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1 Introduction

The effective field theory (EFT) approach allows one to systematically compute UV effects
on the IR dynamics of a physical system. In an EFT, UV effects are encoded in an infinite
series of higher-dimensional operators and corresponding Wilson coefficients. At first sight,
it seems that without performing any measurements a low-energy observer cannot know the
value of any Wilson coefficients. However, it has been known for a long time that not every
EFT is “healthy” in the sense that it enjoys an embedding in a UV-complete theory free of
pathologies. For example, unitarity and causality can constrain certain (combinations of)
Wilson coefficients to be positive [1]. In the context of quantum gravity the criteria that
distinguish healthy EFTs from sick ones are known as swampland conjectures (see [2, 3]
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for reviews). Healthy EFTs that enjoy an embedding in a consistent theory of quantum
gravity are said to reside in the landscape, while EFTs that cannot be embedded in quantum
gravity belong to the swampland. In the absence of experimental data sufficiently sensitive
to directly probe quantum gravity, swampland criteria are helpful in constraining the space
of EFTs that arise in its low-energy limits.

The swampland conjecture that is the focus of this paper is the Weak Gravity Con-
jecture (WGC) [4], which in its original form states that any theory with a U(1) gauge
field must include at least one state whose charge-to-mass ratio exceeds that of extremal
black holes in that theory. This allows extremal black holes to decay, unless protected
by a symmetry (such as supersymmetry). Further refinements of the WGC specify the
energy scales at which these states should appear. Strong forms of the conjecture require
the states in question to be light or part of a tower [5] or charge sublattice [6, 7] of (su-
per)extremal states. Milder forms of the WGC allow the states to be heavy or even given
by black holes with an extremality bound that is corrected by quantum or higher-derivative
corrections.1 This latter version is referred to as the “mild form” of the WGC and requires
that corrections increase the charge-to-mass ratio of extremal black holes in a canonical
ensemble (fixed charge and temperature). Because the sign of the corrections to the ex-
tremality bound depends on the sign of the Wilson coefficients, unitarity and causality play
a crucial role.

In fact, several proofs applying in different restricted settings and making use of ther-
modynamics [9, 10] or unitarity and causality [10–12] have been given by now, but it has
become clear that generically one needs additional UV information and that the WGC
cannot follow solely from IR consistency. In the presence of a massless graviton, positivity
bounds cannot completely constrain the correction to the extremality bound due to a sin-
gularity in the forward limit of graviton exchange in the t-channel (see [10–14] for recent
discussions).2

It is thus of interest to identify the minimal set of assumptions needed to prove the
WGC. To manage expectations, we will not identify this minimal set of assumptions in this
paper. Instead, we will reinterpret the mild form of the WGC as a criterion on matter that
generates corrections to the extremality bound. In a way, this is similar to using energy
conditions to exclude pathological matter contributions (see [16] for example). This results
in a condition on the stress tensor that is equivalent to the WGC. For a d-dimensional
black hole this condition is given by∫

Σ
dd−1x

√
h δT eff

ab ξ
anb ≤ 0 . (1.1)

Here Σ is a Cauchy slice with normal vector na and ξa is a Killing vector for which the
horizon is a Killing horizon, see figure 1. δT eff

ab is an effective stress tensor whose definition
will be given in the main body of this article. This condition has several attractive features.

1These milder forms of the WGC can in some cases be upgraded to stronger forms using modular
invariance and the matching of anomalies [8].

2In [10, 11] an assumption about the UV-theory completing the higher-derivative corrected theory was
made and in [15, 16] the effective action was imposed to be duality invariant.
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Figure 1. Penrose diagram of the maximally extended Reissner-Nordström geometry. Its timelike
singularities are red dotted lines, the inner and outer horizon given by r±, and the gray surface
Σ is a Cauchy slice with normal vector na. In this paper we restrict to the green shaded region.
Classically, the Penrose diagram extends indefinitely to the past and future.

Just as in the thermodynamic approach described in [17] it is only neccesary to know the
uncorrected black hole metric to derive corrections to the extremality bound. This has the
technical advantage that one does not need to solve the (possibly complicated) corrected
Einstein equations in order to evaluate the WGC. In addition, this condition is valid for any
correction that generates an effective stress tensor, not just higher-derivative corrections,
so it can be applied to a wide range of scenarios.

It is therefore natural to view (1.1) as a condition for matter on an extremal black hole
background to be “healthy”. We motivate this point of view by applying our condition to
extremal rotating BTZ black holes and showing that (1.1) is satisfied as a consequence of
the Null Energy Condition (NEC). This follows from perturbing a BTZ black hole with
NEC-satisfying matter holographically dual to a relevant deformation in the CFT. This
relevant operator triggers a Renormalization Group (RG) flow along which the central
charge monotonically decreases as a consequence of the c-theorem. On the black hole side,
a decrease in the central charge increases the extremal angular momentum-to-mass ratio,
so that a “spinning” version of the WGC is satisfied. Although the WGC is normally
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phrased in terms of black holes charged under U(1) gauge fields,3 we believe this spinning
version of the WGC to also be of interest.

First, our results suggest a generalization of the Repulsive Force Conjecture (RFC)
proposed in [18] (based on earlier work in [19]). If we consider the gravitational and
centrifgual forces of a single rotating black hole, we note that a co-rotating object of
negligible mass hovering at the event horizon of an extremal rotating black hole experiences
an attractive gravitational force that precisely cancels the repulsive centrifugal force. When
the spinning WGC is satisfied (but not saturated), the angular momentum-to-mass ratio
increases causing the gravitational force to become weaker than the centrifugal force. A
similar condition for higher-spin states was studied in [20]. Second, corrections to the
BTZ extremality bound also play an important role in determining the consistency of pure
three-dimensional gravity. In [21], it was observed that the partition function constructed
in [22, 23] contains a negative density of states in the regime where BTZ black holes are near
extremality. One way to cure this pathology is to modify the theory by including additional
matter (which could be very heavy) that modifies the BTZ extremality bound and corrects
the density of states in a way that guarantees positivity. An alternative resolution has been
proposed in [24]. Third, in string theory BTZ black holes can appear as the near-horizon
limit of a black string. Upon compactifiying the black string, a charged black hole appears.4

If we consider higher-derivative corrections to the black string, one can get constraints on
the black hole solution by imposing the spinning WGC in the near-horizon geometry of the
black string.

We test this idea by studying a five-dimensional boosted black string. We show that
the extremal entropy of the BTZ still matches the four-dimensional entropy after including
higher-derivative corrections, but the correction to their respective extremality bounds do
not coincide.5 Instead, they contain complementary information and by imposing both the
spinning and charged WGC we obtain positivity bounds on the five-dimensional Wilson
coefficients that are stronger than those obtained from the charged WGC alone. The fact
that the three-dimensional spinning WGC does not imply the four-dimensional charged
WGC, but offers complementary information, agrees with the phenomenon that in theories
of gravity with spacetime dimension d ≥ 4, IR consistency cannot completely constrain the
sign of corrections to the extremality bound [11]. Our finding that positivity bounds can
be strengthened by dimensional reduction is also supported by [27], who, independently of
us, study higher-derivative corrections to the extremality bound of five-dimensional black
objects and their four-dimensional Kaluza-Klein reductions.

The rest of this paper is organized as follows. In section 2 we first loosely motivate
why a condition of the form (1.1) should be true. We then formalize this idea by explicitly
deriving the condition using the Iyer-Wald formalism and, as an example, apply our rela-

3One conceptual difference between black holes carrying electric charge versus angular momentum is
that spinning black holes are naturally unstable via the Penrose process. On the other hand, extremal
electrically charged black holes can provide a large family of stable non-supersymmetric states unless the
spectrum is modified from that of pure Einstein-Maxwell theory.

4Alternatively, one can use U-duality to map the charged black hole to a BTZ black hole [25].
5Note that this is not in conflict with the relation between microcanonical entropy (which is not evaluated

at zero temperature) and extremality [11, 26].
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tion to Reissner-Nördstrom and BTZ black holes. In section 3 we focus on BTZ black holes
and show that our derived relation, and therefore a spinning form of the WGC, is satsi-
fied as a direct consequence of the holographic c-theorem. Finally, in section 4 we study
higher-derivative corrections to a five-dimensional black string and compute corrections to
the extremality bounds of the near-horizon BTZ × S2 geometry and the four-dimensional
charged black hole that arises after a Kaluza-Klein compactification. Some technical de-
tails regarding the Iyer-Wald formalism are reviewed in appendix A and the explicit form
of the higher-deriative corrected black string solution is described in appendix B.

2 Condition on the stress tensor

2.1 Loose motivation

Given an extremal charged black hole perturbed by quantum or higher-derivative correc-
tions, it is of interest to understand under what conditions the charge-to-mass ratio in-
creases in a canonical ensemble (fixed temperature and charge), such that the mild form of
the WGC is satisified. In this section, we will rewrite the shift to the extremality bound as a
condition on the stress tensor that captures these corrections. In [10, 11], it was explained
in great detail (see also [26]) that corrections to the extremality bound in a canonical
ensemble and corrections to the entropy in a microcanonical ensemble (fixed mass and
charge) of an extremal black hole are directly related. At least for stationary black holes
both corrections are determined by a modification of the same metric function f(r), whose
roots give the location of the horizon of a black hole. To have a concrete example in mind,
we can think of f(r) as the rr component of the inverse metric in Schwarszchild gauge of a
Reissner-Nordström black hole perturbed by higher-derivative corrections. Schematically,
such a black hole is described by the following action.

I = 1
16πGd

∫
ddx
√
−g

(
R− 1

4FabF
ab + αiI

(i)
hd

)
. (2.1)

Here αi are Wilson coefficients and I(i)
hd are higher-derivative terms. Fixing mass and charge,

we can write the corrections to f(r) as f(r) = f0(r) + δf(r) and the corrected horizon as
r+ = r0 + δr. The location of the corrected horizon is now found by solving

f(r0 + δr) ' f0(r0) + δf(r0) + f ′0(r0)δr + 1
2f
′′
0 (r0)δr2 + (. . .) = 0 , (2.2)

where we treated the correction as a small perturbation. For an extremal black hole
f0(r0) = f ′0(r0) = 0 and the shift in the horizon is given by

δr = ±
√
−2δf(r0)
f ′′(r0) , (2.3)

when δf(r0) and f ′′(r0) are both non-vanishing. Because f ′′(r0) > 0, the singularity of the
solution is only cloaked behind a horizon when δf(r0) ≤ 0, which shifts the outer horizon
positively (or leaves it uncorrected). The Wald entropy of the corrected black hole is now
given by

S = A(r0 + δr)
4Gd

+ δSw , (2.4)
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where the first term is the Bekenstein-Hawking entropy and the second term contains
a modification to the Bekenstein-Hawking formula due to higher-derivative corrections.
Because the horizon shift of an extremal black hole scales as δr ∼ O(√αi), we find that

S = A(r0 + δr)
4Gd

+O(αi) . (2.5)

The leading piece of the black hole entropy is simply given by the Bekenstein-Hawking for-
mula evaluated on the corrected horizon. Equivalently, we can also consider the corrections
in a canonical ensemble. In that case, a microcanonical increase in the horizon manifests
itself as a decrease to the ADM mass, increasing the charge-to-mass ratio [10, 11]. Thus,
when working in a microcanonical ensemble the WGC can be understood as the statement
that singularities present in the uncorrected spectrum should be cloaked behind a horizon
after including corrections. However, we should stress that this does not imply that the
mild form of the WGC follows from the Weak Cosmic Censorship Conjecture. Here we are
comparing two different black holes (one with and one without higher-derivative correc-
tions) to each other and not having a positive real shift of the outer horizon, i.e. δr < 0,
at odds with the WGC only implies that an extremal black hole in the uncorrected theory
is not a regular solution in the corrected theory.

When this correction to the extremality bound is induced by additional matter (for
example heavy matter that is integrated out, generating higher-derivative terms), it is
natural to expect that whenever that matter is “healthy” it leads to a correction compatible
with the WGC. Indeed, in the set-up considered in [10, 11] this is precisely what happens;
unitarity and causality imply WGC-compatible signs of the Wilson coefficients. We will
now phrase this healthiness in terms of the condition on the stress tensor to which we
alluded earlier. To first gain some intuition, we imagine that the effect of the additional
matter is to introduce a shell outside the horizon of an extremal charged black hole. For
simplicity, we suppose the shell is uncharged and has a mass m: see figure 2. Before
introducing the shell, the extremal black hole has a charge-to-mass ratio of Q/M = 1 (in
appropriate units), where M is the ADM mass. Keeping the ADM mass and charge fixed,
we now introduce the shell. The charge-to-mass ratio is now given by

Q

M
= Q

M ′ +m
= 1 . (2.6)

As explained, the WGC now dictates that the resulting state does not contain a naked
singularity, which means that the Q/M ′ ≤ 1. Since the ADM mass and charge are held
fixed this requires m ≤ 0. In terms of the matter stress tensor this condition reads

m =
∫

Σ
dd−1x

√
hTabξ

anb ≤ 0 . (2.7)

Here Σ is a Cauchy slice of constant Killing time t with an induced metric hab and a unit
normal vector na. We are interested in stationary black holes, so ξa is a timelike Killing
vector. So we see that, at least in this example, we can rephrase the correction to the
extremality bound as a covariant condition on the stress tensor.
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Q,M Q,M ′

m = M −M ′

Figure 2. Cartoon representation of WGC-satisfying corrections to a black hole. On the left we
have a black hole with charge Q, and mass M , where M is the ADM mass, in the unperturbed
theory. On the right, we add matter to the theory, imagining that it contributes as an uncharged
shell (the outer gray ring) with mass m. Keeping the ADM mass fixed, we have m = M−M ′, where
M ′ is the new mass of interior region. The WGC dictates that the singularity remains cloaked in
the perturbed solution, so that M ′ ≥M and m ≤ 0. The dotted line represents the horizon of the
perturbed geometry with m < 0.

While this simple setup gives some useful intuition, it also has its shortcomings. In
particular, if the two-derivative action includes a graviton and gauge field as massless
degrees of freedom, additional matter fields also backreact on the gauge field and must be
taken into account. We now show that the correct condition (1.1) also takes into account
a correction to the stress tensor of the gauge field.

2.2 Deriving the general relation

Now that we have motivated the WGC as a condition on a stress tensor, we make this
intuition precise by rewriting the corrections to the horizon of an extremal black hole as an
integral of the stress tensor. To do so, it will be useful to employ the covariant phase space
formalism of Iyer and Wald, which we review in appendix A. Viewing the Lagrangian as a
d-form, we consider Einstein-Maxwell theory, possibly with a cosmological constant:

L = 1
2κ2 (R− 2Λ) ε− 1

2F ∧ ?F . (2.8)

Here κ2 = 8πGd and ε is the volume form on the d-dimensional background. As explained in
the appendix, for any infinitesimal diffeomorphism parametrized by ξ or gauge transforma-
tion parametrized by λ we can construct a Hamiltonian that obeys a conservation equation
that is satisfied on-shell. We now consider an off-shell variation of the Hamiltonian. We
then find (see (A.26)) the following conservation equation:

dδH = −2δ ? (Eg · ξ)− (ιξA+ λ)d ? δF . (2.9)

The left-hand side is a variation of the exterior derivative of the Hamiltonian and the right-
hand side contains a term Eg that captures the gravitational equations of motion and a
second term that arises from a variation with respect to the gauge field A. Because the
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background satisfied Einstein’s equations, we can rewrite the first term as

− 2δ ? (Eg · ξ) = − ? δTabξbdxa . (2.10)

Now let us consider a black hole (not necessarily in asymptotically flat space). Integrat-
ing (2.9) over a Cauchy slice Σ of constant Killing time t located somewhere between the
(outer) horizon and spatial infinity, we can use Stokes’ theorem to write

δH =
∫
Sd−2
∞

δH =
∫
Sd−2

hor

δH +
∫

Σ
dd−1x

√
h (δTab + FacδF

c
b )naξb . (2.11)

To arrive at this form, we picked a gauge in which ιξA + λ vanishes at the horizon and
we assumed that δFab dies off sufficiently fast at infinity. Here hab is the induced metric
on Σ and na its unit normal vector. The second integral on the right-hand side consists
of two terms, which arise from varying both the metric and gauge field. The sum of both
contributions can be thought of as an effective stress tensor

δT eff
ab = δTab + FacδF

c
b , (2.12)

and we arrive at the following relation(∫
Sd−2
∞

−
∫
Sd−2

hor

)
δH =

∫
Σ

dd−1x
√
h δT eff

ab n
aξb . (2.13)

As we will see next, when we specify a black hole background the first integral on the left-
hand side becomes proportional to the asymptotic charges of the black hole and the second
integral gives the correction to the horizon. At fixed asymptotic charges, we then find a
identity relating the shift of the black hole horizon to the stress tensor, reformulating the
WGC as a condition on the stress tensor. A non-covariant version of this relation already
appeared in [28] in the context of the four-dimensional Reissner-Nördstrom black hole.
Here we considered Einstein-Maxwell theory, but a generalization to a more general theory
with stationary black hole solutions is straightforward.

2.2.1 BTZ black hole

The first example we look at is pure three-dimensional gravity described by the following
Lagrangian.

L = 1
2κ2 (R− 2Λ) ε . (2.14)

On a constant negative-curvature background, Λ = −1/`2, a particular solution of Ein-
stein’s equations is given by the BTZ black hole which has the metric

ds2 = −N(r)2 dt2 +N(r)−2 dr2 + r2(dφ+Nφ(r) dt
)2
, (2.15)

with

N(r)2 =
(r2 − r2

+)(r2 − r2
−)

`2r2 , Nφ(r) = r+r−
`r2 . (2.16)
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The inner and outer horizon are given by r± and the mass M3 and angular momentum J3
can be written as

M3 =
r2

+ + r2
−

8G3`2
, J3 = r+r−

4G3`
. (2.17)

To construct the Hamiltonian associated with an infinitesimal diffeomorphism, we first
have to compute the symplectic potentials and Noether charges (see (A.3) and (A.24)).
For the Killing vector ξ = ∂t we then find the following expressions.

Q∂t = 1
2κ2

(
−r3Nφ(r)N ′φ(r) + 2rN(r)N ′(r)

)
dφ+ (. . . ) dt , (2.18)

ι∂tΘ = 1
2κ2

(
−r3δNφ(r)N ′φ(r) + 2rδN(r)N ′(r) + 2N(r)

(
δN(r) + rδN ′(r)

))
dφ

+ (. . .) dt .

We only displayed the terms proportional to dφ because the other terms will drop out of the
integral of interest. Taking variations with respect to the metric functions and using (A.17)
we find the variation of the Hamiltonian for the timelike Killing vector.

δH∂t = − dφ
2κ2

(
2N(r)δN(r) + r3Nφ(r)δN ′φ(r)

)
. (2.19)

The conserved charge associated with this Hamiltonian is of course the mass:

δH∂t =
∫
S1
∞

δH∂t = δM3 . (2.20)

Similarly, the Noether charge and symplectic potential for the Killing vector ∂φ are

Q∂φ = − 1
2κ2 r

3N ′φ(r)dφ+ (. . .) dt , (2.21)

ι∂φΘ = (. . .) dt ,

such that
δH∂φ = − 1

2κ2 r
3δN ′φ(r) dφ . (2.22)

The associated conserved charge is the angular momentum:

δH∂φ =
∫
S1
∞

δH∂φ = δJ3 . (2.23)

In [29] it was observed that the integral of the Hamiltonian variation associated to the
Killing vector K = ∂t − Ω∂φ (where Ω = r−

`r+
is the angular potential) over the horizon

is directly proportional to the variation of N(r+)2, whose roots determine the location of
the horizon: ∫

S1
hor

δHK = − 1
8G3

δ(N(r+)2) . (2.24)

Notice that for this Killing vector, the horizon is a Killing horizon. We can now relate the
shift in the horizon to the stress tensor and the conserved charges by making use of (2.13),
leading to

− 1
8G3

δ(N(r+)2) = δM3 − ΩδJ3 −
∫

Σ
d2x
√
h δTabn

aKb . (2.25)
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Hence, the horizon shift for an extremal black hole at fixed charges (δM3 = δJ3 = 0) is
determined by

1
8G3

δ(N(r+)2) =
∫

Σ
d2x
√
h δTabn

aKb . (2.26)

As explained, a positive (or absent) shift of the horizon requires δ(N(r+)2) ≤ 0 which
leads to ∫

Σ
d2x
√
h δTabn

aKb ≤ 0 . (2.27)

Given this condition it is now straightforward to determine whether a particular correction
to the BTZ background increases the horizon in a microcanonical ensemble (fixed M3 and
J3), which determines the extremality bound in a canonical ensemble (fixed temperature
and J3). In [29] for example, this relation has been employed to compute the correction to
the extremality bound induced by the one-loop stress tensor of a massive scalar field.

Here, we are interested in computing higher-derivative corrections that are generated
upon integrating out heavy matter and we will perturb the BTZ black hole by the leading
gravitational corrections in a derivative expansion,

∆L = m−1
(
α1R

2 + α2RabR
ab
)
ε . (2.28)

The mass scale m in front, which obeys `m� 1, is chosen such as to make the coefficients
α1, α2 dimensionless. Varying the higher-derivative Lagrangian with respect to the metric,
we find that the stress tensor is given by

δTab = α1m
−1
(
−4RabR+ gabR

2 + 4∇a∇bR− 4gab�R
)

(2.29)

+ α2m
−1
(
gabRcdR

cd + 2∇a∇bR− 4RcadbRcd − 2�Rab −�Rgab
)
.

Evaluated on the BTZ background the stress tensor is

δTab = −4(3α1 + α2)
`4m

gab . (2.30)

Plugging this into (2.26), we find a divergent integral. This divergence can be blamed on
the fact that higher-derivative corrections do not fall off going to the boundary in three-
dimensional gravity. In the context of holography, it is well known that the proper way
to regulate the stress tensor in three-dimensional asymptotically anti-de Sitter space is to
subtract the contribution of the cosmological constant [30]. In our case, this contribution is

δT
(0)
ab = −4(3α1 + α2)

`4m
g

(0)
ab , (2.31)

where g(0)
ab is the metric of empty AdS. We can now perform the integral to find the

finite result
δ(N(r+)2) = −

32G3πr
2
+

`4m
(3α1 + α2) . (2.32)

It is straightforward to check by explicitly solving the corrected Einstein equations that this
result, obtained by the regularization procedure described above, indeed yields the correct
modification to the geometry. The horizon is shifted positively (or receives no corrections)
when 3α1 + α2 ≥ 0.

– 10 –
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2.2.2 Reissner-Nordström black hole

We now repeat the above calculation for electrically charged Reissner-Nordström black
holes in asymptotically flat four-dimensional space. These black holes are solutions to the
following Lagrangian:

L =
( 1

2κ2R

)
ε− 1

2F ∧ ?F . (2.33)

The line element of the Reissner-Nordström black hole solution is given by

ds2 = −f(r) dt2 + f(r)−1 dr2 + ρ(r)2(dθ2 + sin2 θ dφ2) , (2.34)
A = −Φ(r) dt ,

with
f(r) = (r − r+)(r − r−)

r2 , ρ(r) = r , Φ(r) = Q

4πr − Φ+ , (2.35)

where it is useful to choose a gauge in which At vanishes at the horizon: Φ+ gives the
difference in electric potential between the horizon and infinity. The mass and electric
charge are given by

M4 = r+ + r−
2G4

, Q2 = 4πr+r−
G4

. (2.36)

We now need to consider the Hamiltonian that generates the flow of the timelike Killing
vector ∂t, for which the black hole horizon is a Killing horizon, and the Hamiltonian for the
gauge transformation A → A + dλ. Proceeding as before, we obtain explicit expressions
for the Noether charge and symplectic potential (using (A.21) and (A.24)).

Q∂t = 1
2κ2 f

′(r)ρ(r)2 sin θ dθ ∧ dφ , (2.37)

ι∂tΘg = 1
2κ2

(2ρ′(r)
ρ(r) δf(r) + δf ′(r) + 4f(r)

ρ(r) δρ
′(r)

)
ρ(r)2 sin θ dθ ∧ dφ .

Similarly, the charge associated with gauge transformations is

Qλ = −Φ(r)Φ′(r)ρ(r)2 sin θ dθ ∧ dφ . (2.38)

The variation of the Hamiltonians are (using (A.17) and (A.25))

δH∂t = − 1
8πG4

[
ρ′(r)
ρ(r) δf(r) + 2f(r)

ρ(r) δρ
′(r)− f ′(r)

ρ(r) δρ(r)
]
ρ(r)2 sin θ dθ ∧ dφ , (2.39)

δHλ = −
[
Φ(r)δΦ′(r) + 2Φ(r)Φ′(r)

ρ(r) δρ(r)
]
ρ(r)2 sin θ dθ ∧ dφ ,

and the corresponding conserved charges are

δH∂t =
∫
S2
∞

δH∂t = δM4 , (2.40)

δHλ =
∫
S2
∞

δHλ = −Φ+δQ .
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We now use (2.13) to find the shift in the horizon due to additional contributions to action
(such as higher-derivative terms):

− r+δf(r+)
2G4

= δM − Φ+δQ−
∫

Σ
d3x
√
h (δTab + FacδF

c
b )naξb . (2.41)

Thus, at fixed charges (δM4 = δQ = 0) we obtain

r+δf(r+)
2G4

=
∫

Σ
d3x
√
h δT eff

ab n
aξb , (2.42)

where the effective stress tensor is defined as

δT eff
ab = δTab + FacδF

c
b . (2.43)

Because a positive shift (or no corrections) of the horizon requires δf(r+) ≤ 0 we find that
the mild form of the WGC can be rewritten as a condition on the effective stress tensor.∫

Σ
d3x
√
h δT eff

ab n
aξb ≤ 0 . (2.44)

We will now show how this relation can be employed by perturbing the Reissner-Nordström
black hole with the following higher-derivative corrections:

∆L =
(
a1
4 (FabF ab)2 + a2

2 FabFcdW
abcd

)
ε . (2.45)

We are interested in purely electric solutions, so we omit a term of the form FabF
bcFcdF

da

which can be written as a multiple of (FabF ab)2. Dimensionless coefficients are defined by
b1 = a1/κ

4 and b2 = a2/κ
2. For an electrically charged Reissner-Nordström these are the

most general higher-derivative corrections up to four derivatives.
As we saw, the effective stress tensor δT eff

ab contains explicit terms δTab that arise from
varying ∆L with respect to the metric as well as implicit corrections FacδF cb that capture
a modification of Maxwell’s equations. The corrected Maxwell equations are given by

∇bF ab = 2∇b
(
2b1κ4FcdF

cdF ab + b2κ
2W abcdFcd

)
. (2.46)

This is solved by

F =
(
− Q

4πr2 + 4b1G2
4Q

3

πr6 + 4b2G2
4
(
Q3 − 4πM4Qr

)
πr6

)
dt ∧ dr . (2.47)

The explicit corrections are given by [28]

δTab = b1
4 κ

4
(
gab(FcdF cd)2 − 8FcdF cdF e

a Fbe
)

+ b2
2 κ

2
[
gabRcdefF

cdF ef − 6FcbF deRcade − 4∇d∇c
(
F caF

d
b

)
− 2gabRcdFceF e

d + 8RbcFadF cd + 4RcdFcaFdb + 2gab∇c∇d
(
F ceF

de)
− 4∇c∇b

(
FadF

cd)+ 2�
(
FacF

c
b

)
+ 1

3gabRFcdF
cd

− 4
3RF

c
a Fbc −

2
3FcdF

cdRab + 2
3∇a∇b

(
FcdF

cd)− 2
3gab�

(
FcdF

cd)] .

(2.48)
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Adding both corrections and performing the integral over Σ and using (2.42) we find in
the extremal limit

δf(r+) = −64π2(2b1 − b2)
5Q2 . (2.49)

A positive (or absent) shift of the horizon requires 2b1 − b2 ≥ 0, which matches [11, 28].

3 Spinning WGC from holographic RG

In the previous section, we rephrased WGC-satisfying corrections to the extremality bound
as an integrated condition on an effective stress tensor and gave two examples where the
corrections to the stress tensor arose from higher-derivative terms, but we could also have
considered quantum corrections. In [29], this relation was used to relate the one-loop stress
tensor of a massive scalar field to a correction of the BTZ extremality bound. To compute
the effect of quantum corrections, one simply replaces the classical value of the stress tensor
by its expectation value. This correctly gives the shift in the horizon radius as long as the
semi-classical approximation is valid.

In light of a spinning WGC we would like to understand whether there is a general
principle behind positivity of the horizon shift. In this section, we show that this is the
case for a particular class of corrections to the BTZ black hole. In particular, when a BTZ
black hole is perturbed by a relevant deformation, this triggers a holographic RG flow.
When the NEC is satisfied along the flow, the central charge of the dual CFT decreases by
virtue of the c-theorem [31]. This implies that when we reach a fixed point in the IR, that
theory includes BTZ black holes with angular momentum-to-mass ratios exceeding those
of unperturbed black holes, so that a spinning version of the WGC is satisfied.

The holographic RG [32], provides a systemic way of computing CFT correlation func-
tions from the on-shell gravitational action at fixed radial coordinate in the context of
AdS/CFT. The radial coordinate in the bulk is identified as an energy scale in the CFT
and moving from the boundary of AdS into the bulk describes an RG flow from the UV
to the IR in the boundary theory. For our purposes, we will consider the following three-
dimensional action on an AdS background perturbed by purely gravitational four-derivative
operators:

I =
∫

d3x
√
−g

( 1
2κ2

(
R+ 2

`2

)
+ α1`R

2 + α2`RabR
ab
)
. (3.1)

For now we focus on these particular higher-derivative corrections, but our method can
be easily generalized to additional terms as well. In the context of the holographic RG
we can think of this action as an effective field theory in the IR whose higher-derivative
corrections parametrize the effect of modes that have been integrated out along the flow.
In three dimensions, the Ricci tensor is proportional to the metric which implies that the
higher-derivative corrected action still has a BTZ solution described by the metric (2.15).
The effect of adding higher-derivative corrections is to shift the central charge of the dual
CFT2 from its Brown-Henneaux [33] value. The corrected central charge can easily be
determined using c-extremization [34]. One defines a c-function given by

c(`) = 3`2

8G3
L3 , (3.2)
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and extremizes this with respect to ` to find the central charge. Here L3 is the Euclidean
Lagrangian. In our case, we have

L3 = −R− 2
`2
− 2κ2`

(
α1R

2 + α2RabR
ab
)
. (3.3)

Extremizing the c-function, we obtain

c = 3`
2G3

(
1− 6κ2(3α1 + α2)

`

)
. (3.4)

From Einstein’s equations one finds that the higher-derivative terms are proportional to
the cosmological constant, so we can also absorb them into the AdS length. Explicitly,

α1R
2 + α2RabR

ab = 12
`4

(3α1 + α2) . (3.5)

Thus, we can write (3.1) equivalently as

I = 1
16πG3

∫
d3x
√
−g

(
R+ 2

L2

)
, (3.6)

with
L = `− 6κ2(3α1 + α2) . (3.7)

Since we removed the higher-derivative corrections, this action has BTZ solutions with an
AdS length L and the central charge of the dual CFT is now just given by the Brown-
Henneaux value c = 3L/2G3. Indeed, using (3.7) the central charge is still given by

c = 3L
2G3

= 3`
2G3

(
1− 6κ2(3α1 + α2)

`

)
. (3.8)

We therefore see that on-shell, higher-derivative corrections in three dimensions can equiv-
alently be understood as an uncorrected theory with a modified AdS length [35].

The correction to the central charge modifies the entropies and extremality bound of
black holes in the theory. The mass and angular momentum given in (2.17) are related to
the excitation levels of the dual CFT by the standard relations [36]

M3` = h+ h̄− c

12 , J3 = h− h̄ . (3.9)

In terms of the excitation levels we can write the extremality bound as

h̄ ≥ c

24 . (3.10)

To derive the change in extremality bound in a canonical ensemble and the change in
entropy in a microcanonical ensemble we find it useful to use a thermodynamic approach.
The Euclidean action is given by

IE = −
∫

d3x
√
g

( 1
2κ2

(
R+ 2

`2

)
+ α1`R

2 + α2`RabR
ab
)
− 1
κ2

∮
d2x
√
h (K −K0) (3.11)
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where we supplemented the bulk action by a Gibbons-Hawking-York boundary term, de-
fined at the boundary at r →∞, and a counterterm K0 to make the on-shell action finite.
The counterterm that removes the divergence of IE when r →∞ is given by

K0 = 1
`

+ 6κ2(3α1 + α2)
`2

. (3.12)

Using this, the on-shell action is given by

IE =
πβ
(
r2
− − r2

+
)

κ2`2
−

6πβ
(
r2
− − r2

+
)

(3α1 + α2)
`3

. (3.13)

Here β is the inverse temperature of the black hole. It is well known that, even in the
presence of higher-derivative corrections, the Euclidean action can be written in terms of
the Gibbs free energy G as [17]

IE = βG = β (M3 − TS − ΩJ3) . (3.14)

Here Ω = r−
`r+

denotes the angular potential and S is the entropy. We can now evaluate the
Euclidean action in a grand canonical ensemble by writing IE = IE(T,Ω), where T = β−1.
The different thermodynamic quantities are given by

S = −
(
∂G

∂T

)
Ω
, J3 = −

(
∂G

∂Ω

)
T
, (3.15)

and the mass is
M3 = G+ TS + ΩJ3 . (3.16)

We start by computing the extremal entropy by expressing S(Ω, T ) as S(T,M3) and take
T → 0. We then find

S|T=0 = `π

√
M3
G3

(
1− 48πG3(3α1 + α2)

`

)
. (3.17)

We now evaluate the mass in a canonical ensemble by expressing it in terms of T and J3.
In the limit T → 0 we obtain

M3 = J3
`

(
1− 48πG3(3α1 + α2)

`

)
. (3.18)

Thus, the extremality bound is modified as

J3
`M3

≤ 1 + 48πG3(3α1 + α2)
`

. (3.19)

Finally, we are also interested in the microcanonical entropy (fixed M3 and J3). Ex-
panding the canonical expression of the mass for small temperature, we find that the
z = J3/(`M3) = 1 state has a non-zero temperature of the form

T |z=1 = 16G3
`2

√
3J3(3α1 + α2)

π
. (3.20)
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Figure 3. If we perturb an AdS space with AdS length ` by a relevant deformation δϕ, this triggers
an RG flow until we reach an IR fixed point describing an AdS space with length `′. When δϕ

satisfies the NEC, ` > `′. By a field redefinition, the action of the IR AdS space can be related to
an AdS space with length ` and higher-derivative corrections.

At fixed M3 and J3 the correction to the extremal black hole entropy is given by

S|z=1 = π`

√
M3
G3

1 +

√
48πG3
`

(3α1 + α2)

 . (3.21)

We see that a positive shift of the angular momentum-to-mass ratio of an extremal BTZ
black hole increases the microcanonical entropy and corresponds to a decrease of the central
charge. When the correction to the central charge is generated by the higher-derivative
corrections in (3.1) a negative (or absent) shift in the central charge requires 3α1 +α2 ≥ 0.

It is now straightforward to argue that when we perturb a BTZ black hole by a relevant
perturbation, the central charge decreases (or is uncorrected) along the flow such that
3α1 + α2 ≥ 0 and a spinning WGC is obeyed. Our starting point is a purely three-
dimensional gravity theory with a Brown-Henneaux central charge. Then, we perturb this
theory by some matter field that is holographically dual to a relevant operator. This will
trigger a holographic RG flow until we reach a fixed point in the IR, which corresponds
to a CFT perturbed by an irrelevant deformation. The gravitational dual of this theory
has BTZ solutions with an AdS length (and central charge) that is smaller than the one in
the unperturbed theory by virtue of the c-theorem: see figure 3. So whenever the higher-
derivative corrections in (3.1) arise in the IR as a consequence of a relevant perturbation,
3α1 + α2 ≥ 0. Next, we will illustrate this behaviour when the relevant perturbation is a
scalar field.

Although it is convenient to assume that the UV CFT is dual to pure Einstein gravity,
such that its central charge takes the Brown-Henneaux form, this is strictly speaking not
necessary. As long as the c-theorem is obeyed, it is guaranteed that the IR central charge is
smaller than the central charge of the UV fixed point. In this sense, the three-dimensional
spinning form of the WGC is insensitive to the UV, as long as there exists a black hole
with which to compare the extremality bound.

3.1 Example: scalar perturbation

We now give an explicit example of a holographic RG flow where the relevant perturbation
is a scalar field. Because BTZ black holes are related to empty AdS by a modular trans-
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formation, we find it convenient to describe a flow between two AdS spaces. A modular
transformation does not modify the central charge and the AdS flow is therefore sufficient
to show that the central charge decreases. Of course, one could also consider a direct flow
between two BTZ black holes as in [37], which is technically more involved. As expected,
those results are also in agreement with the c-theorem.

To describe the flow, it will be useful to take the following domain-wall ansatz for
the metric

ds2 = dρ2 + e2A(ρ)
(
−dt2 + dx2

)
, (3.22)

where we take x ∼ x + 2π. Empty AdS space (with a compactified x-coordinate) corre-
sponds to A(ρ) = ρ/`. We now perturb the Einstein-Hilbert action by a scalar field φ,
writing

I =
∫

d3x
√
−g

( 1
2κ2R−

1
2∂aφ∂

aφ− V (φ)
)
. (3.23)

Taking the scalar field to depend only on the radial coordinate ρ, we can write the action
in the following form:

I = V2

∫
dρ e2A(ρ)

[(
κW (φ)− 1

κ
Ȧ(ρ)

)2
− 1

2
(
φ̇(ρ) +W ′(φ)

)2
]

(3.24)

+ V2

∫
dρ ∂ρ

[
e2A(ρ)

(
W (φ)− 2

κ2 Ȧ(ρ)
)]

.

Here V2 =
∫
dtdx. The dot denotes a derivative with respect to ρ, the prime a derivative

with respect to φ and W (φ) is any function that solves

V (φ) = −κ2W (φ)2 + 1
2W

′(φ)2 . (3.25)

The functionW (φ) has dimensions of length−2. The equations of motion can now be easily
obtained by setting the squares to zero,

κ2W (φ) = Ȧ(ρ) , W ′(φ) = −φ̇(ρ) . (3.26)

The perfect square structure of the action leading to these equations of motion can also
be derived using the Hamilton-Jacobi formalism and is reminiscent of BPS equations [38].
One can check that the equations of motion solve the full non-linear Einstein equations
and the Klein-Gordon equation.

Let us now consider a holographic RG flow between two AdS spaces connected via a
domain wall. From the equations of motion, we see that a stationary point φ? of W (φ)
corresponds to a solution with AdS length ` = (κ2W (φ?))−1. Although it is not necessary
for our argument to give an explicit form of the potential, we find it illustrative to work
through an explicit example so we pick the simple potential

W (φ) = −φ4 +mφ2 +m2 . (3.27)

Here m is a positive constant with dimensions of length−1 which we choose to obey 0 <
m� 1/κ2. Focussing on the region φ ≥ 0, this function has two critical points,

φ? = 0 and φ? =
√
m

2 . (3.28)
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Solving the first-order equations of motion we obtain the following solution

φ(ρ) =
√
m√

2− e4mρ−2c1m
,

A(ρ) = 1
8κ

2m

( 1
e4mρ−2c1m − 2 + 10mρ

)
− 1

16κ
2m log

(
e4mρ − 2e2c1m

)
+ c2 . (3.29)

Here c1, c2 are integration constants. We find that the critical points ofW (φ(r)) are reached
asymptotically,

lim
ρ→∞

φ(ρ) = 0 , (3.30)

lim
ρ→−∞

φ(ρ) =
√
m

2 .

If we consider fluctuations δϕ = φ−φ? around the critical points, we find that V ′′(δϕ) < 0
around φ? = 0 and V ′′(δϕ) > 0 around φ? =

√
m/2. Because a scalar field with mass M in

the bulk is dual to a CFT operator with conformal dimension ∆ given byM2`2 = ∆(∆−2),
we identify φ? = 0 as the UV CFT perturbed by a relevant deformation (∆ < 2) and
φ? =

√
m/2 as the IR CFT perturbed by an irrelevant deformation (∆ > 2).

The c-function that gives the central charge at the critical points is given by [37]

c(ρ) = 3
2G3Ȧ

. (3.31)

At the critical points, we find

lim
ρ→∞

A(ρ) = κ2m2ρ , (3.32)

lim
ρ→−∞

A(ρ) = 5
4κ

2m2ρ .

We see that the IR central charge is smaller than the UV central charge in accord with the
c-theorem. More generally, the change in the c-function along the radial direction is

ċ(ρ) = − 3Ä
2G3Ȧ2 . (3.33)

The requirement that the central charge monotonically decreases (or is uncorrected) along
the flow from UV to IR is Ä ≤ 0. From Einstein’s equations, this condition follows naturally.
Contracting the Einstein tensor with a null vector ζa = (

√
−gtt,

√
gρρ, 0) we find

Gabζ
aζb = −Ä(ρ) . (3.34)

The condition Ä ≤ 0 follows directly from the NEC (Tabζaζb ≥ 0). So, as long as the NEC
is obeyed, the central charge of the IR theory is smaller than the central charge of the
unperturbed UV theory, so that the spinning WGC for BTZ black holes is satisfied. This
is the bulk dual of the c-theorem in the CFT.
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4 Five-dimensional black string

Now that we have seen that perturbing a BTZ black hole by a relevant deformation leads
to a spinning version of the WGC, one might wonder whether the spinning WGC has any
application in constraining the extremality bound of charged extremal solutions that have
near-horizon limits with BTZ factors (the particular example that we consider is a boosted
five-dimensional black string). This idea is quite natural as it is well known that the
entropy of such charged extremal solutions can be easily determined using Cardy’s formula
in the near-horizon BTZ geometry (see [39] for example). Because of the close connection
between entropy and extremality [11, 26] one might naively think that both extremality
bounds should coincide and that the spinning WGC implies the charged WGC. One should
keep in mind however that this relation only holds for the microcanonical entropy (which
is not evaluated at zero temperature).

By computing higher-derivative corrections to a five-dimensional boosted black string,
we show that while the entropy of the BTZ and four-dimensional black hole agree at
zero temperature, their extremality bounds do not. To determine the corrections to the
near-horizon BTZ×S2 geometry we find it convenient to use c-extremization again and
corrections to the four-dimensional black hole are computed employing a thermodynamic
approach. As an additional check of our results, we also calculate corrections to the four-
dimensional extremality bound using (1.1) and on top of that explicitly construct the
five-dimensional higher-derivative corrected black string. In appendix B we show that
the explicit solution is in perfect agreement with our results from c-extremization, our
integrated condition, and the thermodynamic approach.

The precise system we will study is a five-dimensional boosted black string that is
a solution to the Einstein-Maxwell action perturbed by higher-derivative terms.6 Before
adding higher-derivative corrections the relevant action is given by

I = 1
16πG5

∫
d5x
√
−g

(
R− 3

4FMNF
MN

)
. (4.1)

The line element that describes an unboosted black string extended along a compact x-
direction is given by [40]

ds2 = H(r)−1
[
−
(

1− r0
r

)
dt2 + dx2

]
+H(r)2

[(
1− r0

r

)−1
dr2 + r2dΩ2

2

]
. (4.2)

The factor of three in front of the Maxwell term in the action signifies that we consider a
setup with three (equal) magnetic charges. The magnetic field strength F and harmonic
function H(r) are defined as

F =
√
q(q + r0) sin θ dθ ∧ dφ , (4.3)

H(r) = 1 + q

r
.

6Such a geometry can arise for example by compactifying three (magnetically) charged intersecting
M5-branes, see [40].
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r
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x

S2

r

x

S2

Figure 4. Sketch of the five-dimensional black string geometry. The coordinate x is periodic,
shown with identifications on the left, while on the right t is suppressed. In the coordinates of (4.7)
the ring singularity is at r = −q and the two horizons (red), located at r = 0 and r = r0, have
topology S1 × S2 at fixed t. The four-dimensional black hole is found by reducing over x (leading
to a horizon of spacial topology S2 and a point-like singularity). The BTZ× S2 geometry is found
in the near-horizon limit.

The physical charge of the solution is given by

Q = 1
4π

∫
S2
∞

F =
√
q(q + r0) . (4.4)

We can now perform a boost along the x-direction, which transforms

t→ cosh δ0 t+ sinh δ0 x , (4.5)
x→ sinh δ0 t+ cosh δ0 x . (4.6)

The metric now becomes

ds2 = H(r)−1
[
−dt2 + dx2 + r0

r
(cosh δ0 dt+ sinh δ0 dx)2

]
(4.7)

+H(r)2
[(

1− r0
r

)−1
dr2 + r2dΩ2

2

]
.

As we will now show, this geometry describes a four-dimensional charged black hole after
a Kaluza-Klein reduction and has a BTZ×S2 near-horizon limit: see figure 4 for a sketch.

4.1 Four-dimensional black hole

To obtain a charged four-dimensional black hole solution, we take x = x + 2πR to be
compact and perform a Kaluza-Klein reduction. We take the standard ansatz

ds2 = gµνdxµdxν + ϕ2[(A0)µdxµ + dx
]2
, (4.8)
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where ϕ is a scalar field and A0 a Kaluza-Klein gauge field corresponding to the electric
field F0 = dA0. Defining q0 = r0 sinh2 δ0 we read off

ϕ2 = H(r)−1H0(r) , A0 =
√
q0(q0 + r0)
q0 + r

dt , (4.9)

with
H0(r) = 1 + q0

r
. (4.10)

After performing the reduction and going to Einstein frame, we find that the metric (4.7)
becomes the following four-dimensional black hole,

ds2 = −f(r)dt2 + f(r)−1dr2 +H0(r)1/2H(r)3/2r2 dΩ2
2 , (4.11)

with
f(r) = H0(r)−1/2H(r)−3/2

(
1− r0

r

)
. (4.12)

It will be useful to combine the electric field arising from the Kaluza-Klein reduction and
magnetic field already present in five dimensions into a single field strength defined by

F =
√
q0(q0 + r0)

r2 H(r)−2 dt ∧ dr +
√

3q(q + r0) sin θ dθ ∧ dφ . (4.13)

The physical electric and three magnetic charge of the black holes are given by

Q0 = 1
4π

∫
S2
∞

?F0 =
√
q0(q0 + r0) , Q = 1

4π

∫
S2
∞

F =
√
q(q + r0) . (4.14)

For simplicity, we now also set the electric charge equal to the magnetic charge, i.e. q0 = q,
such that ϕ = 1. The four-dimensional action then takes the standard form

I = 1
16πG4

∫
d4x
√
−g

(
R− 1

4FµνF
µν
)
. (4.15)

Having obtained the black hole solution, it is easy to find the extremality bound and
entropy of this black hole. Solving f(r) = 0 we find that the horizons are located at

r+ = r0 , r− = 0 , (4.16)

and the extremal limit corresponds to r0 → 0. From the asymptotic form of f(r)

lim
r→∞

f(r) = 1− 2q + r0
r

+O
( 1
r2

)
, (4.17)

we find that the ADM mass is given by

2G4M4 = 2q + r0 . (4.18)

In terms of the physical charges, the extremality bound is given by

Q

G4M4
= 2

√
q(q + r0)

2q + r0
≤ 1 . (4.19)

Finally, the Bekenstein-Hawking entropy of the extremal black hole is given by

S
∣∣
T=0 = A

4G4
= πQ2

G4
. (4.20)
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4.2 BTZ × S2 solution

We now consider the near-horizon limit of the boosted black string solution (4.7) by taking
the limit q � r, which sends

H(r)→ q

r
. (4.21)

After performing the coordinate transformation

τ = t`

R
, ρ2 = 2R2

`
(r + q) , ψ = x

R
, (4.22)

we obtain a BTZ× S2 solution.

ds2 = −N(ρ)2 dτ2 +N(ρ)−2 dρ2 + ρ2(dψ +Nψ(ρ) dτ
)2 + q2 dΩ2

2 . (4.23)

Explicitly, the lapse and shift functions are given by

N(r)2 =
(
ρ2 −R2) (ρ2 − (1 + r0

q )R2)
4q2ρ2 , (4.24)

Nψ(ρ) = R2

2ρ2

√
q + r0
q3 .

The BTZ black hole has an AdS length ` = 2q and the S2 has radius `S2 = q. The mass
and angular momentum are given by

M3 = R2(`+ r0)
4G3`3

, J3 = R2

4G3

√
`+ 2r0
`3

. (4.25)

The extremal limit corresponds to r0 = 0 and the extremality bound is given by

J3
`M3

=
√
`(`+ 2r0)
`+ r0

≤ 1 . (4.26)

Instead of explicitly performing the near-horizon limit an alternative way of obtaining the
same BTZ× S2 solution is to use c-extremization [34]. This will be especially useful when
we include higher-derivative corrections. Going to Euclidean signature and evaluating the
five-dimensional action, we find that the c-function takes the form

c(`, `S2) = 3π
2G5

`2`2S2

(
−R+ 3

4FMNF
MN

)
=

3π`
[
`2
(
3Q2 − 4`2S2

)
+ 12`4S2

]
4G5`2S2

. (4.27)

Extremizing with respect to ` and `S2 we find the following lengths and central charge

` = 2Q , `S2 = Q , c = 3Q
G3

, (4.28)

where we used G5 = 4π`2S2G3. This coincides with the solution found by taking the near-
horizon limit. The entropy can be found using Cardy’s formula [36]

S = 2π
√
c

6

(
h− c

24

)
+ 2π

√
c

6

(
h̄− c

24

)
. (4.29)
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After using (3.9), we find that in the extremal limit

S
∣∣
T=0 = π

√
`2M3
G3

= πQ2

G4
, (4.30)

where we wrote G3 = RG4
2Q2 . The extremal entropy of the BTZ matches that of the extremal

four-dimensional black hole.

4.3 Including higher-derivative corrections

We are now ready to include higher-derivative corrections to the five-dimensional action and
see how the BTZ near-horizon geometry and four-dimensional black hole are modified. The
most general four-derivative corrections to five-dimensional Einstein-Maxwell theory are

I = 1
16πG5

∫
d5x
√
−g

(
R− 3

4FMNF
MN + α1Q

2FMNF
MNFOPF

OP (4.31)

+ α2Q
2FMNFOPW

MNOP + α3Q
2E5

)
.

Here WMNOP is the Weyl tensor and

E5 = RMNOPR
MNOP − 4RMNR

MN +R2 , (4.32)

is the five-dimensional Euler density. We normalize the higher-derivative operators with Q
so that the αi are dimensionless.

Readers uninterested in technical details can skip the next two subsections and instead
directly look at table 1, where we give an overview of the corrections to the entropy and
extremality bounds. Take notice that the BTZ extremality bound does not coincide with
the four-dimensional extremality bound.

4.3.1 Four-dimensional black hole solution

To obtain the four-dimensional action with higher-derivative corrections we perform a
Kaluza-Klein reduction along the x-direction, just as before, using the ansatz (4.8). Taking
magnetic and electric charges equal the reduced action takes the following form.

I = 1
16πG4

∫
d4x
√
−g

(
R− 1

4FµνF
µν + a1

4 Q
2(FµνFµν)2 (4.33)

+ a2
2 Q

2FµνFρσWµνρσ + a3
2 Q

2E4

)
.

The Wilson coefficients are related to the coefficients appearing in the five-dimensional
action as

a1 = α1 + 3
8α2 + 1

2α3 , a2 = α2 + 1
2α3 , a3 = 2α3 . (4.34)

Because the four-dimensional Euler density E4 is topological, it will affect neither the
equations of motion nor the extremality bound. To determine the corrections to the ex-
tremality bound and entropy, we will make use of a thermodynamic approach, which has
the advantage that we don’t need to explicitly know the corrected metric. Instead, we can
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B
T
Z
×
S

2 T = 0
z = 1 + 8α1+3α2−12α3

2

S = 2πQ
√

M3
G3

(
1− 8α1+3α2−12α3

2

)
= πQ2

G4

(
1− 8α1+3α2−12α3

2

)

z = 1
T =

√
G3J3(8α1+3α2−12α3)

πQ3

S = 2πQ
√

M3
G3

(
1 +

√
8α1+3α2−12α3

2

)
= πQ2

G4

(
1 +

√
8α1+3α2−12α3

2

)

4D

T = 0
z = 1 + 2a1+a2

10 = 1 + 8α1+7α2+6α3
40

S = πQ2

G4
(1− 4a1 + 4a3) = πQ2

G4

(
1− 8α1+3α2−12α3

2

)

z = 1
T = π

Q

√
2(2a1+a2)

5 = π
Q

√
8α1+7α2+6α3

10

S = πQ2

G4

(
1 +

√
2(2a1+a2)

5

)
= πQ2

G4

(
1 +

√
8α1+7α2+6α3

10

)
Table 1. Overview of the corrections to the extremality bounds, entropies and temperatures.
z = J3

2QM3
for the BTZ black hole and z = Q

G4M4
for the four-dimensional black hole. It is clear that

thermodynamics at z = 1 only makes sense if the WGC is satisfied (else z = 1 is a naked singularity
with no horizon). Results for BTZ×S2 are presented also in terms of “four-dimensional quantities”
via the correspondence G3 = 2πR

4πQ2G4. The relation between ais and αis are given in (4.34).

evaluate the corrected Euclidean action on the uncorrected solution [10, 17]. As an addi-
tional check, we show in appendix B that this approach agrees with a direct computation
of the corrected metric.

The Euclidean action is given by

IE =− 1
16πG4

∫
d4x
√
−g

(
R− 1

4FµνF
µν + a1

4 Q
2FµνFµνFρσFρσ (4.35)

+ a2
2 Q

2FµνFρσWµνρσ + a3
2 Q

2E4

)
− 1

8πG4

∮
d3x
√
h (K −K0) ,

where we supplemented the bulk action by a Gibbons-Hawking-York boundary term. Here
K is the extrinsic curvature of the induced metric at the boundary r → ∞ and K0 a
counterterm constructed by embedding the boundary metric in flat space. This is required
to obtain a finite on-shell action.

Before we take into account the higher-derivative corrections, we first focus on the
uncorrected action. By explicitly evaluating the uncorrected Euclidean action on the un-
corrected black hole background (4.11) one finds

IE = β

2
(
M4 − ΦQ̃0 + 3ΨQ̃

)
. (4.36)

The factor of three indicates there are three magnetic charges. Here β = T−1 is the inverse
temperature, Q̃ = Q/4G4 and Q̃0 = Q0/4G4 are rescaled charges and Φ and Ψ are the
electric and magnetic potentials given by

Φ = q0√
q0(q0 + r0)

, Ψ = q√
q(q + r0)

. (4.37)
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Using the Smarr formula M4 = 2TS + ΦQ̃0 + 3ΨQ̃, the Euclidean action can now be
written as

IE = βG = β(M4 − TS − ΦQ̃0) , (4.38)

with G the Gibbs free energy. This relation still holds in the presence of higher-derivative
corrections as long as we interpret S as the Wald entropy [17].

To derive the various thermodynamic quantities of the black hole, we express the Gibbs
free energy as G = G(T,Φ, Q̃), appropriate for a grand canonical ensemble. The entropy
and mass of the black hole are given by

S = −
(
∂G

∂T

)
Φ,Q̃

. (4.39)

After having obtained the entropy, the mass is given by

M4 = G+ ΦQ̃0 + TS . (4.40)

We now include higher-derivative corrections. Evaluating the corrected Euclidean action
on the uncorrected black hole background and using the thermodynamic identities, we find
that the T = 0 entropy is given by

S
∣∣
T=0 = πQ2

G4
(1− 4a1 + 4a3) , (4.41)

where we took equal electric and magnetic charges. At zero temperature the correction to
the mass is

G4M4 = Q

(
1− 2a1 + a2

10

)
. (4.42)

The extremality bound is therefore modified as

z ≡ Q

G4M4
≤ 1 + 2a1 + a2

10 . (4.43)

Finally, we are also interested in the microcanonical entropy of the z = 1 black hole in the
corrected theory. Expanding the mass at small temperature we find that this black hole
has a non-zero temperature

T
∣∣
z=1 = π

Q

√
2(2a1 + a2)

5 . (4.44)

The entropy becomes

S
∣∣
z=1 = πQ2

G4

1 +

√
2(2a1 + a2)

5

 . (4.45)

The WGC is satisfied when the extremality bound is corrected positively, which requires

2a1 + a2 ≥ 0 ↔ 8α1 + 7α2 + 6α3 ≥ 0 . (4.46)

The same bound can be derived using (1.1). Because the Euler density does not contribute
to the extremality bound in four dimensions, we can use the previously derived stress
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tensor and corrections to Maxwell’s equations (see (2.48) and (2.46), but note the different
normalization of the action (4.33)). We then find∫

Σ
d3x
√
h δT eff

ab ξ
anb = − Q

10G4
(2a1 + a2) . (4.47)

Imposing the integrated stress tensor to be smaller than or equal to zero, we again find
2a1 + a2 ≥ 0.

4.3.2 BTZ × S2 solution

To find the BTZ× S2 near-horizon geometry in the corrected theory, it is very convenient
to use c-extremization instead of computing the corrected metric. Taking the same ansatz
for the metric as before, we find that the c-function takes the form

c(`, `S2) =
3π`

[
`2
(
3Q2 − 4`2S2

)
+ 12`4S2

]
4G5`2S2

(4.48)

+
3π`Q2 [−2α1`

2Q4 + α2Q
2 (`2S2 − `2

)
`2S2 + 12α3`

6
S2
]

G5`6S2
.

Extremizing the c-function for ` and `S2 we find the following lengths:

` = 2Q− 2Q
3 (α2 − 3α3) , (4.49)

`S2 = Q− Q

4 (8α1 + 3α2 − 2α3) .

Because the S2 length is also corrected by higher-derivative terms, this modifies the re-
lationship between the five-dimensional and three-dimensional Newton constant. We are
interested in computing corrections keeping the Newton constant fixed, so we either have
to express corrections to the central charge in terms of G5 or rescale G3 to keep the ratio
G5/G3 uncorrected. We choose the latter option and therefore rescale

G3 → G3Q
2/`2S2 , (4.50)

and express all correction to the BTZ geometry with respect to this rescaled Newton
constant. The relationship between the different Newton constants is then still given by

G5 = 4πQ2G3 = 2πRG4 . (4.51)

Using the values for the AdS and S2 length we found the central charge is given by

c = 3Q
G3

(
1− 8α1 + 3α2 − 12α3

2

)
. (4.52)

To compute the entropry, we use Cardy’s formula and find that the entropy at zero tem-
perature is given by

S
∣∣
T=0 = 2πQ

√
M3
G3

(
1− 8α1 + 3α2 − 12α3

2

)
= πQ2

G4

(
1− 8α1 + 3α2 − 12α3

2

)
. (4.53)

Using (4.34) this entropy equals (4.41).
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To derive the correction to the extremality bound in a canonical ensemble and the
entropy in a microcanonical ensemble we again use a thermodynamic approach, just as in
section 3. The five-dimensional Euclidean action supplemented by a Gibbons-Hawking-
York boundary term and counterterm is given by

IE = 1
16πG5

∫
d5x
√
g

(
−R+ 3

4FMNF
MN − α1Q

2FMNF
MNFOPF

OP (4.54)

− α2Q
2FMNFOPW

MNOP − α3Q
2E5

)
− 1

8πG5

∮
d4x
√
h (K −K0) .

We now evaluate this on a BTZ × S2 background. To make the on-shell action finite, the
counterterm is chosen to be

K0 = 1
2Q

(
1 + 8α1 + 3α2 − 12α3

2

)
. (4.55)

Using this the complete on-shell action evaluates to

IE =
πβ
(
r2
− − r2

+
)

8G5
−
πβ (8α1 + 3α2 − 12α3)

(
r2
− − r2

+
)

16G5
. (4.56)

Just as before, we can write

IE = βG = β (M3 − TS − ΩJ3) , (4.57)

and the thermodynamic quantities are given by (3.15) and (3.16). We find that the ex-
tremality bound in a canonical ensemble is corrected as

J3
2QM3

≤ 1 + 8α1 + 3α2 − 12α3
2 , (4.58)

so that this spinning WGC is satisfied when

8α1 + 3α2 − 12α3 ≥ 0 (4.59)

Notably, this combination of Wilson coefficients does not coincide with the combination
appearing in the extremality bound of the four-dimensional black hole. The state z =
J3/(2QM3) = 1 has a temperature

T |z=1 =
√
G3J3(8α1 + 3α2 − 12α3)

πQ3 . (4.60)

At this temperature, the microcanonical entropy is given by

S|z=1 = 2πQ
√
M3
G3

(
1 +

√
8α1 + 3α2 − 12α3

2

)
. (4.61)

A summary of all corrections to the extremality bounds and the entropy are displayed in
table 1.
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Figure 5. Comparison of the complementary bounds in eq. (4.62). The dashed lines show equality
and the gray and blue shaded regions show where all three inequalities are simultaneously satisfied
with α1 > 0 and α1 < 0, respectively.

4.4 WGC bounds

In section 4.3 we demonstrated that the WGC as phrased in terms of a corrected extremality
bound differs for two distinct limits of the five-dimensional black string. The corrected
angular momentum-to-mass ratio of the near-horizon BTZ × S2 black hole and corrected
charge-to-mass ratio of the four-charge black hole after a Kaluza-Klein reduction to four
dimensions depend on different combinations of the five-dimensional Wilson coefficients.

Alternatively, we may impose that the mild form of the WGC holds for each of these
independently, allowing us to more strongly constrain the αi appearing in five dimensions.
This is similar in spirit to the works of [5, 41] where the lattice and tower WGC respectively
were argued for based on robustness under toroidal compactifications.7 In fact, we can go
further than only combining the bounds of eqs. (4.46) and (4.59) by asking that the mild
WGC be satisfied also for electric black holes in five dimensions. Such bounds for charged
black holes are known, appearing for example in [28]. With the normalizations of eq. (4.31),
these three bounds read

8α1 + 3α2 − 12α3 ≥ 0 (near-horizon BTZ× S2)
8α1 + 7α2 + 6α3 ≥ 0 (4D 4-charge black hole)

}
5D boosted
black string

8α1 − α2 − 6α3 ≥ 0 (5D electric black hole)
(4.62)

These conditions are compatible with one another, as shown in figure 5, and together
provide more stringent bounds on the allowed values of the αi. One could also ask what
bounds arise for more general charged black holes in four dimensions after a Kaluza-Klein
reduction, but since both the radion and axion can be sourced we do not consider such
backgrounds here.

7This of course assumes that the WGC also needs to be satisfied in the compactified theory. We refer
to this as the Total Landscaping Principle: swampland conjectures should not only be satisfied in a single
theory, but also in compactifications thereof.
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5 Discussion

Understanding precisely the neccesary and sufficient conditions for proving the mild form
of the WGC is an interesting question that can shed light on the boundary between those
effective theories which are consistent with quantum gravity (the landscape) and those that
are pathological (the swampland). In particular, one may wonder what sorts of matter
configurations correct the extremality bound in a manner consistent with the WGC. To
understand this better, we reformulated the shift in the extremality bound of a black hole
in terms of an integrated condition on the stress tensor. When this integral of the stress
tensor is negative, the horizon is shifted positively in a microcanonical ensemble. As a
particular application we evaluated this condition for four-dimensional Reissner-Nördstrom
and rotating BTZ black holes perturbed by higher-derivative corrections, but it can be
applied to any stationary black hole and more general corrections.

Applying this condition to extremal rotating BTZ black holes suggests a spinning
version of the WGC that posits that corrections to the extremality bound should increase
the extremal angular momentum-to-mass ratio. Although the spinning WGC does not
follow from standard arguments of black hole decay, we showed that when a BTZ black
hole is perturbed by a relevant operator it obeys the spinning WGC as a consequence of
the c-theorem in the dual two-dimensional CFT.

We then studied the spinning WGC in the context of a five-dimensional boosted black
string with higher-derivative corrections. The string has a near-horizon BTZ×S2 geometry
and describes a four-dimensional charged black hole upon a Kaluza-Klein reduction. While
the entropy of the four-dimensional black hole at zero temperature agrees with the entropy
computed from the BTZ geometry, their extremality bounds do not coincide. By applying
both the spinning and charged WGC to the black string we derived positivity conditions on
the five-dimensional Wilson coefficients that are stronger than those obtained by applying
the charged WGC alone.

Because the three-dimensional spinning WGC does not directly imply the four-
dimensional charged WGC, our findings agree with the phenomenon that IR consistency
is not sufficient to prove the charged WGC in d ≥ 4. While the c-theorem can be used
to prove the spinning WGC in three dimensions, still more UV information is needed to
prove the charged WGC in higher dimensions.

In future work, it would be interesting to consider the relationship between holographic
RG flow and the WGC in more detail in higher dimensions. While higher-derivative correc-
tions have constant magnitude in a BTZ background, in higher-dimensional theories these
terms vary as one moves inward from the boundary, so that perturbed geometries are more
directly related to holographic RG flows. At least for a subclass of higher-derivative cor-
rections, holographic c-theorems have been studied in detail [42]. As a particular example,
we could perturb an AdS5 background and use the Hamilton-Jacobi formalism to derive
a function that monotonically decreases along the holographic RG flow, which would be
the dual of the a-theorem [43] in the CFT4. An important difference with three dimen-
sions, however, is that the extremality bound is now not just determined by one anomaly
coefficient; in five dimensions there are four independent four-derivative operators that
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contribute to an Einstein-Maxwell theory [11]. Thus, to constrain the extremality bound
one would have to consider a subclass of theories for which effectively only the a-anomaly
coefficient contributes. In four-dimensional flat space, a similar strategy was employed
in [44] by considering the deep IR where only the c-anomaly contributes to the extremal
charge-to-mass ratio.

Furthermore, because of the close connection between holographic c-theorems and
entanglement entropy [42] it would be interesting to understand better if and how quantum
corrections to the entanglement entropy are related to the WGC. In [45] for example, loop
corrections to extremal black holes were studied. Those corrections modify the black hole
entropy and can be viewed as a correction due to entanglement. Also, the holographic
proof of the WGC presented in [46], entanglement entropy played a crucial role. Because
logarithmic quantum corrections to the (von Neumann) entropy of black holes are universal
and determined by anomaly coefficients [47], one might also hope to extract similar general
lessons about corrections to the extremality bound.
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A Covariant phase space formalism

In this appendix we review the Iyer-Wald formalism [48, 49] and derive some useful iden-
tities that will be used in the main body of this article. We mainly follow the notation of
appendix C of [29] and adapt that derivation to include a Maxwell term. Another more
extensive review can be found here [50].

A.1 Notation and conventions

Because this appendix heavily relies on the use of differential forms, we briefly list our
conventions. A p-form α is defined as

1
p!αa1...apdxa1 ∧ · · · ∧ dxap . (A.1)

For integration over a d-dimensional space, we use the following volume form

ε = 1
d!εa1...addx

a1 ∧ · · · ∧ dxad =
√
|g| dx1 ∧ · · · ∧ dxd , (A.2)

where ε12...d = 1 denotes the Levi-Civita symbol. The Hodge star operator acts on p-
forms as

?α =
√
|g|

p!(d− p)! αa1...apε
a1...apεb1...bd−p dxb1 ∧ · · · ∧ dxbd−p . (A.3)
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The Levi-Civita symbol is ε12...d = 1. The exterior derivative acts as

dα =
(
∂aωb1...bp

) 1
p! dxa ∧ dxb1 ∧ · · · ∧ dxbp , (A.4)

and obeys
d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ . (A.5)

Taking a p-form α and a q-form β, we can write

α ∧ ?β = αa1...apβb1...bq

√
|g|

p!q!(d− q)!ε
b1...bqεc1...cd−qdx

a1 ∧ · · · ∧ dxap ∧ dxc1 ∧ · · · ∧ dxcd−q .

(A.6)
When p = q this simplifies.

α ∧ ?β = αa1...apβ
a1...ap

√
|g|
p! dx1 ∧ · · · ∧ dxd . (A.7)

The interior product ιX is defined as

ιXα = 1
(p− 1)!X

aαab1...bp−1dxb1 ∧ · · · ∧ dxbp−1 , (A.8)

A.2 Iyer-Wald formalism

We start with writing the Lagrangian for a d-dimensional gravitational theory with arbi-
trary matter fields φ as a d-form L. Varying with respect to a matter field results in

δL = E(δφ) + dΘ(δφ) . (A.9)

Here E collectively denotes the equations of motions and Θ is the so-called symplectic
potential. An anti-symmetric variation of the symplectic potential yields the symplec-
tic current

ω(δ1φ, δ2φ) = δ1Θ(δ2φ)− δ2Θ(δ1φ) . (A.10)

Now consider an infinitesimal diffeomorphism labeled by a vector field ξ, which acts as
δξφ = Lξφ. Integrating the symplectic current over a Cauchy surface Σ gives the symplectic
form, which with foresight we will write as the variation of an Hamiltonian that generates
the flow of ξ.

δHξ =
∫

Σ
ω(δφ,Lξφ) . (A.11)

For any ξ we can construct a Noether current

Jξ = Θ(Lξφ)− ιξL, (A.12)

which is conserved on-shell.
dJξ = −E(Lξ) . (A.13)

The fact that Jξ is closed (on-shell) and only depends linearly on ξ implies that we can
write it as8

Jξ = −E(Lξφ) + dQξ(Lξφ) , (A.14)
8See page 21 of [50] for the proof.
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where Qξ is the Noether charge. To extract conserved quantities from the Noether current,
we consider a variation

δJξ = dιξΘ(δφ)− ιξE(δφ) + ω(δφ,Lξφ) . (A.15)

On-shell, the symplectic current can be written as

ω(δφ,Lξφ) = d(δQξ)− d(ιξΘ(δφ)) . (A.16)

and the variation of the Hamiltonian is

δHξ = δQξ − ιξΘ(δφ) . (A.17)

When ξ is a symmetry, i.e. Lξφ = 0, the Hamiltonian is conserved

dδHξ = ω(δφ,Lξφ) = 0 . (A.18)

We therefore see that (A.11) indeed gives the conserved quantities.

A.3 Einstein-Maxwell gravity

Let us now restrict to Einstein-Maxwell gravity. The Lagrangian is given by

L = 1
2κ2 (R− 2Λ) ε− 1

2F ∧ ?F . (A.19)

Here κ2 = 8πGd, with Gd the d-dimensional Newton constant. We can now perform
variations with respect to the metric δgab = hab and the gauge field δAa. Also, in addition
to diffeomorphisms we can perform gauge transformations on the gauge field δλA = dλ.
Varying with respect to the metric we find

Eg(h) = −Eabhabε , Θg(h) = ιXε ,

with

Eabg = 1
2κ2

(
Rab − 1

2g
ab(R− 2Λ)

)
+ 1

8g
abFcdF

cd − 1
2F

acF bc , (A.20)

Xa = 1
2κ2

(
∇bhab −∇ahbb

)
.

Varying with respect to the gauge field we find

EA(δA) = −δA ∧ d?F , ΘA(δA) = −δA ∧ ?F . (A.21)

From (A.12) we can now construct the Noether current. The Noether current is now
given by

J = Θg(Lξg) + ΘA(LξA) + ΘA(dλ)− ιξL. (A.22)

The expressions for the Lie derivatives are Lξgab = 2∇(aξb) and LξAa = ξbFba + ∂a(ξbAb).
Using these we find

ΘA(LξA) = − (ιξF + d(ιξA)) ∧ ?F , (A.23)

ΘA(dλ) = −dλ ∧ ?F ,

Θg(Lξg) = 1
2κ2

(
2∇b∇(bξa) − 2∇a∇bξb

) √
|g|

(d− 1)!εab1...bd−1dxb1 ∧ · · · ∧ dxbd−1 .
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After some algebra, the Noether current can be written as9

J = 2 ? (Eg · ξ)−
1

2κ2 d?dξ[ + (ιξA+ λ) d?F − d [(ιξA+ λ) ?F ] .

We see that the Noether charges for ξ and λ are given by.

Qξ = − 1
2κ2 ?dξ

[ , (A.24)

Qλ = −(ιξA+ λ) ? F .

Using (A.17), the variation of the Hamiltonian is given by

δHξ = − 1
2κ2

(
δ(?dξ[) + ιξιXε

)
, (A.25)

δHλ = −(ιξA+ λ) ? δF .

Taking an exterior derivative of the variation of the Hamiltonian we obtain

dδH = −2δ ? (Eg · ξ)− (ιξA+ λ) d?δF , (A.26)

which vanishes on-shell.

B Five-dimensional black string with higher-derivative corrections

In this appendix we provide some of the details of the α-corrected black string in five dimen-
sions. This brute-force solving of the equations of motion reproduces the thermodynamic
and c-extremization arguments as presented in the main text.

Begin by writing the five-dimensional action with higher-derivative terms as

I = 1
16πG5

∫
d5x
√
−g

(
R− 3

4FMNF
MN + α1Q

2FMNF
MNFOPF

OP (B.1)

+ α2Q
2FMNFOPW

MNOP + α3Q
2E5

)
.

where E5 = RµνρσR
µνρσ−4RµνRµν+R2 is the Euler density. As in section 4.3 we normalize

the Wilson coefficients with Q so that the αi are dimensionless. Take for an ansatz

ds2 = H−1(−f dt2 + h dx2)+H2(f−1 dr2 + r2 dΩ2
2
)
,

F =
√
q(q + r0) sin θ dθ ∧ dφ .

(B.2)

The leading-order (αi = 0) solution has

H(r) = 1 + q

r
, h(r) = 1 , f(r) = 1− r0

r
. (B.3)

Before turning to the O(α) corrections to these functions, let us discuss how these functions
appear in the near-horizon limit and 4D reduction. In boosting the string along the x-
direction we make the replacements

t→ cosh δ0 t+ sinh δ0 x ,

x→ sinh δ0 t+ cosh δ0 x ,
(B.4)

9The superscript [ denotes the one-form dual ξ[ = gabξ
bdxa and Eg · ξ = Eabξ

bdxa.
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which brings the metric to the form

ds2 = H−1
[
−dt2 + dx2 (B.5)

+ (1− f)
(

cosh δ0 dt+ sinh δ0 dx
)2 + (h− 1)

(
sinh δ0 dt+ cosh δ0 dx

)2]
+H2(f−1 dr2 + r2 dΩ2

2
)

= H−1
[
−H−1

0 fh dt2 +H0
(
dx+H−1

0 (h− f) sinh δ0 cosh δ0 dt
)2] (B.6)

+H2(f−1 dr2 + r2 dΩ2
2
)
,

where we have introduced

H0(r) = h(r) cosh2 δ0 − f(r) sinh2 δ0 . (B.7)

Reduction to four dimensions. From equation (B.6) we may read off the KK photon
profile,

(A0)t = H−1
0 (h− f) sinh δ0 cosh δ0 =

√
q0(q0 + r0)
r + q0

+O(α) , (B.8)

where q0 = r0 sinh2 δ0. After reducing and going to Einstein frame the metric reads

ds2∣∣
4D = −(H3H0)−1/2fh dt2 + (H3H0)1/2(f−1 dr2 + r2 dΩ2

2
)
. (B.9)

Near-horizon limit. The near-horizon geometry is found by taking q � r, r0. In this
limit the metric splits into a (locally) AdS3 space and constant-radius S2.

Boundary conditions. In solving for the corrected five-dimensional solution we should
keep the asymptotic form of the solution fixed, namely H,h, f = 1 +O(1

r ). To work with
fixed charges, we should also impose that the 1

r term in Equation B.8 is uncorrected. It
is also convenient to choose coordinates (equivalently, integration constants) so that the
outer horizon remains at r = r0 and extremality is still r0 → 0. With these choices the α-
corrected solutions are uniquely determined. The full expressions for the corrected H,h, f
are quite cumbersome, so we present here only their form in some relevant limits, as needed.

Corrected reduction to four dimensions. In the asymptotic region, r � q, r0, the
corrected solution reads

H(r) = 1 + q

r
− Q2

(2q + r0)rG
(
αi;

r0
q

)
− Q2

4r2G

(
αi;

r0
q

)
+O

( 1
r3

)
, (B.10)

h(r) = 1 + Q2

4r2G

(
αi;

r0
q

)
+O

( 1
r3

)
, (B.11)

f(r) = 1− r0
r

+ Q2

4r2G

(
αi;

r0
q

)
+O

( 1
r3

)
. (B.12)

The function G(αi; z) has the following small-z limit, relevent for the extremal limit r0 → 0:

G(αi; z) = 8α1 + 7α2 + 6α3
15 +O(z3/2) . (B.13)
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Choosing q0 = q for simplicity, the ADM mass can be read off from the 1
r coefficent of

(H3H0)1/2f−1:

2G4M4 = 2q + r0 −
3
4(q + r0)G

(
αi;

r0
q

)
. (B.14)

Taking r0 → 0, we find that the four-dimensional extremality bound is corrected to

Q

G4M4
≤ 1 + 3

8G(αi; 0) = 1 + 8α1 + 7α2 + 6α3
40 . (B.15)

Corrected near-horizon limit. With q � r � r0, the corrected solution behaves as10

H(r) =
(

1 + Q

r

)
− Q(8α1 + 3α2 − 2α3)

4r + · · · , (B.16)

so that we may read off that the extremal S2 radius has been corrected to

`S2 = Q

(
1− 8α1 + 3α2 − 2α3

4

)
. (B.17)

The corrected AdS3 length is most easily found by looking at the Ricci scalar, since
RBTZ×S2 = RBTZ +RS2 in the near-horizon region. On the corrected solution we find

R5 = q(q + r0)
2(q + r)4 +O(α) = 1

2Q2 + 8α1 + 2α2 + α3
Q2 + · · · =

(
− 6
`2

)
+
(

2
`2S2

)
+ · · · ,

(B.18)
where `S2 from above can be used to isolate the (corrected) AdS3 length,

` = 2Q
(

1− 2(α2 − 3α3)
3

)
. (B.19)

As expected, the near-horizon AdS3 and S2 lengths found by brute force agree with the
(much simpler) c-extremization.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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