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1 Introduction

Extra dimensions are well-motivated by, for example, string theory and have rich and novel
impacts on phenomenology, such as providing potential solutions to hierarchy problems in
particle physics and cosmology. Some well-known examples are the cosmological constant
problem [1–13] and the Higgs hierarchy problem [14–19]. On the other hand, mechanisms
are needed to implement a noncompact four-dimensional spacetime into the extra dimen-
sions, in order to be consistent with our observations. So far there are two well-known
ways, namely compactification and the brane world scenario.

In the former case, the extra dimensions are “packed” into tiny compact space, such
that they are too small to be seen within the energy scale we can achieve. In the latter
case, a space-filling 3-brane sits in the extra dimensions called bulk, and our universe is
trapped on the brane. While the extra dimensions must be small in compactification, those
in the brane world scenario can be large or even infinitely large i.e. noncompact. In this
paper, we investigate how noncompact extra dimensions can affect the low-energy physics,
in order to judge the validity of these theories.

An essential feature of such theories is localization of gravity, which can be explained as
follows. The matter (Standard Model) particles can be naturally trapped onto the brane,
such as in the context of D-branes. Therefore these particles can “see” fewer dimensions.
However, gravity is dynamics of spacetime, and can freely propagate through the whole
spacetime. Therefore to recover the observed Newton’s law, which implies four-dimensional
gravity, mechanisms of localization of gravity is needed to build the brane world scenario.
For simplicity, we always focus on localized massless gravity only, although massive gravity

– 1 –



J
H
E
P
0
3
(
2
0
2
1
)
0
6
3

is not completely ruled out by phenomenology. As we will see, it is always possible in large
but compact extra dimensions, while it is hard in noncompact extra dimensions due to non-
trivial boundary conditions. Some aspects of localized gravity with higher codimensions
are already studied in literature such as in [20–23], but most of them focused on compact
extra dimensions only, and did not have a concrete conclusion on the case of noncompact
extra dimensions.

For codimension-1 brane, localization of gravity is easily achieved in the Randall-
Sundrum model [24], where the four-dimensional massless graviton is localized by a warp
factor induced by fine-tuning between positive brane tension and negative bulk cosmological
constant. It is later generalized to the codimension-1 Karch-Randall model [25]. It is
then natural to ask whether it is also possible with higher codimensions. It is non-trivial
because they have distinct dynamics. Codimension-1 sources usually cause a jump of
fields at brane position, determined by the Israel junction conditions [26]. However, higher
codimensional sources generically cause divergences at brane position. Such behavior is
similar to the Coulomb potential in dimension higher than one, which divergences are
caused at charge positions. This is why the dynamics of codimension-1 brane are much
more well studied in literature. Techniques to regularize these divergences for codimen-
sion-2 branes are developed in [27–29], and it is straightforward to generalize them to even
higher codimensions.

In this paper, we show that generically there is no localized gravity around codimen-
sion-2 branes with at least one noncompact extra dimension, or higher codimensional branes
with at least two noncompact extra dimensions. We consider a general theory with Einstein
gravity, form field backgrounds and dilaton, which includes large class of supergravity mod-
els. We prove that in generic background, the warp factor far from the brane cannot vanish
asymptotically, thus cannot localize or normalize the massless graviton mode function. We
also derive the brane-bulk boundary conditions which limit the form of the mode function,
implying that localized gravity can only be achieved by warp factors. Hence localization
of gravity is not possible. To achieve so, we use techniques from analysis to study the
general features of the field equations without solving them. As a corollary, we also show
that when a codimension-1 localized gravity model actually has one compactified hidden
dimension, within our model the brane must also wrap that dimension. Note that we only
consider a single brane (or a single stack of branes). This simplifies the calculation much,
and excludes more complicated setups of higher codimensions such as brane intersections.

This paper is organized as follows. In section 2, we use codimension-2 branes as
example to study the dynamics among branes, noncompact extra dimensions and massless
graviton modes. We review a general setup of such models, which can be easily generalized
into higher codimensions. We then examine the boundary conditions to determine the
consistent way to localize gravity, which is by warp factor. After that, we prove the no-
go theorem for codimension-2 branes. We prove it separately for the cases of one and
two noncompact extra dimensions. This includes the case where a Randall-Sundrum-like
solution with a codimension-2 brane seems to trivially appear. We show that such solution
does not exist.
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In section 3, we study localized gravity around higher codimensional branes in general.
To build motivation to study such no-go theorems from some realistic models, we first use
a (infinitely long) Klebanov-Strassler throat [30, 31], which is a well-known string theory
solution, as an example. We then generalize the setup of the system and prove the no-go
theorem for higher codimensions. To achieve so, additional assumptions on the background
must be made. Namely, the background is non-oscillating, and under presence of form fields
with nonvanishing couplings or brane curvature.

In section 4, we conclude and add some remarks to our results.

2 Codimension-2 branes

In this section, we use codimension-2 branes as example to demonstrate general features of
the dynamics of brane-bulk system and gravitons. From these we prove the no-go theorems
for codimension-2 branes.

2.1 General setup

Brane-bulk system. We first establish the brane-bulk system, which is most reviewed
in [29]. For the bulk, we consider a simple model of scalar-Einstein-Maxwell system with
single fields. Similar but more complicated arguments should hold for the cases of multiple
fields, so the model below is general enough to describe the bosonic parts of large class
of supergravity models. To implement the 4D universe, there is a maximally symmetric
3-brane sitting in the bulk. The action (in Einstein frame) is given by1

S = Sbulk + Sbrane , (2.1)

Sbulk = −
∫
d4x d2y

√
−g

( 1
2κ2R+ 1

2∂
Mφ∂Mφ+ 1

4c (φ)FMNF
MN + V (φ)

)
+ SGH ,

(2.2)

Sbrane = −
∫
yb

d4x
√
−ḡ Tb , (2.3)

where g is the 6D background metric, ḡ is the unwarped 4D background metric, R is the
6D Ricci scalar, φ is a scalar field, F = dA is the Maxwell field strength, c > 0 is the
field-dependent inversed coupling of the Maxwell field, V is the bulk potential including a
bulk cosmological constant and the scalar field potential, Tb is the warped brane potential
and yb is the position of the brane. SGH is the Gibbons-Hawking action at the brane-bulk
boundary, added to restore the usual Einstein equations. We first consider two noncompact
extra dimensions, since we will generalize such setup to higher codimensions. For a single
brane, the bulk geometry is rotationally invariant. We also include warped geometries.
Therefore the metric g can be written as

ds2 = gMNdx
MdxN = e2A(r)ḡµνdx

µdxν + dr2 + e2B(r)dθ2 , (2.4)
1Our metric is mostly plus, with Weinberg’s curvature conventions [32], which differ from those of

MTW [33] only by an overall sign in the definition of the Riemann tensor.
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where A and B are the warp factors which only depend on r and ḡ is the maximally
symmetric metric. In terms of static coordinates,

ḡµνdx
µdxν = −

(
1− kρ2

)
dt2 + dρ2

1− kρ2 + ρ2
(
dϕ2

1 + sin2 ϕ1dϕ
2
2

)
. (2.5)

The parameter k = {−1, 0, 1} corresponds to unit-radius AdS, flat and dS spacetime re-
spectively. To obtain two noncompact extra dimensions, r should go from zero to infinity,
and the warp factor B should satisfy eB → +∞ as r → ∞. It is then natural to assume
that B is increasing at large r. B should also satisfy lim

r→0
eB = 0, in order to put the

codimension-2 brane at r = 0. From now on we use capital English letter to denote all
coordinates, and Greek letters to denote 4D coordinates. Now we can choose a gauge such
that the only non-vanishing components of F are

Frθ = −Fθr = A′θ (r) . (2.6)

By symmetry Aθ and φ also depend on r only. Also from symmetry Tb should be function
of φ and Aθ only. Therefore we perform a derivative expansion to get

Tb = τb (φ)− 1
2Φb (φ) εmnFmn + . . . , (2.7)

where τb is the warped brane tension and Φb is the warped localized magnetic flux on the
brane [34]. The labels m,n are for r, θ and εmn is the corresponding Levi-Civita tensor.

Now for r > 0, the bulk field equations are

φ′′+(B′+4A′)φ′ = ∂V

∂φ
+1

4
∂c

∂φ
FMNF

MN , (2.8)

RMN−
1
2RgMN = −cκ2

(
FMP FN

P−1
4gMNFP QF

P Q

)
−κ2

(
∂Mφ∂Nφ−gMN

(
1
2∂

Pφ∂Pφ+V
))

,

(2.9)

∇M

(
cFMN

)
= 0 . (2.10)

Using the above ansatz, we get(
ce−B+4AA′θ

)′
= 0⇒ A′θ = F0

c
eB−4A , (2.11)

where F0 is an integration constant and “prime” is partial derivative with respect to r.
We further denote f = κ2F 2

0
2c . It is then straightforward to compute the components of the

Einstein equation:

6A′2 + 3A′B′ +B′2 + 3A′′ +B′′ + fe−8A − 3ke−2A + κ2
(1

2φ
′2 + V

)
= 0 , (µν) (2.12)

6A′2 + 4A′B′ − fe−8A − 6ke−2A + κ2
(
−1

2φ
′2 + V

)
= 0 , (rr) (2.13)

10A′2 + 4A′′ − fe−8A − 6ke−2A + κ2
(1

2φ
′2 + V

)
= 0 . (θθ) (2.14)
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To understand the back-reaction by the brane to the bulk, we also need the brane-bulk
matching conditions [27–29], which tells

lim
r→0

∮
yb

dθ
√
−g φ′ = −δSbrane

δφ
, (2.15)

lim
r→0

∮
yb

dθ
√
−g F rM = −δSbrane

δAM
, (2.16)

lim
r→0

∮
yb

dθ
1

2κ2
√
−g

(
Kij −Kgij

)
− (flat) = −δSbrane

δgij
. (2.17)

Here the extrinsic curvature Kij of fixed-r surface is given by Kij = 1
2∂rgij , with i, j

label all coordinates except r. The “flat” is the same result substituting B = ln r and
lim
r→0

A′ = 0 with A(0) unchanged i.e. with a flat metric continuous to metric outside the
brane. The integration is along a small circle around the brane. Eq. (2.16) simply relates
Φb to F0 [12, 34], and for simplicity we will use f to perform calculations. On the other
hand, eq. (2.17) becomes

−lim
r→0

2π
κ2 e

4A
(
eB
(
3A′ +B′

)
− 1

)
= Tb , (µν) (2.18)

lim
r→0

2π
κ2 e

B+4AA′ = − 1
2
√
−ḡ

∂

∂gθθ

(√
ḡTb

)
= Ub . (θθ) (2.19)

From these matching conditions and the field equations, one can derive a constraint [27–
29, 35] in which Ub can be fully determined by Tb and ∂Tb

∂φ . It reads

κ2Ub
2π = 1

3

e4A − κ2Tb
2π ±

√(
e4A − κ2Tb

2π

)2
− 3

4

(
κ2

2π
∂Tb
∂φ

)2
 , (2.20)

where the sign is chosen such that Ub → 0 when ∂Tb
∂φ → 0.

Graviton modes. After solving the background metric, we add linear perturbation to
solve for 4D graviton modes hµν . The metric becomes

ds2 = e2A(r) (ḡµν + hµν) dxµdxν + dr2 + e2B(r)dθ2 . (2.21)

By symmetry we can separate the variables as hµν(x, y) = h̄µν(x)ψ(y), where in the
transverse and traceless gauge it satisfies

h̄µµ = ∇̄µh̄µν = 0 , (2.22)

where the covariant derivative is with respect to ḡ. To study the spectrum of graviton
modes, we would like (�̄− λ)h̄µν = 0, where �̄ is the 4D Laplacian with respect to ḡ and
λ is the eigenvalue. The Pauli-Fierz mass of graviton [36, 37] is given by m2 = λ− 2k. By
linearizing the field equations, ψ satisfies [20, 23]

− e2A
(
ψ′′ +

(
B′ + 4A′

)
ψ′ + e−2B ∂

2ψ

∂θ2

)
= m2ψ , (2.23)
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where the dependence on background fields is hidden in the warp factors. Now we can
further decompose ψ(y) = ψ̄(r)einθ, where n is like a winding number. Note that in terms
of Ψ = e2Aψ, eq. (2.23) can be rewritten into a Schrodinger-like equation:(

−�̃ + V (y)
)

Ψ (y) = m2Ψ (y) , V (y) = e−2A�̃e2A , (2.24)

where the Laplacian �̃ is with respect to the inversely warped internal metric g̃ = diag ·
e−2A(1, e2B). Ψ also represents the amplitude of gravity in the extra dimensions. Therefore,
we usually refer Ψ and even ψ as wavefunctions, but they are not quantum-mechanical
wavefunctions.

When we say the graviton mode is localized, it means that Ψ peaks at r = 0 only and
decays when it goes far from the brane. Its norm is given by

‖Ψ‖2 =
∫
dr dθ eB+2A |ψ|2 . (2.25)

To have physical graviton modes, the normalizability is a required boundary condition at
infinity. It is non-trivial since we are integrating infinitely large proper radius r. There is
also a matching condition at the brane position.

Here is its derivation. Using eq. (2.21), we have

Kµν = A′e2A (ḡµν + hµν) + 1
2e

2Ah′µν , (2.26)

while Kθθ, K and √−g remain unchanged by tracelessness of h. Therefore the θθ-compo-
nent of eq. (2.17) is unchanged and the µν-component becomes

− lim
r→0

2π
κ2 e

6A
[(
eB
(
3A′ +B′

)
− 1

)
(ḡµν + hµν)− 1

2
(
eB − r

)
h′µν

]
= e2ATb (ḡµν + hµν) .

(2.27)
The new matching condition for graviton modes is

lim
r→0

e6A
(
eB − r

)
ψ′ = 0 . (2.28)

Note that by definition of branes eB − r → 0 when r → 0, so a wavefunction with finite
ψ′(0) automatically satisfies the condition, but it remains interesting to study the case that
ψ′(0) diverges.

In general the model cannot be solved analytically. To have a sense on what kinds of
geometry the solutions describe, below we consider two exactly solvable cases. Both are
with a bulk cosmological constant V = Λ

κ2 and without scalar fields i.e. c = 1 and Ub = 0,
but one is with k, f,B turned on only and another is with A,B turned on only. We will
solve for their background geometries and (seemingly valid) massless localized graviton
modes.

2.2 Exactly solvable models

Here we study two examples to demonstrate the features of the above setup.
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With Λ, k, f, B. Here we set A to be constant, then eq. (2.13) and (2.14) simply mean
Λ = fe−8A + 6ke−2A. Requiring lim

r→0
eB = 0, eq. (2.12) becomes

−9ke−2A+2Λ+B′2+B′′ = 0⇒ B (r) =


ln
(

sin
(√

2Λ−9ke−2Ar
))

+C1 Λ > 9ke−2A/2

ln r+C1 Λ = 9ke−2A/2

ln
(

sinh
(
−
√
−2Λ+9ke−2Ar

))
+C1 Λ < 9ke−2A/2

,

(2.29)
where C1 is an integration constant. Since we are studying noncompact extra dimensions,
we only accept Λ ≤ 9ke−2A

2 . The matching conditions reproduce the constraint on B(0) in
both cases and require

Tb =

−
2π
κ2

(
eC1 − 1

)
Λ = 9ke−2A/2

−2π
κ2

(√
−2Λ + 9ke−2AeC1 − 1

)
Λ < 9ke−2A/2

. (2.30)

Therefore this geometry is supported for all Tb < 2π
κ2 given the tuning of Maxwell field.

Now we solve for massless graviton modes. We focus on n = 0. For Λ = 9ke−2A

2 ,

ψ′′ + 1
r
ψ′ = 0⇒ ψ (r) = C2 ln r + C3 , (2.31)

which is clearly not localized and not normalizable for all C2 and C3. For Λ < 9ke−2A

2 ,

ψ′′+
√
−2Λ+9ke−2A coth

(√
−2Λ+9ke−2Ar

)
ψ′ = 0⇒ ψ (r) = C2 ln

tanh

√−2Λ+9ke−2A

4 r

+C3 ,

(2.32)
which is localized at r = 0 and is normalizable if and only if C3 = 0:

‖Ψ‖2 = 2π |C2|2
∫ ∞

0
dr sinh

(√
−2Λ + 9ke−2Ar

)
ln

tanh

√−2Λ + 9ke−2A

4 r

2

= 10.3354 |C2|2√
−2Λ + 9ke−2A

<∞ . (2.33)

However, the matching condition reads

lim
r→0

(
eB − r

)
ψ′ = C2

(√
−2Λ + 9ke−2AeC1 − 1

)
= −κ

2

2πC2Tb = 0 . (2.34)

Since Tb 6= 0, we also have C2 = 0 and there does not exist any massless graviton mode
which satisfies all boundary conditions.

With Λ, A, B. Here we set f = k = 0 and non-constant A. Solving eq. (2.13) and (2.14)
and imposing lim

r→0
eB = 0 yields

A (r) =


2
5 ln r + C1 Λ = 0
2
5 ln

(
cosh

(√
−5Λ

8 r

))
+ C1 Λ < 0

, (2.35)

B (r) =


−3

5 ln r + C2 Λ = 0

−3
5 ln

(
cosh

√
−5Λ

8 r

)
+ ln

(
sinh

√
−5Λ

8 r

)
+ C2 Λ < 0

. (2.36)
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These solutions automatically also satisfy eq. (2.12). With the same reason as above we
do not consider Λ > 0. However for Λ = 0, eq. (2.19) becomes e4C1+C2 = 0, which cannot
be satisfied. Therefore this geometry is not supported due to matching conditions. Even
if it is supported, the wavefunction is not normalizable under this geometry as above.

For Λ < 0, the solution is usually known as the AdS soliton [38]. The matching
conditions lead to

Tb = −
πe4C1

(√
−10ΛeC2 − 4

)
2κ2 . (2.37)

Therefore this geometry is valid for all Λ ≤ 0 and Tb. Now the massless n = 0 graviton
mode satisfies

ψ′′ +

√
−5Λ

2 coth

√−5Λ
2 r

ψ′ = 0⇒ ψ (r) = C3 ln

tanh

√−5Λ
8 r

+ C4 . (2.38)

This is a more extreme example than above. Even when the warping amplifies the localized
wavefunction, it can still be normalized when C4 = 0:

‖Ψ‖2 = 2π |C3|2
∫ ∞

0
dr sinh

√−5Λ
8 r

 cosh1/5

√−5Λ
8 r

 ln

tanh

√−5Λ
8 r

2

= 2.80403 |C3|2√
−Λ

<∞ . (2.39)

However, the matching condition reads

lim
r→0

e6A
(
eB − r

)
ψ′ =

C3e
6C1

(√
−10ΛeC2 − 4

)
4 = −κ

2

2πe
2C1C3Tb = 0 . (2.40)

Again, it forces C3 = 0 and there is not any massless graviton modes.
As a remark, there is another interesting solution to this background, which is

A = C1 −

√
−Λ
10 r , B = C2 −

√
−Λ
10 r . (2.41)

This is the only solution with a decaying warp factor e2A, hence the constant wavefunction
can be localized and normalized. On the other hand, it does not satisfy lim

r→0
eB = 0. Notice

that the ordinary type-II Randall-Sundrum (RS-II) model [24] is equivalent to the constant
wavefunction in our formulation. This is why we cannot construct such model with two
noncompact extra dimensions. However, we will see that this solution has another related
implication when combined with compactification.

2.3 Necessary conditions for existence of massless localized graviton

We already see that localized ψ is rejected by the matching condition in the above examples.
Here we consider back the general setup in section 2.1 and prove the necessary conditions
in order to localize a massless graviton.
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Consider the wavefunction of a massless graviton. By separation of variables, ψ(y) =
ψ̄(r)einθ where n is integer. We have that ψ̄(0)einθ are equal for all θ, which means ψ̄(0) = 0
and the graviton mode cannot be localized when n 6= 0. Therefore we only consider n = 0.
Eq. (2.23) implies

ψ′′ +
(
B′ + 4A′

)
ψ′ = 0⇒ ψ′ = Ce−B−4A , (2.42)

where C is an integration constant. Using the fact that A(0) is finite in order to have
physical 4D induced metric, the matching condition eq. (2.28) reads,

lim
r→0

C

(
1− r

eB

)
= 0 . (2.43)

There is a subtlety that there are two ways to understand the matching condition. The
first one is to note that since the matching condition is obtained by integrating a small
circle around brane position, when we say r → 0 we actually mean substituting some small
r = ε. Since in curved background ε

eB(ε) 6= 1, the matching condition simply implies C = 0
i.e. constant wavefunction. This is actually an intuitive statement since there is no brane
sources to drive the massless graviton modes.

The second one is to directly take the r → 0 limit. We then need to be careful what
the ratio r

eB
contributes. Note that this ratio captures the defect angle at brane position.

To be precise, the defect angle δ = 2π(1− α) is given by

α = lim
r→0

eB

r
. (2.44)

Therefore the matching condition implies that C = 0 unless there is no defect angle,
which is not true for typical brane sources. We thus conclude that ψ must be a constant.
If the warp factor eB+2A does not vanish at infinity, the constant wavefunction is not
normalizable and there is no massless graviton modes. Therefore we state:

Massless localized graviton exists only when
∫
dr dθ eB+2A is finite.

2.4 No-go theorems

Two noncompact extra dimensions. The constant wavefunction can only be localized
and normalized by the warp factor e2A. Through this, we show that within our model, the
constant wavefunction is not a valid solution.

First, we assume that eA is decreasing to small values at large r, hence A is decreasing
at large r. By combining eq. (2.13) and (2.14), for sufficiently large r > r1 we have

A′′ +A′2 = A′B′ − κ2

4 φ
′2 < 0 , (2.45)

since B′ > 0 at large r. It means that
(
eA
)′′ = eA(A′′ + A′2) < 0 for r > r1. Then for

all y > x > r1, if x, y are within the domain of A, by Mean Value theorem there exists
ξ ∈ (x, y) such that

eA(y) − eA(x)

y − x
=
(
eA
)′

(ξ) ≤
(
eA
)′

(x)⇒ eA(y) ≤ eA(x) +
(
eA
)′

(x) (y − x) . (2.46)
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Since
(
eA
)′(x) < 0, by choosing sufficiently large y such that eA(x) +

(
eA
)′(x)(y − x) < 0,

eq. (2.46) means that eA must vanish at some finite r < y, but not infinity. This implies
that there is no solution at infinity, which violates the assumption of noncompact extra
dimensions. By contradiction, it means that eA does not vanish at infinity in noncompact
extra dimensions, thus cannot localize or normalize the constant wavefunction.

This finishes the proof of the no-go theorem on localized gravity around codimension-2
branes in two noncompact extra dimensions. However as we will see, this proof makes use of
unique features in codimension-2 models, and cannot be generalized to higher codimensions.

One compact and one noncompact extra dimensions. So far we have studied the
possibility of localized gravity with extra dimensions being noncompact in two directions
i.e. B → +∞. It still remains interesting to explore the case when B keeps finite, such
that at long distances the spacetime looks like with one noncompact extra dimension, but
with another one compactified dimension. For example, we can attach a small circle at
each point in the Randall-Sundrum model, such that the extra dimensions have topology
R× S1, and the geometry looks like a long thin tube. In such cases, at long distances we
cannot really tell whether the brane is codimension-1 or codimension-2.

If the brane is still codimension-1, that means the brane wraps around the hidden
circle. Such geometry actually can be easily obtained, such as in eq. (2.41). We identify r
as the height of the cylinder and eB as the compactification radius. We further replace r
by |r| in those equations. The compact extra dimension becomes smaller and smaller as r
increases, so by fixing suitable C2 we can keep the compact extra dimension very small for
all r. Now if we put a wrapped 4-brane at r = 0, with appropriate matching conditions the
constant massless graviton wavefunction is localized around the circle r = 0 by the warp
factor A. It is equivalent to the ordinary RS-II model [24] but in two extra dimensions
with one being compactified.

If the brane is actually codimension-2, at r = 0 the hidden dimension must shrink to
a point, in order to maintain the symmetry of the system. This means that the topology
of the bulk is changed, and it is non-trivial whether the long distance physics remain the
same. Below we provide a non-rigorous argument to show that it is not possible to both
achieve such geometry and localize gravity.

Again we first assume that localized gravity in such geometry is possible. We start
with the behavior of A and B. In this case we still have lim

r→0
eB = 0 i.e. B(0)→ −∞. Since

at r = 0 we have
(
eB
)′
> 0, it means B′(0) → +∞. To localize gravity at brane position,

we want A′(0) to be negative. Then by eq. (2.45), we get A′′(0) → −∞. In particular it
means that A′(0) needs to be finite. Eq. (2.19) then tells Ub = 0, which implies ∂Tb

∂φ = 0 by
eq. (2.20).

An increasing B has already been forbidden in last subsection. Therefore, B must
turn decreasing at some finite r. After B starts decreasing, it must fall not too fast such
that eB does not vanish at some non-zero and finite r. This can be judged by combining
eq. (2.12) to (2.14), which gives

e−B
(
eB
)′′

= B′′ +B′2 = −4A′B′ − 3
2fe

−8A − κ2

2 V . (2.47)
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Now we consider the behavior of the potential V . From eq. (2.13), we observe that

V (r = 0) = 1
κ2

(
−6A′2 − 4A′B′ + fe−8A + 6ke−2A

)
+ 1

2φ
′2
∣∣∣∣
r=0
→ +∞ . (2.48)

If V keeps positive for all r, after B starts decreasing at some finite r, we have
(
eB
)′′
< 0

and eB vanishes at another finite r by the argument in last subsection. Therefore to meet
the above requirement V must turn negative at some finite r = r2. It means that there is
always a region of small r between 0 and r2 that has negative V ′ with large magnitude.
In particular, there must be a point where V ′ diverges to minus infinity, since V starts at
positive infinity.

We then turn to the field equation for the scalar field i.e. eq. (2.8). Multiplying it with
φ′, we get (1

2φ
′2
)′

+
(
B′ + 4A′

)
φ′2 = V ′ + 1

4c
′ f

c
e−8A . (2.49)

At small r and smaller than r2, B′ + 4A′ is positive while the f term is suppressed by
large eA. Therefore in that region the kinetic energy 1

2φ
′2 decreases rapidly, and even

infinitely fast at the point where V ′ diverges. However, since 1
2φ
′2 is always positive, it

means that φ′ must start at very large value at r = 0. By integrating eq. (2.49), we see
that φ′ actually starts at infinity, which implies ∂Tb

∂φ 6= 0 by eq. (2.15). Note that we now
have a contradiction, so we can conclude that we cannot both obtain a long thin tube
geometry and localize gravity around a codimension-2 brane in that geometry. Notice that
here we have used many properties specific to two extra dimensions, and the proof cannot
be generalized to more than one compact dimensions.

In conclusion, within our setup, whenever we see a codimension-1 model but with a
hidden compact dimension, we can claim that the brane must also wrap that dimension
i.e. it must be also codimension-1 but not codimension-2. The only difference between two
scenarios is the topology of the extra dimensions. This result reveals the typical behavior
that the topological details of compactified extra dimensions can affect the low-energy
physics, even when we cannot observe those dimensions.

3 Branes with higher codimensions

In this section, we investigate the no-go theorem in codimensions higher than two.

3.1 Klebanov-Strassler throat

After the above proof, it is natural to consider whether localization of gravity in more than
two noncompact extra dimensions is still possible. In particular, such possibility in string
theory solution is important to string phenomenology. Here as an example, we consider the
Klebanov-Strassler throat [30]. Similarly to above, we focus on the UV region, but not the
deformed IR region of the throat. Therefore for simplicity, we only consider the undeformed
version of the throat i.e. the geometry in [31], and similar but more complicated arguments
should hold for that in [30]. The metric is given by

ds2
10 = e2a(u)−5q(u)ηµνdx

µdxν + e−5q(u)du2 + e3q(u)ds2
T 1,1 . (3.1)
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Here the functions a and q are analog to A and B in our codimension-2 context, u is the
radial coordinate of the throat and T 1,1 = (SU(2)×SU(2))/U(1) is the base of the conifold
with metric

ds2
T 1,1 = 1

9

(
dψ +

2∑
i=1

cos θi dφi
)2

+ 1
6

2∑
i=1

(
dθ2
i + sin2 θi dφ

2
i

)
. (3.2)

The norm of constant wavefunction is given by

‖Ψ‖2 =
∫
d6x

√
e−5q (e3q)5e2a−5q ∝

∫
du e2a . (3.3)

Therefore to study the normalizability, we study whether e2a can decay to zero at infinity.
By solving the type IIB supergravity equations, we have

a (u) = A0 + q (u) + 1
P
T (u) , (3.4)

where the constant P > 0 and T (u) are related to the R-R 3-form field strength and NS-NS
2-form potential respectively, A0 is an integration constant. There is another solution with
a = A0 + u, which is clearly not normalizable. Define Y = e6q and K = 4 + PT (K is
actually related to the self-dual 5-form field strength), the field equations give

K ′ = P 2Y −2/3,
dY

dK
= 1
P 2 (4Y −K) , (3.5)

where here “prime” represents derivative with respect to u. There is a general solution
for Y :

Y = a0e
4K/P 2 + K

4 + P 2

16 , (3.6)

where a0 is an integration constant. Note that K is always increasing, so as T . If a0 ≥ 0,
Y is also increasing, thus a is increasing and e2a cannot decay to zero at infinity. Now we
focus on the case with a0 < 0 and Y is not always increasing. It turns out that this case
violates the assumption of noncompact extra dimensions.

The proof is as follows. Let u = u1 be a point such that Y is strictly decreasing. For
all u > u1 and within domain of Y ,

Y ′ = dY

dK
K ′ = Y −2/3

(
4a0e

4K(u)/P 2 + P 2

4

)
≤ Y −2/3

(
4a0e

4K(u1)/P 2 + P 2

4

)
≤ 0 , (3.7)

and
K ′′ = d (K ′)

dY
Y ′ = −2

3P
2Y −5/3Y ′ ≥ 0 . (3.8)

Therefore K ′ ≥ 0 and K ′′ ≥ 0 for all such u. Now for all y > x > u1, if x, y are within the
domain of A, by Mean Value theorem there exists ξ ∈ (x, y) such that

K (y)−K (x)
y − x

= K ′ (ξ) ≥ K ′ (x)⇒ K (y) ≥ K (x) +K ′ (x) (y − x) . (3.9)

Let Y = 0 at finite K = K1. By choosing sufficiently large y, eq. (3.9) guarantees that
K must reach K1 at some finite u = u2. In other words, Y decreases to zero at u2 and
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there is no solution for u > u2. Furthermore, numerical integration shows that the proper
radius

∫ u2 du e−5q/2 =
∫ u2 duY −5/12 is finite. Therefore we conclude that Y can only be

increasing in noncompact extra dimensions, and constant wavefunction is not normalizable.
Therefore, the only way to localize gravity with the Klebanov-Strassler throat is to make a
UV cutoff of the throat, as how the throat is attached to a compact manifold in the context
of compactification.

3.2 General setup

Before we prove the no-go theorem in general, let us first rewrite some of the general setup
in section 2.1 for codimension-d branes where d ≥ 3. We let the bulk Lagrangian be

Sbulk = −
∫
d4x ddy

√
−g

(
1

2κ2R+ 1
2∂

Mφ∂Mφ+
∑
p

1
2pcp (φ)F 2

p + V (φ)
)

+SGH , (3.10)

where 2 ≤ p ≤ d and Fp = dAp−1 is a p-form field strength. We use the notation F 2
p =

FM1M2...MpF
M1M2...Mp . We first study the case where all extra dimensions are noncompact.

The metric becomes

ds2 = gMNdx
MdxN = e2A(r)ḡµνdx

µdxν + dr2 + e2B(r)ĝab (θ) dθadθb , (3.11)

where 1 ≤ a, b ≤ d− 1 and ĝ is the metric for internal angular coordinates. By symmetry
Ap−1 depends on r only, and the non-zero components of Fp are

Fra1a2... , Fµνρσra1a2... ∝ εµνρσ . (3.12)

Here a1, a2, . . . are angular coordinates and εµνρσ is the Levi-Civita tensor in brane direc-
tions. The latter exists only when p ≥ 5. Such field strengths do appear in, for example,
type IIB string theory.

Let us now consider the brane-bulk matching conditions. In higher codimensions, it is
natural to generalize eq. (2.18) to

− lim
r→0

2πd/2
Γ (d/2)κ2 e

(d−1)B+4A (3A′ + (d− 1)B′
)

= Tb , (µν) (3.13)

and the boundary condition for ψ′ is

lim
r→0

e6A
(
e(d−1)B − rd−1

)
ψ′ = 0 . (3.14)

The graviton mode equation is [20, 23]

− e2A
(
ψ′′ +

(
(d− 1)B′ + (d+ 2)A′

)
ψ′ + e−2B�̂ψ

)
= m2ψ , (3.15)

where �̂ is the Laplacian with respect to ĝ. As in section 2.3, massless localized ψ only
depends on r, then we have ψ′ = Ce−(d−1)B−(d+2)A where C is the integration constant,
the boundary condition becomes

lim
r→0

C

(
1−

(
r

eB

)d−1
)

= 0 , (3.16)
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which is satisfied in curved background only if C = 0 i.e. ψ is constant. Therefore the
statement in section 2.3 also holds in higher codimensions. The norm of ψ is now defined
as [23]

‖Ψ‖2 =
∫
dr
∏
i

dθi
√
ĝe(d−1)B+2A |ψ|2 . (3.17)

In order to have normalizable solutions, we thus require e(d−1)B+2A to vanish at infinity.
We next study the field equations. Those for the Maxwell fields are

∇M
(
cpF

MN1N2...Np−1
)

= 0 . (3.18)

These yield schematically,

cpF
2
p =

f2
1p
cp
e−2(d−p)B−8A +

f2
2p
cp
e−2(d−p+4)B , (3.19)

where f1p and f2p are some finite functions of the coordinates other than r. They are
contributed by the former and the latter in eq. (3.12) respectively. At large r, the f2p term
is suppressed by large eB, so we can safely ignore it for our purpose as long as f1p 6= 0.
Below we just assume cpF 2

p ∝ c−1
p e−2(d−p)B−8A. Next we consider the ab-components of

the Einstein’s equation:

gab

(
10A′2+4 (d−2)A′B′+4A′′+(d−1) (d−2)

2 B′2+(d−2)B′′−6ke−2A
)
−R̂ab+

1
2R̂ĝab

=
∑
p

cpκ
2
(
FaX1X2...Xp−1Fb

X1X2...Xp−1− 1
2pgabF

2
p

)
−κ2gab

(1
2φ
′2+V

)
, (3.20)

where a, b label the angular coordinates and X labels all internal coordinates. R̂ab and R̂
are the Ricci tensor and Ricci scalar with respect to ĝ respectively. We expect R̂ to be
a finite function of θ. We then take a partial trace i.e. contracting eq. (3.20) with gab to
reach

(d− 1)
(

10A′2 + 4 (d− 2)A′B′ + 4A′′ + (d− 1) (d− 2)
2 B′2 + (d− 2)B′′

)
= (d− 1)

(
6ke−2A − κ2

(1
2φ
′2 + V

))
+
∑
p

cpκ
2
(

1− d+ 1
2p

)
F 2
p −

d− 3
2 R̂e−2B = −J ,

(3.21)

where we have used FaX1X2...Xp−1F
aX1X2...Xp−1 =

(
1− 1

p

)
F 2
p . We have also defined a

quantity J which is useful later. Similarly, the rr-component is

6A′2 + 4 (d− 1)A′B′ + (d− 1) (d− 2)
2 B′2

= 6ke−2A − κ2
(
−1

2φ
′2 + V

)
+
∑
p

cpκ
2 1
2pF

2
p −

1
2R̂e

−2B . (3.22)
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3.3 No-go theorem

Now we show that the constant graviton wavefunction is not a valid solution, similarly
to section 2.4. First we try to derive an equation analogous to eq. (2.45). By combining
eq. (3.21) and (3.22), we have

(d−1)
(
4A′2−4A′B′+4A′′+(d−2)B′′

)
= − (d−1)κ2φ′2+

∑
p

cpκ
2
(

1−d
p

)
F 2
p+R̂e−2B .

(3.23)
The main obstruction of proving a similar no-go theorem as in section 2.4 is the B′′ term,
which does not appear for codimension-2 branes. Although it is not typical, noncompact
extra dimensions do not stop B′′ from being negative with large magnitude. The R̂ term
can also be positive. Therefore, we will prove the no-go theorem in a different way with
some additional assumptions. The assumptions are

• There is always a form field background with f2
1p > 0 for some p and nonvanishing

couplings. Mathematically, it means that cp is bounded from above, so f2
1p/cp is

bounded from below by a positive number.

or

• The spacetime in brane directions is curved i.e. k 6= 0.

Such background is common in string theory (motivated) setups. We also assume

• Some of the terms are dominant in J at large r. In other words, J does not oscil-
late between positive and negative values at large r. It enables us to use arguments
similar to the proof of Maldacena-Nunez no-go theorem [39] on existence of dS com-
pactifications.

Here is an outline of the proof:

• We first assume that e(d−1)B+2A is decreasing to small values at large r, hence A
is also decreasing at large r. We then prove that for all backgrounds following the
above assumptions, e(d−2)B/2+2A, and thus e(d−1)B+2A can decrease to zero only at
finite r, but not infinity. As in section 2.4, it means that the constant wavefunction
cannot be localized or normalized. We divide the backgrounds into several cases:

• The dominant term in J at large r is positive: we construct upper bounds of
e(d−2)B/2+2A by concavity to show that it must vanish at some finite r instead of
infinity.

• The dominant term in J at large r is negative: the form of the possible dominant
terms and the assumptions give a differential inequality. It again leads to upper
bounds of e(d−2)B/2+2A showing that it must vanish at some finite r instead of infinity.

• There may be more than one terms that are as dominant as each other. This only
modifies the numerical coefficient of the asymptotic form of J , which does not change
the above arguments.

• Combining the above cases, we can conclude for all the above backgrounds, the
constant wavefunction is not a valid solution.
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Let us now fill in the details of the proof.

• The dominant term in J at large r is positive:

We have J > 0 at large r. Note that we can rewrite the left hand side of eq. (3.21) into

(d− 1)
(

10A′2 + 4 (d− 2)A′B′ + 4A′′ + (d− 1) (d− 2)
2 B′2 + (d− 2)B′′

)

= (d− 1)
(

2A′2 + d− 2
2 B′2 + 2

(
d− 2

2 B′′ + 2A′′ +
(
d− 2

2 B′ + 2A′
)2))

= (d− 1)
(

2A′2 + d− 2
2 B′2 + 2e−(d−2)B/2−2A

(
e(d−2)B/2+2A

)′′)
. (3.24)

Therefore
(
e(d−2)B/2+2A)′′ is negative at large r and e(d−2)B/2+2A cannot vanish at infinity,

according to the arguments in section 2.4.

• The dominant term in J at large r is negative:

We first stick with the first assumption on form fields. From eq. (3.23),

(d− 1)
(
−4A′B′ + 4A′′ + (d− 2)B′′

)
≤ R̂e−2B . (3.25)

Now there is a negative term ∝ e−2(d−p)B−8A in J . No matter whether that term is
dominant in J , there must exist a constant v0 > 0 such that −J−R̂e−2B≥v0e

−2(d−p)B−8A≥
v0e
−2(d−2)B−8A at large r. Then from eq. (3.21), at large r we have

(d− 1)
(

10A′2 + 4 (d− 1)A′B′ + (d− 1) (d− 2)
2 B′2

)
= −J − (d− 1)

(
−4A′B′ + 4A′′ + (d− 2)B′′

)
≥ v0e

−2(d−2)B−8A . (3.26)

In addition, since e(d−1)B+2A is decreasing at large r, we have (d− 1)A′B′ + 2A′2 ≥ 0
at large r. Straightforward computation then leads to

2 (d− 1)
min {4, d− 2}

(
d− 2

2 B′ + 2A′
)2

=

8d−1
d−2A

′2 + 4 (d− 1)A′B′ + (d−1)(d−2)
2 B′2 d ≤ 6

10A′2 + 4 (d− 1)A′B′ + (d−1)(d−2)2

8 B′2 + (d− 6)
(
(d− 1)A′B′ + 2A′2

)
d ≥ 6

≥ 10A′2 + 4 (d− 1)A′B′ + (d− 1) (d− 2)
2 B′2 . (3.27)

We then reach (
d− 2

2 B′ + 2A′
)2
≥ ve−4((d−2)B/2+2A) , (3.28)

where v = v0
min{4,d−2}

2(d−1)2 is another positive constant. Since e(d−2)B/2+2A is decreasing at
large r, the above can be simplified to(

e(d−2)B+4A
)′
≤ −2

√
v . (3.29)
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Therefore by Mean Value theorem, e(d−2)B/2+2A ≤ (C − 2
√
vr)1/2 for some constant C at

large r. Again it means that e(d−2)B/2+2A must vanish at some finite r.
If we are under the second assumption on brane curvature, we can just change

v0e
−2(d−2)B/2−8A to v0e

−2A in eq. (3.26). Since we have e−2A ≥ e−(d−2)B/2−2A at large
r, the same proof with different numerical coefficients applies.

Finally, we consider a bulk which is product of dc compact extra dimensions and dnc ≥ 2
noncompact extra dimensions. The brane has codimension (dc + dnc). Schematically, let
the metric be

ds2 = e2A(r)ḡµνdx
µdxν + dr2 + e2B(r)ĝab (θ) dθadθb + e2D(r)ds2

C , (3.30)

where ds2
C is the metric of the compact extra dimensions, which does not depend on x, r, θ.

Now a, b run from 1 to (dnc−1). To specify the compactness, we let e2D be finite and small
for all r, while e2B diverges to infinity. It is natural that D only contributes to the field
equations subdominantly at large r when comparing to B. Therefore the large r behavior
of the system is not affected and the above proof still holds. This finishes the proof of the
desired no-go theorem.

4 Conclusion

We have studied the invalidity of the brane world scenario with noncompact extra dimen-
sions when compared to our observation of four-dimensional gravity. That is, we show that
localization of gravity around the brane is not achievable within our general model, which
is codimension-2 branes in at least one noncompact extra dimension, or higher codimen-
sional branes in at least two noncompact extra dimensions. We therefore conclude that
compactification is necessary to build consistent extra dimensions in such setup.

Below we add some remarks to our results and point out some future directions:

• In literature, we already know that noncompact extra dimensions are usually not
favorable for phenomenology. The point of our result is that we give quantitative
statements to formally exclude the possibility of localized gravity in certain setups.
We give explicit sufficient conditions for the no-go theorems to hold. Therefore, the
no-go theorems are still more robust than the implicit statement in literature.

• We have proved the no-go theorem in a quite general context, but we are not claiming
that localization of gravity with two or more noncompact extra dimensions must
be impossible. It is easy to go beyond the no-go theorem by, for example, adding
higher-derivative terms into the action and field equations, or consider different kinds
of background such as that with only the scalar field. Indeed, in string theory a R4

coupling in noncompact bulk can induce 4D Einstein gravity on the brane [40]. This
is a clear counterexample of the no-go theorem. On the other hand, we are not saying
that localization of gravity becomes easy outside our conditions in the no-go theorem.
It remains interesting to understand how general the no-go theorem can be.
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• We also exclude the case of codimension-2 branes with one compact and one non-
compact extra dimensions. The proof involves many properties appear only in
codimension-2 models, and it is non-trivial whether the cases with more compact
extra dimensions are also excluded. A more general proof is therefore needed to
complement our no-go theorem.

• In the proof of our results, the techniques we used are almost purely mathematical,
except applying some basic physical properties of the system. To understand more
the models, a physical interpretation, or even derivation of our results is needed. Es-
pecially, we should have a clear understanding on how the distinct dynamics at brane
position between codimension-1 and higher-codimension models, which is introduced
in section 1, physically abandon the possibility of localized gravity. Surely symme-
tries play a crucial role in our derivations, but it may be possible to construct the
no-go theorem by arguments based on only symmetries and topologies of the system,
but not referring to the explicit dynamics of the system.

We hope to address some of the above issues in our further studies.
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