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1 Introduction

The KKLT construction of moduli stabilization [1] relies on a three step procedure. In the
first step, fluxes in the internal manifold stabilize all moduli fields, except the overall volume
(Kähler) modulus ρ.1 In a second step, nonperturbative effects like stringy instantons or
gaugino condensation on D7 branes stabilize ρ in anti-de Sitter space. Finally, an anti-
D3 brane is introduced which breaks supersymmetry.2 The second and third step were
debated over the years [9–21] and whereas there is not yet a consensus over the last step,
there are recent positive results indicating the validity of the second step [22–29].

Recently [30, 31] the first step was addressed in the Klebanov-Strassler (KS) deformed
conifold construction, which contains all ingredients needed in the KKLT construction. It
was shown that one of the complex structure fields, called S in what follows, which governs
the size of the KS throat, is much lighter than previously thought. Its scalar potential
is therefore shallow and it is significantly modified by the uplifting anti-D3 brane. Not
destabilizing the throat requires a minimal value of one of the flux quanta M [30–32],

gsM
2 ≥ (6.8)2q , (1.1)

1Here we consider only models with one Kähler modulus, i.e. h1,1 = 1. In more general terms only the
complex structure moduli get stabilized by fluxes.

2Actually realizing it nonlinearly, similar to perturbative string constructions of the “Brane Supersym-
metry” type [2–6]), whose nonlinear supersymmetric actions were constructed in [7, 8].
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where gs is the string coupling and q is the number of antibranes. In this paper we consider
the most favorable case q = 1.3

The purpose of the present letter is to investigate in more detail the consequences for
the KKLT construction: the resulting vacuum structure and mass scales, various contribu-
tions to supersymmetry breaking and the needed localized D3 charge in the internal space
which produce physically motivated hierarchies. In section 2 we review the effective action
for the light complex structure field S in the KS geometry and the mechanism behind
the potential destabilization of the throat, once one adds the antibrane uplift. Section 3
proposes a 4d supergravity description of the system including the KKLT sector of moduli
stabilization and discusses the vacuum structure and supersymmetry breaking. We use a
manifestly supersymmetric four-dimensional supergravity description and describe the up-
lift via a nilpotent chiral multiplet in supergravity [33–38]. In section 4 we add matter fields
and study the effects of supersymmetry breaking, from a 4d perspective and, alternatively,
from a higher-dimensional one. We conclude with some comments and a short appendix.

2 The effective action of the Klebanov-Strassler warped compactification

The traditional KKLT construction of moduli stabilization [1] is based on warped compact-
ifications of Calabi-Yau manifolds, with a constant dilaton, five and three-form fluxes [39].
The background metric and five-form flux are

ds2 = H−1/2ds2
4 +H1/2ds2

6 ,

F5 = (1 + ∗) vol4 ∧ dH−1 ≡ ∗F5 + F5 ,
(2.1)

where H is the warp factor and ds2
6 is the unwarped metric of the internal manifold. As

argued in [40], one can interpret this manifold as a throat-type region of strong warping,
analogous to Randall-Sundrum type models [41, 42], glued to a compact Calabi-Yau space.

In the region of strong warping the local internal geometry is that of the deformed
conifold, defined by its embedding into C4,

∑4
a=1 ω

4
a = S. The deformation parameter

S is the complex structure modulus whose absolute value corresponds to the size of the
3-sphere at the tip of the cone. The other complex structure moduli ZI come from the
“UV” geometry. We thus have h2,1 + 1 A-cycles:∫

A
Ω3 = S ,

∫
AI

Ω3 = ZI (2.2)

where I = 0, . . . , h2,1 − 1. We assume that the prepotential splits according to

F (S,ZI) = Fcf (S) + FUV (ZI) , (2.3)
3It can be argued that there could be further corrections to the potential for S which become relevant if

one goes far away from the original, supersymmetric minimum. These corrections could potentially be so
important that the bound (1.1) gets modified significantly or even becomes invalid. Resolving these issues
is beyond the scope of this paper. Instead, we assume that the results of [30, 31] are correct. Moreover, we
will mostly work in a regime where (1.1) is satisfied and it is therefore reasonable to expect that further
corrections to the potential are subleading in the region of interest.
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where Fcf is the prepotential of the deformed conifold and the “UV prepotential,” FUV ,
does not explicitly depend on S. We thus have∫

B
Ω3 = FS = S

2πi

(
log Λ3

0
S

+ 1
)

+ F 0
S ,

∫
BI

Ω3 = FI , (2.4)

where FS and FI are the derivatives of F with respect to S and ZI respectively, and F 0
S

depends on the details of the compactification manifold, but is independent of S. The
cutoff Λ0 corresponds to the transition between the highly warped region, modeled as a
KS throat, and (relatively unwarped) rest of the compact Calabi-Yau manifold.

The 3-form fluxes on the 3-cycles are4

1
(2π)2α′

F3 = Mα+M IαI −MIβ
I ,

1
(2π)2α′

H3 = −Kβ +KIαI −KIβ
I .

(2.5)

where αI , βI are Poincare duals to the cycles BI , AI and we have singled out the RR flux
on the S3 cycle at the tip of the throat, M , and its NSNS partner K. These are the fluxes
responsible for the deformation of the conifold by the parameter S.

The throat region is that of the Klebanov-Strassler (KS) solution [43], with the six-
dimensional metric of the deformed conifold5

ds2
6 = |S|

2/3

2 K(T )
[ 1

3K3(T )
(
dT 2 + (g5)2

)
+ sinh2(T /2)

(
(g1)2 + (g2)2

)
+ cosh2(T /2)

(
(g3)2 + (g4)2

)]
,

(2.6)

where gi is an orthogonal basis of one-forms on the base of the cone and

K(T ) = (sinh(2T )− 2T )1/3

21/3 sinh T
. (2.7)

The warp factor of the KS solution is

H(T ) = 22/3 gs(α′M)2(ρ+ ρ̄)
|S|4/3

I(T ) (2.8)

where
I(T ) =

∫ ∞
T

dxx coth x− 1
sinh2 x

(sinh(2x)− 2x)1/3 . (2.9)

The UV cutoff Λ0 where the solution is glued to the compact Calabi-Yau solution is such
that the total NSNS flux over the B cycle is K, according to (2.5):

K = 1
(2π)2α′

∫
B
H3 = 1

(2π)2α′

∫
T ≤T0

∫
S2
H3 , Λ2

0 = 3
25/3 |S|

2/3 e2T0/3 . (2.10)

4The setup only requires one type of flux on each cycle.
5Note that taking T and gi to be dimensionless requires the deformation parameter S to be of dimension

(length)3.
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On a compact manifold the Bianchi identity for the five-form flux leads to the tadpole
cancelation condition forcing the total D3-charge of the solution to be zero.

MK +M IKI −MIK
I +Qloc

3 = 0 , (2.11)

where the charge of localized D3-brane and O3-plane sources is6

Qloc
3 = ND3 −

1
4NO3 . (2.12)

The tadpole condition (2.11) leads to a upper bound on the product of fluxes allowing the
cancelation of C4 flux

MK ≤ |Qloc
3 | . (2.13)

Recently it was shown [30, 31] that in the strongly warped region of the Klebanov-
Strassler compactification, the light complex structure field S can be destabilized by the
D3 uplift. The potential for the complex structure modulus S involves the fluxesM and K,
while it depends on the other fluxes only indirectly through the axion-dilaton τ , whose vev
is determined by all fluxes. Furthermore, unlike the other “bulk” moduli, the potential for
S is highly affected by the warp factor. Its functional form, in the Einstein frame, derived
in [44, 45] is

VKS = π3/2

κ10

gs
(ρ+ ρ̄)3

[
c log Λ3

0
|S|

+ c′
gs(α′M)2

|S|4/3

]−1 ∣∣∣∣∣ M2πi log Λ3
0
S

+ i
K

gs

∣∣∣∣∣
2

' π3/2|S|4/3

κ10c′(α′M)2(ρ+ ρ̄)3

∣∣∣∣∣ M2πi log Λ3
0
S

+ i
K

gs

∣∣∣∣∣
2

, (2.14)

where in the last line we used the approximation of strong warping. Moreover, gs is
the stabilized vev of the dilaton, ρ + ρ̄ = (Vol6)3/2, c denotes the constant value of the
warp factor at the UV and will not be relevant here, whereas the constant c′, multiplying
the term coming solely from the warp factor, denotes an order one coefficient, whose
approximate numerical value was determined in [44] to be c′ ≈ 1.18. The potential (2.14)
has a supersymmetric minimum

SKS = Λ3
0 e
− 2πK
gsM , (2.15)

which is exponentially small for appropriate values of the fluxes (M,K). Since the field
S has mass dimension −3, whereas the corresponding gauge theory condensate Z has
dimension 3, one can write the potential in terms of Z in the following way. Writing the
10d metric in the form

ds2 = e2Ads2
4 + e−2At1/2ds2

6 , (2.16)

where the volume of the internal space is parametrized in terms of t = ρ+ ρ̄. The relation
between the 10d and the 4d Newton constant is

1
κ2

4
= Vw
κ2

10
, where Vw =

∫
d6y
√
g6e
−4A , (2.17)

6There can be also an additional contribution to Qloc
3 coming from D7-branes and O7-branes.
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where Vw is a fiducial volume. Using the relation 2κ2
10 = (2π)7α′4 and redefining the S

field according to
S =

(
23/4π1/2α′

)3
Z , (2.18)

one arrives at the 4d scalar potential in the Einstein frame7

VKS = |Z|4/3

c′M2(ρ+ ρ̄)2

∣∣∣∣∣ M2πi log Λ3

Z
+ i

K

gs

∣∣∣∣∣
2

, (2.19)

where we have redefined Λ0 → Λ analogously to (2.18) and from now on one sets κ4 = 1.
The scale Λ in (2.19) has now mass dimension one. Later on one will define a more canonical
dimension-one field Z ∼ Y 3.

An anti-D3 brane at the tip of the throat uplifts the KS potential (2.19). The contri-
bution to the potential is determined from

SD3 = SDBI + SCS = −T3

∫
d4x
√
−g4

[
1 +O(α′2)

]
± T3

∫
C4 , (2.20)

where the sign in front of the second term is determined by the charge of the brane, and
T3 is given by T3 = 1

(2π)3α′2 . For the D3-brane in a background given by (2.1), the DBI
and the CS pieces of the action cancel each other. Hence, for the D3-brane they add up
and one finds

VD3 = −2T3C4 = 2
(2π)3α′2

H−1 . (2.21)

Using the warp factor given in (2.8) and turning into the 4d Einstein frame, one finally ob-
tains

VD3 = 1
π(ρ+ ρ̄)2

21/3

I(T )
|Z|4/3

gsM2 . (2.22)

The I(T ), defined in (2.9) is a monotonically decreasing function. Therefore, a D3-brane
has minimal energy if it is placed at the tip of the throat. For later convenience we introduce
a constant c′′ = 21/3

I(0) ≈ 1.75.
With these notations and in the highly warped region, the total potential takes the form

VKS+uplift = |Z|4/3

(ρ+ ρ̄)2c′M2


∣∣∣∣∣ M2πi log Λ3

Z
+ i

K

gs

∣∣∣∣∣
2

+ c′c′′

πgs

 . (2.23)

The minimum of the potential with the uplift can be found analytically to be given by [30]

Z0 = e
− 3

4

(
1−
√

1− 64πc′c′′
9gsM2

)
Λ3 e−

2πK
gsM , (2.24)

which clearly displays the disappearence of the non-trivial minimum for small values of the
fluxes gsM2 < (64πc′c′′)/9, leading to the condition (1.1).

7We take also into account the change of power 1/(ρ+ ρ̄)3 → 1/(ρ+ ρ̄)2 due to the warping, as argued
for in [46].
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Some caution is however required in using the scalar potential (2.23).8 In the KS
solution the S field is not a modulus, but is fixed to its supersymmetric value (2.15).
Replacing the warp factor with its S-dependence as in (2.22) is well justified only at the
minimum and might not be trusted far from it. So the potential (2.23) might not be
really trusted “off-shell” far from its KS minimum. For large values of M -flux, the shift
in the vev induced by the antibrane uplift is small and the potential should be reliable
close to the new minimum. For smaller values of the flux, below to the destabilization
point (1.1), the runaway behavior depends crucially on the form of the potential for small
values of S, far away from the old supersymmetric minimum. Therefore, it cannot be
excluded that there are significant corrections to the potential which modify or invalidate
the bound (1.1). On the other hand, the results of [32] provide further evidence for the
validity of (1.1) and thus also of the potential (2.23). There, a similar bound was obtained
from the numerical construction of Klebanov-Strassler black holes [47] which goes beyond
the probe approximation and takes the full back reaction on the geometry into account.
Moreover, [83] compared the analysis of [30, 31] with the radion stabilization in RS scenarios
by the Goldberger-Wise formalism and found qualitative agreement.

In this paper we will no try to resolve these issues and will take the validity of the
potential (2.23) as a working assumption. Moreover, we mostly work in the regime of
large enough gsM2 where the shift in S induced by the D3 brane is small. It is therefore
reasonable to assume that in the vicinity of the D3 minimum possible corrections to the
potential are subleading. Notice, that even in this regime of parameters the effects of the
warp factor on the potential [44, 45] are crucial for our following analysis. Neglecting them
corresponds to setting c′ = 0 and results in a significantly different mass spectrum.

3 Four-dimensional supergravity description and moduli stabilization

Adding the nonperturbative term generated by stringy instantons or gaugino condensation
amounts to adding to the perturbative superpotential the KKLT-like terms WKKLT =
W0 +Ae−aρ. The KKLT sector by itself will be defined by

K = −3 log(ρ+ ρ̄) , WKKLT = W0 +Ae−aρ , (3.1)

which leads to the KKLT potential

VKKLT = 1
(ρ+ ρ̄)3

{
(ρ+ ρ̄)2

3

∣∣∣∣∂ρWKKLT −
3

ρ+ ρ̄
WKKLT

∣∣∣∣2 − 3|WKKLT|2
}
, (3.2)

which has an AdS minimum. We will show that, under some mild assumptions, the KKLT
sector does not affect the conifold destabilization mechanism we found. Before showing this,
we remind the reader that the uplift can also be described in a manifestly supersymmetric
formalism using nonlinear supersymmetry with a nilpotent goldstino superfield [33–38, 48–
52]. Therefore, if there is a mass gap we should be able to describe the whole action in

8We thank A. Hebecker and L. Martucci for useful discussions on this point.
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terms of a supergravity action. Introducing a nilpotent superfield X, it is indeed possible
to write the Kähler potential at the perturbative level as

K = −3 log
(
ρ+ ρ̄− |X|

2

3 − ξ|Z|2/3

3

)
− log (−i(τ − τ̄)) + c|Z|2

(
log Λ3

|Z|
+ 1

)
,

W = W0 +Ae−aρ + M

2πiZ
(

log Λ3

Z
+ 1

)
+KτZ + 1

M

√
c′′

π
Z2/3τX , (3.3)

where we introduced the (flux-dependent) constant ξ = 9c′gsM2. W0 denotes the vev of
the bulk or “UV” superpotential. In what follows, we assume the dilaton to be stabilized
τ = i

gs
. The field X satisfies the nilpotent constraint X2 = 0. It contains the goldstino

G localized on the antibrane and generates the Volkov-Akulov nonlinear supersymmetric
Lagrangian. The solution of the constraint, in superspace language is

X = GG

2FX
+
√

2θG+ FXθ
2 , (3.4)

where θ is the fermionic superspace coordinate. The simplest recent string theory exam-
ples of Volkov-Akulov nonlinear supersymmetric actions consists of putting a stuck D3
antibrane on top of an O3− plane [53], which reduces the (anti)brane localized degrees of
freedom to only the goldstino [48–52]. Similar construction, much like the original string
vacua with “brane supersymmetry breaking” [2–6] also generate a nonlinear realization of
supersymmetry on the antibranes, as shown explicitly in [7, 8]. The nilpotent constraint
eliminates the scalar partner of the goldstino, keeping the auxiliary field FX . Consequently,
the scalar potential is computed from the usual supergravity potential, by setting at the
end X = 0. The last term in the superpotential reproduces the antibrane uplift, redshifted
by the S-dependent prefactor. Note that the nilpotent goldstino formalism is valid as long
as FX 6= 0. In the example we consider (3.5), we find9 that FX = i

gsM

√
c′′

π Z
2/3 and, since

〈Z〉 6= 0, the formalism is indeed valid. The stronger the warping the smaller the super-
symmetry breaking. We expect in principle a maximum value of the warping also from the
requirement that states decoupled by the supersymmetry breaking to be heavy enough.

This Kähler potential should be understood as an Z-expansion of the general Kähler
potential derived in [54] (see also [55–57]), reproducing the metric GSS̄ of [44, 45].

A naive integration-out of Z would produce an effective constant

W0,eff = W0 + M

2πi

(
1 +

√
1− 64πc′c′′

9gsM2

)
Z0 . (3.5)

It is convenient in what follows to work with a dimension 1-field Y instead of the
dimension 3 one Z. We introduce the convenient definitions

Y =
(
ξ

3

)1/2
Z1/3 =

(
3c′gsM2

23/2πα′2

)1/2

S1/3 ,

M̃ =
(3
ξ

)3/2
M , K̃ =

(3
ξ

)3/2
K , Λ̃0 =

(
ξ

3

)1/2
Λ , c̃′′ = 3

ξgsM

√
c′′

π
. (3.6)

9The factor i can be removed by a redefinition of the field X.
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With these definitions, freezing the dilaton and in the region of strong warping, where the
perturbative Kähler potential for S is negligible, the effective action (3.3) becomes

K = −3 log
(
ρ+ ρ̄− |X|

2

3 − |Y |2
)
,

W = W0 +Ae−aρ + M̃

2πiY
3
(

3 log Λ̃0
Y

+ 1
)

+ iK̃

gs
Y 3 + c̃

′′
Y 2X . (3.7)

Therefore, the SUGRA scalar potential of the model (3.7) can be written in the form

V = 1
r2

3|Y |4
∣∣∣∣∣3M̃2πi log Λ̃0

Y
+ i

K̃

gs

∣∣∣∣∣
2

+
∣∣∣c̃′′Y 2

∣∣∣2 +
∣∣∣∣∂ρW − 3

ρ+ ρ̄
Weff

∣∣∣∣2 − 3
ρ+ ρ̄

|Weff |2
 ,

(3.8)
where we defined

Weff = W0 +Ae−aρ + M̃

2πiY
3 and r = ρ+ ρ̄− |Y |2 . (3.9)

The first two terms in (3.8) recover the potential VKS+uplift displayed in (2.23) coming from
the fluxes and the D3 uplift, written in terms of the dimension-one field Y and in the small
Y limit. The last two terms in the potential (3.8) reduce, for Y = 0, to the KKLT potential
for ρ.

3.1 Vacuum structure and mass scales

The scalar potential (3.8) has an almost decoupled structure, between the KS and the
KKLT sector. In the case that one of the moduli is significantly heavier than the other,
this implies that the decoupled KS+uplift and the KKLT+uplift minima will be a good
zeroth order approximation. The later ones are determined as

∂VKS+uplift
∂Y

∣∣∣∣
Y0

= 0 , ∂VKKLT+uplift
∂ρ

∣∣∣∣
ρ0

= 0 . (3.10)

The explicit values are

Y0 = e−
2πε0
3M̃ Λ̃0 e

− 2πK̃
3gsM̃ ↔ Z0 = e

− 3
4

(
1−
√

1− 64πc′c′′

9gsM2

)
Λ3

0 e
− 2πK
gsM ,

[a(ρ0 + ρ̄0) + 5]Ae−aρ0 = −3W0 . (3.11)

The constant ε0 above is given by

ε0 = 3M̃
2π log Λ̃0

Y0
− K̃

gs
= 1

4

3M̃
2π −

√√√√(3M̃
2π

)2

− 48c̃′′2
9


= 3

8πM2(3c′gs)3/2

(
1−

√
1− 64πc′c′′

9gsM2

)
, (3.12)
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and measures the deviation of the minimum of S0 from the supersymmetric one (2.15)
before the uplift. Notice that the higher the flux M the smaller the deviation of the vev
of Z from its supersymmetric value. The main result of [30] was that the existence of a
non-trivial minimum for S implies a minimum value for the M flux

gsM
2 ≥M2

min = 64πc′c′′

9 ' (6.8)2 . (3.13)

The cancelation of the cosmological constant after uplift translates into the tuning

(
|c̃′′|2 + 3ε20

)
|Y0|4 '

3|W0|2

ρ0 + ρ̄0
→ W0 ' ε0(ρ0 + ρ̄0)1/2Y 2

0 , (3.14)

where in the last estimate we neglected |c̃| � ε0, valid for not extremely large values of the
flux. Notice that an uplift to zero cosmological constant requires W0 ∼ Z2/3

0 which is much
larger (in the strong warping regime) than the last term in (3.5), induced by integrating-out
the field Z. The mass of the moduli fields are then readily computed. We denote by mY,±
the two mass eigenstates of the complex field Y . At the leading order one finds

m2
Y,+ = M̃

4π
Y 2

0
ρ0 + ρ̄0

= Z
2/3
0

8πρ0(3c′gs)1/2 , m2
Y,− = m2

Y,+

√
1− M2

min
gsM2 ,

m2
ρρ̄ = a2W 2

0
ρ0 + ρ̄0

, m2
ρρ � m2

ρρ̄ . (3.15)

After imposing the cancelation of the vacuum energy, the ratio of the moduli masses is
given by

m2
ρ

m2
Y

∼

1−

√
1− M2

min
gsM2

2
a2(3c′)5/2ρ0Z

2/3
0

32π2g
1/2
s

. (3.16)

The Z modulus is therefore heavier than ρ provided that

Z0 �


32π2g

1/2
s(

1−
√

1− M2
min

gsM2

)2

(3c′)5/2



3
2

1
(a2ρ0)3/2 . (3.17)

This is also the condition of validity for the (quasi) decoupling of the KS and KKLT sectors,
that was our starting assumption in finding the vacuum structure. One can aposteriori
check that the shifts in the minima after coupling the KS+uplift and the KKLT sector are
parametrically δY/Y0 ∼ δρ/ρ0 ∼ Y0

√
ρ0, which are small precisely when (3.17) is fulfilled.

The constraint (3.17) is easy to satisfy for large fluxes. The strongest constraint arises
for small fluxes. For example, close to the critical value (3.13) and in the case of stringy
instantons a = 2π, (3.17) gives roughly Z0 � g

3/4
s /(3ρ0)3/2. Since

2πK
gsM

= 2πMK

gsM2 ≤
2π|Qloc

3 |
(6.8)2 , (3.18)
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a given value of the warp factor translates into a minimum value of the localized D3 charge
Qloc

3 , according to ∣∣∣Qloc
3

∣∣∣ ≥ (6.8)2

2π |logZ0| . (3.19)

For example, typical KKLT values ρ0 ∼ 20− 50 and for Λ0 ∼MP imply Z0 < 10−2 to
satisfy (3.17),which would imply |Qloc

3 | ≥ 40− 50. As another example, the gravitino mass
is given by

m3/2 '
W0

(ρ0 + ρ̄0)3/2 ∼
ε0Y

2
0

ρ0
, (3.20)

where the last estimate is order of magnitude only. TeV values of the gravitino mass
m3/2 ∼TeV would require Z0 ∼ 10−21, which translates into |Qloc

3 | ≥ 350− 400. Whereas
this is possible in F-theory, it is challenging to construct explicit examples with such large
localized D3 charges [58].

3.2 Contribution to supersymmetry breaking

The contribution of various fields to supersymmetry breaking is encoded in the auxiliary
fields, in terms of which one can write the scalar potential as

V = KIJ̄F
IF J̄ − 3m2

3/2 , where F I = eK/2KIJ̄DJW . (3.21)

Using the vev’s obtained in the previous section, one finds

DXW = 1
gsM

√
c′′

π
Z

2/3
0 , DYW ' −3iε0Y 2

0 , DρW ' −
6W0

a(ρ0 + ρ̄0)2 . (3.22)

Even if the fields Y and ρ mix in the Kähler potential, it can be shown that it is a
good approximation to neglect the mixing and to define individual contributions to SUSY
breaking, according to

fI ≡ eK/2(KIĪ)1/2DIW , V '
∑
I

|fI |2 − 3m2
3/2 . (3.23)

Then (3.22) leads to

fX ∼ fY ∼ m3/2 , fρ ∼
m3/2

a(ρ0 + ρ̄0) . (3.24)

It is interesting that the conifold field Y ∼ Z1/3 has a large contribution to supersymmetry
breaking, at the same order as the one of the uplift (nilpotent) field X. Both contributions
are localized at the tip of the throat. Notice that a contribution to supersymmetry breaking
of the complex structure field Z could be interpreted as an effective generation of an
(1, 2) flux. On the other hand, the contribution to supersymmetry breaking of the Kähler
modulus ρ, which propagates across the whole bulk, is suppressed by a factor of order
1/(aρ0). This will have consequences on the transmission of supersymmetry breaking into
the matter sector.
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3.3 Comments on the dS swampland conjecture

It was recently conjectured [59–61] that in all controlled compactifications

|∇V | ≥ aV or min(∇i∇jV ) ≤ −a′V , (3.25)

where a, a′ > 0 are O(1) numbers. The second condition is not constraining in our case,
therefore we discuss the first one. Since the KS and the KKLT sector are approximately
decoupled in the regime mρ � mY , we can concentrate on the KS plus the uplift sector,
assuming the Kähler modulus ρ is stabilized, described by

LY = 3
ρ+ ρ̄

|∂Y |2 − VKS+uplift , (3.26)

where the appropriate scalar potential is given in (2.23). We therefore compute

|∇Y V |
V

=

√
GY Ȳ ∂Y V ∂Ȳ V

V
. (3.27)

If √gsM ≥ Mmin, there is a dS minimum and the dS conjecture is violated. If this is
realized in string theory depends on the existence of compactifications with large localized
D3 charges [58]. Following the same steps and arguments as in [30], another check can be
performed for small flux √gsM < Mmin, where the dS minimum disappear. One finds

|∇Y V |
V

≥ 2
|Y |

√
ρ+ ρ̄

3

(
1−
√
gsM

Mmin

)
. (3.28)

This is generically satisfied in the limit of strong warping. It is however amusing to notice
that by imposing a ∼ 1 one obtains a condition parametrically of the type (3.17), although
the two conditions apply to different cases.

On the other hand, a sufficient (but not necessary) condition to satisfy the dS conjec-
ture would be to select large enough values of the (0, 3) flux parameter W0 to forbid an
uplift to positive vacuum energy. Using the results and notations from section 3.1, this
condition reads

W0 ≥ ε0(ρ0 + ρ̄0)1/2Y 2
0 . (3.29)

4 Adding matter: soft terms

The Klebanov-Strassler throat can generate an exponential hierarchy for the scale of su-
persymmetry breaking in the observable sector. The matter fields Qi are defined as usual
by the properties 〈Qi〉 = 0, F i = 0. The 4d supergravity lagrangian contains hidden sector
(moduli) fields called Tα in what follows (Tα = X,Y, ρ in our case), coupled to the matter
fields Qi. The Kähler potential and superpotential are defined by an expansion in powers
of the matter fields

K = K̂(Tα, Tα) +Kī(Tα, Tα)QiQ̄ + 1
2
(
Zij(Tα, Tα)QiQj + h.c.

)
,

W = Ŵ (Tα) + 1
2 µ̃ij(Tα)QiQj + 1

3 Ỹijk(Tα)QiQjQk + · · · .
(4.1)
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The low-energy softly broken supersymmetric lagrangian is defined by the superpotential
and soft scalar potential

Weff = 1
2µijQ

iQj + 1
3YijkQ

iQjQk ,

Lsoft = −m2
īq

iq̄ −
(1

2Bijq
iqj + 1

3Aijkq
iqjqk + 1

2Maλaλa + h.c.
)
,

(4.2)

where Yijk = eK/2Ỹijk. For zero cosmological constant, the general tree-level expressions
for soft terms and supersymmetric µ-terms in 4d supergravity, are given by [62–66]

m2
ī = m2

3/2(Gī −GαGβ̄Rīαβ̄) = m2
3/2Kī − FαF β̄Rīαβ̄ ,

µij = m3/2∇iGj = e
K
2 µ̃ij +m3/2Zij − F ᾱ∂ᾱZij ,

Aijk = m2
3/2(3∇iGj +Gα∇i∇j∇kGα)

= (m3/2 − Fα∂α logm3/2)Yijk + Fα∂αYijk − 3FαΓlα(iYljk) ,

Bij = m2
3/2(2∇iGj +Gα∇i∇jGα) = 2m2

3/2Zij −m3/2F
ᾱ∂ᾱZij

+m3/2F
α(∂αZij − ΓkαiZkj − ΓkαjZki)− FαF β̄(Zijαβ̄ − ΓkαiZkjβ̄ − ΓkαjZkiβ̄)

− e
K
2 µ̃ijm3/2 + e

K
2 Fα(∂αµ̃ij + 1

2K̂αµ̃ij − Γlαiµ̃lj − Γlαjµ̃il) ,

Ma
1/2 = 1

2g
2
aF

α∂αfa ,

(4.3)

where α, β are hidden sector supersymmetry breaking indices, fa is the gauge kinetic func-
tion for the gauge group factor Ga and some basic definitions are given in the appendix.
For geometrical separation in the internal space (sequestering) or in no-scale like models,
tree level soft masses are zero or highly suppressed and one-loop contributions become rel-
evant. One loop contributions to gaugino masses, called anomaly-mediated contributions
in [67, 68], are given in general by [69]

Ma
1/2 = − g2

a

16π2

{
(3T aG − T aR)m3/2 + (T aG − T aR)KαF

α + 2T aR
dR

(log detKī,Ra)αFα
}
, (4.4)

where T aG is the Dynkin index for the adjoint representation of the gauge group and T aG,
Kij̄,Ra are the Dynkin index for the chiral matter fields in representation Ra and their
Kähler metric, respectively. The complete one-loop expression for the other soft terms is
more involved [70]. In the limit of small hidden-sector vev’s, the one-loop induced anomaly
mediated contributions take forms of the type msoft ∼ (bg2)/(16π2)m3/2, depending on
beta functions b (and anomalous dimensions) of the low-energy spectrum.

On general grounds, for matter fields which are not sequestered from the KS throat,
one expects soft masses of order m3/2. For fields far away from the throat, from the four-
dimensional perspective, one could anticipate soft terms generated by the Kähler modulus
contribution to supersymmetry breaking F ρ and one-loop anomaly-mediated contributions.
These two contributions are similar in size, as emphasized in [71, 72] and parametrically
(one-loop) suppressed compared to the gravitino mass.
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4.1 Distant D3 “matter” branes

One test of the action (3.3) is to add distant, from the throat, D3 “matter” branes. Denot-
ing by Qi the (distant) D3 brane superfields, the tree-level action in type IIB orientifolds
including them was derived in [75, 76]. In the absence of warping, the Kähler and the com-
plex structure moduli spaces do not talk to each other, except for the holomorphic terms of
coefficients called zij below. The new ingredient from the warping is that the main contri-
bution to the complex structure field Z Kähler potential changes drastically (in the absence
of matter fields) according to the previous sections, whereas the perturbative contribution
is negligible. Taking this into account, we arrive at the following effective action

K = −3 log
(
ρ+ ρ̄− |X|

2

3 − ξ|Z|2/3

3 − |Qi|2 − z′ij(Z̄QiQj + h.c.)
)

= −3 log
(
ρ+ ρ̄− |X|

2

3 − |Y |2 − |Qi|2 − zij(Ȳ 3QiQj + h.c.)
)
≡ −3 log r ,

W = W1(ρ, Y,X) +W2(Qi) .

(4.5)

Notice that (4.5) has a sequestered form, except the terms in zij . Using the appendix, it
can be shown that in this case the Riemann tensor satisfies the identity

Rīαβ̄ = 1
3GīGαβ̄ , (4.6)

where α, β = X,Z, ρ are moduli indices and i, j are matter indices, such that the tree-level
scalar soft masses m2

ī in (4.3) vanish after reinforcing the cancelation of the cosmological
constant GαGα = 3. The tree-level A-terms can be written more explicitly as

Aijk = m2
3/2

[
3Gijk +Gα(∂αGijk − ΓmiαGjkm − ΓmjαGikm − ΓmkαGijm)

]
(4.7)

and they turn out to also vanish for zero cosmological constant.
The tree-level supersymmetric masses in our case are given by

µij = m3/2(∂iGj − ΓαijGα) = −2zij ȳ2(2ȳWT + 3Wy)e
K
2 ∼ O

(
Y 4

0

ρ
3/2
0

)
∼ O

(
Z

4/3
0

ρ
3/2
0

)
. (4.8)

This result is in qualitative agreement with the action obtained from the compactification
worked out in [75, 76]. It is however important to remember that our effective action is only
valid in the leading order in an expansion in powers of Z2/3. The leading order contribution
to the µ-terms is small and subleading and probably a mass of order Z4/3 is quantitatively
not fully under control. The Bµ-like terms Bij in (4.3) are of order O(Y 6) ∼ O(Z2), but
probably their computation is also not fully reliable. It is also possible that the coefficients
zij are warped down such that the real values of µij , Bij is even smaller than the one we
estimated here.

The tree-level action of the distant D3 branes seem to realize therefore, at the lead-
ing order in a power expansion of S2/3, an approximate sequestered case [67, 68] where
all tree-level “soft terms” for matter D3 fields are zero (or very small). However, it was

– 13 –



J
H
E
P
0
3
(
2
0
2
1
)
1
0
7

argued in [73, 74] that sequestering is broken by the coupling of D3 branes to the gaug-
ino condensates on D7 branes or on Euclidian D3 branes providing the nonperturbative
superpotential for the Kähler modulus ρ. This effect, coming from threshold corrections,
breaks the sequestered form of the superpotential (4.5), by generating terms of the type
w(Q)e−aρ. Such terms generate soft terms, but not non-holomorphic soft scalar masses.
On the other hand, it was shown in [71–74] that small values of the latter, suppressed with
respect to the gravitino mass, are also generated by the antibrane uplift. In our manifestly
supersymmetric nilpotent formalism, such terms can be generated by breaking sequestering
in the Kähler potential. Breaking sequestering and agreement with previous results require
therefore a modification of our effective action (4.5) by

∆K = D|X|2Q̄iQi
r4 , ∆W = w(Qi)e−aρ , (4.9)

where D is a constant and w(Qi) a holomorphic gauge invariant function of matter chiral
fields. The form of ∆K, which should be treated as a small perturbation of the Kähler
potential in (4.5), is determined by matching the resulting generated non-holomorphic
scalar masses to previous results, m2

0 ∼ m2
3/2/(ar)

2 for the canonically normalized matter
field [71–74]. The resulting soft terms are suppressed and similar in size to the anomaly
mediated terms discussed below. It would be interesting to understand from first principles
the term ∆K breaking sequestering.

Notice that the D3 brane interacts via loops of open strings, or equivalently, by tree-
level exchange of closed strings, with distant D3 branes. This is a higher-dimensional tiny
branes-antibrane interaction which is actually a one-loop effect, that has to be added to the
effective action above. The sequestering is approximative therefore from several viewpoints:
the threshold effects on D7 branes (or Euclidian D3 branes) and the antibrane-D3 brane
distant interactions. In addition, there are small distant branes mass terms related to the
contribution to supersymmetry breaking of the conifold field Z. They could maybe have an
interpretation since FZ 6= 0 has an effect similar to the generation of an effective (1, 2) flux.

From a four-dimensional perspective, one can also contemplate calculating the one-loop
anomaly-mediated type contributions. For the effective action (4.5), the one-loop gaugino
masses reduce at leading order to the universal term

Ma
1/2 = − g2

a

16π2 (3T aG − T aR)
(
m3/2 + 1

3KαF
α
)
' − g2

a

16π2 (3T aG − T aR)m3/2 . (4.10)

4.2 D3 branes-antibrane interactions: a higher-dimensional perspective

In addition to the threshold effects on D7 branes or euclidian D3 branes, the sequester-
ing is broken explicitly by the distant branes-antibrane interactions, which generate an
interaction between the antibrane and the distant antibranes [46]. This interaction can be
described by a correction to the Kähler potential, breaking the sequestered structure, of
the type

∆K = ξ′z|Z|4/3|X|2

r(r0 + Q)4 , (4.11)
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where d2 = r0
2 is the radial distance between the D3 branes and the antibrane. Indeed,

for Qi = 0 this term changes the metric KXX̄ = (1 + ξ′
z |Z|4/3

d4 )1
r and changes the scalar

potential generated by the uplift sector to

VD3 + VD3−D3 = KXX̄eK|DXW |2 '
c′′|Z|4/3

π (ρ+ ρ̄)2 gsM2

(
1− ξ′z|Z|4/3

d4

)

≡ 2T3H
−1(r0)

[
1− 1

N

H(r1)
H(r0)

]
, (4.12)

where r0 (r1) is the radial position of the D3 brane (matter D3) branes and we performed
a leading-order expansion in powers of Z � 1. An expansion in powers of the matter fields
gives the antibrane-distant D3 branes fields interaction

VD3−D3 = − ξ′zc
′′|Z|8/3

πr2d4gsM2

[
1− 4r0Q

d2 − 2Q2

d2 + 12(r0Q)2

d4 + · · ·
]
. (4.13)

In the higher-dimensional approach, the second derivative of this scalar potential gives the
mass matrix for Qi, which lead to tachyonic directions [77]. It is however useful to cast
the problem as a correction to the 4d Kähler potential. By using the dimension-1 field Y ,
it is given by

∆K = ξ′|Y |4|X|2

rd4

[
1− 4r0Q

d2 − 2Q2

d2 + 12(r0Q)2

d4 + · · ·
]
, (4.14)

where ξ′ = (3c′gsM2)−2ξ′z. The linear term signifies that the distant D3 brane does not
sit at an extremum, which can be remedied, in case of orientifolds, by adding an image
brane at −r0. The quadratic terms are more conveniently written in a complex basis Φi, zi,
i = 1, 2, 3, by introducing Φ1 = 1√

2(Q1 + iQ2), z1 = 1√
2(y1 + iy2), etc. One gets

∆K = ξ′|Y |4|X|2

4r|z|4
[
1− 2
|z|2

(
δī −

3ziz̄̄
4|z|2

)
Φ̄iΦ̄ + 3

4|z|4 (z̄ı̄z̄̄Φı̄Φ̄ + h.c.) + · · ·
]
. (4.15)

The non-holomorphic piece Φ̄iΦj changes the metric for matter fields and changes the Rie-
mann tensor of the Kähler manifold R = R(0)+R(1). It generates an additional contribution
to the soft scalar masses

m2
ī = −m2

3/2|G
X |2R(1)

īXX̄
= −|FX |2R(1)

īXX̄
= |FX |2 ξ

′|Y |4

2r|z|6
(
δī −

3ziz̄̄
4|z|2

)
, (4.16)

which are positive definite and of order m2
0 ∼ Y 8

0 /(ρ2
0|z|6), in agreement with the masses

computed from the higher-dimensional potential (4.13). The holomorphic soft masses are
then given by

Bij = |FX |2 3ξ′|Y |4

16r|z|8 zizj . (4.17)

Notice that they are smaller (O(Y 8)) than the tree-level 4d supergravity computation of
the previous section. They are of the same order than the non-holomorphic masses m2

ī
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and generate tachyonic masses after diagonalization [77]. However, in a realistic compact-
ification the distant D3 branes have to experience additional projections of the spectrum
in order to make it compatible with a MSSM one. For example, it should sit at an orbifold
or orientifold singularity. If this is achieved, the only sector that can have B terms is the
Higgs sector. A Higgs vev could lead to correct electroweak symmetry breaking if its value
is in the TeV range, therefore if the soft terms are in the TeV range. The size of soft
terms provided by (4.16)–(4.17) can be re-expressed as a function of the gravitino mass
and the distance from the D3 antibrane. Their typical size is then worked out to be of
order msoft ∼

(
ρ0
|z|

)3 m2
3/2
MP

. If the one-loop contributions would be smaller, intermediate
values of m3/2 can lead therefore to TeV values for masses. However, as discussed in the
previous section, from a four-dimensional perspective, threshold corrections on D7 branes
or Euclidian D3 branes and other one-loop corrections are expected to break sequestering
and generate suppressed soft terms [71–74] with respect to the gravitino mass, similar in
size to anomaly mediated contributions [67, 68]. Their size is typically a one-loop factor
times m3/2 and will therefore dominate over the (smaller) contributions discussed above.
It would be interesting to evaluate from a higher-dimensional perspective, based on anti-
brane-distant branes interactions, the one-loop generated soft terms and compare them to
the four-dimensional expressions. This is however beyond the scope of the current letter.

Notice that, if one uses some distant D3 branes for inflation, then a scalar potential
of the type (4.12) becomes the inflationary energy scale. From the current bounds on the
tensor to scalar ratio r ≤ 0.1, one gets another bound on the acceptable values of Z0

Vinf = VD3−D3 ≤ 1016 GeV → Z
4/3
0
ρ2

0
≤ 10−9 . (4.18)

For a KKLT type scenario, this implies Z0 ≤ 10−5 and therefore again a largish contribution
to the localized D3 flux |Qloc

3 | > O(80), for Λ0 ∼MP .

4.3 4d versus higher-dimensional description

It was shown in [31] that Kaluza-Klein states localized on the KS throat have masses
parametrically of the same order as the mass of the field Z. Then a full 4d description of
the dynamics is probably not an accurate approximation, unless one goes to low energies
and integrates the whole KK tower and the field Z. This it difficult to do in practice. On
the other hand, the gravitino mass is small enough that a supergravity description should
exist at low-energy. It is difficult to make definite statements, but some qualitative remarks
go as follows.

From a 4d perspective, assuming that the 4d SUGRA description is valid, one can use
the general formulae of soft terms as in the beginning of the previous section. Alternatively,
we can use higher-dimensional brane-antibrane forces as a starting point of computing soft
terms. At tree-level, we found qualitative agreement for distant (from the throat) D3
branes, which seem to fulfill an approximate sequestering, broken by threshold effects
that we commented around (4.9). Additional contributions come from small mass terms
related to the contribution to supersymmetry breaking of the conifold field Z, which has
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an effect similar to an effective (1, 2) flux. As mentioned previously, it is also plausible
that the warping is suppressing further the real values of these masses. At one-loop level,
4d anomaly-mediated contributions to soft terms are present, consistent with a diffuse
transmission of supersymmetry breaking across the bulk. Their higher-dimensional origin
is not clear and it would be very interesting to check them in detail from the higher-
dimensional viewpoint, in particular the one-loop contribution to the gaugino masses. We
hope to be able to return to this issue elsewhere.

5 Conclusions

We continued the analysis of the KKLT moduli stabilization with antibrane uplift in the
context of the Klebanov-Strassler warped compactification, taking into account the light
complex structure field S (Z) identified in [30, 31]. Assuming the validity of the 4d super-
gravity description and using a manifestly supersymmetric formulation of the uplift via a
nilpotent field on the antibrane, we worked out the vacuum structure and physical spec-
trum, confirming the potential destabilization of the KS throat. The minimal value of the
needed flux (1.1), combined with needed redshift for various physical purposes, translates
into (relatively) large values of the localized D3 charge Qloc

3 , beyond the usual perturbative
values Qloc

3 ≤ 16. Notice that this is not a surprise in itself. Indeed, the gravitational KS
solution is valid for gsM � 1, which is generically stronger than our destabilization limit
√
gsM ≥ 6.8. However, using just the standard KS validity bound leads to weaker limits on

Qloc
3 by choosing maximal values (gs ∼ O(1)) of the string coupling, which are reasonable

at least in F-theory. The destabilization bound, on the other hand, leads to limits on Qloc
3

which are independent on the string coupling and feature generically large numbers. Our
viewpoint in this paper is that, whereas it could be difficult to obtain such large localized
D3 charges in perturbative type II strings, it is presumably possible in F-theory. In such
F-theory models, however, the stabilization of a large number of complex structure moduli
is challenging [58].

We studied the consequences of including the light complex structure modulus Z in
the low-energy description for the vacuum structure and phenomenology. The effect of
the antibrane uplift is that the vev of Z is shifted such that its contribution to supersym-
metry breaking is large, comparable with that of the nilpotent field. Secondly, whereas
the conifold field is generically heavier than the volume modulus, justifying an integrating
out procedure, this is not always the case and there is a condition that the flux and the
other parameters have to satisfy. Most of supersymmetry breaking is localized at the tip of
the throat, but a small amount of supersymmetry breaking is transmitted across the bulk
far from the throat. We studied the effects of the supersymmetry breaking on observable
sector fields, in particular on distant D3 branes. Neglecting threshold effects, we found an
approximate sequestering, with the only non-zero masses in the observable sector are of
µ, Bµ type and very small. Their appearance could be due to the fact that the complex
structure modulus Z contributes to supersymmetry breaking, which acts effectively as an
(1, 2) flux. Comparing the results from a four-dimensional supergravity perspective and
from a higher-dimensional one, one finds qualitative agreement at tree-level. Threshold ef-
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fects (4.9) are expected to add other contributions breaking sequestering [71–74]. It would
be interesting to understand the origin of the term ∆K in (4.9) in the nilpotent formalism,
needed in order to match non-holomorphic soft scalar masses with previous results.

It would be clearly interesting to investigate further one-loop soft terms from four
dimensional and higher-dimensional perspective and check their compatibility. It would
also interesting to study from a similar viewpoint other models of moduli stabilization and
check if the potential throat destabilization still exists. The existence of a critical value
of the flux to avoid destabilization could be addressed directly in the dual gauge theory
of the KS throat. Another direction to investigate is the search of alternatives, to the D3
antibrane, uplifts of the vacuum energy. Finally, we commented on the dS swampland
conjecture [59–61]. It would be interesting to investigate further this refined model of
moduli stabilization from the viewpoint of the other swampland conjectures [78–81] (for
an extensive review and references, see [82]).

Note added. While this paper was completed, the paper [83] appeared, which has some
overlap with ours and interpret our normalized field Y of section 3 with the radion from a 5d
perspective. We thank Lisa Randall for discussions and for sharing her preliminary draft.
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A Supergravity formulae

As well-known, the 4d supergravity action does not depend separately on W and K, but
on the function G = K + log |W |2. Some useful formulae for a Kähler space, for which
GIJ̄ = KIJ̄ = ∂I∂J̄K, used in the text and in particular to evaluate (4.3) are

GI = GIJ̄GJ̄ , ΓKIJ = GKM̄∂IGJM̄ , ∇IVJ = ∂IVJ − ΓKIJVK ,

RIJ̄KL̄ = ∂K∂L̄GIJ̄ −G
MN̄∂KGIN̄∂L̄GMJ̄ . (A.1)

In the case of our effective action (4.5), the nontrivial components of the connections
are (i, j denote matter fields indices in what follows)

Γjiρ = −1
r
δji , Γjiy = ȳ

r
δji , Γρij = 4zij ȳ3 , Γyij = 6zij ȳ2 . (A.2)

By using the metric components and (A.1), (A.2), one can easily verify

Rīαβ̄ = 1
3GīGαβ̄ , (A.3)
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where α, β = X,Y, ρ and i, j are matter fields indices. In the presence of the correction to
the Kähler potential (4.9) breaking sequestering, there is a new correction to the Riemann
tensor, which becomes, at first order in the correction,

Rīαβ̄ = 1
3

(
1 + D

r2 δαXδβ̄X̄

)
GīGαβ̄ . (A.4)

Analogously, for the correction in (4.11), the Riemann tensor becomes

Rīαβ̄ = 1
3

(
Gαβ̄ −

2ξ′|Y0|4

Nd6 δαXδβ̄X̄

)
Gī . (A.5)
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