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1 Introduction

The on-shell approach to computing scattering amplitudes had led to tremendous advances
in our understanding of gauge theory and gravity [2–4]. Weinberg’s seminal papers from
the 60’s [5, 6] showed that the combination of Poincaré invariance and unitarity uniquely
picks out Maxwell’s equations as the description of a massless spin-1 particle (photon) and
Einstein’s equations as the description of a massless spin-2 particle (graviton), at tree-level.
In addition, charge conservation and the equivalence principle follow from consistency of
scattering amplitudes involving photons and gravitons, respectively.

Since then, there have been many attempts to constrain or bootstrap interactions using
a purely on-shell approach, by invoking the principles of unitarity, locality and causality.
One of these attempts is the technique known as BCFW deformations [7], in which some
of the external momenta are deformed by a complex parameter z. Consideration of the
analytic structure of the amplitude as a function of z often imposes non-trivial constraints
on interactions [8], as we will explain in detail in section 2. Constraints can also be
derived in another way [9–11], without deforming the amplitude, but rather by demanding
consistent factorisation. Here one simply writes down the most general form of the tree-level
four-particle amplitude, and demands that poles only arise due to intermediate (exchanged)
particles going on-shell, with the corresponding residues given by a product of on-shell
three-particle amplitudes.

Notable results of this bootstrap programme include the observations that long-range
forces cannot be mediated by particles with spin ≥ 3, Yang-Mills (YM) is the unique
theory of multiple massless spin-1 particles, General Relativity (GR) is the unique low-
energy theory of a massless spin-2 particle, and the existence of massless spin-3/2 particles
requires gravity and supersymmetry leading uniquely to supergravity1 [8, 10]. This on-shell

1One can also show that there is an upper limit on the number of spin-3/2 particles that a unitary theory
can contain [10].
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approach shows that the low-energy properties of Poincaré invariant theories are virtually
inevitable.

Given such spectacular success, attention has recently turned to applying similar meth-
ods to spatial correlation functions which are the fundamental observables in cosmology,
see [12–28] and references therein. These cosmological correlators live on the late-time
boundary of an approximate de Sitter spacetime and encode details about the bulk space-
time through their dependence on spatial momenta. A key ingredient in this cosmological
bootstrap is the fact that correlators contain flat-space scattering amplitudes in the residues
of their total-energy poles [29, 30] (for a detailed proof see [28]). These amplitudes form
part of the theoretical data required to bootstrap the corresponding correlators, and there-
fore the cosmological bootstrap programme requires us to have a solid understanding of
flat-space scattering amplitudes.

Much effort has so far focused on correlators fixed by de Sitter symmetries (or conformal
symmetries on the boundary). Intuitively, taking the cosmological bootstrap programme
beyond exact de Sitter symmetries in order to construct inflationary correlators, requires
taking the S-matrix bootstrap beyond exact Poincaré symmetries. Motivated by this, a
recent paper [1] derived the singular parts of tree-level four-particle amplitudes where the
free propagators are assumed to be massless and Poincaré invariant, i.e. all dispersion
relations are linear with each particle propagating at the same speed, but with interactions
that are allowed to break Lorentz boosts. Within this set-up, analytically continued three-
particle amplitudes are fixed by the helicities of the external particles up to an almost
arbitrary function of their energies and these functions are then constrained by demanding
consistent factorisation, but without making use of BCFW shifts. The most interesting
results from this boostless bootstrap are [1]:

• When there is a graviton in the spectrum, all three-particle interactions must reduce
to their Poincaré invariant form, even those that do not involve the graviton itself.2
Universal coupling of gravity to all other particles is then recovered.

• Low-energy self-interactions of a photon must vanish. The leading allowed operator
has six derivatives and is therefore mass dimension-9.

• There exists at least one large class of boost-breaking theories involving scalars,
spin-1/2 fermions and photons (boost-breaking massless QED). The corresponding
Lagrangians contain generalised, boost-breaking gauge redundancies.

In the Poincaré invariant cases, all the results derived by imposing consistent factorisa-
tion have also been reached via the BCFW formalism. Likewise, in this paper we show that
the results of [1] can be derived using BCFW shifts as a tool to automate consistent factori-
sation and therefore provide a neat consistency check. In section 2 we briefly introduce the
spinor helicity formalism that we will use throughout, present general three-particle ampli-
tudes for boost-breaking theories, and briefly review BCFW momentum shifts. In section 3

2Related results based on field-theoretic methods have been derived in [31–33]. See also [34] where
Lorentz boosts arise in the presence of soft gravitons.
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we argue that BCFW shifts remain a useful tool for non-constructible theories by making
a distinction between accessible and inaccessible singularities. In this case, while the four-
particle amplitudes are not completely fixed by the three-particle ones, we can still use
BCFW shifts to constrain the latter. We illustrate this in section 4 for boost-breaking the-
ories of self-interacting spin-S particles. We end the paper with some concluding remarks.

2 Spinor helicity formalism and BCFW deformations

We work in four spacetime dimensions and use the spinor helicity formalism to present
amplitudes in a compact form. In this formalism, a complex null four-momentum pµ is
represented as a product of two-component spinors as3

pαα̇ = σµαα̇pµ = λαλ̃α̇, (2.1)

where σµαα̇ are the Pauli matrices and the undotted and dotted indices transform in
the spinor representations of the Lorentz group i.e. (1/2, 0) and (0, 1/2) respectively.
Throughout we follow the conventions of [35] and we assume that each particle satisfies
pµpµ = E2 − p2 = 0 on-shell. When boosts are broken, amplitudes are constructed from
SO(3) invariant quantities rather than SO(1, 3) invariant ones. In [1], it was shown that
such three-particle amplitudes are functions of the following objects:

• “angle” brackets: 〈ij〉 = εαβλ
(i)
α λ

(j)
β ,

• “square” brackets: [ij] = εα̇β̇λ̃
(i)
α̇ λ̃

(j)
β̇

,

• energies: Ei.

Here latin indices label the external particles: i, j = 1, 2, 3. We remind the reader that
the spinors are not grassmanian and therefore the angle and square brackets are anti-
symmetric. By demanding that the amplitudes scale in the appropriate way under helicity
transformations, on-shell, non-perturbative three-particle amplitudes take the form [1]

A3 =

〈12〉d3〈23〉d1〈31〉d2FH(E1, E2, E3), h < 0,
[12]−d3 [23]−d1 [31]−d2FAH(E1, E2, E3), h > 0,

(2.2)

where di = 2hi − h, hi is the helicity of the ith particle and h is the sum of the helicities
(if h = 0, the amplitude can be a sum of the two expressions.) The presence of functions4

FH , FAH (which depend on the helicities) reflects the fact that Lorentz boosts are no
longer an assumed symmetry. The Poincaré invariant amplitudes are recovered when these
functions are constant. As energy is conserved, we will often consider the F ’s as functions
of two arguments only. As an example, the three-particle amplitude for three incoming
gravitons, two with negative helicity and one with positive helicity, is

A3(1−2, 2−2, 3+2) =
(
〈12〉3
〈23〉〈31〉

)2

FH(E1, E2). (2.3)

In this case, Bose symmetry dictates that FH(E1, E2) = FH(E2, E1).
3The inverse of this equation is pµ = 1

2 (σ̄µ)α̇αpαα̇ and so the energy of a particle in terms of the spinors
is E = 1

2 (σ̄0)α̇αλαλ̃α̇.
4The superscripts refer to holomorphic and anti-holomorphic kinematic configurations [8].
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Now, to be consistent with unitarity and locality, a tree-level four-particle amplitude
must factorise into a product of on-shell three-particle amplitudes on each of its poles. Poles
correspond to exchanged particles going on-shell and consistent factorisation dictates that,
for example,

lim
s→0

(sA4) = A3(1, 2,−I)×A3(3, 4, I), (2.4)

where s = (p1+p2)2 is the propagator of the exchanged particle which is labelled by I. Anal-
ogous relations hold when t = (p1 +p3)2 → 0 and u = (p1 +p4)2 → 0. For future reference,
in terms of the spinors these Mandelstam variables are given by s = 〈12〉[12] = 〈34〉[34],
t = 〈13〉[13] = 〈24〉[24] and u = 〈14〉[14] = 〈23〉[23]. Requiring the amplitude to factorise
correctly on each pole is often highly non-trivial [1, 8–11] since, for example, the s-channel
residue can contain poles in t and u which then need to be interpreted as propagation of a
particle in those channels. This is beautifully illustrated for multiple spin-1 particles where
consistency in each channel requires the coupling constants to satisfy the Jacobi identity.

In [8], Benincasa and Cachazo elegantly used BCFW shifts [7] to formally assess this
consistency for a number of tree-level four-particle amplitudes. The simplest BCFW shift
takes two particles i and j and deforms their energies and momenta according to

λ(i)(z) = λ(i) + zλ(j), λ̃(j)(z) = λ̃(j) − zλ̃(i), (2.5)

with all other spinors kept fixed. This choice preserves the on-shell conditions for both
particles as well as energy-momentum conservation. The deformed amplitude A(i,j)

4 (z) is a
rational function of the complex parameter z and thus can be fully deduced from knowledge
of its poles, residues and behaviour at infinity. It takes the form

A(i,j)
4 (z) =

∑
n

resz=znA
(i,j)
4 (z)

z − zn
+B(i,j)(z), (2.6)

where the boundary term B(i,j)(z) is regular in the entire complex plane. For four-particle
amplitudes, only two poles can be reached by a given deformation (since pi+pj is indepen-
dent of z) and as we remarked above, the corresponding residues are evaluated from the
three-particle amplitudes alone. For example, summing over the possible helicities of the
exchanged particle, for A(1,2)

4 (z) the two poles that can be reached are zt and zu and we have

A(1,2)
4 (z) =

∑
hI

A3(1̂, 3,−Î)A3(2̂, 4, Î)
t(z) +

∑
hI

A3(1̂, 4,−Î)A3(2̂, 3, Î)
u(z) +B(1,2)(z), (2.7)

where a hat indicates that the particle has had one of its spinors deformed and evalu-
ated at the appropriate pole. We have t(z) = (p1(z) + p3)2 = 〈13〉[13] + z〈23〉[13] and
u(z) = (p1(z) + p4)2 = 〈14〉[14] + z〈24〉[14] and therefore the locations of the poles are

zt = −〈13〉
〈23〉 , zu = −〈14〉

〈24〉 . (2.8)

A(i,j)
4 (0) corresponds to the amplitude for unshifted momenta, and then constraints on

three-particle couplings can be derived by demanding that distinct A(i,j)
4 (0) coincide at

z = 0 [8] i.e.
A(i,j)

4 (0) = A(k,l)
4 (0) ∀ i, j, k, l. (2.9)

This is the four-particle test.
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3 Constructibility criterion

In its original formulation, the above described method is reserved for constructible theories
for which B(i,j)(z) vanishes. In this case the singular parts of undeformed amplitudes can
be compared with one another and the full four-particle amplitude is determined by the
three-particle ones. Since B(i,j)(z) is regular, it is sufficient to prove that the amplitude
tends to zero as z → ∞. This is usually a non-trivial matter, necessitating a reference
to the Lagrangian and a detailed counting of powers of momenta. Fortunately, many
theories describing nature are constructible including, most notably, YM [7, 36] and GR [37]
(scalar field theories are not constructible in the sense described above. This has lead to
new, interesting momentum shifts and on-shell recursion relations being derived for scalar
theories with non-linearly realised symmetries [38, 39]).

However, for the boost-breaking amplitudes of interest here, it is unlikely that B(i,j)(z)
would vanish, since the unknown functions of energies will in general contribute positive
powers of z to the tree-level amplitude. Indeed, for both particles i and j, the deformation
of their energies is linear in z and so the divergence at large z gets worse as additional
powers of energy are included:

Ei(z) = Ei(0) + z

2(σ̄0)α̇αλ(j)
α λ̃

(i)
α̇ , (3.1)

Ej(z) = Ej(0)− z

2(σ̄0)α̇αλ(j)
α λ̃

(i)
α̇ . (3.2)

The BCFW method can still be useful for non-constructible theories, however. One
possibility is to introduce a distinction between accessible and inaccessible singularities of
A(i,j)

4 (z), along the lines of [40]. We say a singularity is accessible via a deformation of
momenta i and j if this singularity is approached as z → z∗ for some z∗. Otherwise we say
it is inaccessible. The regular term B(i,j)(z), by definition, cannot have any singularities in
the z−plane and therefore cannot contribute to any residues of the accessible singularities of
A(i,j)

4 (z). But it may exhibit inaccessible singularities. As an illustration of this distinction,
consider a single scalar theory which is famously non-constructible. In the absence of
additional global charges, the three-particle amplitude is a non-zero constant, A3 = g, and
so we have

A(1,2)
4 (0) = g2

(1
t

+ 1
u

)
+B(1,2)(0), (3.3)

A(1,4)
4 (0) = g2

(1
s

+ 1
t

)
+B(1,4)(0). (3.4)

The consistency condition A(1,2)
4 (0) = A(1,4)

4 (0) can be satisfied by choosing B(1,2)(z) = g2

s

and B(1,4)(z) = g2

u , since these two functions do not have any accessible singularities with
regards to their own deformations.

In the following section we will constrain boost-breaking amplitudes using the fact that
the regular term B(i,j)(z) does not have any accessible singularities. We will see that for
spinning particles, we can derive the highly non-trivial constraints first found in [1].

– 5 –
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4 Constraining three-particle interactions

In this section we will constrain three-particle interactions for theories of a single spin-
S particle with integer S. We will derive the constraints first presented in [1]. We also
checked that the BCFW techniques allow us to recover other results in [1], namely those of
(gravitational) Compton scattering and the full analysis for a scalar or a photon coupled to
gravity. Those calculations contain only minor differences compared with what is presented
below so we omit the details in favour of brevity. We remind the reader that we do not
impose boost invariance, but only demand that the free theory is Poincaré invariant, with
the on-shell condition E2 − p2 = 0 for each particle.

Consider the amplitude A4(1+S2−S3+S4−S), where superscripts denote the helicities
of incoming particles of some integer spin S. We will impose matching conditions be-
tween deformations (1, 2) and (1, 4). First consider (1, 2). Using the expressions for5

A3(1+S , 2+S , 3−S) and A3(1−S , 2−S , 3+S) given in (2.2), and6

p1(zt) + p3 = [13]
[14]λ

(3)λ̃(4), (4.1)

p1(zu) + p4 = [14]
[13]λ

(4)λ̃(3), (4.2)

to eliminate all copies of λ(I) and λ̃(I), which are the spinors associated with the exchanged
particle,7 we find

A(1,2)
4 (0) = B(1,2)(0) +

(1
t
F1̂,3F2̂,4 + 1

u
F1̂,−1̂−4F2̂,−2̂−3

)( [13]2〈24〉2
s

)S
. (4.3)

In the u-channel we have summed over the two possibilities for the helicity configuration
of the exchanged particle but given (4.2), only one of these is non-zero. To keep formulae
compact, here we have introduced subscripts to the F ’s to denote their arguments e.g.
F (Ei, Ej) ≡ Fi,j and F (Ei, Ej +Ek) ≡ Fi,j+k. Again, hats denote deformed objects evalu-
ated at the appropriate points e.g. in the 1/t coefficient, F1̂,3 ≡ F (Ê1(zt), E3) where Ê1(zt)
is the deformed energy of particle 1 evaluated at z = zt. Likewise, in the 1/u coefficient,
hatted energies are evaluated at z = zu. We have also removed the H/AH superscripts
since the functions are identical, due to parity, up to an inconsequential overall sign [1].

Now, we can also write

A(1,2)
4 (0) = B̃(1,2)(0) +

(1
t
F1,3F2,4 + 1

u
F1,−1−4F2,−2−3

)( [13]2〈24〉2
s

)S
, (4.4)

5These amplitudes arise from the leading order couplings. Higher-dimension operators give rise to the
A3(1+S , 2+S , 3+S), A3(1−S , 2−S , 3−S) amplitudes but we don’t consider these here. We refer the reader
to [1] for a discussion on these amplitudes.

6Here we have assumed [13] and [14] are non-zero, and therefore t = 0 and u = 0 are approached as
〈13〉 = 0 and 〈14〉 = 0 respectively (or as [24] = 0 and [23] = 0 respectively, by momentum conservation).

7For example, in the t-channel we set λ(I) = αλ(3) and λ̃(I) = βλ̃4 with αβ = [13]
[14] . When computing the

residue, α and β only appear in the product αβ.

– 6 –
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where here we dropped the hat above all the energies, which indicates that the expression is
evaluated at their undeformed values. This can be justified as follows. We assume that the
F ’s can be Taylor expanded around the undeformed energies. The deformed energies are

Ê1(zt) = E1 −
t

2〈23〉[13](σ̄
0)α̇αλ(2)

α λ̃
(1)
α̇ , (4.5)

Ê2(zt) = E2 + t

2〈23〉[13](σ̄
0)α̇αλ(2)

α λ̃
(1)
α̇ , (4.6)

with similar expressions evaluated at z = zu. Here we see that potential new singularities
generated by the deformed energies are all inaccessible, as they correspond to the vanishing
of 〈23〉 or [13], but these do not depend on z. Moreover, only the leading term in the
Taylor expansion will exhibit accessible singularities, since in all subleading terms t and
u will be cancelled out. We can therefore simply absorb all subleading terms into B(1,2),
thus introducing B̃(1,2) that still does not contain any terms singular in t or u. Although it
could become singular in some kinematic configurations, especially at s = 0, that is not a
problem, because this singularity is inaccessible and we only demand that B̃(1,2), for those
configurations for which it can be defined, does not have any singularities as a function of z.

We now play the same game for the (1, 4) deformation which amounts to interchanging
particles 2 and 4. We have

A(1,4)
4 (0) = B̃(1,4)(0) +

(1
t
F1,3F4,2 + 1

s
F1,−1−2F4,−4−3

)( [13]2〈24〉2
u

)S
. (4.7)

We discussed the S = 0 case earlier where we showed that equating A(1,2)
4 (0) and A(1,4)

4 (0)
requires us to make certain choices for the boundary terms. Let us now consider S > 0
with S an integer. We see that A(1,2)

4 (0) in (4.4) contains terms proportional to 1/(tsS) and
1/(usS) which are both singular in more than one Mandelstam variable and thus cannot
be accounted for or modified by B̃(1,2)(0) nor B̃(1,4)(0). A similar observation applies to
A(1,4)

4 (0) in (4.7). Thus, by matching the amplitudes we find the necessary condition

a

sSt
+ b

sSu
= c

uSt
+ d

uSs
, (4.8)

where

a = F1,3F2,4, (4.9)
b = F1,−1−4F2,−2−3, (4.10)
c = F1,3F4,2, (4.11)
d = F1,−1−2F4,−4−3. (4.12)

Recalling that s+ t+ u = 0, this constraint, given that it must be valid for all kinematics,
is equivalent to

auS − b(s+ u)uS−1 − csS + d(s+ u)sS−1 = 0. (4.13)

For S = 1 we therefore have a = (b− d) = −c, or equivalently,

F1,3F2,4 − F1,−1−4F2,−2−3 + F1,−1−2F4,−4−3 = 0, (4.14)

– 7 –
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which is simply an alternative form of (4.25) from [1]. Assuming that the F ’s are polynomi-
als, in [1] it was shown that the only solution to this system is F ≡ 0 once we impose that the
S = 1 functions are alternating polynomials as dictated by Bose symmetry.8 We therefore
see that the leading order three-particle interactions for three-photons must vanish, as is the
case for Poincaré invariant theories. For S = 2 we require a = b = c = d, or equivalently,

F1,3F2,4 = F1,−1−4F2,−2−3 = F1,−1−2F4,−4−3, (4.15)

which gives rise to the constraints (4.31) − (4.33) from [1] once we use the fact that the
S = 2 functions are symmetric in their arguments by Bose symmetry9 (this also makes
the a = c constraint trival). In [1] it was shown that the only solution to this system is
F = constant and so again the three-particle interactions are reduced to their Poincaré
invariant form, but this time the amplitudes are non-zero and are those of GR. Finally,
for S > 2, it is simple to see that a = b = c = d = 0 is required and therefore there are
no consistent three-particle interactions for these massless, higher-spin particles even when
boosts are broken, as was also concluded in [1].

5 Summary

Very recently, the singular parts of four-particle amplitudes were bootstrapped in [1] by
demanding that they factorise into a product of on-shell three-particle amplitudes on simple
poles. In that work, consistent factorisation was implemented directly without making use
of BCFW momentum shifts. In this short note, we have shown that the same results
can be derived by using BCFW shifts to automate consistent factorisation. We presented
full details for the illustrative cases of single spin-S particle amplitudes but have also
checked that the procedure produces the expected results for Compton scattering, and its
gravitational analogue, as well as for scalars or photons coupled minimally to gravity. For
single spin-S particles, the boostless bootstrap teaches us that the leading three-particle
couplings for a photon must vanish, the leading three-particle couplings for a graviton
must be those of GR, while massless higher-spinning particles do not self-interact. For
photon Compton scattering, boost-breaking interactions between the photon, scalars and
spin-1/2 fermions are allowed and can be described by Lagrangians with generalised boost-
breaking gauge redundancies. For gravitational Compton scattering, all couplings must
reduce to their boost-invariant counter-parts with universal couplings of all particles to
gravity. Finally, scalars and photons that are minimally coupled to gravity are forced to
have Poincaré invariant self-interactions (constant or vanishing, respectively for the scalar
and the photon). For full details see [1].

Although the theories we have considered are not a priori constructible, in the sense
that the boundary terms do not necessarily vanish at large z, we have still been able to use
BCFW shifts to constrain the three-particle couplings contributing to particle exchange.

8The spinor helicity parts of the S = 1 three-particle amplitudes are odd under the exchange of identical
particles so if the amplitudes are to be even by Bose symmetry, the F ’s must be alternating.

9For S = 2, the spinor parts of the three-particle amplitudes are even under the exchange of identical
particles and so the F ’s are symmetric polynomials.

– 8 –
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This does mean, of course, that the three-particle amplitudes themselves do not fully fix
the four-particle ones. Indeed, all of the four-particle amplitudes we have constructed are
defined up to the presence of “contact” terms that are regular for all kinematic config-
urations. It would be very interesting to investigate the possibility of using generalised
momentum shifts, possibly along the lines of [41], to recursively derive exact higher-point
amplitudes even if only for a subset of boost-breaking theories. It would also be very inter-
esting to investigate the generalised on-shell recursion relations introduced in [42], where
boundary terms are fixed with additional knowledge of a subset of the zeros of the deformed
amplitude, in our boost-breaking setting.
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