefore have the same combinations of FN charges.
However, since in ref. [10] µ → eγ, B → K(∗)νν̄ and K+ → π+νν̄ did not play a
significant role, the impact of the phenomenological input used in both cases is rather
different, in particular for the bounds on b1L.

2. bU and bE charges. The choices for the bL charges found above can be combined
with the SM conditions in eq. (3.10) to narrow down the parameter space for the bE
charges. One finds

b1E = b1L ± 9 , b2E = −6, 4 , b3E = −2, 4 . (4.37)

The contributions of scalar operators in the different processes, i.e., those contribu-
tions proportional to SQLSUE , provide additional constraints on both bU and bE .
The most stringent ones come from RD(∗) , µ→ eγ and τ → µγ.

A sizeable scalar contribution to RD(∗) sets the constraint |b2U − b3E | ≤ 1, which can
be fulfilled only with the combination

b2U = −2 , b3E = −2 , (4.38)
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together with the sign constraint

c33
L c

23
R < 0 . (4.39)

The conditions listed in eq. (4.23) for µ→ eγ become |b2L − b3Q|+ |b1E − b3U | ≥ 10 and
|b1L − b3Q|+ |b2E − b3U | ≥ 10. The first one sets∣∣∣b1E∣∣∣ ≥ 9 , (4.40)

while the second one is trivially satisfied with large enough b1L. In order to have
conservative bounds, and in compliance with eq. (4.36), we choose b1L = −5 and
b1L = +8 as our benchmark solutions.

In turn, the constraints for τ → µγ become |b3Q− b3L|+ |b3U − b2E | ≥ 4 and |b3Q− b2L|+
|b3U − b3E | ≥ 4. The first one is trivially satisfied, while the second one cannot be
fulfilled with b3E = −2. This tension between RD(∗) and τ → µγ can only be resolved
by relaxing our assumption that the Wilson coefficients associated to the spurions
are flavour-independent (see the discussion below).

In summary, with both SM and NP constraints taken into account, we find the FN
charges for the quark sector

b1Q = 3 , b2Q = 2 , b3Q = 0 ,
b1U = −5, 11 , b2U = −2 , b3U = 0 .

(4.41)

For the lepton sector, the constraints read

b2L = −1 , b3L = 1 , b3E = −2 ,
(b1L; b1E , b2E) = {(−5;−14,−6), (8; 17,−6), (8; 17, 4)} .

(4.42)

In comparison with the U1 case studied in ref. [10], where 11 scenarios were possible, the
scenario with scalar leptoquarks is more constraining and only 6 solutions are possible.
In both cases the left-handed charges are essentially fixed, up to b1L. The main difference
comes from the fermionic right-handed sector. Since the scalar leptoquarks are sensitive to
the up-quark sector, they are more tightly constrained by RD(∗) . For the same reason, the
phenomenological impact affects mostly charm physics, where uncertainties are large. As a
result, and as is discussed in the next section, there are little phenomenological differences
between the 6 potential solutions. The main difference arises from the choice of b2E . With
this in mind, we identify the following two (non-degenerate) benchmark scenarios:

Scenario A : (b1L; b1U ; b1E , b2E) = (−5; +11;−14,−6) , (4.43)
Scenario B : (b1L; b1U ; b1E , b2E) = (+8;−5; +17,+4) . (4.44)

In both scenarios we have chosen the value of b1U that gives the strongest suppression to
processes involving the first generation. We have checked explicitly that the phenomenology
of the remaining possibilities is qualitatively very similar.
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Regarding the sign constraints listed above, they do not lead to a unique solution. A
minimal choice is to take the entries c̃33

L , c13
L , c32

L and c23
R negative. The form of the spurion

matrices for the different scenarios therefore reads:

S̃
(A)
QL ∼

λ
8 λ4 λ2

λ7 λ3 λ

λ5 λ −λ

 , S̃
(B)
QL ∼

λ
5 λ4 λ2

λ6 λ3 λ

λ8 λ −λ

 ,

S
(A)
QL ∼

λ
8 λ4 −λ2

λ7 λ3 λ

λ5 −λ λ

 , S
(B)
QL ∼

λ
5 λ4 −λ2

λ6 λ3 λ

λ8 −λ λ

 ,

S
(A)
UE ∼

λ
25 λ17 λ13

λ12 λ4 −1
λ14 λ6 λ2

 , S
(B)
UE ∼

λ
22 λ9 λ3

λ19 λ6 −1
λ17 λ4 λ2

 .

(4.45)

In order to study the viability and specific phenomenological features of these solutions,
in the next section we perform a fit. Note that the previous matrices still contain the
assumption that the Wilson coefficients are flavour-independent, i.e. |ciα| = 1. As we show
in the next section, this assumption has to be relaxed for the entries c32

L and c33
R , otherwise

the tension between RD(∗) and τ → µγ cannot be resolved.

5 Results and discussion

The viability of our framework is tested by performing a fit to a set of observables. Our
fit procedure employs the probabilistic programming package PyMC3 [50], which uses the
principles of Bayesian inference. The main ingredient for the analysis is the likelihood
function L, defined as

log(L) = −1
2
∑
i∈ obs

(
Oith −Oiexp

)T
Σ−1
i

(
Oith −Oiexp

)
, (5.1)

where Σi is the combination of theoretical and experimental covariance matrices for each
observable Oi.

The results of our analysis are obtained in terms of posteria distributions for the
parameters g1, g3 and gR. We include in our fit all observables for which there is currently a
measurement. This includes RD(∗) , FD∗L , universality in b→ c`ν̄ (` = µ, e), the inputs from
b → s`+`− global fits, ∆Md,s, K+ → π+νν, the effective number of light neutrino species
Nν , and the corrections to Z and W couplings to leptons. Agreement with observables for
which there exist only upper bounds is checked a posteriori.

In the following we discuss two fit benchmarks: Benchmark I has the spurions SQL
and S̃QL only and accordingly the couplings g1 and g3 as free parameters. Benchmark II
includes also the spurion SUE and the free parameters are g1, g3 and gR. In both cases we
choose Scenario A as our nominal fit. The differences with Scenario B are discussed later
on in the text.
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5.1 Benchmark I

We first investigate the possibility of setting gR = 0. In this case Scenarios A and B are
indistinguishable. We note that the likelihood for this benchmark is insensitive to the sign
of g1 and g3. For convenience, we restrict ourselves to the case where g1,3 are both positive,
but analogous results are obtained for the other three sign combinations.

Imposing flat priors for g1 and g3 we obtain the following mode and 68% interval for
our fit parameters:

g1 : mode = 1.25 68% interval : [1.07, 1.31] ,
g3 : mode = 1.31 68% interval : [1.15, 1.36] ,

(5.2)

with a correlation coefficient of ρg1g3 = 0.92 (see figure 1). Since the spurions SQL and S̃QL
have the same power-counting scaling, the large correlation between g1 and g3 clearly indi-
cates that observables with a significant impact on the likelihood scale as the combination
|g1|2 + |g2

3|. Observables which scale like |g1|2 − |g2
3| are instead very suppressed, and are

mostly SM-like.
To evaluate the improvement of our model with respect to the SM hypothesis, we

estimate the χ2, which is defined as χ2 = −2 log(L). In the SM hypothesis, the biggest
contributions to χ2

SM come from b → s`+`− and b → cτ ν̄ data. The minimum of the χ2

corresponds to the point at which the parameters g1,3 are exactly the estimated modes. In
the minimum, we find ∆χ2 = χ2

SM − χ2
min ∼ 30.

The posteria are used to evaluate the NP contribution to various observables. In
particular, we obtain that

RD(∗) ∼ 1.02RSM
D(∗) , (5.3)

which is too small to have a sizeable reduction of the observed tension in these observables.
This shows the need to include scalar and tensor operators.

Before moving to Benchmark II, we comment on the corrections to the W couplings
δgijW defined in eq. (B.65). Experimentally, one finds that δgααW , with α = 1, 2, 3 shows
some tension with the SM prediction. In particular, the highest discrepancy comes from
δg33
W , which is positive, while δg11

W and δg22
W are negative. The three modes combined give

a contribution of ∼ 17 to χ2
SM [49].

In our framework, we find that the contributions from the S1 and the S3 leptoquarks
(eqs. (B.66) and (B.67), respectively) largely cancel each other. The remaining overall
correction is negative. However, it is so suppressed that the contribution to the χ2

min from
these modes is practically equivalent to the SM one.

We want to stress that this is not a specific feature of our framework: different sce-
narios, even with different mediators, share this issue. If one uses instead the recent
ATLAS measurement of R(τ/µ) = B(W → τ ν̄)/B(W → µν̄) [51], which turns out to be
much closer to the SM prediction, the contribution to the χ2 is very low, about ∼ 0.4.
New measurements of the W couplings are thus definitely needed to understand if these
tensions, observed mainly at LEP, are still significant or not. The present discussion
also holds for Benchmark II, since the observables under consideration are independent of
right-handed couplings.
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Figure 1. Fit results for the parameters g1 and g3 in Benchmark I (gR = 0). The shaded areas,
from darker to lighter blue, describe the 1, 2 and 3σ regions, respectively.

5.2 Benchmark II

We now let gR 6= 0. In this case there are two minima, corresponding to the two possibilities
of satisfying g1gR > 0. For definiteness, we choose the case g1 > 0 and gR > 0. We impose
flat priors for g1, g3 and gR and obtain the following mode and 68% interval for our fit
parameters:

g1 : mode = 1.23 68% interval : [1.02, 1.28] ,
g3 : mode = 1.29 68% interval : [1.10, 1.33] ,
gR : mode = 3.13 68% interval : [1.96, 4.77] ,

(5.4)

with correlation coefficients ρg1g3 = 0.92, ρg1gR = −0.40 and ρg3gR = −0.37. In figure 2
we report the different two-dimensional projections. In this case we find ∆χ2 ∼ 36, which
improves the fit of Benchmark I. We notice that our conclusion concerning the correlations
between g1 and g3 remains unchanged, since the features leading to this result do not
depend on right-handed currents. As expected, the addition of right-handed interactions
only improves the fit, mostly by increasing the value of RD(∗) at the price of having moderate
tensions with µ→ eγ and τ → µγ.

Concerning the observables of interest, we use the posteria distribution to analyse
them. In the following we comment on the most interesting ones.

Charged currents. Regarding RD(∗) , we find

RD = 0.357± 0.022 , RD∗ = 0.277± 0.010 , (5.5)

which correspond to an enhancement of ∼ 19% and ∼ 9% with respect to the SM predic-
tions, respectively. Our predictions fall into the 1σ region, considerably easing the tension
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Figure 2. Fit results for the parameters g1, g3 and gR. The shaded areas, from darker to lighter
red, describe the 1, 2 and 3σ regions, respectively.

in these ratios.2 However, for the longitudinal polarisation fraction FD
∗

L , we barely see
an enhancement compared to the SM prediction. This is in line with what was already
observed in previous analysis, as in refs. [52–55].

Concerning additional modes mediated by b → cτ ν̄ transitions, an interesting ob-
servable is RJ/ψ = B(Bc → J/ψτν̄)/B(Bc → J/ψµν̄). There is currently a discrepancy
between the experimental measurement, Rexp

J/ψ = 0.71± 0.17(stat)± 0.18(syst) [56] and the
SM prediction from the lattice, RSM

J/ψ = 0.2601± 0.0036 [57].
For our estimate we use the lattice determination of the form factors in ref. [58] and

the predictions in ref. [57]. Unfortunately, the lattice determination includes only SM form
factors, while in our scenario sizeable tensor operators are generated. In order to estimate
their impact, we assume that the ratio between scalar and tensor operators in RJ/ψ is the

2We notice that the tensor coupling FTD∗ (τ) (see eq. (B.7)) happens to be numerically sizeable, especially
for RD∗ . This is however a quadratic NP contribution, and accordingly one expects it to be strongly
suppressed. We have checked that this is the case.
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same as in RD∗ . This yields:

RJ/ψ/R
SM
J/ψ ≈ |1 + C2333

L |2 − 0.095Re[(1 + C2333
L )C∗2333

S ] + 0.034 |C2333
S |2

− 4.255Re[(1 + C2333
L )C∗2333

T ] + 16.183 |C2333
T |2 .

(5.6)

The full basis of form factors for Bc → J/ψ`ν̄ decays has been determined in ref. [59] using
Light-Cone Sum Rules. However, this determination has large uncertainties, especially for
the tensor form factors. We have checked that eq. (5.6) shows numerical agreement with
the results in ref. [59]. Our prediction for RJ/ψ reads:

RJ/ψ = 0.279± 0.007 , (5.7)

which is very close to the lattice result. Thus, our framework barely reduces the present
tension in RJ/ψ.

Another interesting mode is Bc → τ ν̄. In our setting, the dominant NP contribution
comes from the interference between SM-like and scalar operators, which happens to be
destructive, and we find B(Bc → τ ν̄) ∼ 0.7%, while the SM prediction is ∼ 2%. We note
that this sizeable reduction of the SM estimate does not collide with constraints from the
Bc lifetime [60].

Neutral meson mixing. The bounds from neutral K and neutral D mixing are easily
satisfied in our framework. Concerning ∆Ms and ∆Md, the situation is rather different.
In the SM there is already a tension between the theory determinations and experimental
measurements of about 0.8σ and 0.4σ, respectively [61]. In our framework, these tensions
increase to 1.4σ and 0.8σ, respectively.

FCNCs. Right-handed interactions introduce potentially sizeable effects in D decays
through chirally enhanced scalar operators. We have checked that our predictions are well
below the current bounds for leptonic D decays.

Concerning FCNCs in the down-type quark sector, our predictions for B+ → K+τ+τ−

and B̄s → τ+τ− decays are one order of magnitude enhanced with respect to their SM
prediction. This feature is common to many NP scenarios, since the couplings to third
generation fermions are enhanced by the need to match the discrepancies observed in
RD(∗) . The current experimental limits are still orders of magnitude above our predictions
(see table 1), but prospects for future measurements at LHCb and Belle II render these
decay modes suitable tests of physics beyond the SM.

Regarding LFV B decays, we obtain a sizeable enhancement in b → sτ±µ∓ transi-
tions, while all the other decay modes are negligible. In particular, in table 1 we provide
predictions for B̄s → τ±µ∓ and B+ → K+τ+µ−,3 where for the latter we use the form
factors from ref. [62]. These modes will be tested with increasing precision at LHCb and
Belle II.

We have also examined the invisible decay modes K+ → π+νν̄ and B → K(∗)νν̄.
Our predictions are very close to the most recent experimental limits. Interestingly, in

3Our solutions predict B+ → K+τ−µ+ to be parametrically smaller than B+ → K+τ+µ−, and accord-
ingly the constraints for the former mode are less significant.
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Mode BSM BExp This work
τ → µφ 0 < 8.4× 10−8 [63] [0.583, 1.25]× 10−10

Bs → τ±µ∓ 0 < 4.2× 10−5 [64] [1.21, 2.60]× 10−6

B+ → K+τ+τ− (1.60± 0.12)× 10−7 [65] < 2.2× 10−3 [66] [7.87, 13.3]× BSM

B̄s → τ+τ− (7.30± 0.49)× 10−7 [67] < 6.8× 10−3 [68] [7.75, 13.1]× BSM

B+ → K+τ+µ− 0 < 3.9× 10−5 [69] (1.8± 0.7)× 10−6

Table 1. Predictions of the branching fractions for several decay modes. The quoted experimental
upper limits are at 90% C.L..

both cases the LFV contributions are as sizeable as the LFC ones. Accordingly, both
contributions have been included in the fit.

LFV τ decays. These are the most striking probes of our framework. The branching
fraction of τ → µφ is predicted to be roughly an order of magnitude larger than the current
experimental limit (see table 1). The most sensitive mode is τ → µγ. Its branching fraction
is dominated by top-quark loops, in which the left- and right-handed contributions interfere.
Numerically, we obtain

B(τ → µγ) ∼ 8.67× 10−7g2
1g

2
R(c32

L )2(c33
R )2 . (5.8)

Given the asymmetric distribution of the fitted parameters g1 and gR, the distribution of
B(τ → µγ) is also highly asymmetric. We find the following 68% interval:

B(τ → µγ)
(c32
L )2(c33

R )2 ∈ [0.420, 2.38]× 10−5 . (5.9)

As already discussed in section 4, the tensions in RD(∗) entail that the current experimental
limit for τ → µγ (see eq. (B.78)) is overshooted, from power-counting considerations only.
This can be resolved, e.g., by nominally choosing

c32
L = −1

4 and c33
R = 1

4 , (5.10)

such that
B(τ → µγ) ∈ [1.78, 9.52]× 10−8 , (5.11)

which now largely overlaps with the current experimental limits. We stress that these
reduction of the Wilson coefficients only affects the prediction for τ → µγ. In particular,
it has no effect on any of our predictions, i.e. those in table 1 and the one for RJ/ψ.

The situation is qualitatively similar for τ → 3µ, where the main contribution comes
from the decay chain τ → µγ(→ µ+µ−). However, the current experimental bounds are
slightly weaker than the ones in τ → µγ and they are easily satisfied.
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Radiative muon modes. The S1 leptoquark contributes to the muon g − 2. In our
framework, the major contribution arises from the combination of left- and right-handed
S1 leptoquark spurions with a top quark in the loop. Using eq. (B.86), we find

∆aµ ' −3.67× 10−7Re
[
g1g
∗
RS

32
QLS

∗32
UE

]
, (5.12)

which requires g1g
∗
RS

32
QLS

∗32
UE ∼ λ3 to accommodate the current experimental measurement.

Scenario A yields an extremely suppressed contribution. However, in Scenario B we find

∆aµ ∼ 1.1× 10−10c∗32
R c32

L , (5.13)

where the size of c32
L is fixed by τ → µγ. It is not easy to describe the two observables

simultaneously. If c32
R is set to 1 and we include ∆aµ in our fit, we find a solution where a

slightly higher value of gR is preferred. However, the description of τ → µγ worsens and
∆aµ still deviates from its SM prediction by more than 3σ. Only imposing c32

R ∼ O(10)
one can reproduce the experimental measurement. However, this large coefficient is barely
compatible with the power counting. We therefore do not include ∆aµ in our fit.

Regarding the µ → eγ mode, it is naturally suppressed in Scenario B. Instead, in
Scenario A we have:

B(µ→ eγ) ∈ [0.48, 2.5]× 10−13 , (5.14)

where the upper and lower extrema encode the 68% interval. This prediction is very close
to the current experimental upper limits. Notice that in this case the choice of b1L = −5 is
necessary to suppress the enhancement due to gR. Future measurements of B(µ→ eγ) at
the MEG II experiment will improve the current limits. Notice that in our scenario limits
on µ→ eγ provide a bound on b1L. Hence, in our setup, prospective more stringent upper
limits on this mode can be easily accommodated.

5.3 Comparison with related literature

The results of our analysis share a number of features worth comparing with recent related
works. In particular, it is instructive to compare with ref. [10], where the same power count-
ing scheme was used for the vector leptoquark U1. Interestingly, both vector and scalar
leptoquarks lead to essentially the same constraints for the FN charges of the left-handed
fermion sector. Phenomenologically, in both cases the left-handed couplings are not enough
to explain the tensions in RD(∗) and require the contribution of the right-handed sector.
However, whereas the U1 couples to the right-handed down-quark sector, the S1 affects
processes sensitive to the right-handed up-quark sector. As a result, the FN charges in the
U1 case are mostly constrained from both lepton-flavour conserving and lepton-flavour vio-
lating FCNCs, such as B̄s → τ+τ− and B̄s,d → τ±µ∓. Instead, in the S1+S3 scenario, the
contributions from radiative leptonic LFV decays, mostly τ → µγ and µ→ eγ, are the driv-
ing force to fix the FN charges for the right-handed sector. The result is that the number
of phenomenologically allowed solutions in the scalar leptoquark scenario is substantially
small and leads to a qualitatively similar set of predictions. This is in contrast with the U1
case, where the different solutions lead to rather distinct phenomenological scenarios.
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It is also relevant to compare our analysis with other studies of the S1+S3 scenario,
in particular with the recent analysis of ref. [22], which contains a set of phenomenological
observables comparable to the ones used in this paper. The strategy in ref. [22] is to fit
the leptoquark flavour couplings to data, with the freedom to set to zero certain couplings
in order to fulfill phenomenological constraints. This is in contrast with our approach,
where the power-counting structure sets a more rigid framework. In particular, we do not
suppress spurion entries by sending couplings to zero. It is interesting to remark that with
only left-handed interactions, the results of ref. [22] are compatible with our FN power
counting for the flavour couplings. With the addition of right-handed interactions, this is
no longer the case.

The main phenomenological difference between ref. [22] and the present work is the
prediction for the muon (g − 2). As already discussed, with our power counting and
a reference leptoquark mass of M = 2TeV, a sizable contribution to the muon (g − 2)
increases the tension between τ → µγ and RD(∗) , which can only be resolved with a
rather unnatural enhancement of certain Wilson coefficients. These tensions are partially
alleviated in ref. [22] by having lighter leptoquarks and a larger set of free parameters.

6 Conclusions

One manifestation of the flavour problem in the Standard Model is the number of free
parameters in the Yukawa couplings of fermions to the Higgs boson. When effective field
theories are employed to incorporate new-physics effects, the problem gets amplified and
the number of flavour-specific parameters soon becomes intractable. A framework to reduce
this complexity in an effective field theory-inspired way is to work with selected flavour
spurions and provide them with a power counting based on Froggatt-Nielsen charges, as
suggested in ref. [10]. Given the tensions currently observed in various B-meson decays,
natural choices of flavour spurions are those linked to the specific new-physics scenarios
that can address these tensions. The Froggatt-Nielsen power counting can then lead to
deeper insights into the new physics flavour patterns observed in the low-energy data.

In this paper we single out the flavour spurions associated with the scalar leptoquarks
S1 and S3. Compliance with low-energy experimental constraints reduces the allowed
scenarios for the Froggatt-Nielsen charges, in the minimal setup we adopt, to essentially
two. Both of them predict values for the branching ratios of τ → µγ, µ→ eγ, B̄s → τ±µ∓

and B+ → K+τ+µ− close to the current experimental limits. Interestingly, we also predict
a decrease in Bc → τ ν̄ to one third of the SM estimate.

We also conclude, like previous studies, that both S1 and S3 are needed in order to
match the experimental values of RD(∗) , with a relevant role played by the scalar and tensor
operators stemming from the S1 interactions to right-handed fermions. The current excess
in RD(∗) , together with the experimental measurements of e.g. K → πνν̄, B → K∗νν̄,
neutral meson mixing (mostly Bs and Bd), Z → νν̄, Z → τ+τ−, µ → eγ and τ → µγ

constrain the Froggatt-Nielsen charges and generate phenomenologically interesting flavour
patterns. The scalar-leptoquark scenario is a renormalizable extension of the SM and,
as such, allows one to perform a complete analysis of both tree-level and loop-induced
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constraints. This increase in the number of constraints reduces the size of the allowed
parameter space of the Froggatt-Nielsen charges with respect to the U1 case [10].

Finally, we find that our flavour structure does not allow for a simultaneous account
of RD(∗) , the anomalous magnetic moment of the muon (g − 2) and the branching ratio
of τ → µγ, unless some of the Wilson coefficients in front of the spurion couplings can
take large values, beyond the power-counting expectation. Only the discussion of a UV
realisation of our framework can assess whether such deviations from the power counting
are to be expected or not.
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A Matching to SMEFT and LEFT

At energies below the leptoquarks masses and above the electroweak scale, a suitable EFT
description for our framework is the SMEFT, where the leptoquarks are integrated out.
We choose the so-called Warsaw basis in ref. [2] and we obtain:

Leff = LSM −
1
M2

{
[C(3)
lq ]ijαβ(Q̄iγµσaQj)(L̄αγµσaLβ) + [C(1)

lq ]ijαβ(Q̄iγµQj)(L̄αγµLβ)

+ [Ceu]ijαβ(ūiRγµu
j
R)(ēαRγµe

β
R) + [C(1)

lequ]ijαβ(Q̄iujR)ε(L̄αeβR)

+ [C(3)
lequ]ijαβ(Q̄iσµνujR)ε(L̄ασµνeβR)

}
. (A.1)

At energies below the electroweak scale, it is more convenient to use the Low Energy
Effective Lagrangian (LEFT), which can be found in ref. [70]. Our scenario yields

Leff = LSM −
1
M2

∑
i

[LiOi + h.c.] ,

where [
OV,LLνd

]ijαβ
= (d̄iLγµd

j
L)(ν̄αLγµν

β
L) ,

[
OV,LLeu

]ijαβ
= (ūiLγµu

j
L)(ēαLγµe

β
L) ,[

OV,LLed

]ijαβ
= (d̄iLγµd

j
L)(ēαLγµe

β
L) ,

[
OV,LLνedu

]ijαβ
= (d̄iLγµu

j
L)(ν̄αLγµe

β
L)[

OV,RReu

]ijαβ
= (ūiRγµu

j
R)(ēαRγµe

β
R) , [OS,RRνedu ]ijαβ = (d̄iLu

j
R)(ν̄αLe

β
R) ,

[OT,RRνedu ]ijαβ = (d̄iLσµνu
j
R)(ν̄αLσµνe

β
R) , [OS,RReu ]ijαβ = (ūiLu

j
R)(ēαLβeR) ,

[OT,RReu ]ijαβ = (ūiLσµνu
j
R)(ēαLσµνe

β
R) .

(A.2)
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The Wilson coefficients of the LEFT Lagrangian can be written in terms of the SMEFT
Wilson coefficients as[

LV,LLνd

]ijαβ = [LV,LLeu ]ijαβ = [C(1)
lq ]ijαβ − [C(3)

lq ]ijαβ ,

[LV,LLed ]ijαβ = [C(1)
lq ]ijαβ + [C(3)

lq ]ijαβ ,

[LV,LLνedu ]ijαβ = 2[C(3)
lq ]ijαβ ,

[LV,RReu ]ijαβ = [Ceu]ijαβ ,

[LS,RRνedu ]ijαβ = −[LS,RReu ]ijαβ = [C(1)
lequ]ijαβ ,

[LT,RRνedu ]ijαβ = −[LT,RReu ]ijαβ = [C(3)
lequ]ijαβ .

(A.3)

For convenience, throughout this paper we have expressed the NP contribution to the Wil-
son coefficients in terms of the SMEFT coefficients. The RGE running from the electroweak
to the hadronic scale has been considered for the scalar and tensor operators entering RD(∗) ,
which is the only relevant one for the observables under study (see appendix B).

B Observables

B.1 dj → ui`αν̄β

The charged-current transitions, dj → ui`αν̄β , are described by the following Lagrangian:

L(dj→ui`αν̄β) =−4GF√
2
Vij
[
(δαβ+CijαβL )(ūiγµPLdj)(ēαγµPLνβ)+CijαβS (ūiPLdj)(ēαPLνβ)

+CijαβT (ūiσµνPLd)(ēiσµνPLνβ)
]
.

(B.1)
The NP Wilson coefficients read

CijαβL = + v2

M2

3∑
m=1

Vim
Vij

[C(3)
lq ]mjαβ , (B.2)

CijαβS =− v2

2M2Vij
[C(1)∗
lequ]ijαβ . (B.3)

CijαβT =− v2

2M2Vij
[C(3)∗
lequ]ijαβ . (B.4)

We note that the matching applies at the high scaleM and we need to evolve these pre-
dictions, using the renormalization group, to the much lower scales where hadronic decays
take place. Neglecting electroweak corrections, we write for scalar and tensor operators

CS,T (µ) =

 α
(nf )
s (µ)

α
(nf )
s (mf+1

q )

−
γS,T

2β
(nf )
0 · · ·

(
α

(5)
s (mb)
α

(5)
s (mt)

)− γS,T

2β(5)
0

(
α

(6)
s (mt)
α

(6)
s (M)

)− γS,T

2β(6)
0
CS,T (M) ,

(B.5)
where the anomalous dimensions are γS = −8, γT = −8/3, respectively [71] and the leading
term in the QCD beta function is given by β(nf )

0 = 11− 2nf/3.
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At the mb-scale, we find

CS(mb) = 1.67 CS(M) and CT (mb) = 0.84 CT (M) . (B.6)

The most interesting channels for testing the b → c transitions are B meson decays.
The observables driving the NP effects are the universality ratios RD(∗) . In order to eval-
uate the NP effects in presence of non SM interactions, we refer to the full kinematical
distributions for B → D(∗) semileptonic decay in ref. [53]. After integrating the kinematical
distributions, we derive the following expressions for the universality ratios RD(∗) :

RD(∗) ≈RSM
D(∗)

{
|1 + C2333

L |2 + FSD(∗)(τ) |C2333
S |2 + FTD(∗)(τ)|C2333

T |2

+FV SD(∗)(τ)Re[(1 + C2333
L ) C∗2333

S ] + FV TD(∗)(τ)Re[(1 + C2333
L ) C∗2333

T ]
}
,
(B.7)

where the functions FS(T )
D(∗) (τ) are a placeholder for the integrals over kinematics and form

factors associated with the scalar (tensor) contributions for a D or a D∗ meson. Note that
the quantities FS(T )

D(∗) (µ) ∼ 0, since they are suppressed by the muon mass and hence are
neglected. We adopt the values from ref. [52], namely FS

D(∗)(τ) = 1.037(0.037), FT
D(∗)(τ) =

0.939(17.378), FV S
D(∗)(τ) = 1.504(−0.114) and FV T

D(∗)(τ) = 1.171(−5.130). We stress that
these values are almost independent of the form factor parametrisation used, and they
largely agree with refs. [72, 73]. Furthermore, we neglect possible LFV contributions. The
values used in the fit are reported in table 2. Concerning RD(∗) we perform the arithmetic
mean of the values in refs. [73–76].

Another interesting measurement of the longitudinal polarization fraction for D∗ in the
B → D∗τ ν̄ mode has been recently performed by Belle [77] where FD∗L |exp = 0.60± 0.08±
0.035 lies 1.7σ above the SM expectation which is around 0.45 [73, 78]. The corresponding
expression including the NP operators can be written as [52]

FD
∗

L ≈R−1
D(∗)

{
0.120|1 + C2333

L |2 + 0.010 |C2333
S |2 + 0.869|C2333

T |2

−0.030Re[(1 + C2333
L ) C∗2333

S ]− 0.525Re[(1 + C2333
L ) C∗2333

T ]
}
.

(B.8)

To understand if and how well universality holds for decays into light leptons, one can
compare |Vcb| as extracted from electron and muon modes. If we define |Ṽ `

cb| as the effective
|Vcb| in the presence of NP contributions associated with a lepton `, the universality between
µ and e is measured by

|Ṽ e
cb|
|Ṽ µ
cb|

=
[
|1 + C2311

L |2 + |C2321
L |2 + |C2331

L |2

|1 + C2322
L |2 + |C2312

L |2 + |C2332
L |2

] 1
2

. (B.9)

Contributions from scalar and tensor operators are suppressed by the light lepton masses
and can be safely neglected. The numerical inputs used in the fit are reported in table 2.
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Observable Measurement Correlation SM
RD 0.340± 0.027± 0.013

−0.38
0.299± 0.003 [73–76, 79]

RD∗ 0.295± 0.011± 0.008 0.255± 0.007 [73, 75, 76, 79, 80]
Vcb|D 1.004(42) [81]

—
1.

Vcb|D∗ 0.97(4) [81] 1.

Table 2. Experimental measurements, SM predictions and correlations for b→ c transitions.

Finally, it is also interesting to consider the leptonic decay modes of charged Bq mesons,
where q = u, c. The corresponding branching ratio reads

B(Bq → `ν̄) = B(Bq → `ν̄)|SM

∣∣∣∣∣1 + Cq3``L +
m2
Bq

m`(mb +mq)
Cq3``S

∣∣∣∣∣
2

+
∑
`6=`′

∣∣∣∣∣Cq3``′L +
m2
Bq

m`(mb +mq)
Cq3``

′

S

∣∣∣∣∣
2 . (B.10)

B.2 dj → di`α`β

The effective Lagrangian describing a generic dj → di`α`β FCNC transition reads

LNP(dj → di`α`β) = 4GF√
2
αEM
4π VtdjV

∗
tdi

[
(CSM9 δαβ + Cijαβ9 )Oijαβ9

+ (CSM10 δαβ + Cijαβ10 )Oijαβ10

]
,

(B.11)

where

Oijαβ9 = (d̄iγµPLdj)(¯̀
αγµ`β) , Oijαβ10 = (d̄iγµPLdj)(¯̀

αγµγ5`β) . (B.12)

Using the results of the previous appendix, the matching to SMEFT Wilson coefficients
reads

Cijαβ9 = −Cijαβ10 =− v2

M2
π

αEMVtdjV
∗
tdi

(
[C(3)
lq ]ijαβ + [C(1)

lq ]ijαβ
)
. (B.13)

From the channels considered in the main text, the most stringent bounds come from
measurements of B → K(∗)`` decays. The LHCb experiment provided through the years
several measurements which seem to point to a coherent pattern of deviations [82–86]. The
consequences of these measurements are analysed in global fits, where different NP scenarios
are studied [44–47]. We chose to constrain the NP Wilson coefficients with their output.

Constraints from FCNCs also come from two-body leptonic decays, including LFV
modes. The decay rate of a generic meson Pij = dj d̄i into a lepton pair ¯̀

α`β generated by
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Observable Upper limit
B̄d → τ−µ+ 2.2 · 10−5 [88]
B̄d → τ−e+ 2.8 · 10−5 [64, 88]
B̄d → µ±e∓ 3.7 · 10−9 [89]
B̄s → µ±e∓ 1.4 · 10−9 [89]
KL → µ±e∓ 4.7 · 10−12 [90]
B̄s → τ±µ∓ 4.2 · 10−5 [64]
B̄s → τ+τ− 6.8 · 10−3 [68]

Table 3. Experimental measurements of semileptonic LFV decays.

eq. (B.11) reads

B(Pij → `−α `
+
β ) = τP

64π3
α2
EMG

2
F

m3
P

|VtdjV
∗
tdi |

2f2
P λ

1/2(m2
P ,m

2
α,m

2
β)

×
{

[m2
P − (m`α −m`β )2]

∣∣∣(m`α +m`β ) Cijαβ10

∣∣∣2
+ [m2

P − (m`α +m`β )2]
∣∣∣(m`α −m`β ) Cijαβ9

∣∣∣2} .

(B.14)

The full list of modes, together with their experimental bounds, is displayed in table 3.
Beyond the tree-level matching, dj → di`α`β receive contributions from box diagram.

We checked using refs. [22, 87] that these contributions are numerically irrelevant for
our analysis.

B.3 dj → diνανβ

B.3.1 B → K(∗)νν̄

In b → sνν̄ transitions, the only new-physics contribution comes from left-handed opera-
tors. The relevant Lagrangian is

L(b→ sνν̄) = +4GF√
2
αEM
4π VtbV

∗
ts

(
CSMBKδαβ + C23αβ

ν

)
(s̄γµPLb)(ν̄αγµ(1− γ5)νβ) , (B.15)

where CSMBK ≈ −6.35 [91]. The remaining NP Wilson coefficients are generically given by

C23αβ
ν = + v2

M2
π

αEM|VtbV ∗ts|

(
[C(1)
lq ]23αβ − [C(3)

lq ]23αβ
)
. (B.16)

As it can be seen from eq. (B.15), final states with different neutrino species do not interfere
with the SM contribution and are heavily suppressed. We neglect them in the following.
The branching ratio for B → K(∗0ν̄ν decays can be expressed as:

B(B → K∗ν̄ν) = B(B → K∗ν̄ν)|SM ×
[

1
3

3∑
α=1

∣∣∣∣1 + C
23αα
ν

CSM
BK

∣∣∣∣2 +
∑
α 6=β

∣∣∣∣C23αβ
ν

CSM
BK

∣∣∣∣2
]
. (B.17)
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The SM expectations for the B → K(∗)ν̄ν branching ratios are calculated in ref. [91]
and read:

B(B → K+ν̄ν)|SM = (3.98± 0.43± 0.19)× 10−6 , (B.18)
B(B → K∗0ν̄ν)|SM = (9.19± 0.86± 0.50)× 10−6 . (B.19)

The most updated experimental results for these modes read

B(B → K+ν̄ν) < 1.6× 10−5 [92] , (B.20)
B(B → K∗0ν̄ν) < 2.7× 10−5 [92] , (B.21)
B(B → K∗+ν̄ν) < 4.0× 10−5 [93] , (B.22)

where all three results are obtained at the 90% C.L.. We can then combine the theoretical
predictions with the experimental upper limits to obtain [92]:

RK = B(B → K+ν̄ν)
B(B → K+ν̄ν)|SM

< 3.9 and RK∗ = B(B → K∗0ν̄ν)
B(B → K∗0ν̄ν)|SM

< 2.7. (B.23)

B.3.2 K+ → π+νν̄

The short-distance dominated decays K → πνν̄ serve as very clean modes to look for BSM
effects. The effective Hamiltonian can be written as [94]

L(s→ dνν̄) = −2GF√
2

αEM
π sin2 θW

yν
[
(1 + C21αβ

ν )(s̄γµPLd)(ν̄αγµPLνβ)
]
, (B.24)

where
yν ≡

∑
i=c,t

V ∗isVidX(m2
i /m

2
W ) ' −(8 + 2i)× 10−4 . (B.25)

The function X(x) is given, at leading order, by

X0(x) = x

8

[
−2 + x

1− x + 3x− 6
(1− x)2 ln x

]
, (B.26)

and the new-physics coefficient is parametrized as

C21αβ
ν = − v2

M2
π sin2 θW
αEM yν

(
[C(1)
lq ]21αβ − [C(3)

lq ]21αβ
)
. (B.27)

The recent analysis of NA62 provides the first measurement of this decay [95],

B(K+ → π+νν̄) = (11+4.0
−3.5 ± 0.3)× 10−11 , (B.28)

which compared to the SM prediction in ref. [96] yields:

RK = B(K+ → π+νν̄)exp
B(K+ → π+νν̄)SM

= 1.34± 0.47 . (B.29)
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B.4 uj → ui`α`β

The general dimension-six effective Lagrangian for uj → ui`α`β FCNC transition can be
written as

Leff = 4GF√
2
αEM
4π

∑
k

ξijαβk Qijαβk , (B.30)

with the four-fermion operators:

Qijαβ7 =
(
ūiσµνPRu

j
)
Fµνδαβ , Q′ ijαβ7 =

(
ūiσµνPLu

j
)
Fµνδαβ ,

Qijαβ9 =
(
ūiγµPLu

j
) (

¯̀βγµ`α
)
, Q′ ijαβ9 =

(
ūiγµPRu

j
) (

¯̀βγµ`α
)
,

Qijαβ10 =
(
ūiγµPLu

j
) (

¯̀βγµγ5`
α
)
, Q′ ijαβ10 =

(
ūiγµPRu

j
) (

¯̀βγµγ5`
α
)
,

QijαβS =
(
ūiPRu

j
)

(¯̀β`α), Q′ ijαβS =
(
ūiPLu

j
)

(¯̀β`α) ,

QijαβP =
(
ūiPRu

j
) (

¯̀βγ5`
α
)
, Q′ ijαβP =

(
ūiPLu

j
) (

¯̀βγ5`
α
)
,

QijαβT =
(
ūiσµνuj

) (
¯̀βσµν`α

)
, QijαβT5 =

(
ūiσµνuj

) (
¯̀βσµνγ5`

α
)
.

(B.31)

In the SM the FCNC decays ofD mesons are highly GIM-suppressed and are dominated
by the resonance contributions. For example, for the decay D+ → π+``, the short distance
contribution to the Wilson coefficients ξ9 estimates the branching fraction about four orders
of magnitude smaller than the current experimental bound. Hence, in order to constrain
the NP parameter space, we neglect the SM contribution to the Wilson coefficients. The
matching with the Lagrangian in eq. (2.2) gives

ξijαβ9 = −ξijαβ10 = + v2

2M2
π

αEM

(
|g1|2(V ∗SQL)jβ (V S∗QL)iα + |g3|2(V ∗S̃QL)jβ (V S̃∗QL)iα

)
,

(B.32)

ξ′ ijαβ9 = +ξ′ ijαβ10 = + v2

2M2
π

αEM
|gR|2SjβUE S

∗ iα
UE , (B.33)

ξijαβS = +ξijαβP = − v2

2M2
π

αEM
g∗1gR(V S∗QL)iαSjβUE , (B.34)

ξ′ ijαβS = −ξ′ ijαβP = − v2

2M2
π

αEM
g1g
∗
R(V ∗SQL)jβ S∗ iαUE , (B.35)

ξijαβT = −1
8
(
ξijαβS + ξ′ ijαβS

)
, (B.36)

ξijαβT5 = −1
8
(
ξijαβS − ξ′ ijαβS

)
. (B.37)

We note that the matching above is done at the NP scale M . Assuming M ∼ 2TeV
and using the RG equations given in eq. (B.5) the couplings at the relevant scale for D
decays µ = mc(mc) are

ξS(mc) = 2.42 ξS(M) and ξT (mc) = 0.74 ξT (M) . (B.38)
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B.4.1 D0 → ``

The branching fraction for these decays is given by

B
(
Pij→ `+α `

−
β

)
= τP

64π3
α2

EMG
2
F

m3
P

f2
Pλ

1/2
(
m2
P ,m

2
α,m

2
β

)
×

[
m2
P −

(
m`α−m`β

)2
] ∣∣∣∣∣(m`α +m`β

)(
ξijαβ10 −ξ′ ijαβ10

)
+ m2

P

mi+mj

(
ξijαβP −ξ′ ijαβP

)∣∣∣∣∣
2

+
[
m2
P −

(
m`α +m`β

)2
] ∣∣∣∣∣(m`α−m`β

)(
ξijαβ9 −ξ′ ijαβ9

)
+ m2

P

mi+mj

(
ξijαβS −ξ′ ijαβS

)∣∣∣∣∣
2
 .

(B.39)

The current upper limits at 90% C.L. are

B(D0 → e+e−) < 7.9× 10−8 [97] ,
B(D0 → µ+µ−) < 6.2× 10−9 [98] , (B.40)
B(D0 → e∓µ±) < 1.3× 10−8 [99] .

B.5 ∆F = 2

B.5.1 Bq − B̄q mixing

The effective Hamiltonian describing B0
q − B̄0

q mixing can be parametrized as

H∆B=2
eff =

[
G2
F

16π2m
2
W (V ∗tbVtq)2 + Cqq

]
(q̄γµPLb)(q̄γµPLb) + h.c. (B.41)

The hadronic matrix element of the single ∆B = 2 operator is

〈B̄0
q |(q̄γµPLb)(q̄γµPLb)(µ)|B0

q 〉 = 1
3mBqf

2
BqB

V LL
q (µ) , (B.42)

where fBq is the meson decay constant and BV LL
q the bag parameter. The real and imagi-

nary parts of the matrix elementM(B0
q → B̄0

q ) ≡M12(Bq) are related to the meson mass
difference and the mixing angle as

∆Mq = 2|M12(Bq)| , and φb = Arg[M12(Bq)] . (B.43)

In the SM, one finds

M12(Bq)|SM =
G2
Fm

2
WmBq

12π2 (VtbV ∗tq)2f2
Bq η̂BS0(xt)BV LL

q , (B.44)

where S0(xt) ≈ 2.36853 is the Inami-Lim function defined in ref. [100] and η̂B ≈ 0.842 [101]
encodes the QCD running from µ = mt to µ = mb. In the presence of NP, one finds

M12(Bq) =M12(Bq)|SM
[
1 + 4π2Cqq

G2
Fm

2
W (V ∗tbVtq)2S0(xt)

]
. (B.45)
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In the presence of S1 and S3 leptoquarks, the new-physics coefficient takes the form [20]

Cqq = 1
128π2M2 ηLQ

[
|g1|4S∗qαQL S

3β
QLS

∗qβ
QL S

3α
QL + 5|g3|4S̃∗qαQL S̃

3β
QLS̃

∗qβ
QL S̃

3α
QL

+ 2|g1|2|g3|2S∗qαQL S
3β
QLS̃

∗qβ
QL S̃

3α
QL

]
,

(B.46)

where the factor ηLQ takes into the account the running from the leptoquark scale to the
electroweak scale. With the package WCxf [102] one finds ηLQ ≈ 1. Since we are considering
real coefficients, only the real part of the amplitude receives NP corrections.

For our numerical analysis, we use the results in ref. [61], where the weighted average
for the matrix elements in refs. [103–107] is used to yield

∆Maverage
d = (1.05+0.04

−0.07) ∆M exp
d ,

∆Maverage
s = (1.04+0.04

−0.07) ∆M exp
s .

(B.47)

B.5.2 K0 − K̄0 mixing

The ∆S = 2 effective Hamiltonian is given by

H∆S=2
eff =

{
G2
Fm

2
W

4π2 CSM + [Cqq]1212
}

(s̄γµPLd)(s̄γµPLd) + h.c. (B.48)

The contribution to the off-diagonal matrix element is defined as

M12 = 〈K
0|H∆S=2|K̄0〉

2mK
, with

〈K0|(d̄L,RγµsL,R)2|K̄0〉 = 4
3f

2
KB̂Km

2
K , (B.49)

where fK is the kaon decay constant and B̂K the reduced bag parameter.
The SM contribution to the Wilson coefficient reads

CSM = κ2
cηccS0(xc) + κ2

t ηttS0(xt) + 2κcκtηctS0(xc, xt) , (B.50)

where we used the short-hand notation for CKM factors κi = V ∗isVid, S0(xi) are the Inami-
Lim functions and the ηi factors account for QCD effects (see e.g. ref. [108] for details).
The Wilson coefficient [Cqq]1212 gets contributions from S1 and S3 at one-loop level [109]:

[Cqq]1212 = 1
128π2M2 ηLQ

[
|g1|4S∗1αQL S

2β
QLS

∗1β
QL S

2α
QL + 5|g3|4S̃∗1αQL S̃

2β
QLS̃

∗1β
QL S̃

2α
QL

+ 2|g1|2|g3|2S∗1αQL S
2β
QLS̃

∗1β
QL S̃

2α
QL

]
.

(B.51)

The meson mass difference ∆mK can be obtained from

∆mK ≈ 2ReM12 , (B.52)

and is to be compared with the experimental value [63]

∆mK = (3.484± 0.006)× 10−15 GeV . (B.53)
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B.5.3 D0 − D̄0 mixing

The relevant effective Hamiltonian is [110]

H∆C=2
eff =

4∑
i=1
Ci(µ)Qi(µ) , (B.54)

where
Q1 = (ūγµPLc)(ūγµPLc) , Q2 = (ūγµPLc)(ūγµPRc) ,
Q3 = (ūPRc)(ūPLc) , Q6 = (ūγµPRc)(ūγµPRc) .

(B.55)

Integrating out the leptoquarks and matching yields the following values for the coefficients:

C1(M) = 1
128π2M2

[
|g1|2S2i

QLS
∗1i
QLS

2j
QLS

∗1j
QL

+ 5|g3|4S̃2i
QLS̃

∗1i
QLS̃

2j
QLS̃

∗1j
QL + 2|g1|2|g3|2S2i

QLS
∗1i
QLS̃

2j
QLS̃

∗1j
QL

]
,

C2(M) = − 1
128π2M2 2|g1|2|gR|2S2i

QLS
∗1i
QLS

∗1j
UES

2j
UE ,

C3(M) = 0 ,

C6(M) = 1
128π2M2 |gR|

4S2i
UES

∗1i
UES

2j
UES

∗1j
UE .

(B.56)

RG running down to µ = 3GeV is done with the package WCxf [111]. Together with the
values of the matrix elements listed in table 4, our expression for M12 reads:

M12 = 1
2mD

[
C1(M)ηLLhighηLLEW〈Q1〉

+ C6(M)ηRRhighη
RR
EW〈Q6〉+ C2(M)ηLRhigh

(
ηLREW〈Q2〉+ ηSLR

EW 〈Q3〉
) ]

,

(B.57)

where

ηLLhigh = 0.98 , ηRRhigh = 0.91 , ηLRhigh = 1 ,
ηLLEW = ηRREW = 0.79 , ηLREW = 0.91 , ηSLR

EW = −1 .
(B.58)

With real new-physics couplings, deviations from the SM on charm mixing are sensi-
tive to

xD = 2|M12|
Γ0
D

. (B.59)

The HFLAV collaboration determined this quantity from a global fit and obtained xexpD =
(4.1+1.4

−1.5)× 10−3 [79].

B.6 Z → ¯̀β`α and Z → ν̄βνα

The importance of corrections to Z couplings has been pointed out in refs. [113, 114]. They
are described through the following Lagrangian:

LZeff = g

cos θw sin θw
∑
f,α,β

f̄βγµ[GαβfL PL + GαβfR PR]fαZµ , (B.60)
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Matrix element Value
〈Q1〉 0.0805(55)
〈Q2〉 −0.2070(142)
〈Q6〉 0.0805(55)
〈Q3〉 0.2747(129)

Table 4. Values for the hadronic matrix elements in ∆C = 2 processes at the scale µ = 3GeV
from ref. [112]. The matrix elements are expressed in GeV4.

where fi are the SM fermions and

GαβfL(R)
= δαβgfL(R) + δgαβfL(R)

. (B.61)

The couplings gfL(R) are the SM ones, defined as: gfL = I3
fL
−Qfs2

w and gfR = −Qfs2
w, while

δgαβfL(R)
are the corresponding NP penguin corrections. Taking the computations in ref. [115]

and adapting them to our scenario, we find (denoting xt = m2
t /M

2 and xZ = m2
Z/M

2)

δgαβν = Nc

8π2 |g3|2(V ∗S̃QL)3α(V S̃∗QL)3β
[
(gtL − gtR)xt(xt − 1− log(xt))

(1− xt)2 + xZ
12 F

L(xt)
]

+ xZNc

24π2 |g3|2
∑
k=u,c

(V ∗S̃QL)kα(V S̃∗QL)kβ
[
gukL

(
log(xZ)− iπ − 1

6

)
+ gνL

6

]

+ xZNc

48π2

∑
k=d,s,b

(
|g3|2S̃kαQLS̃

∗kβ
QL + |g1|2SkαQLS

∗kβ
QL

) [
gdkL

(
log(xZ)− iπ − 1

6

)
+ gνL

6

]
,

(B.62)
for the neutrino couplings and

δgαβ`L = Nc

16π2

(
|g3|2(V ∗S̃QL)3α(V S̃∗QL)3β + |g1|2(V ∗SQL)3α(V S∗QL)3β

)
×
[
(gtL − gtR)xt(xt − 1− log(xt))

(1− xt)2 + xZ
12 F

L(xt)
]

+ xZNc

48π2

∑
k=u,c

(
|g3|2(V ∗S̃QL)kα(V S̃∗QL)kβ + |g1|2(V ∗SQL)kα(V S∗QL)kβ

)
×
[
gukL

(
log(xZ)− iπ − 1

6

)
+ g`L

6

]
+ xZNc

24π2 |g3|2
∑

k=d,s,b
(S̃QL)kα(S̃∗QL)kβ

[
gdkL

(
log(xZ)− iπ − 1

6

)
+ g`L

6

]
, (B.63)

for the left-handed charged lepton couplings. A similar expression holds for the right-
handed ones with trivial substitutions. The function FL(xt) reads

FL(xt) = + gtL
(1− xt)(5x2

t − 7xt + 8) + 2(x3
t + 2) log(xt)

(1− xt)4

+ gtR
(1− xt)(x2

t − 5xt − 2)− 6xt log(xt)
(1− xt)4

− g`L
(1− xt)(−11x2

t + 7xt − 2)− 6x3
t log(xt)

3(1− xt)4 .

(B.64)
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The expression for δgαβ`R can be obtained from eqs. (B.63)–(B.64) by replacing L→ R and(
|g3|2(V ∗S̃QL)3α(V S̃∗QL)3β + |g1|2(V ∗SQL)3α(V S∗QL)3β

)
→ |gR|2S3α

UES
∗3β
UE for the first two

lines in eq. (B.63) only. The spurion associated with S3 does not generate such contribution.
The allowed values for the quantities gαβ`L(R)

and gαβν can be found in ref. [49]. The
dominant contribution comes from the top-mediated contribution (singled out in the first
line of both expressions), whose magnitude is O(10−4) for M = 2TeV. The remaining
contributions are suppressed by at least one order of magnitude.

B.7 W LFU

The corrections to W coupling have been first analysed in refs. [113, 114]. The effective
Lagrangian describing them reads:

L = − g√
2

(δij + δgijW ) ēiγµPLνjWµ + h.c. (B.65)

Both S1 and S3 contribute via penguin diagrams to δgijW . Their expressions are obtained
in ref. [115] and read:[
gijW

]
S1

= − Nc

64π2 |g1|2(V ∗SQL)3i(V S∗QL)3j

[
− xt(xt−1+(xt−2) log(xt))

(xt−1)2 + 2
9xWGS1(xt)

]
− 4

9xW |g1|2
∑
k=u,c

(V ∗SQL)ki(V S∗QL)kj (−1−3 log(xW )+3πi) , (B.66)

[
gijW

]
S3

= − Nc

64π2 |g3|2(V ∗S̃QL)3i(V S̃∗QL)3j

[
+ xt(xt−1+(xt−2) log(xt))

(xt−1)2 + 2
9xWGS3(xt)

]
− 4

9xW |g3|2
∑
k=u,c

(V ∗S̃QL)ki(V S̃∗QL)kj (1−3 log(xW )+3πi) , (B.67)

where xi = m2
i /M

2 and

GS1(xt) = 6(xt − 1− log xt)
(xt − 1)2 , (B.68)

GS3(xt) = 6[xt(x2
t + xt − 2) + 1] log xt + xt − [xt(xt(2xt − 23) + 15)− 10]

(xt − 1)4 . (B.69)

The values allowed by experimental data for δgijW can be found in ref. [49] and read:

δg11
W =− 0.0050± 0.0031 , δg22

W =− 0.0140± 0.0050 , δg33
W = + 0.0163± 0.0060 .

(B.70)

In a recent analysis of the ATLAS collaboration [51], the universality of lepton weak cou-
plings has been measured through the ratio

R(τ/µ) = B(W → τ ν̄)
B(W → µν̄) = 0.992± 0.013 , (B.71)

while the SM expectation is R(τ/µ) ≈ 1 even when taking into account phase space effects.
We stress that this result is in agreement with the SM expectation, while previous results
from the LEP experiments in ref. [116] used in ref. [49] showed an upward deviation with
respect to the SM expectation of 2.7σ. In the main text, we comment on the consequences
of this result.
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B.8 LFV lepton decays

B.8.1 `β → `αγ

The radiative decay `β → `αγ takes place predominantly through penguin diagrams involv-
ing the exchange of quarks and leptoquarks. The box contributions are suppressed and are
not considered. The decay width (neglecting the light lepton mass) can be written as [117]

Γ(`β → `αγ) = αEM
4 m3

`β
(
|AαβL |

2 + |AαβR |
2), (B.72)

where

AαβL = 3
32π2

1
M2

{
m`i

∑
j=u,c,t

(
|g3|2(V ∗S̃QL)jβ(V S̃∗QL)jα + |g1|2(V ∗SQL)jβ(V S∗QL)jα

)

×
[
− 2

3F1(xj) + 1
3F2(xj)

]
+m`i

∑
j=d,s,b

2|g3|2 S̃jβQLS̃
∗jα
QL

[1
3F1(xj) + 4

3F2(xj)
]

−mqj

∑
j=u,c,t

g1g
∗
R (V ∗SQL)jβ S∗jαUE

[
− 2

3F3(xj) + 1
3F4(xj)

]}
, (B.73)

AαβR = 3
32π2

1
M2

{
m`i

∑
j=u,c,t

|g1|2SjβUES
∗jα
UE

[
− 2

3F1(xj) + 1
3F2(xj)

]

−mqj

∑
j=u,c,t

g∗1gR S
jβ
UE (V S∗QL)jα

[
− 2

3F3(xj) + 1
3F4(xj)

]}
. (B.74)

With xj = m2
qj/M

2 the loop functions are defined as

F1(xj) = 1
6 (1− xj)4 (2 + 3xj − 6x2

j + x3
j + 6xj ln xj) ,

F2(xj) = 1
6 (1− xj)4 (1− 6xj + 3x2

j + 2x3
j − 6x2

j ln xj) ,

F3(xj) = 1
(1− xj)3 (−3 + 4xj − x2

j − 2 ln xj) ,

F4(xj) = 1
(1− xj)3 (1− x2

j + 2xj ln xj) .

(B.75)

The most stringent upper limits on µ → eγ and τ → `γ are provided by the MEG
experiment [118] and BaBar [119], respectively. The current 90% C.L. limits are:

B(µ→ eγ) < 4.2× 10−13, (B.76)
B(τ → eγ) < 3.3× 10−8, (B.77)
B(τ → µγ) < 4.4× 10−8. (B.78)
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B.8.2 τ → 3`

Following the discussion in ref. [117], we have

B(τ → 3`) = αEMm
5
τ

32πΓτ

{
|T1L|2 + |T1R|2 + (|T2L|2 + |T2R|2)

(
16
3 log mτ

mµ
− 22

3

)

− 4Re[T1LT
∗
2R + T2LT

∗
1R]
}
,

(B.79)

where we retain only the leading contributions from penguin diagrams. The loop functions
read:

T1L =− 3
16π2

1
M2 |g1|2(V ∗SQL)j3(V S∗QL)j2

[
−2

3

(4
9 + 1

3 log xj
)

+ 1
54

]
, (B.80)

T1R =− 3
16π2

1
M2 |gR|

2Sj3UES
∗j2
UE

[
−2

3

(4
9 + 1

3 log xj
)

+ 1
54

]
, (B.81)

T2L =− 3
16π2

1
M2

{
− 2

3

[
1
6S

j3
UES

∗j2
UE −

mqj

m`j

Sj3UE(V S∗QL)j2
(3

2 + log xj
)]

+ 1
3

( 1
12S

j3
UES

∗j2
UE −

1
2S

j3
UE(V S∗QL)j2

)}
, (B.82)

T2R =− 3
16π2

1
M2

{
− 2

3

[
1
6(V ∗SQL)j3(V S∗QL)j2 −

mqj

m`j

(V ∗SQL)j3S∗j2UE

(3
2 + log xj

)]

+ 1
3

( 1
12(V ∗SQL)j3(V S∗QL)j2 − 1

2(V ∗SQL)j3S∗j2UE

)}
, (B.83)

where xj = m2
qj/M

2. The current experimental measurements provide the following upper
limits [120]:

B(τ → 3µ) < 2.1× 10−8 , (B.84)
B(τ → 3e) < 2.7× 10−8 . (B.85)

B.9 Lepton anomalous magnetic moment

The scalar leptoquark couplings to charged leptons and quarks give rise to an anomalous
magnetic moment very similar to the contribution of the radiative decays `β → `αγ. The
corresponding NP contributions to a` ≡ 1

2 (g − 2)` is given by [117, 121, 122]

∆a`α = −3
16π2

m2
`

M2

∑
j=u,c,t

{(
|g3|2(V ∗S̃QL)jα(V S̃∗QL)jα+ |g1|2(V ∗SQL)jα(V S∗QL)jα

)

×
[
− 2

3F1(xj)+ 1
3F2(xj)

]
(B.86)

−mqj

∑
j=u,c,t

Re [g1g
∗
R (V ∗SQL)jαS∗jαUE ]

[
− 2

3F3(xj)+ 1
3F4(xj)

]}
,
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where the loop functions are defined in eq. (B.75). It is apparent that the dominant
contribution arises from the top quark in the loop in the presence of both left- and right-
handed couplings.

The experimental measurement [123] and the theoretical prediction [124] currently
show a discrepancy at a significance of 3.7σ:

∆aµ = aexp
µ − aSM

µ = (2.79± 0.76)× 10−9 . (B.87)
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