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1 Introduction

Recently the quantum chaos, which is related to random matrix theory, has attracted
interest from the view point of universality. The spectral form factor shows the dip-ramp-
plateau behavior for various situations, and this behavior is considered as a universal
signature of quantum chaos. This transition behavior has been studied and there are many
discussions of the universality behaviors in wide area. For instance, such behavior was
noticed before in the level statistics of complex system [1]. Recently, it was found that
black hole has also dip-ramp-plateau transition in a late time [2–4].

The level statistics of a random matrix has a universal behavior, known as Dyson sine
kernel, and it coincides the distribution of the zeros of Riemann zeta function. The proof of
the universal behavior of the sine kernel, independent on the external deterministic term, is
given in [5]. The spectral form factor, the Fourier transform of the square of this sine kernel,
provides the ramp-plateau transition. The kink point is denoted here as Heisenberg time.

These three phases, dip, ramp and plateau, show the different behaviors of the spectral
form factor. When the eigenvalue of the hermitian random matrix M is denoted by xi, we
consider the variance of the quantity

∑
j e

iλxj = treiλM . Two point correlation function
ρ(2)(λ, µ) is defined as [6],

ρ(2)(λ, µ) =< 1
N

tr δ(λ−M) 1
N

tr δ(µ−M) > (1.1)
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where the bracket means the average of the Gaussian weight e−
N
2 trM2 . We define the

connected part ρ(2)
c and disconnected part as covariance [6].

ρ(2)
c (λ, µ) = ρ(2)(λ, µ)− ρ(λ)ρ(µ) (1.2)

where ρ(λ) =
〈

1
N trδ(λ−M)

〉
. In the large N limit with a fixed N(λ − µ) finite (Dyson

limit), ρ(2)(λ, µ) is expressed as [6],

ρ(2)
c (λ, µ) = 1

N
δ(λ− µ)ρ(λ)− ρ(λ)ρ(µ)sin2x

x2 (1.3)

where x = πN(λ − µ)ρ(1
2(λ + µ)). The spectral form factor S(t) is defined as Fourier

transform of ρ(2)(λ, µ), (we put λ = 0),

S(t) =
∫
dµeiµtρ(2)(0, µ)

=
∫
eiµtdµ

(
ρ(0)ρ(µ)− ρ(0)ρ(µ)(sinx)2

x2 + 1
N
δ(−µ)ρ(0)

)
= S(1) + S(2) + S(3) (1.4)

The first term becomes for finite N [7]

S(1)(t) = ρ(0)
(
− 1
it

)
e−

t2
2N

∮
du

2iπ

(
1− it

Nu

)N
e−itu (1.5)

This contour integral becomes in the large N limit, by the exponentiating of the integrand,

− 1
it

∮
du

2iπ e
−it(u+ 1

u
) = 1

t
J1(2t) (1.6)

Fourier inverse transformation of above term is the density of state ρ(x),

ρ(x) =
∫ ∞
−∞

dt

2π
1
t
J1(2t)e−ixt = 1

2π
√

4− x2 (1.7)

which is normalized as ∫ ∞
−∞

dxρ(x) = 1 (1.8)

Thus we obtain the first term of (1.4) as the Fourier transform of the density of state in
the large N limit,

S(1)(t) = 1
πt
J1(2t) (1.9)

which gives a dip (decay) region of the spectral form factor in increasing time t.
The second term of (1.4) gives the ramp region. We use Fourier transform for |t| < 2,∫ ∞

−∞
dx

(sinx
x

)2
eitx = π

(
1− t

2

)
(1.10)

and for |t| > 2, it vanishes. The second term S(2)(t) becomes

S(2)(t) = 1
2N2π

t− 1
N
ρ(0), (|t| < 2πNρ(0))

= 0, (|t| > 2πNρ(0)) (1.11)
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where we used the density of state ρ(µ) = ρ(0). This S(2)(t) has a kink at t = 2πNρ(0),
and beyond this kink, it becomes 0.

The last term of (1.4) gives a constant term, which cancels with the constant term
of (1.11),

S(3)(t) = 1
N
ρ(0) (1.12)

Thus we find that the ramp region is order of 1
N2 and the plateau is order of 1

N . The
dip and plateau regions depend upon the density of state ρ(E), thus this region is not
universal, but the ramp region is universal since it is universal Dyson kernel [5, 6].

In this paper, we consider the time dependent random matrix theory, which becomes
equivalent two matrix model. The two point correlation functions of two matrix model
was studied before in [8]. For two matrix model, coupled matrices M1 and M2, two point
function ρ(2)(λ, µ) has two types;

ρ(2)(λ, µ) =< 1
N

trδ(λ−M1) 1
N

trδ(µ−M1) > (1.13)

and
ρ(2)(λ, µ) =< 1

N
trδ(λ−M1) 1

N
trδ(µ−M2) > (1.14)

We call these two different correlation functions as M1 − M1 and M1 − M2 correlation
functions.

The spectral form factor has two different types according to above difference. In the
previous paper, the kink behavior of the spectral form factor is found to be smeared out
due to a factor e−ct in the ramp region [6].

S(t) =
∫
dµe−iµtρc(0, µ) = te−t

√
1−c/c (1.15)

We study further this rounding near Heisenberg time by the numerical analysis based
on an exact formula of finite N . We also compare its result with the saddle point analysis
for the large N . These rounding behaviors are also observed in different ensembles [9–11].

2 Time dependent random matrix

We consider the Hamiltonian H as

H = 1
2tr(p2 +M2) (2.1)

where p = dM(t)/dt. The matrix M depends on time, M = M(t). The time dependent
correlation function of the different time t1 and t2 is defined as

ρ(λ, µ) = 1
N2 < trδ(λ−M(t1)trδ(µ−M(t2) > (2.2)

The Fourier transform of above correlation function is

U(α, β) = 1
N2 < treiαM(t1)treiβM(t2) > (2.3)
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It has been shown that the correlation function of the time dependent random matrix
theory is equivalent to the correlation function of the two matrix model by path integral
in [6, 8].

U(α, β) = 1
Z

∫
dM1dM2treiαM1treiβM2e−

1
2 tr(M2

1 +M2
2−2cM1M2) (2.4)

where c = e−t. The time t is the difference of t1 and t2, t = t1 − t2. Now the average
< · · · > means the Gaussian distribution, P (M1,M2) = e−H1,2/Z,

H1,2 = 1
2tr(M2

1 +M2
2 − 2cM1M2) (2.5)

The density of state ρ(λ) becomes in the large N limit,

ρ(λ) =
√

1− c2

2π

√
4− (1− c2)λ2 (2.6)

which is normalized to be 1 by the integration. When c = 0, it reduces to the density of
state ρ(λ) in (1.7).

Now we use the method of external matrix to compute the exact expression for two-
point correlation function defined in eq. (2.3). By the integral expression in [6], we have

UA(z1, z2) = 1
N2

N∑
α1,α2

∫ ∫
eiz1rα1+iz2ξα2e−

N
2
∑

r2
i−

N
2
∑

ξ2
i+cN

∑
riξi−N

∑
airi

∆(ξ)drdξ
∆(A)

(2.7)
In contour integral representation with α1 = α2 and taking the external matrix at zero
(A→ 0).

U I0 (z1, z2) =− 1
iN(z1 + z2

c )

∮
du

2πi

[
1− i

Nu

(
z1 + z2

c

)]N
Exp

[
− z2

1
2N(1−c2)−

z2
2

2N(1−c2)−
(

iz1
1−c2 −

icz2
1−c2

)
u− cz1z2

N(1−c2)

] (2.8)

With a scaling, u → ū(z1 + z2
c ) using the transformation z1 → 1√

1−c2 (z′1 − cz′2) and z2 →
1√

1−c2 (z′2 − cz′1) and after integrating over z1 following [6]

ρIc(λ, µ) =
iExp{−N

2 (λ− cµ)2}
N(1− c2)2

∫
dz′2
2π

∮
du

2πi

(
1− i

Nu

)N
Exp

[
−iµz′2 +Nuz′2

(
µ− λ

c

)
− iu(z′2)2

1− c2 −
Nu2(z′2)2

2c2 − (z′2)2

2N(1− c2)

] (2.9)

For α1 6= α2

UA(z1, z2) =− c

z1z2

∮
dudv

(2πi)2

(
1− iz1

Nu

)N[
1− z1z2

cN2(u−v− iz1
N )(u−v+ iz2

cN )

]

×
(

1− iz2
cNv

)N
Exp

{
− iz1u

1−c2 −
iz2cv

1−c2 −
z2

1
2N(1−c2)−

z2
2

2N(1−c2)

} (2.10)
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(a) Disconnected part of SFF Sd for c=0.9, N=10
from (2.13).
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from (2.14).

Figure 1. Spectral Form Factor disconnected part Sd for two matrix model from eq. (2.11).

First term in parenthesis of eq. (2.10) on Fourier transform gives the disconnected part of
two point correlation function:

ρd(λ, µ) = −c
{∫

dz1
2πz1

∮
du

(2πi)

(
1− iz1

Nu

)N
e
− iz1u

1−c2
−

z21
2N(1−c2)

−iz1λ

×
∫

dz2
2πz2

∮
dv

2πi

(
1− iz2

cNv

)N
e
− iz2cv

1−c2
−

z22
2N(1−c2)

−iz2µ
} (2.11)

Therefore disconnected two point correlation function eq. (2.11) is very similar to one
matrix model density of states.

ρd(λ, µ) = ρ(λ)ρ(µ) (2.12)

After a Fourier transform and setting the values λ = 0 and µ = ω we get the spectral form
factor of the disconnected part.

Sd(τ) =
∫ 1

2πρ
d(0, ω)eiωτdω (2.13)

We have averaged this dynamical form factor over an interval [0,t] and plot this average
value:

〈Sd〉Average =
∫ t

0
S(τ)dτ (2.14)

Now second term in parenthesis of eq. (2.10) gives the connected part of two point corre-
lation function:

UA(z1, z2) =− 1
N2

∮
dudv

(2πi)2

(
1− iz1

Nu

)N (
1− iz2

cNv

)N 1(
u−v− iz1

N

) 1(
u−v+ iz2

cN

)
×Exp

[
− iz1u

1−c2 −
iz2cv

1−c2 −
z2

1
2N (1−c2)−

z2
2

2N(1−c2)

] (2.15)
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If z1 → z′1 − iuN ,z2 → z′2 − ivcN , it is written as a product form.

ρIIc (λ, µ) = − 1
N2

∮
du

2πi

∫
dz2
2π

[
z2
cuN

]N Exp
[
− Nu2

2(1−c2) −
z2
2

2N(1−c2) − iz2µ− uNλ
]

u+ iz2
cN

×
∮

dv

2πi

∫
dz1
2π

[
z1
vN

]N Exp
[
− Nv2c2

2(1−c2) −
z2
1

2N(1−c2) − iz1λ− vcNµ
]

v + iz1
N

(2.16)

where the contours of u and v are around the poles of u = 0 and v = 0. If we take the pole
of v = −iz1/N , we obtain ρ(I)(λ, µ) in (2.9). In kernel form this can be written as:

ρ(II)
c (λ, µ) = − 1

N2KN (λ, µ)K̄N (λ, µ) (2.17)

From α1 = α2 contribution we have other part of connected correlation function in kernel
form as:

ρ(I)
c (λ, µ) = 1

N2

√
N

2πKN (λ, µ)e−
N
2 (λ−cµ)2 (2.18)

Two point function ρ(2)(λ, µ) becomes the sum of the product of the density of state
ρ(λ)ρ(µ) and the connected part ρ(2)

c (λ, µ).

ρ(2)(λ, µ) = ρ(λ)ρ(µ) + ρ(2)
c (λ, µ) (2.19)

The Fourier transform of the first term for λ = 0 in the large N limit becomes

S(1)(t) =
√

1− c2

πt
ρ(0)J1

( 2t√
1− c2

)
(2.20)

where ρ(0) =
√

1− c2/π. This term gives the dip (decay) behavior.
The connected correlation function ρ(2)

c (λ, µ) is expressed as [6],

ρ(2)
c (λ, µ) = ρ(I)

c (λ, µ) + ρ(II)
c (λ, µ) (2.21)

where these two terms are given by eq. (2.17), eq. (2.18) These two terms correspond to
two terms of (1.3) in the large N limit. Note that the term of (2.18) becomes delta-function
in the Dyson limit for large N since we have,

lim
N→∞

√
N

2πe
−N2 (λ−cµ)2 = δ(λ− cµ) (2.22)

Previously we have represented connected correlation as a product of kernels KN (λ, µ),
K̄N (λ, µ),

ρ(II)
c (λ, µ) = − 1

N2KN (λ, µ)K̄N (λ, µ)

ρ(I)
c (λ, µ) = 1

N2

√
N

2πKN (λ, µ)e−
N
2 (λ−cµ)2

(2.23)
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where KN (λ, µ) is written as

KN (λ, µ) = (−i)N
∮

du

2iπ

∫
dz

2π

( [1− ( −izNcu)N ]− 1
(1− iz

Ncu)

)1
u

× e−[Nu2/2(1−c2)]−[z2/2N(1−c2)]−izµ−uNλ

=

√
N(1− c2)

2π e−
Nµ2(1−c2)

2

N−1∑
l=0

1
l!clHl(µ

√
N(1− c2))Hl(λ

√
N(1− c2))

− (−i)N
∮

du

2iπ

∫
dz

2π
1

u− iz
Nc

e−[Nu2/2(1−c2)]−[z2/2N(1−c2)]−izµ−uNλ

(2.24)

where we used a formula (1− aN )/(1− a) =
∑
al and Hl(x) is Hermite polynomial, which

is represented as [6]

Hl(x) =
∮

du

2iπ
l!
ul+1 e

xu−(1/2)u2

=
∫ ∞
−∞

dt√
2π

(it)le−t2/2−itx+x2/2 (2.25)

where H0(x) = 1, H1(x) = x,H2(x) = x2 − 1. The second term of (2.24) is vanishing.
Another kernel K̄n(λ, µ) in (2.23) is

K̄N (λ, µ) =

√
N(1− c2)

2π e−
Nλ2(1−c2)

2

N−1∑
l=0

cl

l!Hl(λ
√
N(1− c2))Hl(µ

√
N(1− c2))

+ iN
∮

dv

2iπ

∫
dz

2π
1

v − iz
N

e−[v2c2N/2(1−c2)]−[z2/2N(1−c2)]−izλ−vcµN (2.26)

The second term is vanishing.
In the limit c → 0, K̄N (λ, µ) =

√
N/(2π)e−(N/2)λ2 and ρ

(2)
c (λ, µ) = ρ

(I)
c (λ, µ) +

ρ
(II)
c (λ, µ) becomes

ρ(2)
c (λ, µ) =

√
N

2πKN (λ, µ)e−
N
2 λ

2 −

√
N

2πKN (λ, µ)e−
N
2 λ

2

= 0 (2.27)

which means that there is no correlation for t→∞ (c = e−t) as expected.
For the later use, we evaluate ρ(2)(λ, µ) for small N with the expression of KN (λ, µ)

and K̄N (λ, µ). For N = 2,

KN (λ, µ) =

√
1− c2

π
(1 + 2λµ

c
(1− c2))e−µ2(1−c2) (2.28)

and

K̄N (λ, µ) =

√
1− c2

π
(1 + 2cλµ(1− c2))e−λ2(1−c2) (2.29)

For λ = 0, the product of KN (0, µ)K̄N (0, µ) becomes for N = 2,

KN (0, µ)K̄N (0, µ) = 1− c2

π
e−µ

2(1−c2) (2.30)
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Figure 2. Spectral Form Factor average Sc = (SI + SII)Hermite + Sd where the connected part is
evaluated using the hermite polynomial representation of the kernel.

and its Fourier transform S(II)(t) is

S(II)(t) = −
∫ ∞
−∞

dµeiµtKN (0, µ)K̄N (0, µ)

= −
√

1− c2
√
π

e
− t2

4(1−c2) (2.31)

This corresponds to the ramp behavior for N = 2. For the plateau region, S(I)(t) of N = 2,
we obtain Fourier transform of (2.18),

S(I)(t) =

√
1− c2

π
e−

t2
4 (2.32)

Then we write a connected part as Sc(τ) and its average as 〈Sc〉average,

Sc(τ) =
∫ 1

2πρ
2
c(0, ω)eiωτdω

〈Sc(t)〉average =
∫ t

0
S(τ)dτ

(2.33)

And after averaging this over an interval [0, t] we plot it in figure 2
In figure 2 we have computed the connected part of the correlation function from

eq. (2.23) using the definition in eq. (2.24), (2.26)

Saddle point analysis for large N . For the numerical analysis of finite N , we here
represent the detail analysis of the large N by the saddle point method. The saddle point
analysis is same as [6].

First kernel for this case:

KN (λ, µ) =
∮

du

2πi

∫
dz2
2π ( z2

cuN
)N 1
u+ iz2

cN

e
−( Nu2

2(1−c2)
+

z22
2N(1−c2)

+iz2u+uNλ) (2.34)
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By a scaling z → zNc

KN (λ, µ) = cN

∮
du

2πi

∫
dz′2
2π

1
u+ iz′2

e−Nf(z′2,u) (2.35)

Saddle point equation for first kernel:

f(z′2, u) = u2

2(1− c2) + c2(z′2)2

2(1− c2) + icµz′2 + λu+ log(u)− log(z′2) (2.36)

here λ = 2√
1−c2 sin(θ), µ = 2√

1−c2 sin(φ). Solving the equations saddle points are

(z′2, u) :→
(√

1− c2e−iφ

c
,−i

√
1− c2e−iθ

)
;
(
−
√

1− c2eiφ

c
,−i

√
1− c2e−iθ

)
;(√

1− c2e−iφ

c
, i
√

1− c2eiθ
)

;
(
−
√

1− c2eiφ

c
, i
√

1− c2eiθ
)

Considering fluctuation around saddle points the solution of kernel is:

KN (λ, µ) = − cN

2πN
∑ e−N(f(z′2,u))

u+ iz′2

1√
∂2f
∂u2

∂2f
∂z′2

2
(2.37)

KN (θ, φ) = − i
√

1− c2ce
1
2 i(θ+φ)

4
√

cos(θ) cos(φ)

(Exp[N2 (G[θ, φ]− e2iφ + 1)]
(−ic)N

(
c+ ei(θ+φ))

−
Exp[N2 (G[θ,−φ])]
(ic)N (eiθ − ceiφ) −

Exp[N2 (G[−θ,−φ])]
(−ic)N

(
1 + cei(θ+φ)) +

Exp[N2 (G[−θ, φ])]
(ic)N (eiφ − ceiθ)

) (2.38)

where we define G[θ, φ] = 2i(θ + φ)− e−2iθ + e2iφ

The second kernel is similarly given as

K̄N (λ, µ) =
∮

dv

2πi

∫
dz1
2π

(
z1
vN

)N 1
v + iz1

N

e
−
(
Nc2v2

2(1−c2)
+

z21
2N(1−c2)

+iz1λ+cvµN
)

(2.39)

With a scaling z → zN

K̄N (λ, µ) = N

∮
dv

2πi

∫
dz′1
2π

1
v + iz′1

e−Nf̄(z′1,v) (2.40)

here also λ = 2√
1−c2 sin(θ), µ = 2√

1−c2 sin(φ) and saddle point equation for the second
kernel:

f̄
(
z′1, v

)
=
(

c2v2

2(1− c2) + (z′1)2

2(1− c2) + iz′1λ+ cvµ+ ln(v)− ln(z′1)
)

(2.41)

This gives the saddle points:

(
z′1, v

)
:→
(
−
√

1− c2eiθ,− i
√

1− c2e−iφ

c

)
;
(
−
√

1− c2eiθ,
i
√

1− c2eiφ

c

)
;(√

1− c2e−iθ,− i
√

1− c2e−iφ

c

)
;
(√

1− c2e−iθ,
i
√

1− c2eiφ

c

)
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Figure 3. Two-point correlation function connected part behavior using eq. (2.44) and
eq. (2.21).This is compared with Bessel function of first kind.

With the fluctuation around the saddle points, one get the solution of kernel:

K̄N (λ, µ) = − N

2πN
∑ e−N(f̄(z′1,v))

v + iz′1

1√
∂2f̄
∂v2

∂2f̄
∂z′1

2
(2.42)

K̄N (θ, φ) := i
√

1− c2ce
1
2 i(θ+φ)

4
√

cos(θ) cos(φ)

(
−

Exp(N2 (F [θ, φ]))
(−ic)N (eiθ − ceiφ) +

Exp(N2 (F [−θ, φ]))
(−ic)N (eiφ − ceiθ)

+
Exp(N2 (F [θ,−φ]))
(ic)N

(
c+ ei(θ+φ)) − Exp(N2 (F [−θ, φ]))

(ic)N
(
1 + cei(θ+φ))

) (2.43)

Where F [θ, φ] = 2i(θ−φ)−e−2iθ+e−2iφ. Two point Correlation Function then represented
as eq. (2.23). One get by putting θ = 0 and by the change φ with

ω = 2 sinφ√
1− c2

,

ρIIc [0, ω] = (1− c2)A× Exp[−N ]
4N2

√
4− (1− c2)ω2

[
2(2−A)

A(cA− 2)(−ic)N Exp
{
NA2

8

}

+ 2A2

(A2 − 4c2)(ic)N Exp
{
NA2

8

}]

×
[

2A2

(A2 − 4c2)(−ic)N Exp
{
N

8A2

}
+ 16
A(c2A2 − 4)(ic)N Exp

{2N
A2

}]
(2.44)

Where A = (
√

4− (1− c2)ω2 + i
√

1− c2ω). For ρI(0, ω) we simply used the definition in
eq. (2.23) and exact expression for first kernel from eq. (2.38) Now we need to compute
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(b) SFF for c=0.9, N=7, showing behavior as pre-
dicted in (2.45).

Figure 4. SFF of connected part Sc (SI + SII) from eq. (2.45).

Fourier transform of this two point correlation function to get the dynamical form factor.

Sc(τ) =
∫
dω

2π e
iωτρ(2)

c (E,ω) (2.45)

We choose the singularities of the above equation to evaluate the contour integral. Poles
of the equation are

ω = − i
√
c2 − 1
c

ω = i
√
c2 − 1
c

(2.46)

Evaluating the integral w.r.t. the second saddle point i
√
c2−1
c suggests that

ρ(τ) ' τe−
√

1−c
ε

τ (2.47)

Figure 4 support our argument.

2.1 Average of SFF

SFF can be averaged over an interval (0,t) and plotting that shows a continuous behavior
instead of kink at Heisenberg time

〈S(τ)〉 =
∫ t

0
dτS(τ) = [Sc(t)]avg (2.48)

From figure 2 and figure 5 SFF averaged over interval [0, t]. [Sc(t)]avg from Hermite polyno-
mial method and saddle point analysis shows same kind of continuous transition behavior
near Heisenberg time. We have compared solution of SFF average from both Hermite
method (2.33) and saddle point analysis (2.48). In section 3 we have compared the change
in saturation value of SFF and nature of this rounding off (Heisenberg Time).
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Figure 5. Spectral Form Factor averaged over an interval [0, t] from eq. (2.48) is plotted in Log-Log
scale. We have considered both connected and disconnected part in this case.

3 1
N

expansion for correlation function

Now we repeat well know saddle point method of one variable for two variable saddle point
approximation ∫ ∞

−∞
dxdyf(x, y)eAH(x,y) (3.1)

For saddle point approximation we choose the main contributing points of the integral and
this set of point is given by:

∂H(x, y)
∂x

|(x0,y0) = 0, ∂H(x, y)
∂y

|(x0,y0) = 0, ∂
2H(x, y)
∂y∂x

|(x0,y0) = 0 (3.2)

Now we change the integration variable to

x = x0 + w√
A

y = y0 + z√
A

(3.3)

Now we make Taylor expansions of AH(x, y) and F (x, y) around x0 and y0 and choose
up to certain terms to get the 1

An terms completely for n = 1
2 , 1 in eAH(w,z)F (w, z) and then
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Figure 6. Correlation function w.r.t. ω for different dimension of Matrix(N) and effect of correction
from second term of eq. (3.4).

perform Gaussian Integration to get the 1st and second term of saddle point approximation

∫ ∞
−∞

dxdyF (x,y)eAH(x,y) =

 2πF (x0,y0)eAH(x0,y0)

A
√
H(2,0) (x0,y0)

√
H(0,2) (x0,y0)


+
(

πeAH(x0,y0)

4A2H(0,2) (x0,y0)5/2H(2,0) (x0,y0)5/2

)

×
{
H(0,2) (x0,y0))2

[
4F (2,0) (x0,y0)H(2,0) (x0,y0)+4F (1,0) (x0,y0)H(3,0) (x0,y0)

+F (x0,y0)H(4,0) (x0,y0)
]
+H(0,2) (x0,y0)

[
4F (0,2) (x0,y0)H(2,0) (x0,y0)2

+4F (1,0) (x0,y0)H(1,2) (x0,y0)H(2,0) (x0,y0)+4F (0,1) (x0,y0)H(2,1) (x0,y0)H(2,0) (x0,y0)

+2F (x0,y0)H(2,2) (x0,y0)H(2,0) (x0,y0)+3F (x0,y0)H(2,1) (x0,y0)2

+2F (x0,y0)H(1,2) (x0,y0)H(3,0) (x0,y0)
]
+H(2,0) (x0,y0)

[
4F (0,1) (x0,y0)H(0,3) (x0,y0)

H(2,0) (x0,y0)+F (x0,y0)(3H(1,2) (x0,y0)2+H(0,4) (x0,y0)H(2,0) (x0,y0)

+2H(0,3) (x0,y0)H(2,1) (x0,y0))
]}

(3.4)

3.1 Second order contribution of SFF

Now we evaluate next order contribution for correlation function using second term of
the eq. (3.4). We use this relation for expression of both the kernels in eq. (2.35) and
eq. (2.40). We follow the exactly same procedure thereafter and at first evaluate the two-
point correlation function.

Now we evaluate spectral form factor by Fourier transform exactly as eq. (2.45). We
choose the singularities of this equation to find the integral by residue theorem. The
singularities are same as previous case (eq. (2.46)). Then we compute residue w.r.t. these
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Figure 7. 1st order correction of Spectral Form Factor w.r.t. τ for N=20 behave in the same way
as the zeroth order solution.
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(a) Correction in SFF connected part average
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(b) Correction in SFF connected part average
c=0.9 for N=30.

Figure 8. 1st order of correction in SFF connected part average over interval [0,t] from eq. (3.4).

points. Considering the second term of eq. (3.4) we have added the correction term in SFF
and plotted it in figure 7(b) SFF can be averaged over an interval [0,t] and plotting that
shows a continuous behavior instead of kink at Heisenberg time

〈S(τ)〉 =
∫ t

0
dτS(τ) = Savg(t) (3.5)

We can compare solution of SFF with first order correction term to our previously evaluated
SFF with only zeroth order saddle approximation term and hermite polynomial solution for
kernels Figure 9 shows that 1st order correction introduces extra shift in saturation value
of SFF average. Different N cases has been obtained in figure 10 with saturation values
explicitly mentioned. For N=7 zeroth order saddle point method solution has saturation
at 0.028 which is shifted to 0.031 for solution with 1st order term in saddle point approx-
imation. For N = 10, 15, 30 cases zeroth order solution has saturation at 0.032, 0.15, 17.4
which is shifted to 0.036, 0.16, 20.3 with 1st order correction term. The first order cor-
rection shifted the saturation values closer to hermite polynomial representation solution.
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(d) Comparison of SFF average from different
method for c=0.9 for N=30.

Figure 9. SFF from saddle point approximation at zeroth order is compared with 1st order
correction from saddle point method. Change in saturation value has been specified.

Hermite polynomial representation of kernels give saturation values for N = 4, 10, 15, 30 at
around 0.034, 0.042, 0.18, 23.9. In figure 10 this comparison is shown in the plots explicitly.

3.2 Comparing different solutions

3.3 Shift in Heisenberg time

Here we compare our different solution to find what happens to Heisenberg time. Heisen-
berg time is the time scale after which SFF average saturates. To find this we have com-
puted the relative fluctuation in SFF average. After certain time it is decayed to a value
less than 10−3. We have considered that time as Heisenberg time. Relative fluctuation in
SFF average is defined as:

∆Sc(t)
Sc(t)

= Sc(t+ ∆t)− Sc(t)
Sc(t)

(3.6)

The zeroth order saddle point method, saddle point method with 1st order correction
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Figure 10. SFF average has shift in saturation values. Here different solution from Hermite
method, zeroth order saddle method and 1st order corrected saddle approximation is compared.

and Hermite method solution all has Heisenberg time (tH) at a point when this relative
fluctuation decays to less than 10−3 at some fixed tH . From figure 11(a) for N = 15, c = 0.9
Heisenberg time for zeroth order saddle point is at tH = 7.9,and for Hermite method
solution tH = 12.4. For figure 11(b) Heisenberg time for N = 10, c = 0.9 is at tH =
7.61, 7.76, 8.90 for Saddle point solution with 1st order correction, zeroth order solution
and from hermite polynomial solution. In figure 12 shift in Heisenberg time form zeroth
order saddle point solution for different c values is obtained. For c = 0.9 Heisenberg time
is tH = 7.78 which is shifted to tH = 5.69 for c = 0.8. For c = 0.7 Heisenberg time
is tH = 4.48. As the exponential decat behavior of SFF connected part dependes on c

explicitly (eq. (2.47)), chnaging c values heavily shift Heisenberg time.

– 16 –



J
H
E
P
0
3
(
2
0
2
1
)
0
7
1

Hermite method

0th saddle

10-3

7.9 12.4

8 9 10 11 12 13

0.000

0.002

0.004

0.006

0.008

0.010

t

|Δ
S
c
(t
)|
/S

c
(t
)

Correction in Hisenberg time; N=15

(a) Change in Heisenberg time for N=20.

Hermite method

0th saddle

with 1st correction

10-3

8.90 7.76 7.61

7.5 8.0 8.5 9.0 9.5

0.001

0.002

0.003

0.004

t

|Δ
S
c
(t
)|
/S

c
(t
)

Correction in Heisenberg time; N=10

(b) Change in Heisenberg time for N=10.

Figure 11. Relative fluctuation defined in eq. (3.6) for SFF average at N = 15, 10,c = 0.9 w.r.t. t
is obtained using eq. (3.6) with ∆t = 0.1.
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Figure 12. Heisenberg time from SFF average computed for zeroth order saddle point method
solution for c=0.9,0.8,0.7 for N=10.

4 Two point correlation function between same matrices

In this section we will compute the two-point correlation function between same matrices.
Two point correlation function for same matrices can be written as:

UM1
0 (z1, z2) = 〈 1

N
Treiz1M1 1

N
Treiz2M1〉 (4.1)

Following the same change of measure and distribution function as in eq. (2.7), we solve
this by external source matrix A. The method here is same as in [6]. Using the modification
of previous representation of U(z1, z2) we have for the same matrix.

UM1
A (z1, z2) = K

N∑
α1,α2

∫ ∫
eiz1rα1eiz2rα2e−

N
2
∑

r2
i+N

2
∑

ξ2
j+cN

∑
ξiri−N

∑
airi∆(ξ)dr dξ

Here
∏N
i=1 dξi = dξ and

∏N
i=1 dri = dr and 1

N2ZA∆(A) = K.
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Solving the integral in contour representation we decompose it in three parts.
For α1 = α2

UM1
0 (z1, z2) = c

√
1− c2

iNZA (z1 + z2)

∮ (
1− i (z1 + z2)

Nu (1− c2)

)N
Exp[

− z2
1

2N (1− c2) −
z2

2
2N (1− c2) −

z1z2
N (1− c2) −

i (z1 + z2)u
1− c2

] (4.2)

ρIM1(λ, µ) = c
√

1− c2

iNZA

∫
dz1dz2

4π2 (z1 + z2)Exp[−iz1λ− iz2µ]
∮ (

1− i (z1 + z2)
Nu (1− c2)

)N
Exp

[
− z2

1
2N (1− c2) −

z2
2

2N (1− c2) −
z1z2

N (1− c2) −
i (z1 + z2)u

1− c2

] (4.3)

Then we have done z1, z2 integrals and the contour integration over u for the pole at u = o.

SI(τ) =
∫
dω

2π e
iωτρI(0, ω) (4.4)

SI(τ) is independent of τ . The disconnected part of correlation function has the form:

UM1
d (z1, z2) = −c

2(1− c2)
z1z2

∮
dudv

(2πi)2

(
1− iz1

N (1− c2)u

)N
(1− iz2

N(1− c2)v )N

Exp
{
− z2

1
2N(1− c2) −

z2
2

2N(1− c2) −
iz1u

1− c2 −
iz2v

1− c2

} (4.5)

Then the disconnected part of two point correlation function for M1 −M1 interaction
is simply

ρdM1(λ, µ) = −ρ(λ)ρ(µ) (4.6)

Where ρ(λ) is the level density for two matrix model. Now we use one transformation for
connected part: z1 = z′1 − iN(1− c2)u, z2 = z′2 − iN(1− c2)v

U IIM1(z1,z2) = c

N2

∮
dudv

(2πi)2

[
z′1

iN(1−c2)u×
z′2

iN(1−c2)v

]N 1
(v+ iz1

N(1−c2))(u+ iz2
N(1−c2))

×Exp
[
− z2

1
2N(1−c2)−

z2
2

2N(1−c2)−
iuz′1c

2

1−c2 −
ivz2c

2

1−c2 −
N(c2+1)u2

2 −N(c2+1)v2

2

]
now we do the Fourier transform two get the two point correlation function:

ρIIM1(λ, µ) = c

N2

∫
dz1dz2
(2π)2

∮
dudv

(2πi)2

[
z′1

iN(1− c2)u ×
z′2

iN(1− c2)v

]N 1
(v + iz1

N(1−c2))

1
(u+ iz2

N(1−c2))
Exp

[
− z′21

2N(1− c2) −
z′22

2N(1− c2) −
iuz′1c

2

1− c2 −
ivz′2c

2

1− c2 −
N(c2 + 1)u2

2

− N(c2 + 1)v2

2 + iz1λ+N(1− c2)uλ+ iz2µ+N(1− c2)vµ
]
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replacing z1 = z′1
N(1−c2) and z2 = z′2

N(1−c2)

ρIIM1(λ,µ) = c(1−c2)2
∫
dz1dz2
(2π)2

∮
dudv

(2πi)2

[
z1
iu

]N[z2
iv

]N 1
(v+ iz1)(u+ iz2)

Exp
[
−N

{(1−c2)z2
1

2 + (1−c2)z2
2

2 + ic2uz1 + ic2vz2 + c2 +1
2 u2 + c2 +1

2 v2

+ i(1−c2)z1λ+ i(1−c2)z2µ+(1−c2)uλ+(1−c2)vµ
}] (4.7)

Solving the integral by four-variable saddle point method. Here we consider
four variable saddle point solution discussed in [12, 13]. Eq. (4.7) is characterized by the
following form of four variables.

F (z1, z2, u, v) = 1
2
(
c2 + 1

) (
u2 + v2

)
+
(
1− c2

)
(λu+ µv) + ic2(uz1 + vz2)

+ 1
2
(
1− c2

)
z2

1 + 1
2
(
1− c2

)
z2

2 + i
(
1− c2

)
(λz1 + µz2)

− log(u)− log(v) + log(x) + log(y)

(4.8)

So our saddle points are the simultaneous solution of four equations.

∂F (z1, z2, u, v)
∂z1

= 0, ∂F (z1, z2, u, v)
∂z2

= 0

∂F (z1, z2, u, v)
∂u

= 0, ∂F (z1, z2, u, v)
∂v

= 0
(4.9)

Solving this equation gives sixteen set of solution as the saddle points. Now using saddle
point method for four variables with the transformation:

λ =

(
2
√
c2 + 1

)
sin(θ)

√
c2 − 1

, µ =

(
2
√
c2 + 1

)
sin(φ)

√
c2 − 1

ρIIM1(θ, φ) = c(−1)(N+1)

(2π)4

{
(1− c2)2 e−N F (z1,z2,u,v)

(v + iz1)(u+ iz2)(
1
/[

∂2F (z1, z2, u, v)
∂2z1

∂2F (z1, z2, u, v)
∂2z2

∂2F (z1, z2, u, v)
∂2u

∂2F (z1, z2, u, v)
∂2v

])}
(4.10)

Now set λ = 0 and apply the reverse transformation to obtain its previous form by

ω =

(
2
√
c2 + 1

)
sin(φ)

√
c2 − 1

(4.11)

Then this gives us the correlation function for same matrix model. We have plotted the
same matrix correlation function for different N in figure 13. So the total correlation
function from eq. (4.3), (4.6), (4.7)

ρM1(ω) = ρIM1(ω) + ρIIM1(ω) + ρdM1(ω) (4.12)
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Figure 13. Correlation function for same matrix interaction w.r.t. ω in Log scale using eq. (4.12).

Fourier transforming the correlation function generates the spectral form factor.

S(τ) =
∫ 1

2πe
iωτρM1(ω)dω (4.13)

We do this by contour integral over the poles. Poles of this function are:

ω → − 2c2

c2 − 1 , ω →
√
−c6 + 3c4 − 4
c2 − 1 , ω → ± 2ic2√c4 − 1

(c2 − 1)2 (c2 + 1)
, ω → 0 (4.14)

Finding residue w.r.t. this poles gives us the Spectral Form Factor. We plotted its time
average defined as:

Sc(t)avg =
∫ t

0
Sc(τ)dτ (4.15)

From figure 14 SFF for same matrix interaction (M1−M1 interaction) have c dependence.
When we go towards c → 0 we get the exact behavior of SFF as of different matrix
interaction. In other cases it changes its magnitude and period with values of c as well
as N .

5 Instanton action for two matrix model

In [6] the two point function for two matrix model was calculated and given in the follow-
ing form

ρ(τ) =
∫
dωeiωτ

− 1− c2

16π2N2
1

cosϕ
1[

(1−c)2

4c2 + sin2 ϕ
]2 f

 (5.1)

where f is
f =

[
−2 cosϕ cos[Nh(ϕ)− ϕ] +

(
1 + c2

)
cosNh(ϕ)

]2
(5.2)
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Figure 14. Spectral Form Factor for same matrix interaction w.r.t. t for different c = e−t and
dimension of Matrix(N).

and ω = 2√
1−c2 sinϕ. We have evaluated this same equation in eq. (2.44). Now the function

has poles at ω = − i
√
c2−1
c and ω = i

√
c2−1
c . Evaluating the contour integral for the pole at

i
√
c2−1
c gives functional dependence of ρ(τ)

ρ(τ) ' τe−
√

1−c
ε

τ (5.3)

The non-perturbative term (instanton) comes from the pole of eq. (5.1).
There is interesting identity between spectral form factor and Laguerre polynomials

discussed in [6] for c = 0, in [14].Through this identity, we could discuss the instanton
effect. For time dependent case, c 6= 0, we follow the analysis of (5.1) from [6], where the
two point function is expressed as Fourier transform. As shown in (5.1) or from eq. (2.44),
one of this pole contributes to the rounding behavior around Heisenberg time.

For one matrix model, the effect of instanton has been previously studied in [11, 15].
Firstly we separate out two eigenvalues, one from each matrices, and then compute the
rest of the terms exactly for large N to get an effective potential. The instanton action is
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derived from values of effective potential at the saddle points and one reference point along
the support of eigen value density. For two matrix model density of states is distributed
along the interval [− 2√

c2−1 ,
2√
c2−1 ].

Now we know the eigenvalue distribution /density of states has the form

ρ(λ) =
√

1− c2

2π

√
4− (1− c2)λ2

and normalized over [− 2√
c2−1 ,

2√
c2−1 ]. We have considered the behavior of instanton action

in plateau regime, τ > 1. First we consider the one point function and evaluated the
instanton action from it. Then we have repeated the same method for two-point function.
We have computed them explicitly and compared their nature.

One-point function defined in (A.2) can be rewritten as

U(τ) = 〈 1
N

Tr(e2iNτM1〉N

=
∫

Tr(e2iNτM1)e−
1
2 TrM2

1−
1
2 TrM2

2 +cTrM1M2dM1dM2

(5.4)

For the term

Tr(e2iNτM1) =
{
N−1∑
α=1

e2iNτri

}
+ e2iNτx (5.5)

we can ignore the N−1 eigenvalues and only consider the e2iNτx term. Here x is considered
to be the only eigenvalue with non-zero coupling.

U(τ) =
∫
e2iNτxe−

N
2
∑

i
r2
i−

N
2
∑

i
ξ2
i+cN

∑
i
riξi ∆

2(r)∆2(ξ)
∏
i dri

∏
i dξi

∆(r)∆(ξ)

=
∫
dxdy e2iNτx−N2 x

2−N2 y
2+cNxy

∫ N−1∏
i=1

dri

N−1∏
j=1

dξj

N−1∏
i<j

(ri − rj)
N−1∏
i=1

(x− ri)

N−1∏
i<j

(ξi − ξj)
N−1∏
i=1

(y − ξi) e2iNτx−N2
∑N−1

i=1 r2
i−

N
2
∑N−1

j=1 ξ2
j+cN

∑N−1
i=1 riξi

Now we define the second integral over N − 1 eigenvalues as a matrix interval. We define
two matrices composed from N −1 eigenvalue of the previous one. M̄1|N−1×N−1 has N −1
eigenvalues and in large N limit the distribution of this N −1 eigenvalues follows the same
density of states and distributed along the interval [− 2√

c2−1 ,
2√
c2−1 ]. Same is true for M̄2.

So in matrix notation this can be represented as

U(τ) =
∫
dxdye2iNτx−N2 x

2−N2 y
2+cNxy

×
∫
dM̄1dM̄2Det(x− M̄1)Det(y − M̄2)e−

1
2 TrM̄2

1−
1
2 TrM̄2

2 +cTrM̄1M̄2

=
∫
dxdye2iNτx−N2 x

2−N2 y
2+cNxy〈Det(x− M̄1)Det(y − M̄2)〉N

In large N limit we can use the factorization property of determinant

〈Det(A)Det(B)〉N = 〈Det(A)〉N 〈Det(B)〉N
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and Exp[Tr(Log[A])] = Det(A) which simplifies the integral to

U(τ) =
∫
dxdye2iNτx−N2 x

2−N2 y
2+cNxy〈Det(x− M̄1)〉N 〈Det(y − M̄2)〉N

=
∫
dxdye2iNτx−N2 x

2−N2 y
2+cNxy+〈Tr(Log(x−M̄1))〉N+〈Tr(Log(y−M̄2))〉N

=
∫
dxdye−NAeff(x,y)

Therefore

Aeff(x, y) = −2iτx+ 1
2x

2 + 1
2y

2 − cxy − 〈Tr(Log(x− M̄1))〉N − 〈Tr(Log(y − M̄2))〉N

To evaluate the saddle point we solve the following equations
∂Aeff(x, y)

∂x
= 0 ∂Aeff(x, y)

∂y
= 0

−2iτ + x− cy − 〈Tr
( 1
x− M̄1

)
〉N = 0

y − cx− 〈Tr
( 1
y − M̄2

)
〉N = 0

(5.6)

〈Tr
( 1
x− M̄1

)
〉N =

∫ 2√
1−c2

− 2√
1−c2

dz
ρ(z)
x− z

= x

2 (1− c2)− 1
2

√
(1− c2)2x2 − 4 (5.7)

So the saddle points are:

x∗ = −2i
√
τ2 − 1

c2 − 1 ,
2i
√
τ2 − 1

c2 − 1

y∗ = −i
{(
c2 + 1

)√
τ2 − 1−

(
1− c2) τ

c (c2 − 1)

}
,

i

{(
c2 + 1

)√
τ2 − 1−

(
c2 − 1

)
τ

c (c2 − 1)

} (5.8)

Here we will consider only τ > 1 part for Large N limit. So the saddle point are conjugate
in nature.

Now we evaluate Aeff(x, y) by ∫
∂Aeff
∂x

dx = B(x, y) + C(y)

∂B(x, y)
∂y

+ dC(y)
dy

= ∂Aeff
∂y

(5.9)

comparing the coefficients in the last equation we evaluate the C(y) term upto a constant.
Now the final form of Aeff(x, y) is

Aeff(x,y) = 1
4(c2−1)

[(
c2−1

)
(x(
√

(c2−1)2x2−4−4cy−8iτ)

+
(
c2+1

)
x2+y(

√
(c2−1)2 y2−4+c2y+y))

−4Log(
√

(c2−1)2x2−4+
(
c2−1

)
x)−4Log(

√
(c2−1)2 y2−4+(c2−1)y)

]
(5.10)
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So,

Ainst(τ) = Seff(x1
∗, y

1
∗)− Seff(x2

∗, y
2
∗)

Ainst(τ) = − 2
(c2 − 1)

[ (
τ
√
τ2 − 1− log

(√
τ2 − 1 + τ

)) ] (5.11)

Aeff(x1
∗, y

1
∗) = −2τ

√
τ2 − 1

c2 − 1 + 2
c2 − 1

(
cosh−1(τ)

)
Aeff(x2

∗, y
2
∗) = 2τ

√
τ2 − 1

c2 − 1 − cosh−1(−τ) + cosh−1(τ)
c2 − 1

(5.12)

Now two point correlation can be defined as follows:

U(τ,−τ) =
∫

Tr(e2iNτM1)Tr(e−2iNτM2)e−
1
2 TrM2

1−
1
2 TrM2

2 +cTrM1M2dM1dM2

Now we have used same argument as of one-point function we have ignored N−1 eigenvalue
and considered only x and y has non-zero coupling. Also in large N limit factorization of
determinant is used.

U(τ,−τ) =
∫
e2iNτx−2iNτye−

N
2
∑

i
r2
i−

N
2
∑

i
ξ2
i+cN

∑
i
riξi ∆

2(r)∆2(ξ)
∏
i dri

∏
i dξi

∆(r)∆(ξ)

=
∫
dxdye2iNτx−2iNτy−N2 x

2−N2 y
2+cNxy〈Det(x− M̄1)〉N 〈Det(y − M̄2)〉N

=
∫
dxdye2iNτx−2iNτy−N2 x

2−N2 y
2+cNxy+〈Tr(Log(x−M̄1))〉N+〈Tr(Log(y−M̄2))〉N

=
∫
dxdye−NA

′
eff(x,y)

(5.13)

Therefore

A′eff(x,y) =−2iτx+2iτy+ 1
2x

2+ 1
2y

2−cxy−〈Tr(Log(x−M̄1))〉N−〈Tr(Log(y−M̄2))〉N

∂A′eff(x, y)
∂x

= 0 ∂A′eff(x, y)
∂y

= 0

−2iτ + x− cy − 〈Tr( 1
x− M̄1

)〉N = 0

2iτ + y − cx− 〈Tr( 1
y − M̄2

)〉N = 0

(5.14)

Again we have used the density of states expression

〈Tr( 1
x− M̄1

)〉N =
∫ 2√

1−c2

− 2√
1−c2

dz
ρ(z)
x− z

= x

2 (1− c2)− 1
2

√
(1− c2)2x2 − 4
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After evaluating the saddle points are

x1
∗ =

i
(
−
√

(c− 1)2τ2 + c+ cτ + τ
)

c(c+ 1) , x2
∗ =

i
(√

(c− 1)2τ2 + c+ cτ + τ
)

c(c+ 1)

y1
∗ =

i
(
−
(
c2 + c+ 1

)√
(c− 1)2τ2 + c+ (c+ 1)((c− 3)c+ 1)τ

)
c2 (c+ 1) ,

y2
∗ =

i
((
c2 + c+ 1

)√
(c− 1)2τ2 + c+ (c+ 1)((c− 3)c+ 1)τ

)
c2(c+ 1)

(5.15)

,we get the instanton action as:

A′inst(τ) = A′eff(x1
∗, y

1
∗)−A′eff(x2

∗, y
2
∗) (5.16)

Instanton effect for one matrix model has been studied in [15]for large N limit in τ > 1
plateau regime in context of Gaussian one matrix model. For eigenvalue instanton in N×N
Gaussian hermitian matrix instanton action is given as-

Ainst(τ) = 2[τ
√
τ2 − 1− cosh−1(τ)] (5.17)

In [15] it is claimed that A′inst(τ) for two -point correlation function is proportional instanton
action derived from one point function for one matrix model.To verify this we have shown
their behavior and found this proportionally to hold in large τ limit only. Now we can
compare instanton action from one and two point function and check their proportional
behavior.

6 Duality relation for two matrix model

Correlation function for characteristic polynomial of two matrix model has been studied
in [16]. We here review the duality formula found in [16] for the later use of it in discussion
of the logarithmic potential.

J = 〈
k1∏
α=1

det(λα −M1)
k2∏
β=1

det(µβ −M2)〉 (6.1)

M1 and M2 are N×N Hermitian matrix as seen in eq. (2.5), eq. (2.4) The average is over
distribution for two matrix model [eq. (2.5)]

P (M1,M2) = 1
Z
e−

1
2 trM

2
1−

1
2 trM

2
2−ctrM1M2−trM1A (6.2)

The duality formula found in [16] are expressed as

J =
∫
dB1dB2dD

†dDe−
N
2 Tr(B2

1+B2
2+2D†D)

N∏
i=1

det(Xi) (6.3)

Xi =

{(λα − ai
1−c2 )δα,α′ + i√

1−c2B1}
√

c
1−c2D√

c
1−c2D

† {(µβ − cai
1−c2 )δβ,β′ + i√

1−c2 }B2}


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(b) Instanton action comparison for c=0.5 in Log-
Log scale.
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(c) Instanton action comparison for c=0.7.
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(d) Instanton action comparison for c=0.8.

Figure 15. Instanton action from One-point function (eq. (5.11)), from two-point function
(eq. (5.16)) is compared with know eigenvalue instanton action for one matrix model (eq. (5.17)).
We have scaled them appropriately to show their same nature in large τ limit.

where B1 and B2 are hermitian square matrices and D is complex rectangular matrix. Now
we use a transformation

B′1 → B1 + i
√

1− c2λα,α′δα,α′ B′2 → B2 + i
√

1− c2µβ,β′δβ,β′

This simplifies the integral:

J = C

∫
dB1dB2dD

†dDExp
[
− N

2 Tr(B2
1 +B2

2 + 2D†D)− iN
√

1− c2trB1Λ1

− iN
√

1− c2TrB2Λ2 −
N∑
i=1

Tr(Log(1−Ki))
] (6.4)
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Figure 16. Ratio of Instanton action from One-point function (eq. (5.11)), from two-point function
(eq. (5.16)). Here Ainst[U0(τ)] is the instanton action from one-point function (eq. (5.11)) and
Ainst[U0(τ,−τ)] is from two-point function (eq. (5.16)). In large τ limit the ratio become constant
which supports the predicted proportional nature.

Here we have used det(A) = eTr(Log(A)) and the matrix K is reduced from X

Ki =

 i
√

1− c2B1
ai

√
c(1− c2)Dai√

c(1− c2)
c

D†

ai
− i
√

1−c2
c

B2
ai

→ K =

iB1
√
cD

D†√
c
− iB2

c


We set A=aI with constraint a =

√
1− c2. Now we can expand Log(1-K) in Taylor

series upto 3rd term,

Log(1−K) = −K− K2

2 −
K3

3 −
K4

4 (6.5)

Considering upto K3 gives the term in power of exponential [eq. (6.4)] as:

J =
∫
dB1dB2dD

†dD Exp
[
Tr
{
−N

[
iB1(1−

√
1− c2λ1)− i

c
B2(1− c

√
1− c2λ2)

− 1
2(1− 1

c2 )B2
2 + i

3B
3
1 −

i

3c3B
3
2 + 2i

3 DD
†B1

− 2i
3cB2D

†D + i

3cDB2D
† − i

3D
†B1D

]}]
(6.6)

J =
∫
dB1dB2dD

†dDExp
{
− iNTr(B1Λ1)− iNTr(B2Λ2) + i

3NTr(B3
1)

− N

2 (1− 1
c2 )TrB2

2 + iNTr(DD†B1 − 1)− iN

c
B2(−1 +DD†)

} (6.7)

Now at the edge of the spectrum for the matrix M1 edge scaling limit at large N gives:

B1 ∼ O
(
N−

1
3
)

B2 ∼ O
(
N−

1
2
)

D ∼ O
(
N−

1
3
)

(6.8)
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Dropping the negligible terms (B2DD
† ∼ O(N−

7
3 ))

Z =
∫
dB1dB2dD

†dDe−iNTr(B1Λ1)−iNTr(B2Λ2)+ i
3NTr(B3

1)−N2 (1− 1
c2

)TrB2
2+iNTr(DD†B1)

Z = Q

∫
dB1dD

†dDe−iTrB1Λ1+ i
3 TrB3

1+iTrDD†B1
(6.9)

Q is the decoupled part generated after integration over B2 Integrating out D† and D gives
logarithmic term:

Z =
∫
dB1e

i
3 TrB3

1−k2TrLog(B1)−iTr(B1Λ1) (6.10)

This has been related to Airy Matrix model coupled with a logarithmic potential
(Kontsevich-Penner model) in [17]

Derivation for B4
1 term K =

[
iB1
√

cD
D†
√

c
− iB2

c

]
. Expanding upto 4th term

Log(1−K) = −K− K2

2 −
K3

3 −
K4

4 (6.11)

So, Tr(Log(1-K)) has terms from four contribution, as trace is there we can consider only
the diagonal terms in each of Tr[Kn]. So for Tr[1

3K
3] term →

Tr
(
− i

3B
3
1 + 1

3DD
†B1 + i

3B1DD
† + i

3cDB2D
† + i

3D
†B1D −

i

3
√
c
B2D

†D

− i

3
√
C
DD†B2 + i

3c3B
3
2

) (6.12)

Tr[1
4K

4] term →

Tr
(1

4B
4
1 + i

4DD
†B2

1 −
1
4B1DD

†B1 + 1
4cDB2D

†B1 −
1
4B1DB1D

† + 1
4DD

†DD†

− 1
4c2DB

2
2D
† − 1

4D
†B2

1D + 1
4
√
c
B2D

†B1D + 1
4DD

†D†D − 1
4c2B

2D†D

+ 1
4cB1DB2D

† + 1
4cB1DB2D

† + i

4c3√c
B4

2 −
1

4c
√
c
B2D

†DB2 −
1

4c
√
c
DD†B2B2

)
(6.13)

If we consider upto K4 term of eq. (6.5) This integral is solved in similar way. Now
with existing edge scaling eq. (6.8), after integral over B2 and D,D†

Z =
∫
dB1Exp

[
−iTr(B1Λ1)− i

c3 Tr(B3
1)− 1

4Tr(B4
1)− k3Tr(Log[B1])

]
(6.14)

Although Tr(B4) term is absent in the edge scaling, this term can be derived as [18, 19].
Two converging saddle points gives rise to fold singularity as in the B3

1 expression. This
is related to Airy kernel For extended Airy Kernel eq. (6.14) cubic singularity becomes
quartic term. This is expressed in terms of Pearcey function and showed in [18, 19] on
the level spacing distribution for hermitian random matrices with an external field. If
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H=H0+V where H0 is a fixed matrix and V is an N × N random GUE matrix. H0 has
eigenvalues ±a each with multiplicity N

2 . Spectrum of H0 is such that there is a gap in
the average density of eigenvalues of H which is thus split into two pieces. With N → ∞
density of eigenvalues supported on single or double interval depending on size of a. At
the closing of gap the limiting eigenvalue distribution has Pearcey kernel structure. When
the spectrum of H0 is tuned so that the gap closes limiting eigenvalue distribution have
the same structure as Pearcey kernel.

Connecting the two point correlation function with open partition function. At
first consider the equation eq. (6.6) with B2 → iB2c, B1 → −iB1 and Λ1 → (1−

√
1− c2Λ1)

and Λ2 → (1 + c
√

1− c2Λ2)

J =
∫
dB1dB2dD

†dDExp
[
−NTr

{
B1Λ1 +B2Λ2 −

1
2(c2 − 1)B2

2 −
1
3B

3
1 −

1
3B

3
2

+ 2
3DD

†B1 + 2
3B2D

†D − 1
3DB2D

† − 1
3D
†B1D

}] (6.15)

Then we integrate over dD and dD† and made the transformation B1 → B1 +
√

Λ1.We
rewrite the equation in H and Z replacing B1 and B2

J =
∫

Hk1×Zk2

Exp
[

2N
3 Tr(Λ

3
2
1 )−N3 Tr(H3)−NTr(H2√Λ1)

+Ntr(ZΛ2)−N3 Z
3+N

(
c2−1

2

)
Z2
]

×Exp
[{
N

3 Tr
(
Log(H+

√
Λ1)

)
+N

3 Tr(Log(Z))
}]
dHdZ

(6.16)

Matrix integral representation of two point correlation function of two matrix model:

J =
∫
Hk1×Zk2

dHdZ Exp
[

2N
3 Tr(Λ

3
2
1 )− N

3 Tr(H3)−NTr(H2√Λ1) +NTr(ZΛ2)

+N

(
c2 − 1

2

)
Z2 − N

3 Z
3 +

{
NkTr(Log(H +

√
Λ1)) +Nk′Tr(Log(Z))

}]

J = Exp
[Ñ

3 Tr(Λ
3
2
1 )
] ∫

Hk1×Zk2

Exp
[
Ñ

2

(
c2 − 1

2

)
ZZ̃T − Ñ

2 Tr(H2√Λ1)

− Ñ

6 Tr(H3)− Ñ

6 TrZ3 + Ñ

2 Tr(ZΛ2) + Ñ

2 Tr(ZΛ2)

+ Ñ

6
{
Tr(Log(H +

√
Λ1)) + Tr(Log(Z))

]
dHdZ

Now from eq. (6.1)

Λ1|α = (1−
√

1− c2)λα and Λ2|β = (1−
√

1− c2)µβ N = Ñ

2
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and Zk2×k2 is hermitian matrix so ZZ̃T = Z2

J =K

∫
Hk1×Zk2

Exp
[
Ñ

2

(
c2−1

2

)
ZZ̃T − Ñ2 Tr(H2√Λ1)− Ñ6 Tr(H3)− Ñ6 trZ

3 + Ñ

2 Tr(ZΛ2)
]

[
det(H+

√
Λ1)

] Ñ
6 ×

[
det(Z)

] Ñ
6 dHdZ (6.17)

Now we look at the very refined open partition function as derived in [20]. They have
provided the matrix model for very refined open partition function as matrix integrals in
the given form:

τ̃ o|ti=ti(Λ) =
cΛ,M

(2π)N2

∫
HM×MN,N

det
Λ⊗ IN +

√
Λ2⊗ IN − IM ⊗ Z̄t−H⊗ IN +IM ⊗Z

Λ⊗ IN +
√

Λ2⊗ IN − IM ⊗Zt−H⊗ IN − IM ⊗Z

Exp
[
− 1

2 TrH2Λ− 1
2 TrZZ̄t+ 1

6 TrH3 + 1
6 TrZ3 + 1

2 Tr Z̄tΘ
]
dHdZ

(6.18)

For N ≥ 1 the space of Hermitian matrices is denoted by HM and the space of complex
N ×N matrices by MN×N (C). Volume d Z is denoted by

dZ :=
∏

1≤i,j≤N
d (Re zi,j) d (Im zi,j)

and Gaussian probability measure on space of complex matrices is given by

1
(2π)N2 e

− 1
2 TrZZ̄T dZ

θi,j , 1 ≤ i, j ≤ N , are considered as an extra set of complex variables:

Θ := (θi,j)1≤i,j≤N ∈ MN,N (C)

qm(Θ) := Tr Θm, m ≥ 0
(6.19)

And,

cΛ,M := (2π)
M2
2

M∏
i=1

√
λi

∏
1≤i<j≤M

(λi + λj) (6.20)

Now comparing eq. (6.17) and eq. (6.18) two matrix model two point correlation func-
tion and very refined open partition function are similar with

√
Λ1 = Λ and Λ2 = Θ

and K = Exp
[
Ñ
3 Tr(Λ

3
2
1 )
]
is the extra constant term multiplied in front. More detailed

discussion on open partition function and refined open partition function can be found
in [20].

In [16] two matrix model correlation function has been related to Kontsevich-Penner
Matrix model near Heisenberg time. Using Replica method they have studied the inter-
section number discussion in this context. In our previous calculation we have obtained a
rounding off behavior near Heisenberg time. The universal behavior of SFF ramp region
Dyson sine kernel is now changed. It suggests that some new kind of description is needed
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in this region. Kontsevich [21] and Penner [22] Matrix models gives the edge behavior
and open boundaries for the punctured open Riemann surfaces. This has been explained
in [16, 23, 24]. Universal Dyson sine kernel gives one important feature of underlying
Gaussian Unitary Ensemble, its stationary nature under Dyson Brownian motion. But
now universality of sine kernel are no more available. To explain the rounding off behavior
we need to consider Brownian motion near edges. This Brownian motion effect is related
to time dependence of the model, which involves higher singularities.

7 Discussion

Authors of [6] converted time dependent matrix model of eq. (2.1) into two matrix model
and formulated two point correlation functions in the integral form. We revisited this
approach, specially for the spectral form factor, from the point of view of the universal
signature of the quantum chaos. We confirm by the numerical works the behavior of
the large N limit due to the exact N expression by Hermite polynomials, and made a
detailed comparison to saddle point results. This time dependent model has interesting
interpretation as open intersection numbers, which is derived from the logarithmic potential
representing the boundaries [17]. The rounding behavior around Heisenberg time, which
we have confirmed in this paper, is shown to be related to such boundary problems. We
have considered two type of correlation function and also the next order contribution of
1/N expansion, for saddle point integral. SFF for different matrix correlation has been
shown to have a rounding off near Heisenberg time τ = τc, a crossover in this point.

This two matrix model may be related to wormhole between different CFT states and
to black hole statistics [25, 26]. For our same matrix correlation function and SFF it gives
a decaying average spectral form factor which is consistent with GUE behavior of SFF.
Second term contribution calculated here from the 1

N expansion of saddle point integral
gives rounding off behavior and appear as correction to the first order solution. Change in
Heisenberg time for this correction are computed explicitly. The second term of saddle point
contribution controls the shift in saturation value for different N . And the calculation for
Instanton action for two matrix model appears to have same eigenvalue instanton equation
with scaling 1

c2−1 . Previously it has been predicted that instanton action from two point
function is proportional to instanton equation of one-point function. In two matrix case
they are not same/proportional to one-point function instanton action. But in large τ limit
this solution has proportional structure.
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A Two matrix model density of states

Density of state ρ(λ) derived by Fourier transform of UA(z)

UA(z) =
〈 1
N

TreizM1
〉

(A.1)
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We have considered an external matrix A coupled to matrix M1 acting as a source. At
last step we will put it zero to get our desired result. The eigenvalue of M1 and M2 are
denoted by ri and ξi. We follow the formulation of [6].

UA(z) = 1
ZAN

∫
TreizM1 × e−

1
2 TrM2

1−
1
2 TrM2

2 +cTrM1M2−TrAM1dM1dM2 (A.2)

= 1
NZ

N∑
α=1

∫
eizrαe−

N
2
∑

i
r2
i−

N
2
∑

i
ξ2
i+cN

∑
i
riξi−N

∑
i
airi ∆

2(r)∆2(ξ)
∏
i dri

∏
i dξi

∆(r)∆(ξ)∆(A)∆(r)

In [6], HarishChandra-Itzykson-Zuber formula is used to change the measure from integra-
tion over matrix to integration over eigenvalues of the matrix. ∆(r) =

∏
i<j(ri − rj) is the

Vandermonde determinant.∫
eTrM1M2−TrAM1dM1dM2 =

∫
eN(

∑
riξi−

∑
airi) ∆2(r)∆2(ξ)

∏
i dri

∏
j dξj

∆(r)∆(ξ)∆A∆r (A.3)

Now using the above expression in eq. (A.2) we first do the Gaussian integral over
∏
dri

and get the form as:

UA(z) = 1
NZA∆(A)

N∑
α=1

∫ ∏
dξj∆(ξ)e−

N
2
∑

ξ2
j

∫ ∏
drie

izrαe−
N
2
∑

r2
i−N

∑
airiecN

∑
ξjrj

= 1
NZA∆(A)

N∑
α=1

∏
i<j

{
icz

N(1− c2){δi,α − δj,α} − c(aj − ai)
}
e
− z2

2N(1−c2)
− izaα√

1−c2

= c

NZA

N∑
α=1

∏
γ 6=α

(
aα − aγ − iz

N(1−c2)

)
(aα − aγ) e

− z2
2N(1−c2)

− izaα√
1−c2

= −c
√

1− c2

iz

∮
du

2πi

N∏
γ=1

(u− aγ − iz
N(1−c2)

u− aγ

)N
e
− z2

2N(1−c2)
− izaα√

1−c2 (A.4)

If we take the external source term to zero (ai → 0)

U0(z) = −c
√

1− c2

iz

∮
du

2πi

(
1− iz

Nu
√

1− c2

)N
e
− izu√

1−c2
− z2

2N(1−c2) (A.5)

Density of states is defined as the Fourier transform of this function:

ρ(λ) = −c
√

1− c2

2πi

∫
dz

z
e−izλ

∮
du

2πi

(
1− iz

Nu
√

1− c2

)N
e
− izu√

1−c2
− z2

2N(1−c2) (A.6)

The density of state ρ(λ) becomes in the large N limit,

ρ(λ) =
√

1− c2

2π

√
4− (1− c2)λ2 (A.7)

The kernel KN (λ, µ) is written by Hermite polynomial Hl(t) in (2.25),

KN (λ, µ) = 1√
2Nπ

N−1∑
l=0

1
l!Hl(

√
Nλ)Hl(

√
Nµ)e−

N
2 λ

2 (A.8)
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The density of state ρ(λ) is
ρ(λ) = KN (λ, λ) (A.9)

It is normalized as ∫ ∞
−∞

dλρ(λ) = 1 (A.10)

In the large N limit, (A.9) approaches to the semi-circle law, ρ(λ) = 1
2π
√

4− λ2.
The Fourier transform of the product of the density of state is∫ ∞

−∞
dEρ(λ+ E)ρ(λ− E)eitE = 1

(2π)2

∫ 2

−2
(4− E2)cosEt

= 1
(2π)2

(
− 8
t2

cos(2t) + 4
t3

sin(2t)
)

(A.11)

where we put λ = 0. This term gives the dip (decay) region for the specral form factor of
order one ( 1

N0 ).
The two point function ρ(2)(λ, µ) is [5]

ρ(2)(λ, µ) =< 1
N

trδ(λ−M) 1
N

trδ(µ−m) >

= 1
N
δ(λ− µ)ρ(λ)− 1

N2KN (λ, µ)KN (µ, λ) (A.12)

We followed the derivation of sine kernel in [5] with the integral representation of KN (λ, µ).

KN (λ, µ) = N

∫
dt

2π

∮
du

2iπ
1
it

(
1− it

Nu

)N
e−

t2
2N−iut−itλ+Nu(λ−µ) (A.13)

By the change u = itu, and the exponentiating (1 − 1
Nu)N = e−

1
u , and neglecting

t2/(2N) and1/N term in the large N limit, it becomes after the Gaussian integration of t,

KN (λ, µ) = −iN
√
π

∮
du

2iπ
1√
u
e
− 1
u

(
1−λ

2
4

)
+ 1

4y
2u− 1

2λy (A.14)

with y = N(λ− µ). Using a = −y2(1− λ2/4)/4,∫ ∞
0

dte−t−
a
t = 2a1/2K−1/2(2

√
a) (A.15)

where K−1/2(x) = K1/2(x) =
√
π/(2x)e−x is a modified Bessel function. We obtain in the

large N limit,
KN (λ, µ) = e−

λ2
2

sin[πyρ(λ)]
πy

(A.16)

with ρ(λ) = 1
2π
√

4− λ2. Another KN (µ, λ) is obtained similarly and their product becomes

ρ(2)
c (λ, µ) = e−

λ−µ
2 y 1

π2y2 sin[πyρ(λ)]sin[πyρ(µ)] (A.17)

Since we take the large N limit with a fixed y = N(λ− µ),

KN (λ, µ)KN (µ, λ) = 1
π2N2(λ− µ)2 sin[πN(λ− µ)ρ(λ)]2 (A.18)

This term gives a ramp for the spectral form factor of order 1
N2 , and the first term of (A.12)

gives a plateau term of the spectral form factor of order 1
N .
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