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Abstract: If the evaporation of a black hole formed from a pure state is unitary, the
entanglement entropy of the Hawking radiation should follow the Page curve, increasing
from zero until near the halfway point of the evaporation, and then decreasing back to zero.
The general argument for the Page curve is based on the assumption that the quantum state
of the black hole plus radiation during the evaporation process is typical. In this paper, we
show that the Page curve can result from a simple dynamical input in the evolution of the
black hole, based on a recently proposed signature of quantum chaos, without resorting
to typicality. Our argument is based on what we refer to as the “operator gas” approach,
which allows one to understand the evolution of the microstate of the black hole from
generic features of the Heisenberg evolution of operators. One key feature which leads
to the Page curve is the possibility of dynamical processes where operators in the “gas”
can “jump” outside the black hole, which we refer to as void formation processes. Such
processes are initially exponentially suppressed, but dominate after a certain time scale,
which can be used as a dynamical definition of the Page time. In the Hayden-Preskill
protocol for young and old black holes, we show that void formation is also responsible for
the transfer of information from the black hole to the radiation. We conjecture that void
formation may provide a microscopic explanation for the recent semi-classical prescription
of including islands in the calculation of the entanglement entropy of the radiation.
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1 Introduction

Stephen Hawking’s observation that a black hole emits thermal radiation leads to an appar-
ent contradiction with the unitarity of quantum mechanics [1, 2]: when a black hole formed
by the gravitational collapse of a pure state evaporates completely, one is left with only
the emitted thermal radiation, which appears to be in a mixed state. For the final state to
be pure, there must be global quantum correlations among different parts of the radiation
which are not visible in Hawking’s semi-classical calculations. Later, Don Page [3] pointed
out a further consequence of the unitarity of an evaporation process: the entanglement
entropy of the radiation will initially increase as predicted by Hawking, but will have to
decrease near the halfway point of the evaporation process, following what is now widely
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Figure 1. The Page curves of the black hole and the radiation. At t = 0, the black hole consists
of the whole system and is in a pure state. The dotted line is the semi-classical entropy of the
black hole from its horizon area. The dashed line is the entropy of the semi-classical radiation
from Hawking’s calculation. The solid curve is the entanglement entropy for the black hole and the
radiation in a full quantum description. It should be seen as two curves, one for the black hole and
one for the radiation, which coincide as required by unitarity. The Page time tp refers to time scale
where the solid curve turns around from increasing to decreasing with time.

referred to as the Page curve. See figure 1. The time scale at the turning point is referred
to as the Page time.

The argument for the Page curve is very simple. Consider a quantum system L = B∪R
with the Hilbert space HL = HB ⊗ HR, with the dimensions of HB and HR respectively
equal to dB and dR. Then on averaging the von Neumann entropies SB, SR for the B and
R subsystems over all pure states of L with the Haar measure, one finds1 [4–6]

SB = SR = min(SB,SR) + · · · , SB = log dB, SR = log dR (1.1)

where SB,R are the “coarse-grained entropies” of the B and R subsystems. For an evap-
orating black hole, one takes B and R to be the black hole and radiation subsystems re-
spectively. The Hilbert space of both B and R changes with time. At t = 0, B(t = 0) = L

while R(t = 0) is empty, and as time goes on the degrees of freedom in B(t) slowly go
over to R(t), until the black hole has completely evaporated. The Page curve then follows
from (1.1) if one assumes that during the evaporation process, the state of the black hole
plus radiation at any time is described by a “typical state” in the full Hilbert space, so that
the value of the von Neumann entropy for any subsystem is given by the Haar-averaged
value. The Page time is accordingly given by the time scale when dB(t) = dR(t).

While this derivation of the Page curve is largely kinematical and quasi-static, the
premise that the states of the black hole plus radiation during the evaporation process can
be considered “typical” is a highly non-trivial dynamical assumption. This assumption is
plausible at a heuristic level, and is partially supported by the conjecture that the evolu-
tion of the black hole subsystem should be governed by a highly chaotic and maximally
scrambling Hamiltonian [7–9]. But if a chaotic Hamiltonian evolution is indeed behind
the emergence of the Page curve, one should be able to directly identify the dynamical

1The expression below is the leading approximation in the regime dB � dR or dR � dB .
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principles underlying it, without invoking “typicality of states.” This is the main goal of
the present paper.

We consider simple quantum dynamical toy models for an evaporating black hole and
for an eternal black hole coupled to an infinite bath. In both cases, we assume that a chaotic
Hamiltonian governs the black hole subsystem, and find that the Page curve results from
simple universal features of operator evolution that are characteristic of a quantum chaotic
system. In particular, the change from increasing to decreasing behavior in the Page
curve of the radiation may be understood from change of dominance between two distinct
types of physical processes: “continuous” spreading of operators, and “discontinuous” void
formation recently discussed in [10]. This picture resonates well with and could provide
a microscopic explanation for the recent semi-classical derivations of the Page curves in
two-dimensional black hole systems [11–13] (see also [14–20]), where (1.1) arises from a
switch in quantum extremal surfaces [21]. In particular, this suggests that the “island”
contribution in the derivation of the Page curve for the Hawking radiation in [13] may have
a microscopic origin in void formation.

The basic idea of our approach is as follows. Consider a quantum-mechanical system
with an initial density operator ρ0 = |ψ0〉 〈ψ0|. To understand the evolution of the entan-
glement of a subsystem A with its complement Ā, it is convenient to decompose ρ0 into a
basis of operators {Oα} which respect the tensor structure HA ⊗HĀ,

ρ0 =
∑
α

aαOα . (1.2)

The time evolution ρ(t) of ρ0 and its entanglement properties can be obtained from the
evolution of the set of operators Oα on the right-hand side of (1.2),2 which we refer to as
an “operator gas”. For a chaotic system, the time evolution of a general operator exhibits
certain universal behaviors, such as ballistic spreading and the decay of out-of-time-ordered
correlation functions (OTOCs) [8], which reflect the fact that any initial operator typically
becomes supported in the entire system after a time scale known as the scrambling time,
as shown in the (a) term in figure 2. Another universal feature, recently identified in [10]
as being responsible for ensuring the unitarity constraint SA = SĀ, is that an operator
has a certain probability to develop a “void”, as shown in the (b) term in figure 2. In this
paper, we will show that void formation also underlies the Page curve and the transfer of
information from the black hole to the radiation.

More explicitly, for any subsystem A of the entire system, we can decompose the time
evolution of an operator Oα in (1.2) as

Oα(t) = O(1)
α (t) +O(2)

α (t), O(1)
α (t) = 1̃A ⊗OĀ (1.3)

where 1A denotes the identity operator in A, ÕĀ is some operator in Ā, and O(2)
α (t) is an

operator whose restriction to A is orthogonal to 1A. In figure 2, the term (b) corresponds
to O(1)

α (t), and the term (a) is the largest contribution to O(2)
α (t). Given that the space of

all operators is a Hilbert space, we can also associate a weight or “probability” for Oα(t)
2See [22, 23] for earlier discussion.
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Figure 2. Universal features of operator growth in a chaotic system. The region within the black
circle represents the space of degrees of freedom, and shaded regions indicate the subsystems where
the operators are supported. A given initial operator evolves to a superposition of different final
operators. After some time t greater than the scrambling time t∗, a typical process is one where
the operator becomes supported on the entire space, as shown in term (a). For any subsystem A,
there is a small probability that the final operator is equal to the identity in A, as shown in the
term (b). We refer to the presence of terms like (b) as void formation in A.

to develop a void in subsystem A

P
(A)
Oα (t) =

Tr
((
O(1)
α (t)

)†
O(1)
α (t)

)
Tr
(
O†α(t)Oα(t)

) . (1.4)

Below we will refer to P (A)
Oα (t) as the probability of forming a void in A. The probability for

a basis operator Oα to develop a “macroscopic” void is very small, exponentially suppressed
by the number of degrees of freedom in the void region, but surprisingly can lead to O(1)
violation of unitarity when neglected [10].

Applying the operator gas approach to a quantum model of black hole evaporation, one
finds that the entanglement entropy3 of the radiation can be separated into contributions
from two distinct physical processes, illustrated in cartoon pictures in figure 3,

e−S
(R)
2 = Tr ρ2

R = e−SR(t) + e−SB(t) + · · · (1.5)

where SB and SR were defined in (1.1) and · · · denotes contributions which are suppressed
by further powers of e−SR or e−SB .4 The first term on the right hand side of (1.5) arises from
processes like the one shown in figure 3(a), where a basis operator Oα originally in the black
hole subsystem becomes supported in the black hole as well as the radiation subsystem due
to the “continuous” process of Hawking radiation. Such processes would by themselves lead
to indefinite growth of the entanglement entropy of the radiation, like in the dashed line
in figure 1. The second term in (1.5) comes from “discontinuous” void formation processes
illustrated in figure 3(b), where the part of an operator originally supported in the black
hole subsystem can “jump” to the radiation subsystem. Such processes are exponentially
suppressed in terms of the coarse-grained black hole entropy before the Page time [3], but
dominate after the Page time and lead to the turn-around of the Page curve.

3For simplicity, in this paper we will examine only the second Renyi entropy.
4Except near t = 0 or near the end of the evaporation, both SR and SB can be considered macroscopic.
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Figure 3. Evolution of the operator gas in an evaporating black hole. In all cases, the region on
the left represents the black hole, and the region on the right represents the radiation. The black
hole subsystem B(t) grows smaller as a function of time during the evaporation process, while the
radiation subsystem R(t) grows larger. (a) During evolution, an operator which is supported in the
full system (i.e. including both B and R) remains supported in both subsystems. (b) Operators
which are initially supported in the black hole at time t have some probability of “jumping” outside
B(t+ ∆t) at a later time, forming a void which includes the black hole.

The change of exponential dominance exhibited in (1.5) provides an explanation for
why the Page curve is visible semi-classically, and is similar to the change of exponential
dominance between two saddle points in the Euclidean path integral in [19, 20], where the
second void formation term in (1.5) arises from replica wormholes. We emphasize that the
change of exponential dominance in (1.5) in our analysis comes from dynamical processes
and is Lorentzian in nature.

We also consider a simple quantum-mechanical toy model for an eternal black hole
coupled to a one-dimensional bath, motivated by the discussion of [14, 20]. See figure 4(a).
In this case the Hilbert spaces of the black hole and the bath do not change, but the two
subsystems can exchange quantum information through their interactions. As a result, if
we start with an unentangled state between the black hole and the bath, the entanglement
entropy of both subsystems should increase with time, and eventually saturate at 2SBH,
the maximum possible entropy of the finite-dimensional black hole system. SBH is again
the coarse-grained entropy for the black hole, which is now a constant with respect to time.
See the solid curve in figure 4(b) for the evolution of entanglement entropy expected from
unitarity in this setup. The saturation time may be considered a counterpart of the Page
time. Applying the operator gas approach to such a system, we find the entanglement
entropy of the bath has the form

e−S
(bath)
2 = e−aseqt + e−2SBH + · · · (1.6)

where seq is the equilibrium entropy density for the bath, and a is some constant. The
value of a depends on the nature of the bath system and the initial state of the bath.
For illustrations, we consider two models of bath systems, a “chaotic” bath, and a “free”
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Figure 4. (a) A schematic illustration of a two-sided eternal black hole coupled to a one-dimensional
bath. (b) The evolution of the entanglement entropies of the black hole and the bath in this setup.
The black curve represents the evolution of the entanglement entropy of both the black hole and
the bath under unitary evolution, and is hence a counterpart of the Page curve for this setup.
The red dashed line shows the evolution of the entanglement entropy of the radiation from naive
semiclassical calculations, or without including void formation processes, which is a manifestation
of the information loss problem in this setup.

bath. In (1.6), the first term again arises from “continuous spreading” of operators as
in figure 3(a), while the second term comes from the “discontinuous” void formation of
figure 3(b), which becomes dominant after the counterpart of the Page time

tp = 2
a

SBH
seq

. (1.7)

Again the contribution of void formation ensures that the entanglement entropy of the
bath is equal to that of the black hole after tp, and hence plays the same role as replica
wormholes and island contributions. Without this contribution, the entanglement entropy
of the bath grows indefinitely, as shown in the dashed curve in figure 4(b).

We also explore the dynamical mechanisms for the transfer of information between
the black hole and the radiation/bath in both the evaporation and the bath models. In
the Hayden-Preskill protocol [9], a process in which a message thrown into a black hole
comes out in the radiation, one finds that again processes like figure 3(b) are responsible
for transferring the information from the black hole to the radiation. If we ignore such
processes, the information is simply lost from both subsystems.

The plan of the paper is as follows. In section 2, we consider a simple toy model for
black hole evaporation, and derive the Page curve for the black hole and the radiation
from simple assumptions about operator growth in a chaotic system. We then discuss the
consequences of void formation for the Hayden-Preskill protocol in this model. In section 3,
we describe our models for an eternal black hole coupled to a bath, and explain the role of
void formation in these models for both the emergence of the Page curve and information
transfer. We conclude in section 4 with some open questions and future directions. We
have also included two technical appendices to supplement the discussion of the main text.
Note that in this paper, we assume that black holes are examples of chaotic quantum-
mechanical systems and use general arguments applicable to such systems, like in the
discussions of [4] and [9]. Our arguments do not directly make use of event horizons and
black hole geometries.

– 6 –



J
H
E
P
0
3
(
2
0
2
1
)
0
8
8

2 A toy model for black hole evaporation

2.1 The model and setup

In this section, we consider a simple quantum mechanical model for black hole evaporation,
in which the degrees of freedom of a black hole system slowly go into a system of radiation.
The time-evolution in the black hole is assumed to be chaotic.

We take the full quantum-mechanical system L to consist of k generalized “spins”, each
of which has a Hilbert space of dimension q. The full Hilbert space is then H = ⊗ki=1Hi
with total dimension qk, where i labels different spins. k is assumed to be very large.
For computational convenience, we will take q large in all subsequent sections, but our
conclusions should qualitatively apply to any finite q.

The black hole and radiation subsystems at time t are respectively denoted as B(t)
and R(t), with L = B(t) ∪ R(t). Initially, B(t = 0) = L, so the black hole consists of the
full system, and R(t = 0) is empty. The initial state is taken to be a pure state.

We will take time steps to be discrete. The time-evolution from t = n to t = n + 1
consists of first applying a unitary operator Ut on the subsystem B(t), and then taking one
spin5 out of B(t) and making it part of R(t+ 1). At t ≥ k, B(t) is empty while R(t) = L.
The time-evolution is illustrated in figure 5. No non-trivial time-evolution is applied within
R(t). We can interpret the length of each time step as being equal to the scrambling time
of the black hole.6 We assume Ut arises from a chaotic Hamiltonian, whose specific form
will not be of concern to us. Our goal is to derive the Page curve for the second Renyi
entropies S2 for B(t), R(t) using only some general properties of Ut.

To calculate S2 for B(t) and R(t) using the operator gas approach, it will be convenient
to expand the density operator ρ(t) of the system in terms of a complete set of basis
operators which respects the tensor product structureHB(t)⊗HR(t) for all t. More explicitly,
for the i-th site (or spin), we define an orthonormal basis of operators Oic, c = 0, . . . , q2−1,
which is normalized as

tr((Oic)†O
j
d) = qδcdδij , Oi0 = 1i (2.1)

where 1i is the identity operator for the Hilbert space Hi. Orthogonality with Oi0 implies
Oic, c = 1, · · · q2− 1, are all traceless. A convenient choice of basis (suppressing indices i) is

Oc = Xs1Zs2 , s1, s2 = 0, 1, · · · q − 1 (2.2)

where X and Z are the shift and clock matrices given more explicitly in appendix A.
An orthonormal basis of operators for the full system, which will be denoted as Oα, α =
0, 1, · · · q2k − 1, can be obtained from tensor products of {Oic}. The basis operators satisfy

TrO†αOβ = δαβ q
k . (2.3)

O0 = 1 is the identity operator for the full Hilbert space H, and all other Oα’s are traceless.
5Note that if instead we took some n� k spins from the black hole into the radiation at each time-step,

the dependence of the entanglement entropies on the coarse-grained entropies SB(t) and SR(t) at all times
would be unaffected.

6For a realistic black hole system, the scrambling time will change as the black hole evaporates, but this
does not affect our conclusions. Note that the total Hilbert space dimension of the radiation emitted per
unit scrambling time is O(SBH).
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Figure 5. Time-evolution of the evaporating black hole. In the first half of each time-step, a
Haar-random matrix from U(qk−t) is applied within B(t), and in the second half, a site is taken
out of B and put in R to give B(t+ 1) and R(t+ 1).

We will take the initial density operator to be a pure state. As explained in appendix A,
any pure state can be written in the form

ρ0 = 1
qk

∑
a∈I
Pa (2.4)

where I is a set of qk mutually commuting operators {Pa} (including the identity operator),
which can again be normalized as in (2.3). Under time evolution, we can expand Pa(t) in
the {Oα} basis,

Pa(t) = U †(t)PaU(t) =
∑
β

cβa(t)Oβ (2.5)

where U(t) denotes the evolution operator. Note that the identity operator remains the
identity at all time. From unitarity of U(t),∑

β

|cβa(t)|2 = 1 . (2.6)

We can interpret |cβa(t)|2 as the probability of Pa evolving to Oβ at time t.
Under time-evolution, using (2.5), the reduced density matrix for a subsystem A is

given by7

ρA(t) = TrĀρ(t) = 1
qk

∑
a∈I

TrĀPa(t) = 1
q|A|

1A + 1
q|A|

∑
a∈I

∑
β∈A,β 6=1A

cβa(t)Oβ (2.7)

where |A| is number of spins in A. Due to the tracelessness of all nontrivial basis operators,
only Oα of the form Oβ ⊗ 1Ā with Oβ an operator in A (denoted by β ∈ A) contribute to
TrĀOα. Note that if none of the Oβ on the right-hand side of (2.5) is contained entirely in

7For notational convenience we will take states of the system to evolve by U†, i.e. ρ(t) = U†(t)ρ0U(t).
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A at time t, then the only operator contributing to ρA(t) is the identity operator, in which
case the second term in (2.7) is absent and A is maximally entangled with Ā.

Using (2.7), we find that

e−S
(A)
2 (t) = TrAρ2

A(t) = 1
q|A|

∑
a1,a2∈I

∑
β∈A

cβa1(t)cβ∗a2 (t) ≈ 1
q|A|

+ 1
q|A|

NA(t) (2.8)

where
NA(t) ≡

∑
a∈I

∑
β∈A,β 6=1A

|cβa(t)|2 (2.9)

is the expected number of nontrivial operators in the set I which are “localized” in subsys-
tem A at time t. Note that to get the final expression in (2.8), we ignore the contribution
from terms with a1 6= a2 in the second-to-last expression in (2.8), as if we assume that the
phases of cβa are uncorrelated in a chaotic system, then the total contribution from such
terms is suppressed by order O(q−|A|) relative to terms with a1 = a2.

We will now assume that Ut at each time step comes from a chaotic Hamiltonian.
In [10], it was argued that a chaotic Hamiltonian can be characterized by its probability
distribution for “void formation”, where the probability of forming a void in a subsystem
A is as defined in (1.4). From studies of local random unitary circuits, it was conjectured
there that in a chaotic system, after the scrambling time, the probability for a generic initial
operator O to develop a void in a sufficiently large subsystem A is given by the“random
void distribution”:

P
(A)
O (t) = 1

d2
A

(2.10)

where dA is the dimension of the Hilbert space of A. In particular, for the initial operators
Pa, (2.10) implies that

P
(A)
Pa (t) =

∑
β with void in A

∣∣∣cβa(t)
∣∣∣2 = 1

d2
A

(2.11)

where “β with void in A” refers to the requirement that each Oβ in the sum has the form
1A ⊗OĀ with OĀ some operator in the complement of A. (2.10) is the key property that
we will use below to derive the Page curve. We stress again that each time step in our
model should be considered a unit scrambling time of the black hole subsystem. Hence,
we will assume that (2.10) holds for each time-step and for any subsystem A ⊂ B(t).

Note that one choice of time-evolution for which (2.10) can be readily seen to hold is
when we take Ut to be a Haar-random unitary from U(q|B(t)|), where |B(t)| is the number
of spins in B(t). But the random void distribution should apply to more general chaotic Ut.

2.2 The Page curve for the radiation and void formation

Let us first consider the evolution of S2 for the radiation subsystem, using (2.8) with
A = R(t). For this purpose, we need to find the expected number NR(t) of nontrivial
operators that are “localized” in R(t). Consider first t = 1. The only contribution to
NR(t) comes from void formation processes in the black hole, where an initial operator Pa
transitions to an operator which is equal to the identity in B(t = 1), i.e. trivial at all sites
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Figure 6. Macroscopic void formation processes in which operators with non-trivial support some-
where in B(t) evolve to operators trivial at all sites in B(t+1), shown in (a) at t = 0 and in (b) at a
later time. Operators have non-trivial support at shaded sites, the region enclosed by the rectangle
is the one where the time-evolution operator at time t acts, and the encircled site is the Hawking
radiation emitted between times t and t+ 1.

except the one which will be taken as radiation, see figure 6(a). For a single Pa, from the
random void distribution (2.10), the probability of this process is q−2(k−1). Since the total
number of initial operators Pa is qk, the total expected number NR(t) for all Pa ∈ I is
qkq−2(k−1) = q−k+2. We then find that

e−S
(R(t=1))
2 = 1

q
+ q−k+1 = e−SR(t=1) + e−SB(t=1) (2.12)

where SB(t=1) = (k − 1) log q and SR(t=1) = log q are the coarse-grained entropies for the
black hole and the radiation. Note that the dominant term comes from the identity in (2.7),
and thus R(t = 1) is close to maximally entangled with B(t = 1).

The story at subsequent time steps works similarly: the contributions to NR(t) come
from processes of forming a void in B(t). The leading contribution in the large q limit
comes from processes where the void is formed during the evolution from t− 1 to t,

OB(t−1) ⊗OR(t−1) → 1B(t) ⊗OD ⊗OR(t−1) = 1B(t) ⊗O′R(t) (2.13)

where D denotes the Hawking radiation emitted from t− 1 to t, and OB(t−1) and OD are
non-trivial. See figure 6(b). From (2.10), such processes give NR(t) = qkq−2(k−t) = q−k+2t.
Since |R(t)| = t, we thus find from (2.8) that

e−S
(R(t))
2 = 1

qt
+ q−k+t = e−SR(t) + e−SB(t) . (2.14)

The two terms change dominance at the Page time tp = k
2 . Thus, before the Page time

void formation processes are exponentially suppressed compared with the contribution of
the identity operator in (2.7), but they dominate after the Page time.

Note that a typical process during the evolution of an operator is

OB(t−1) ⊗OR(t−1) → OB(t) ⊗OD ⊗OR(t−1) = OB(t) ⊗O′R(t) (2.15)

with OB(t) non-trivial at all sites in B(t) and OD non-trivial, as shown in figure 7. If all
non-trivial operators evolved in this way at all times, then the only contribution to (2.7)
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Figure 7. A typical process in the chaotic evolution is one in which operators with non-trivial
support somewhere in B(t) evolve to operators with non-trivial support at all sites in B(t).

for A = R(t) would be from the identity operator in the initial density matrix, and one
would have only the first term in (2.14), leading to indefinite growth of S(R(t))

2 continuing
past the Page time.

In the derivation of the island formula for a toy model involving Jackiw-Teitelboim
gravity with an end-of-the-world brane in [19], e−S

(R)
2 is seen to be a sum of exponentials

coming from distinct saddle points in the Euclidean path integral, which have precisely the
same form as (2.14). In our discussion, we are able to attribute the two contributions to
distinct dynamical processes in operator growth. The discussion above also suggests that
the contribution of the “island” is the semi-classical manifestation of void formation.

We finally note that at finite q, the story should hold qualitatively except that the
behavior of the system near the transition region at the Page time will be more complicated.

2.3 The Page curve for the black hole

Let us now look at evolution of S2 for the black hole, taking A = B(t) in (2.8). At t = 1,
only those Oβ in (2.5) which have the identity operator at the site which is taken to be
R(t = 1) will contribute to NB(t=1). In the large q limit, the random void distribution (2.10)
can be applied to a single spin, so the probability for a single operator Pa to remain in
B(t = 1) is q−2. Thus the total expected number of operators that remain in B(t = 1) is
given by NB(t = 1) = qkq−2 = qk−2. Since |B(t = 1)| = k − 1, we thus find from (2.8)

e−S
(B(t=1))
2 = 1

qk−1 + 1
qk−1 q

k−2 = 1
qk−1 + 1

q
(2.16)

We can immediately see in the large q limit that equation (2.16) is identical to (2.12)
as required by unitarity. But note that now the first term in (2.16), which is equal to
e−SB(t=1) , arises from the contribution of the identity operator instead of that of non-trivial
operators.

For general t we have similarly NB(t+ 1) = 1
q2NB(t) due to the probability 1/q2 of the

process (shown in figure 8)

OB(t) ⊗ 1R(t) → OB(t+1) ⊗ 1D ⊗ 1R(t) (2.17)

– 11 –
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Figure 8. Microscopic void formation processes in which operators with non-trivial support some-
where in B(t) evolve to operators trivial at one site in B(t+1), which becomes part of the Hawking
radiation at time t+ 1. Such processes contribute to the second term in (2.18).

where D is the Hawking radiation emitted from time t to time t+1, and OB(t) and OB(t+1)
are non-trivial. Since |B(t)| = k − t, we have

e−S
(B(t))
2 = 1

qk−t
+ 1
qk−t

qk−2t = 1
qk−t

+ 1
qt

(2.18)

which again agrees with (2.14). Now the first term, which comes from the identity operator,
dominates after the Page time tp = k

2 . As expected, this implies B(t) becomes almost
maximally entangled with R(t) after the Page time.

The change of dominance between the two terms in (2.18) at the Page time tP = k
2

may be seen as the microscopic origin of the change of dominance between two sets of
quantum extremal surfaces in the semi-classical discussion of [11, 12]. In that discussion,
before the Page time, the quantum extremal surface is trivial, reflecting the “perturbative”
nature (that is, independent of the coarse-grained black hole entropy) of entanglement
growth in (2.18), while after the Page time, the quantum extremal black hole is close to
the black hole horizon and given by the coarse-grained black hole entropy. The operator
growth origin of (2.18) highlights that when the entanglement entropy of the black hole
is given by the coarse-grained entropy, it is close to being maximally entangled with the
radiation, and its reduced density matrix is close to the identity operator.

Note that in contrast to the discussion of the entanglement entropy for the radiation
in the last subsection, which involves forming voids in the entire black hole subsystem
(which is macroscopic at all times of interest), the above discussion of the evolution of the
entanglement entropy for the black hole only involves forming “microscopic” voids at single
sites with a probability independent of the coarse-grained black hole entropy. This may
be viewed as a “perturbative” contribution in terms of the semi-classical gravity descrip-
tion. This may explain why a more conventional quantum extremal surface prescription
was sufficient for correctly calculating the Page curve for the black hole [11, 12], while a
new element involving “islands” had to be introduced to calculate the Page curve for the
radiation [13].
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2.4 Information transfer from the black hole to the radiation

Let us now use the operator gas approach to study the Hayden-Preskill process [9] and
explore how information originally in a black hole is transferred to the radiation through
the Hawking process. In our setup, this can be achieved by taking a subspace P consisting
of p� k spins in the black hole to be maximally entangled with a qp-dimensional reference
system Q, and studying the evolution of the mutual information of various subsystems with
Q at later times. We can introduce the reference system either for a young black hole, i.e.
at t = 0, or for an old black hole after the Page time. We will see in both cases that by
maintaining unitarity, void formation ensures that the information originally in subsystem
P is actually transferred to the radiation. Neglecting void formation, one finds that the
information is simply lost.

2.4.1 A young black hole

At t = 0, we take p out of k spins to be maximally entangled with a qp-dimensional reference
system Q. The time evolution operator is UL⊗1Q, where UL is the time-evolution operator
for L = B∪R as described in section 2.1. We then examine the time-evolution of the mutual
information of Q with B(t) and R(t) to track the information that was originally contained
within P .

We take the initial state to have the form

|ψ0〉 = |χ〉PQ ⊗ |φ〉L−P (2.19)

where |χ〉PQ is a maximally entangled state between P and Q, and |φ〉 is an arbitrary pure
state. As explained in appendix A, the initial density operator can then be expanded in
terms of basis operators as

ρ0 = 1
qk+p

∑
i

OQi ⊗ Õ
P
i ⊗

∑
α∈I
PL−Pa (2.20)

where i goes over all basis operators in system Q, ÕPi is fixed from OQi , and I is a set of
qk−p commuting operators {Pa} of L− P . In particular, when OQi is given by 1Q (say for
i = 0), the corresponding ÕP0 is given by 1P and vice versa.8 The density operator at time
t is then given by

ρ(t) = 1
qk+p

∑
i

OQi ⊗ U
†
(
ÕPi ⊗

∑
a∈I
PL−Pa

)
U . (2.21)

Since U does not act on Q, Q is maximally entangled with L = B ∪R at any t, i.e.

ρQ = 1
qp

1Q =⇒ S
(Q)
2 = p log q ≡ SQ . (2.22)

From unitarity, the mutual information of Q with B(t) and R(t) should satisfy9

I2(Q,B(t)) + I2(Q,R(t)) = 2S(Q)
2 = 2SQ (2.23)

at all times. At t = 0, I2(Q,R) = 0 and all the information of the subsystem P is in B.
8See appendix A for more details on the operator form of maximally entangled states.
9I2(A,B) below is the second Renyi version of the mutual information: I2(A,B) = S2(A) + S2(B) −

S2(AB).
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The calculations of various quantities S(B)
2 (t), S(QB)

2 (t) and S(R)
2 (t), S(QR)

2 (t), that are
needed to obtain the mutual information between Q and B,R are in parallel with our earlier
discussion of section 2.3 and section 2.2, so we will only briefly mention the calculation of
S

(R)
2 (t) and S(QR)

2 (t) as illustrations.
To obtain ρR we need to take the trace over Q and B(t). When tracing over Q, only

the i = 0 term in (2.21) corresponding to the identity operator contributes, i.e.

ρR(t) = 1
qk

TrB(t)

(
U †
(

1P ⊗
∑
α∈I
PL−Pa

)
U

)
. (2.24)

When tracing over B(t), as in the discussion of section 2.2, only operators with a void in
subsystem B(t) can contribute. The only difference here from the discussion of section 2.2
is that we now start with a more restricted set of qk−p operators, which gives

e−S
(R)
2 (t) = 1

qt
+ q−k−p+t + · · · (2.25)

where the first term comes from the identity and the second comes from void formation in
B(t). For SQR2 (t), since now Q is part of the subsystem, any i in (2.21) contributes, so we
have qk+p initial operators, which then gives

e−S
(QR)
2 (t) = 1

qt+p
+ q−k+t + · · · . (2.26)

We thus find that the Renyi mutual information between Q and R evolves as

I2(Q,R; t) =


0 t < (k − p)/2
(p− k + 2t) log q (k − p)/2 < t < (k + p)/2
2SQ t > (k + p)/2

(2.27)

where we have only kept the leading term in the large q limit.
From an analysis similar to that of section 2.3, we find

I2(Q,B; t) =


2SQ t < (k − p)/2
(k + p− 2t) log q (k − p)/2 < t < (k + p)/2
0 t > (k + p)/2

. (2.28)

We see that (2.27) and (2.28) indeed satisfy (2.23).
From (2.28) we see that the information starts “leaking” out of the black hole at t = k−p

2
when |Q|+ |R(t)| = |B(t)|, and the information will have completely left at t = k+p

2 when
|B(t)| + |Q| = |R(t)|. Between these two time scales, the information is shared between
the black hole and radiation.

Without including void formation processes in B(t), we would have S(Q∪R)
2 (t) = (t +

p) log q, S(R)
2 (t) = t log q and I2(Q,R; t) = 0 for all t < k, while I2(Q,B; t) is still given

by (2.28). We would then find that the information leaves the black hole, but does not
show up in the radiation, and is thus lost.
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2.4.2 Old black hole and secret sharing

We now briefly discuss the story of an old black hole as in the original Hayden-Preskill
protocol [9], but instead of taking the evolution of the black hole by a random unitary, we
only assume that it is a chaotic evolution obeying the random void distribution (2.10).

Consider an old black hole B which is maximally entangled with a radiation system R

with |R| > |B|. One adds to the black hole a system A representing a diary thrown into it
and the combined system B̃ = A ∪ B is acted on by a unitary U . After the action of U ,
we separate from B̃ a subsystem D, which is the newly emitted radiation. We will denote
the remaining black hole subsystem as B′, so that B̃ = D ∪ B′, and the full radiation
as R′ = D ∪ R. A main point of [9] was that the information of A can be obtained
from R′ = D ∪ R with significant probability if dD � dA, where dD,A are respectively
the dimensions of the Hilbert space of D and A. We again maximally entangle A with
a reference system Q and track the flow of information from system A using the mutual
information of Q with various subsystems.

We will see below that void formation is again responsible for ensuring the information
originally in system A is indeed transferred to the full radiation subsystem R′. In fact we
will see that the secret in A is not in any of B′, D,R subsystems alone, but can be recovered
by having any two of them. The technical details are again very similar to those of previous
sections and we will be brief.

The state of the full system after we throw in the diary has the form

ρi = ρQA ⊗ ρBR (2.29)

where ρQA is the density operator for a maximally entangled state between Q and A, and
ρBR is the density operator for a maximally entangled state between B and R. They can
be written respectively as (see appendix A)

ρQA = 1
d2
A

∑
i

ÕQi ⊗O
A
i , ρBR = 1

d2
B

∑
α

OBα ⊗ ÕRα . (2.30)

Note that the ÕRα are not basis operators for the entire system R, but instead for some
dB-dimensional subspace of R that is maximally entangled with B. The final state has the
form

ρf = 1
d2
Ad

2
B

∑
α

∑
i

ÕQα ⊗ U(OAα ⊗OBi )U † ⊗ ÕRi (2.31)

where U(OAα ⊗ OBi )U † can then be further separated into a sum of products of basis
operators of B′ and D.

Now let us consider the reduced density matrices for various subsystems in the final
state. Since U does not act on Q and R, these subsystems are still maximally entangled
with their respective complements, i.e.

ρQ = 1
dA

1Q, ρR = 1
dB

Π (2.32)

where Π is the projector onto the subspace of R which is maximally entangled with B.
Since Q is maximally entangled with the combined system L = A ∪ B ∪ R = B′ ∪D ∪ R,
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its mutual information with any subsystem C of L and its complement C̄ in L satisfies

I(Q,C) + I(Q, C̄) = 2 log dA . (2.33)

Now consider ρB′ , which receives contributions from operators in (2.31) of the form
OB′
a ⊗ 1Q⊗ 1D ⊗ 1R. This is only possible when both α and i are zero in (2.31). Similarly

for ρD, ρDB′ , and ρQR. We thus find that these density matrices are all maximally mixed

ρB′ = 1
dB′

1B′ , ρD = 1
dD

1D, ρDB′ = 1
dAdB

1D⊗1B′ , ρQR = 1
dAdB

1Q⊗Π . (2.34)

Now consider ρDR which can be written as

ρDR = 1
dAd2

B

∑
α

TrB′

(
U1A ⊗OBαU †

)
⊗ ÕRα = 1

dBdD
1DR + ρ̃DR (2.35)

where the nontrivial contribution ρ̃DR (the part not including the identity) comes from
void formation in B′, i.e. the part of U

(
1A ⊗OBα

)
U † containing operators of the form

1B′ ⊗ OD. Similarly, the nontrivial part of ρQD arises from the part of U
(
OAi ⊗ 1B

)
U †

containing 1B′ ⊗ OD. One can similarly find the non-trivial parts of the other reduced
density matrices.

The final results for dD � dA are:

I2(Q,B′) = d2
A

d2
D

≈ 0, I2(Q,R) = 0, I2(Q,D) = d2
D

d2
B

≈ 0 (2.36)

and

I2(Q,DR) = 2logdA−
d2
A

d2
D

, I2(Q,B′D) = 2logdA, I2(Q,B′R) = 2logdA−
d2
D

d2
B

. (2.37)

So the relation between Q and various subsystems have the structure of secret sharing
among three parties B′, D,R. In particular, I2(Q,DR) ≈ 2 log dA corresponds to the fact
that the information can be recovered from the radiation when dA/dD � 1. Without void
formation in B′, I2(Q,DR) would be zero at all times.

3 An eternal black hole coupled to an infinite bath

We will now consider a toy model for an eternal black hole coupled to a bath in (1 + 1)-
dimensions recently discussed in [14] (see also [18, 20, 24]). Again we will find that void
formation is responsible for the emergence of the Page curve shown in figure 4, and the
transfer of information from the black hole to the bath.

3.1 Description of the model and setup

Consider a (1+1)-dimensional lattice system extending from −∞ to ∞, where the local
Hilbert spaces of sites other than 0 and 1 have dimension q, while the local Hilbert spaces
at sites 0 and 1 have dimension N = qk, with k large. The quantum subsystems at 0
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and 1 are taken in a thermal field double state at infinite temperature, and describe an
eternal black hole.10 There is no interaction between sites 0 and 1, but there are “internal”
interactions at sites 0 and 1 respectively. The spin chain at the remaining sites corresponds
to an infinite (1 + 1)-dimensional non-gravitational system, the “bath,” which the black
hole couples to. We will take the bath to have L sites on each side and take L to infinity
at the end. The dimension of the Hilbert space for the full system is thus q2k+2L. A
q-dimensional subspace at site 0 is coupled to site −1, and a q-dimensional subspace at
site 1 is coupled to site 2, to introduce interactions between the black hole and the bath.
The interactions among all the other sites are assumed to be local. See figure 9 for the
configuration and details on time evolution. Note that the time-evolution does not couple
the parts [−∞, 0] and [1,∞] of the system, which we will sometimes refer to as the left and
right or L and R subsystems.

We take the initial state at t = 0 to be

ρ0 = ⊗i≤−1ρi ⊗ ρ01 ⊗i≥2 ρi (3.1)

where ρ01 is the density operator for the maximally entangled pure state between 0 and 1,

ρ01 = |ψ01〉 〈ψ01| , |ψ01〉 = 1√
N

N∑
n=1
|n〉0 |n〉1 (3.2)

and ρi = |ψ〉 〈ψ| is a pure state which we will take to be the same for all sites of the bath.
We can then expand ρ0 in terms of basis operators discussed around (2.1)–(2.3) as

ρ0 = 1
q2L+2k

∑
c

Oc ⊗ Õc ⊗
∑

b∈Ibath

Ob ≡
1

q2L+2k

∑
a∈I
Oa (3.3)

where Oc runs over all basis operators at site 0 (with Õc at site 1 fixed by Oc), Ibath denotes
the set of q2L basis operators formed by taking tensor products of all possible powers of the
Zi operators defined in section 2.1 at different sites, and I collectively denotes the whole set
of initial operators. See appendix A for more details on how to obtain (3.3). Note that the
Oa satisfy an orthonormality condition similar to (2.3), with qk in (2.3) replaced by q2L+2k.

We are interested in the evolution of S2 for the black hole B = B1 ∪ B2 and bath
B = B1 ∪ B2 subsystems. See figure 9(a). Instead of (3.1), we can also consider an initial
state in which the left and right bath systems are entangled with each other. This will not
lead to any difference in the behavior of entanglement growth for the regions B and B.11

Recall from (2.8)–(2.9) that S2 for a subsystem A is given by

e−S
(A)
2 (t) = 1

dA
+ 1
dA
NA(t), NA(t) ≡

∑
a∈I

∑
β∈A,β 6=1A

|cβa(t)|2 (3.4)

where dA is the dimension of Hilbert space in subsystem A.
10The subsystem at 0 and 1 can be viewed as the (0 + 1)-dimensional boundary dual for a (1 + 1)-

dimensional black hole. It can also be viewed as a toy microscopic description of the black hole with details
about the spacetime structure suppressed.

11It will, however, change the evolution of the mutual information between B1 and B2, as we discuss in
section 3.3.
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Figure 9. Lattice toy model for an eternal black hole coupled to an infinite bath. The subsystem
at two sites, 0 and 1, describes the black hole. Various regions of interest are shown in (a). (b)
and (c) show the time evolution. We imagine that site 1 consists of k = logq N � 1 q-spins which
interact among one another, and one of them, 10 is coupled to 2. Similarly with site 0. Unitary
evolution at even time-steps is given by (b), where we apply some unitary matrix U that is assumed
to come from a chaotic Hamiltonian within sites 0 and 1, and unitary matrices V between 2 and 3,
-1 and -2, and so on. At odd time-steps, shown in (c), we apply unitaries V to sites 00 and −1, −2
and 3, 10 and 2, 3 and 4, and so on. Note that V between different sites at different times can be
different; we use the same symbol for notational convenience.

The qualitative features of our discussion will not be sensitive to the details of the uni-
tary operator U which governs the evolution of the black hole subsystem or the interactions
V among bath degrees of freedom or between the black hole and the bath, see figure 9(b)-(c).
We will assume U is governed by some chaotic Hamiltonian such that under its action, a
generic operator obeys the random void distribution (2.10) for any subsystem of 0 or 1. A
solvable explicit example is to take U to be a Haar-random unitary from U(qk) with qk large.

We will consider two types of V . We first consider a case where V arises from a
chaotic local Hamiltonian, and assume that under time evoltuion, a generic operator has
the following properties:

1. In the systems L∪00 and R∪10, we have the property of sharp-light cone growth: an
operator with endpoints a and b, with a < b, evolves into operators with end points
a − t and b + t with total probability 1. When one of the endpoints of an operator
reaches the edge of either system (i.e. the black hole), it continues to grow only on
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Figure 10. Evolution of a black hole and the bath surrounding it, with the region inside the black
circle representing the degrees of freedom of the black hole, and the region outside representing
those of the bath. The shaded region denotes the support of an operator. (a) During evolution,
the operators making up the density operator of a black hole can “leak” outside the black hole. (b)
Bath operators can “fall” into the black hole. (c) Operators with support in the black hole region
can also “jump” outside the black hole, forming a void which includes the black hole.

the other end. We show in appendix B that for large q, the sharp light-cone growth
can be derived by applying the random void distribution to the action of each V .

2. The probability for an operator O to develop a void in a subsystem A lying within
its light-cone obeys (2.10). For an operator that has reached the edge of either L or
R, the entire black hole site can be seen as a region “within the lightcone” for the
above statement. This can be seen as a consequence of the fact that the dynamics in
the black hole are also chaotic.

We will refer to such a bath as a “chaotic bath.” An explicit example is to take each V in
figure 9(b)–(c) to be an independent Haar-random matrix from U(q2) with q large.

Another case we consider is one where V models an integrable system. An example is
to take all V ’s to be the same and have the form

Vi′j′,ij = δi′jδj′i (3.5)

where i and j, i′ and j′ label the basis of states at the two adjacent sites which are coupled
by V . We will refer to the bath described by such V ’s as a “free” bath.

Below, as an illustration, we will mainly use the example of a chaotic bath. The
analysis is very similar to that of section 2 and section II of [10]. Also, for simplicity, we
will take q to be large. The results for a free bath will be discussed in section 3.5.

We will see that S(B)
2 grows due to processes like the one shown in figure 10(a), where

operators grow out of the black hole, and finally saturates when only the identity operator
remains in the black hole. S(B)

2 grows due to processes like the one shown in figure 10(b). We
will see that without the contribution from void formation processes shown in figure 10(c),
the entanglement entropy of region B appears to grow indefinitely, leading to SB 6= SB
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after the entropy of the black hole saturates. This is precisely the version of the black
hole information paradox revealed by the naive gravity calculations of [14] when the island
contribution is not correctly taken into account.

3.2 Evolution of entanglement of the black hole and the bath

Let us first consider the black hole subsystem B. To find (3.4), we need to find the expected
number NB(t) of operators from the initial set I which remain in B at time t. From sharp
light-cone growth in the bath, an operator which originally has support outside subsystem
B will continue to have support outside B, and thus will never contribute to NB(t). At
t = 0, we have NB(t = 0) = q2k − 1 = dB − 1 ≈ dB as all the operators in ρ01 are inside
B. Now due to sharp light cone growth, among the operators inside B at time t, operators
with support at 00 and 10 will grow out of B at any step where B interacts with the bath.
As a result, if t is an even time just after an interaction between the black hole and the
bath has taken place, then we can relate NB(t) to NB(t− 2) in the following way:

NB(t) = NB(t− 2)q−4 (3.6)

where q−4 is the probability of an operator being trivial at sites 00 and 10 after the chaotic
unitary is applied within the black hole, obtained by applying the random void distribution
within the black hole.

We thus find (we consider t large so as not to be concerned with lattice effects) that
NB(t) = q2k−2t and

e−S
(B)
2 = q−2seqt + e−2SBH =⇒ S

(B)
2 =

2seqt t < k

2SBH t > k
(3.7)

where we have introduced

SBH = logN = k log q, seq = log q . (3.8)

SBH is the coarse-grained entropy for the black hole and seq is the “equilibrium” entropy
density of the bath. Note that for t > k, all the nontrivial operators originally localized in
subsystem B have expanded outside B, and S2 is given by the first term in (3.4) (coming
from the identity operator in B). The processes underlying (3.7) are illustrated in the
cartoon picture of figure 10(a).

To find S
(B)
2 , we again consider equation (3.4), now with A = B. In this case, due

to the light cone structure of the time-evolution, the expected number of operators in B
factorizes as [10]

NB(t) = q|B|−2tN(B, J(B); t), (3.9)

where the first factor comes from those operators which are inside B at t = 0 and remain
in B at time t. From the sharp light cone growth in the bath, these operators must lie
outside the region J(B) ≡ J(B1)∪J(B2) indicated in figure 9(a) at t = 0. The second factor
N(B, J(B), t) is the expected number of operators in region J(B)-indicated in figure 9(a) —
that transition to subsystem B. Such transitions can take place when the initial operators
develop a void in B.
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Figure 11. Processes of forming a void in B, which result in final operators contained in B.

The factor q|B|−2t gives a contribution 2t seq to S(B)
2 , corresponding to processes where

operators from increasingly distant regions from the black hole can expand into the black
hole. Such processes, shown in figure 10(b), will increase the entropy of B indefinitely.
Unitarity is restored when such processes are compensated for by the process of void
formation depicted in figure 10(c). This is captured by the factor of N(B, J(B), t). From
the random void distribution (2.10) we have

N(B, J(B), t) = 1 + 1
d2
B

N2q2t = 1 + q2t−2k (3.10)

where dB = N2, and N2q2t is the number of initial basis operators in ρ0 in the region
J(B).12 In (3.10), the first term comes from the identity operator in J(B) and the second
term from void formation of nontrivial operators. The void formation processes contribut-
ing to (3.10) are shown schematically in figure 11.

Combining (3.9)–(3.10) and using (3.4) for B, we find that S(B)
2 precisely coincides

with the expression for S(B)
2 in (3.7). In particular, the entanglement entropy of the bath

saturates for t ≥ tp where

tp = k = logqN = logN
log q = SBH

seq
(3.11)

can be considered as the counterpart of the Page time.
To conclude this subsection, let us make some remarks in connection with the gravity

discussion of [14]:

1. The time scale (3.11) coincides with the semi-classical gravity estimate. In that
context, seq = c

β , the entropy density for a CFT at inverse temperature β.

2. The transition from the first to the second line of (3.10) at t = tp can be interpreted as
a change of dominance between two sets of processes: operator growth without void
formation and with void formation. Before the Page time, void formation is expo-
nentially suppressed, but its contribution becomes exponentially large after the Page
time. This matches well with the gravity description, where unitarity is maintained
by a jump in quantum extremal surfaces from surfaces without “island” contributions
to surfaces with “islands.”

12More explicitly, the factor of 1
d2

B

comes from applying the random void distribution for the final U and
V acting before time t.
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3.3 Evolution of mutual information between different parts of the bath

It was pointed out in [10] that an immediate implication of void formation in the systems
considered there is the generation of mutual information between regions which are sep-
arated by a void. We now examine the evolution of the mutual information between the
two sides of the bath system, B1 and B2. We will first examine the story for the state (3.1)
where B1 and B2 are not entangled initially, and then comment on the case where B1 and
B2 are maximally entangled in the initial state.

To find the evolution of mutual information between B1 and B2 in ρ0 defined in (3.1),
we only need to find S(B1)

2 , as S(B2)
2 is identical due to the reflection symmetry, and S

(B)
2

was worked out in the last subsection. S(B1)
2 can be immediately found in close analogy

with (3.9),

S
(B1)
2 = 1

dB1
(1 +NB1) , NB1 = q|B1|−tN(B1, J(B1); t), (3.12)

where the first factor in NB1 again comes from the number of initial basis operators in B1
which remain in B1, and N(B1, J(B1); t) gives the number of operators in J(B1) which can
transition to B1, i.e. by developing a void in B1. Note that in order for a final operator
to be contained entirely in B1, i.e. trivial in B1, B2 and B2, it can only result from an
initial operator which is trivial in the black hole subsystem.13 Thus the number of initial
basis operators contained in J(B1) which can contribute to N(B1, J(B1); t) is qt. From the
random void distribution (2.10), we have (in complete analogy to (3.10))

N(B1, J(B1); t) = 1 + qtd−2
B1

= 1 + qt−2k (3.13)

See figure 12 for processes contributing to (3.13).
We thus find

S
(B1)
2 (t) =

seqt t < 2k
2SBH t ≥ 2k

(3.14)

and as a result

I2(B1,B2; t) =


0 t < k

2(t− k)seq k ≤ t < 2k
2SBH t ≥ 2k

. (3.15)

We thus find that the mutual information between B1 and B2 starts growing at the Page
time tp and saturates at 2tp.

13Due to maximal entanglement between subsystems 0 and 1, if Oi in (3.3) is nontrivial, the corresponding
Õi must also be nontrivial. Since only the identity operator can evolve to the identity operator, we conclude
that any operator which is nontrivially supported in the black hole subsystem cannot evolve into an operator
which is nontrivial only on one side.
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Figure 12. Processes of forming a void in B1 which result in final operators contained in B1.

The behavior (3.15) can also be directly understood in a simple way from void forma-
tion in various regions. From (3.4), (3.9), and (3.12), we have14

I2(B1,B2; t) = log
(

NB(t)
NB1(t)NB2(t)

)
= log

(
q|B1|+|B2|−2tN(B, J(B); t)

q|B1|−tN(B1, J(B1); t) q|B2|−tN(B2, J(B2); t)

)

= log
(

N(B, J(B); t)
N(B1, J(B1); t)N(B2, J(B2); t)

)
. (3.16)

Thus the mutual information I2 between B1 and B2 is a measure of void formation processes
resulting in operators in B which cannot be seen as a combination of independent void
formation processes which would result in operators contained only within B1 or only
within B2. The processes contributing to the upstairs and downstairs of (3.16) were shown
respectively in figure 11 and figure 12.

Before the Page time t < k, N(B1, J(B1); t), N(B2, J(B2); t) and N(B, J(B); t) are all
approximately 1, and the mutual information is 0. During the period k < t < 2k, the pro-
cesses of forming a void in B give a significant contribution to N(B, J(B); t), while processes
of forming a void in B1 or B2 are still suppressed in N(B1, J(B1); t) and N(B2, J(B2); t).
The mutual information between the regions increases linearly during this time. For t > 2k,
all three quantities N(B1, J(B1); t), N(B2, J(B2); t) and N(B, J(B); t) become exponen-
tially large, and the time-dependence cancels between upstairs and downstairs of (3.16).
However, there is still a constant ratio by which the two quantities differ, corresponding to
the fact initial operators non-trivial in the black hole subsystem cannot contribute to the
denominator (recall the discussion before (3.13)). The mutual information saturates at the
log of this ratio.

Now let us consider the case where the initial state is maximally entangled between
B1 and B2, i.e.

τ0 = ρ01 ⊗i≥2 τi,−i+1 (3.17)

where τi,j is a maximally entangled state between sites i and j,

τi,j = |ψij〉 〈ψij | , |ψij〉 = 1
√
q

q−1∑
n=0
|n〉i |n〉j . (3.18)

14Note that the first term in (3.4) for B1,2,B can be neglected as all these subsystems have an infinite
dimensional Hilbert space.
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This initial state can be expanded in terms of operators as

τ0 = 1
q2k+2L

∑
α

OLα ⊗ ÕRα (3.19)

where α runs over all basis operators in the left system, and ÕRα is determined by OLα . In
this case, the expressions for S(B)

2 and S
(B)
2 are the same as (3.7). But B1 is maximally

entangled with the rest of the system at all times, as throughout the evolution there is no
nontrivial operator that can result from (3.19) which is localized only in B1. Thus

S
(B1)
2 = |B1|seq , (3.20)

and we find that

I2(B1,B2; t) =

|B1|+ |B2| − 2tseq t < k

|B1|+ |B2| − 2SBH t ≥ k
(3.21)

i.e. the mutual information between B1 and B2 initially decreases, and then saturates to a
constant value after the Page time at which void-formation processes become dominant in
S

(B)
2 . The above expression has a simple interpretation. B1 and B2 are maximally entangled

initially. Increasing the entanglement of both subsystems with the black hole decreases the
mutual information between them, until the time when the entanglement with the black
hole saturates.

3.4 Transfer of information between the black hole and the bath

Let us now explore how quantum information is transferred between an eternal black
hole and its bath. We will consider two different processes: (i) the information was orig-
inally in the black hole; (ii) the information was originally outside the black hole, as
shown in figure 13. We will see that the time scale tp and void formation again play a
fundamental role.

3.4.1 Information was originally in the black hole

Let us add to our setup an additional p � k spins to site 0, which we call P , within the
“left” black hole, and a qp-dimensional reference system Q which is maximally entangled
with P . The dynamics of the “left” black hole are modified so that we now have a time
evolution operator U ′ (which is again assumed to obey (2.10)) acting on the union of site 0
and P at all even steps. The reference system Q does not interact with any other system.
We will take the initial state to be

ρ0 = ⊗i≤−1 ρi ⊗ ρ01 ⊗ ρPQ ⊗i≥2 ρi (3.22)

where

ρPQ = |ψPQ〉 〈ψPQ| , |ψPQ〉 = 1√
dP

dP−1∑
k=0
|k〉P |k〉Q , dP = qp . (3.23)

We will now refer to the “full” black hole subsystem as B = 0∪P ∪ 1. The bath B consists
of all the other lattice sites.
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Figure 13. Two different setups for studying information transfer between the black hole and the
bath. In (a), a p-dimensional system P is added to the black hole, and in the initial state P is
maximally entangled with a reference system Q. In (b), p sites of the bath at a distance l from
the black hole site 0 are maximally entangled with a reference system Q in the initial state, and
the dynamics are the same as in figure 9. Red lines between pairs of sites indicate that they are
maximally entangled in the initial state.

As in our previous discussion for an evaporating black hole, Q will remain maximally
entangled with B ∪ B at all times, and

I2(Q,B; t) + I2(Q,B; t) = 2S(Q)
2 (t) = SQ, SQ = log dP = p log q . (3.24)

The calculation of S(B)
2 (t) and S(BQ)

2 (t) is very similar to our earlier discussion, and we find

S
(B)
2 (t) =

SQ + 2seqt t < k

SQ + 2SBH t ≥ k
, S

(BQ)
2 (t) =

2seqt t < k + p

2SQ + 2SBH t ≥ k + p
. (3.25)

The Renyi mutual information between Q and B is then given by

I2(Q,B; t) =


2SQ t < k

2SQ − 2seq(t− k) k < t < k + p

0 t ≥ k + p

. (3.26)

So the mutual information between the reference system and the black hole starts decreas-
ing after the Page time, and quickly goes to zero at a time scale which is proportional to
the size of the reference system.

Similarly we can find the mutual information of Q with the bath B,

S
(B)
2 (t) =

2tseq t < k + p

2SBH + 2SQ t ≥ k + p
, S

(BQ)
2 (t) =

SQ + 2tseq t < k

SQ + 2SBH t ≥ k
(3.27)

where the second lines of both expressions are results of void formation. One readily sees
that the above expressions give

I2(Q,B; t) =


0 t < k

2seq(t− k) k < t < k + p

2SQ t ≥ k + p

(3.28)
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which satisfies (3.24). In particular, without the contributions from void formation, one
would find I2(Q,B; t) = 0 at all times, and thus the information would be lost.

3.4.2 The information was originally outside the black hole

Now suppose we modify the black hole and bath setup to include a reference system Q that
is maximally entangled with p spins outside the black hole, which we will again denote as
P , as shown in figure 13 (b). We will take l� k. Now the initial state is

ρ0 = ⊗j<−l−p ρj ⊗ ρPQ ⊗−l−1<j<0 ρj ⊗ ρ01 ⊗i≥2 ρi (3.29)

where ρPQ is given by (3.23).
Again the calculation is very similar to previous ones, so we will be brief, mostly listing

the results. We have

S
(B)
2 (t) =



SQ + 2tseq t < l

SQ + (t+ l)seq l ≤ t < l + p

2tseq l + p ≤ t < k + p
2

SQ + 2SBH t ≥ k + p
2

, S
(BQ)
2 (t) =

2tseq t < k

2SBH t ≥ k
(3.30)

which lead to

I2(Q,B; t) =



2SQ t < l

2SQ + (l − t)seq l ≤ t < l + p

SQ l + p ≤ t < k

SQ + 2(t− k)seq k ≤ t ≤ k + p
2

2SQ t ≥ k + p/2

. (3.31)

We can also find the mutual information between the black hole subsystem B and Q,15

I2(Q,B; t) =



0 t < l

(t− l)seq l ≤ t < l + p

SQ l + p ≤ t < k

SQ − 2(t− k)seq k ≤ t < k + p/2
0 t ≥ k + p/2

. (3.32)

Equation (3.31)–(3.32) again satisfy the unitarity constraint (3.24). They show that due
to the light-cone spreading in the bath, part of the information in P “falls” into the black
hole. Before the Page time, there is a long period where the information originally in P is
shared between the black hole and the bath, with each having one half. The information
is transferred back to the bath again shortly after the Page time. Again without void
formation, the part of the information which falls into the black hole will be lost.

15Note that in the calculation of S(B∪Q)
2 , we need to take into account the small probability of deviation

from the sharp light-cone growth discussed in appendix B, due to the larger phase space of contributing
initial operators from the region P in the bath compared to other regions.
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3.5 Free bath

We now examine the situation where the evolution of bath is described by (3.5). Under
evolution with such a V in a setup without a black hole, an initial product state will
remain a product state with no entanglement generated. If the initial state has short-range
entanglement, then V can propagate the short-range entanglement to long-distances [10].
Thus, this may be considered a model for a free system. Various aspects of entanglement
growth in this “free propagation” model were discussed in detail in [10].

3.5.1 Evolution of entanglement for the black hole and bath

Let us again consider S2 for B and B shown in figure 9(a), starting from the initial
state (3.1). We find

e−S
(B)
2 (t) = e−S

(B)
2 (t) = e−seqt+e−2SBH ⇒ S

(B)
2 (t) =S

(B)
2 (t) =

tseq t< 2k
2SBH t≥ 2k

(3.33)

where we have taken k � t � 1. Like in the chaotic bath model, the growth of S(B)
2 (t)

and S(B)
2 (t) is due to operator growth in the black hole, and the saturation of S(B)

2 at the
Page time tp = 2k results from void formation. Note that compared to the result (3.7) for
random unitary circuits from the same initial state, the Page time is twice as long.

To see (3.33), first note that V acting on sites i, j simply translates operators from site
i to j and vice versa,

V †(Oi ⊗ Pj)V = Pi ⊗Oj (3.34)

where O,P are any single-site operators. As a result, operators at different sites evolve
independently from each other, and operators at alternate sites move respectively to the
left and right at speed 1. The resulting trajectories of initial operators from different sites
in J(B) are shown in figure 14. Trajectories that take operators toward B are represented
by red dashed lines, while those that take operators away from B are shown with solid
green lines. It is clear that all initial operators outside J(B), whose trajectories are not
explicitly shown, will end up in B at time t.

Let us first find NB(t). It this model, every interaction of the black hole with the
bath takes all operators non-trivial at sites 00 and 10 out of B via the solid trajectories,
and at the same time also brings all operators from two sites in B into B via the dashed
trajectories. To estimate the factor by which NB(t) decreases due to the former process,
we use reasoning similar to the derivation of NB(t) in the chaotic bath case. Between
any two steps where the black hole interacts with the bath, a chaotic unitary evolution
U is applied within the black hole. Under the action of U , the probability that the final
operator is trivial at both 00 and 10 is q−4 from the random void distribution (2.10). Thus,
N(t − 2)q−4 operators out of the operators originally in B at time t − 2 remain in B at
time t, but in addition q2 operators from two sites in B are brought into 00 and 10 via the
dashed trajectories, increasing N(t) by a factor q2. We therefore have

NB(t) = NB(t− 2)q−2. (3.35)
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Figure 14. Operator growth in the toy model of a black hole with a free bath.

Since NB(t = 0) = q2k, this implies NB(t) = q2k−t. Then using (3.4), we obtain (3.33).
Note that if we considered an initial state in the bath consisting of entangled pairs

between adjacent sites like in [10],

σ0 = ⊗i<0 τi−1,i ⊗ ρ01 ⊗i>1 τi,i+1 (3.36)

where ρ01 is as defined in (3.2) and τi,j is as defined in (3.18), then we would have sharp
light-cone growth of all initial operators. In this case, there are no operators from outside
B which can become localized in B via the dashed trajectories (since each initial operator
has one endpoint which propagates away from the black hole at all times). Hence, we
would again have (3.6), and the entanglement growth would be given by (3.7), with Page
time tp = k.

Now let us understand the evolution of S2 for B with the initial state (3.1). All initial
operators contained in the complement of J(B), as well as at the t sites in J(B) from
which operators propagate to B (the starting points of the solid green trajectories in J(B)
in figure 14), are localized in B at time t. There are q|B|−2t+t such operators. At the
remaining initial sites (including 0 and 1), we can either have the identity, in which case
there is a probability 1 of being contained in B at time t, or non-trivial operators, which
can become contained in B by forming a void in the complement of 10 and 00 in B after
U is applied at the final step of the evolution. The probability of forming such a void is
q−2(2k−2) ≈ q−4k from the random void distribution, and the number of contributing initial
operators is q2k+t, so we find

NB(t) = q|B|−t(1 + q2k+tq−4k) = q|B|−t(1 + qt−2k) (3.37)

which gives (3.33). Without taking void formation into account, we would again see un-
bounded growth of the entanglement entropy of the bath in this model due to the first
term in (3.37).

3.5.2 Transfer of information

We consider the same setups as in section 3.4. Let us first understand how information
that is initially inside the black hole comes out, taking the initial state (3.22). We find
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that the entropies B and B ∪Q grow as:

S
(B)
2 (t) =

t seq t < 2k + 2p
2SBH + 2SQ t ≥ 2k + 2p

, S
(B∪Q)
2 =

SQ + t seq t < 2k
2SBH + SQ t ≥ 2k

(3.38)

Hence, the time-evolution of the mutual information between B and Q is given by

I(B, Q; t) =


0 t < 2k
t seq − 2SBH 2k < t < 2k + 2p
2SQ t ≥ 2k + 2p

(3.39)

We can similarly find that the mutual information I(B,Q; t) = 2SQ − I2(Q,B; t) at all
times.

In the case where the information is initially outside the black hole, so that the initial
state is (3.29), we find

S
(B)
2 (t) =



SQ + t seq t < l

SQ + (t/2 + l/2)seq l ≤ t < l + p

SQ/2 + t seq l + p ≤ t < 2k + p/2
SQ + 2SBH t ≥ k + p

,

S
(BQ)
2 (t) =



t seq t < l

(3t/2− l/2)seq l < t < l + p

SQ/2 + t seq l + p < t < 2k − p/2
2SBH t ≥ 2k − p/2

(3.40)

which lead to

I2(Q,B; t) =



2SQ t < l

2SQ + (l − t)seq l ≤ t < l + p

SQ l + p ≤ t < 2k − p/2
3SQ/2− 2SBH + t seq 2k − p/2 ≤ t < 2k + p/2
2SQ t ≥ 2k + p/2

. (3.41)

We again find that mutual information between the black hole subsystem B and Q is given
by 2SQ − I2(Q,B; t) at all times. The qualitative nature of the results (3.39) and (3.41) is
similar to (3.28) and (3.31). The information again starts to come out of the black hole at
the counterpart of the page time, tp = 2k, and comes out at approximately half the rate we
found in the random circuit bath model. In this free propagation model, the reason for the
value SQ of the mutual information at intermediate times is immediately clear, as exactly
half of the particles in P propagate towards the black hole, while the rest propagate in the
opposite direction.
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4 Conclusions and discussion

In this paper, we developed an operator gas approach to studying simple models of evap-
orating as well as eternal black holes. We showed that the Page curve and the unitarity
of evolution of entanglement are general consequences of void formation, and in particular
of the random void distribution of chaotic systems. While the models we considered are
rather crude and do not involve details of black hole geometries and event horizons, the
results should also apply to more realistic models of black holes, as our discussion only re-
quires broad aspects of these models which should be present in any chaotic system. This
dynamical approach to deriving the Page curve also sidesteps the issue whether the state
of a black hole and its radiation is “typical,” and hence potentially extends the validity of
the Page curve to more general systems than the ones that the original argument could be
applied to.

Our results also resonate nicely with recent semi-classical gravity discussions of the
Page curve for two-dimensional black holes, suggesting that void formation should un-
derlie the semi-classical prescription of inclusion of “islands” and recent Euclidean replica
wormhole calculations [11–20].

In this paper we looked at the second Renyi entropy, which has a simple relation
to operator growth probabilities, for technical simplicity. It would be nice to generalize
the argument for higher Renyi and von Neumann entropies. Moreover, the models we
considered are too simple to make direct connections with semi-classical gravity analysis.
It would be interesting to extend our analysis to models such as SYK where there are closer
connections to gravity, and where in principle it is possible to directly probe the operator
growth probabilities [25, 26].

Our discussion also showed that void formation processes play a key role in the transfer
of information from a black hole to its radiation, or to the bath surrounding it in the case
of an eternal black hole. It would be interesting to explore whether one can use this insight
to develop new algorithms for decoding the information in the radiation.

Finally, as emphasized in [10], void formation processes are ubiquitous in quantum
many-body systems in maintaining unitarity, and generating mutual information and multi-
partite entanglement. If the connection with “replica wormholes” can be made more precise,
this could imply that replica wormholes are not exotic objects, and likely are present in
some form in calculations of the Renyi and von Neumann entropies for multiple subsystems
in setups without a black hole.
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A Examples of “operator gases”

In this appendix, we derive the forms of the “operator gas” associated with various initial
density matrices that are used throughout the paper.

Suppose have a system L with k sites, such that the Hilbert space at each site has
dimension q, and is spanned by an orthonormal basis {|0〉 , . . . , |q − 1〉}. For a pure product
state whose factors at all sites are the same, that is, a state of the form

ρ = ⊗iσi, σ = |φ〉 〈φ| (A.1)

where |φ〉 is some fixed state in the one-site Hilbert space, we can change our basis so that
we can write σ = |0〉 〈0|.

We can introduce a basis of operators at each site,

Oc = Xs1Zs2 , s1, s2 = 0, 1, . . . , q − 1 (A.2)

where

Z =
q−1∑
k=0

e2πik/q |k〉 〈k| , X =
q−1∑
k=0
|k + 1〉 〈k| . (A.3)

Note that an orthonormal basis of operators {Oα} for the entire system satisfying (2.3)
can be obtained by constructing the tensor products ⊗iOci for all possible sequences ci of
numbers between 0 and q2 − 1.

In terms of the single-site basis (A.2), we can write

σ = |0〉 〈0| = 1
q

q−1∑
k=0

Zk (A.4)

and as a result, ρ can be written as

ρ = 1
qk

∑
a∈I
Oa (A.5)

where a ∈ I corresponds to the requirement that all Oα appearing in the sum are of the
form ⊗iZsi .

Next, note that any pure state τ in the system L (not necessarily a product state) can
be obtained by a unitary transformation of ρ defined in (A.1), so that we have

τ = 1
qk

∑
a∈I′

Pa (A.6)

where now a ∈ I ′ corresponds to the requirement that all Pa appearing in the sum are of
the form U(⊗iZsi)U †, for some unitary U . Note that:

1. Since all Oa in (A.5) satisfy (2.3), all Pa also satisfy that condition among themselves.

2. Since all Oa in I are mutually commuting, all Pa in I ′ are also mutually commuting.

3. Since 1L is contained in I, it is also contained in I ′.

Having seen how to write pure product states and arbitrary pure states in terms of
“operator gases”, let us now consider a maximally entangled state between two systems L1
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and L2 of the same dimension d,

|ψ〉 = 1√
d

q−1∑
i=0
|i〉 ⊗ |̃i〉 (A.7)

with the density operator

ρ = 1
d

∑
i,j

Aij ⊗ Ãij , Aij = |i〉 〈j| , Ãij = |̃i〉 〈j̃| , (A.8)

where |i〉 and |̃i〉 can be distinct bases in L1 and L2. Denoting ij as I, we have

Tr(A†IAJ) = δIJ . Tr(Ã†IÃJ) = δIJ . (A.9)

We can expand AI in terms of any basis Qα satisfying Tr(Q†αQβ) = dδαβ as

AI = 1√
d

∑
α

cIαQα (A.10)

with cIα a unitary matrix. We can introduce d2 operators Q̃α which are related to ÃI by

ÃI = 1√
d

∑
α

c∗IαQ̃α . (A.11)

Since {c∗Iα} is also a unitary transformation, {Q̃α} is an orthonormal basis normalized by

Tr(Q̃†αQ̃β) = dδαβ . (A.12)

We then find that

ρ = 1
d2

∑
I

∑
α,β

cIαc
∗
IβQα ⊗ Q̃β = 1

d2

∑
α

Qα ⊗ Q̃α (A.13)

where Q̃α in any term in the sum is fixed when Qα is fixed, and in particular when Qα is
the identity, Q̃α is also the identity, and vice versa.

B Sharp light cone growth from the random void distribution in the
chaotic bath

Consider one of the unitary matrices V applied in the chaotic bath, acting on sites i, i+ 1.
We can assume that the scrambling time for the system {i, i+ 1} is a single time-step, and
hence can apply the random void distribution to each of the two sites i and i + 1 after
the action of V , if q is sufficiently large. We thus find that the probability of going from
any non-trivial operator on {i, i+ 1} to final operators trivial on any one site is 1/q2. The
probability of going to operators non-trivial on both sites is thus close to 1. Since this
is the typical behaviour for each of the unitaries V , we find that an initial operator with
endpoints xl, xr evolves with probability approximately 1 to a final operator with endpoints
xl − t, xr + t, as shown in figure 15(a). Hence, the sharp light-cone growth in the chaotic
bath can be seen as a consequence of assuming the random void distribution for each V .
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Figure 15. Time-evolution of operators in the chaotic bath. All shaded rectangles represent
unitary matrices V . (a) In a typical operator evolution process, no voids are formed under the
action of any V in the circuit, and we see sharp light-cone growth of the operator. (b) When a void
is formed under the action of a single unitary matrix V ∗ in the circuit, it shifts the right-endpoint
of the final operator away from the edge of the light cone by two sites.

There is, however, a small non-zero probability of evolving to operators with endpoints
xl − t + ∆l, xr + t−∆r, for ∆l and ∆r greater than zero. This requires the formation of
voids under the action of ∆l/2 + ∆r/2 unitary matrices V at intermediate steps, since the
formation of a void after a single V causes a deviation of the end-point from the edge of
the light-cone by two sites, as shown in figure 15(b). Since the probability of forming a
void under the action of each V is given by 1/q2, such a process has probability q−∆l−∆r .

This small probability can be neglected in all calculations of S(A)
2 for various regions

A in the chaotic bath setup that we considered in section 3, except in the case where
A = B ∪ Q, needed for finding the evolution of the mutual information of the black hole
with a reference system initially entangled with a subsystem P of the bath in (3.32). In
that case, when initial operators from P come into causal contact with the black hole,
they give a contribution to NB(t) that cannot be neglected despite the smallness of the
probability that they become localized in B, as each site from P contributes q2 rather than
q initial operators, increasing the “phase space” factor in the contribution to NB(t).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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