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1 Introduction

As the Large Hadron Collider continues to explore proton collisions at the energy frontier,
an important task to search for signals of new physics beyond the Standard Model (SM)
is the identification of heavy particles at the electroweak scale, which might emerge from
decays of yet unknown heavier particles.

An entity of particular interest in this quest is the jet, which is essentially defined as
a collimated bunch of particles with a certain energy and direction, typically determined
using a sequential recombination algorithm [1]. One important problem is that electroweak
scale particles such as vector bosons or top quarks produced from yet heavier new states
can become sufficiently boosted such that their hadronic decays are reconstructed as single
jets. It is therefore crucial to have efficient tools to probe the radiation patterns within
jets and determine their physical origin. This topic has been the focus of much attention
over the past decade, with a range of approaches being developed to extract informa-
tion from a jet’s substructure [2–6]. In recent years, a new generation of tools based on
deep learning models have emerged, which can achieve very high performance on specific
benchmarks [7–20] and provide some insights into what kinematic variables drive the dis-
crimination performance [21–30]. A limitation of such deep learning-based methods is the
difficulty to estimate their uncertainties, as well as their proneness to rely on unphysical
features present in the training data to achieve their high performance, as this data is
generally derived from Monte Carlo simulations of proton collisions.
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AUC 1/εB at εS =0.5 1/εB at εS =0.7
LundNet-5 0.938 609.8 70.4

LundNet-3 0.935 500.0 61.5
W

ta
gg
in
g

p
t
>

50
0

G
eV

ParticleNet 0.936 480.8 60.4

LundNet-5 0.958 12500.0 813.2

LundNet-3 0.956 8333.3 641.0

W
ta
gg
in
g

p
t
>

2
Te

V

ParticleNet 0.958 8333.3 626.4

LundNet-5 0.987 5000.0 1315.8

LundNet-3 0.982 1785.7 333.3

to
p
ta
gg
in
g

p
t
>

50
0

G
eV

ParticleNet 0.983 2000.0 382.8

LundNet-5 0.902 31.6 12.3

LundNet-3 0.893 27.7 10.7

q/
g
di
sc
rim

.
p

t
>

50
0

G
eV

ParticleNet 0.904 34.1 12.9

Table 1. Benchmarks of several jet tagging algorithms for a range of processes. The first column
gives the area under the ROC curve, and the later two show the background rejection at two different
signal efficiencies, 50% and 70% respectively. In each case, larger values indicate better performance.

In this article, we introduce a novel method to identify jets using graph networks.
To this end, we represent jets through their so-called Lund plane, associating each Lund
declustering with a node on the graph. Compared with other state-of-the-art tools, our new
method shows improved performance, notably for processes with complicated topologies
such as top decays, while requiring substantially less training time. We will also investi-
gate the robustness of our new tagger, and show how through kinematic cuts on the Lund
variables one can mitigate overfitting to the model-dependent effects of Monte Carlo sim-
ulations, reducing the reliance of the neural network on non-perturbative contributions.
The code framework used to produce the results in this article are available as open-source
and published material in [31].1

We provide a brief review of the Lund plane for jet physics in section 2, and describe the
LundNet model in section 3. Results for a range of benchmarks are described in section 4,
of which a summary is given in table 1. The robustness and computational complexity of
the models is explored in section 5. Finally, we offer our conclusions in section 6.

2 Jets in the Lund plane

The models we introduce in this article rely on the Lund plane [32]. This representation
provides a useful mapping of the emission phase-space to a two dimensional plane repre-

1The code is available at https://github.com/fdreyer/lundnet.
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Figure 1. The Lund plane representation of a jet (left) where each emission is positioned according
to its ∆ and kt coordinates, and the corresponding mapping to a binary Lund tree of tuples (right).
The thick blue line represents the primary sequence of tuples Lprimary.

senting the angle and transverse momentum of a given emission with respect to its emitter,
and which is often used in discussions of resummations of large logarithms in perturbation
theory or of Monte Carlo parton showers. Each emission then creates an additional trian-
gular leaf corresponding to the phase space for further emissions. It was shown in recent
work that the Lund plane provides a useful basis to achieve an efficient description of the
clustering sequence of a jet, containing a rich set of information about its substructure,
with notable potential for jet tagging [33]. The Lund jet plane allows for a visual repre-
sentation of the clustering history of a jet. This systematic encoding of a jet’s radiation
patterns can be measured experimentally [34], allowing for comparisons between theoretical
predictions and experimental data [35] and with potential for constraining general purpose
Monte Carlo event generators [36].

The Lund plane is obtained by first reclustering a jet’s constituents with the Cam-
bridge/Aachen (CA) algorithm [37, 38], which sequentially identifies and combines the
pair of particles a and b closest in rapidity y, a measure of relativistic velocity along the
beam axis, and azimuthal angle φ around the same axis, i.e. minimising ∆2 = (ya− yb)2 +
(φa − φb)2. We then iterate over this clustering sequence, starting from the full jet and
proceeding by:

1. Declustering the current (pseudo)jet into two transverse momentum ordered pseudo-
jets a and b such that pt,a > pt,b, and where we consider b to be the emission of the
(a+ b) emitter.
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Figure 2. Left: distribution of the number of Lund declusterings per jet, for different choices of kt
cuts in the Lund plane. The dashed lines indicate the mean of each distribution. Right: average of
the number of nodes per jet as a function of the kt cut.

2. Determining a number of kinematic variables associated with the declustering step i,
which we denote as a tuple T (i)

T (i) = {kt,∆, z,m, ψ} . (2.1)

Here kt = pt,b∆ is the transverse momentum of emission b with respect to its emitter
in the limit where pt,b � pt,a, ∆ is the previously defined rapidity-azimuth distance,
z = pt,b/(pt,a+pt,b) is the momentum fraction of the softer subjet b, m is the invariant
mass of the (a+ b) pair, and ψ = tan−1 ( yb−ya

φb−φa

)
is the azimuthal angle around subjet

a’s axis.

3. Repeating this procedure for pseudojets a and b if they contain more than one particle.

This procedure produces a binary Lund tree with a tuple of variables T (i) for each node
i of the Lund tree, as shown in figure 1. The first two elements of the tuple provide the
coordinates in the Lund plane of the corresponding splitting, and the remaining ones pro-
vide complementary kinematic information. A subset of this tree of particular significance
is the primary list of tuples Lprimary containing the kinematic variables of each splitting
along the primary branch of the tree, i.e. following only the pseudojet with larger transverse
momentum in step 3. of the algorithm above, corresponding to points on the blue primary
plane in figure 1. The primary Lund sequence can be used notably for two-dimensional
visual representations of the radiation patterns in a jet [33, 34, 39].

Corrections to the Lund plane originating from non-perturbative hadronisation effects
affect the low kt region of the plane. One can therefore limit the dependence on the non-
perturbative region of any model trained on Lund declusterings by removing emissions
that fall below a certain transverse momentum kt threshold. In figure 2 (left), we show
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Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture
of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut
in 2TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is
indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut
values the number of nodes per jet is significantly reduced, and therefore correspondingly
so the computational cost of training a machine learning model on these inputs. The right-
hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,
which decreases quadratically as the cut is increased.

3 LundNet models

The Lund plane encodes a rich set of information of the substructure and radiation patterns
of a jet, therefore serving as a natural input to machine learning models for jet physics. The
use of Lund planes for jet tagging was first proposed in ref. [33] where log-likelihood and
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deep learning models are applied, and good performance was observed for tagging boosted
electroweak bosons. However, the main focus of ref. [33] was the primary Lund plane,
which inevitably leads to some loss of information due to the omission of the secondary
and tertiary splittings. In this article, we propose LundNet, a new deep learning model
capable of digesting the full Lund plane. Graph neural networks are used in this model to
better exploit the structural information associated with the Lund plane representation of
a jet, leading to significantly improved performance on a range of jet tagging benchmarks.

The LundNet model starts with transforming the Lund tree into a graph, where each
node corresponds to a Lund declustering and carries the tuple of kinematic variables T (i) as
its input features, and bidirectional edges are formed following the structure of the Lund
declustering tree. The graph network architecture is adapted from the ParticleNet [18]
model, with the EdgeConv operation proposed in ref. [41] as a core step. Figure 3(a)
illustrates how EdgeConv operates for one node (the highlighted one) in the Lund tree. It
consists of two steps: first, a shared multi-layer perceptron (MLP) is applied to each of
its incoming edges, using features of the node pair connected by the edge as inputs, and
produces a learned “edge feature”. As the Lund tree is a binary tree, there are only up to
three edges for each node, which do not require a nearest-neighbour search, therefore the
computational cost is much lower than for the ParticleNet model. As shown in figure 3(b),
we use two layers for this shared MLP, each consisting of a linear layer followed by a
batch normalization (BN) [42] and a ReLU activation [43]. Then, an aggregation step is
performed for the node by taking an element-wise average of the learned edge features of
all the incoming edges. A shortcut connection [44] is also added to take the original node
features into account directly, and the node feature is then updated to the new value. This
operation is performed for all the nodes using the same shared MLPs, therefore updating
all the node features but keeping the graph structure unchanged.

The architecture of the LundNet model is shown in figure 3(c). We stack six such
EdgeConv blocks to form a deep graph network. The number of channels of the MLPs
are (32, 32), (32, 32), (64, 64), (64, 64), (128, 128) and (128, 128) for the six EdgeConv
blocks, respectively. Outputs from these EdgeConv blocks are concatenated per node and
further processed by another MLP with 384 channels to better aggregate features learned
at different stages. A global average pooling is applied afterwards to read out information
from all nodes in the graph. This is followed by a fully connected layer with 256 units and
a dropout layer with a drop probability of 0.1, before the final classification output.

The LundNet model uses the Lund kinematic variables defined in equation (2.1) as the
input node features. Two variants of the LundNet models are investigated in this article.
The first one uses all five Lund variables,

(ln kt, ln ∆, ln z, lnm,ψ) (3.1)

as input features to extract as much information as possible from the Lund plane to max-
imize the jet tagging performance and is referred to as LundNet-5. The second one uses
only three Lund variables,

(ln kt, ln ∆, ln z) (3.2)
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and is referred to as LundNet-3. The removal of the lnm and ψ variables significantly
increases the resilience of the model to non-perturbative effects at only a small cost of the
performance, as will be discussed in section 5.

We implement the LundNet model with the Deep Graph Library 0.4.3 [45] using the
PyTorch 1.7 [46] backend. The training is performed on a Nvidia GTX 1080 Ti graphics
card with a minibatch size of 256. The Adam optimizer [47] is used to minimize the cross
entropy loss. The training is performed for 30 epochs, with an initial learning rate of 0.001,
and subsequently lowered by a factor of 10 after the 10th and the 20th epochs. A snapshot
of the model is saved at the end of each epoch, and the model snapshot showing the best
accuracy on the validation dataset is selected for the final evaluation.

4 Jet tagging in the Lund plane

Let us now turn to a detailed evaluation of our models for the identification of several
hallmark signals at the LHC. We will look at four different benchmarks: the tagging of
boosted electroweak W for two different transverse momentum cuts, the tagging of top
quarks, and the discrimination between quark and gluon jets. The data samples consist in
each benchmark of 1.2m signal and background jets simulated through the corresponding
process with Pythia 8.223 [40], with an equal split between signal and background events.
Events are generated at hadron-level with underlying event turned on, but without includ-
ing detector effects or the presence of additional pile-up collisions. A subset of 100k jets
each are used as validation and test data, with the same number of signal and background
events in both samples. All data sets are taken from refs. [48, 49]. Jets are clustered using
the anti-kt algorithm [50, 51] with a radius R = 1.0 using FastJet 3.3.2, and are required
to pass a selection cut, with transverse momentum pt > 500GeV or pt > 2TeV as indi-
cated, and rapidity |y| < 2.5. In each event, only the two jets with the highest transverse
momentum are considered, and are saved as training data if they pass the selection cuts.
A summary of these benchmarks is given in table 1.

4.1 W tagging

We start by considering the identification of hadronically decayingW bosons, one of the key
objects commonly appearing in high energy proton collisions. The signal data is obtained
from 600k jets passing the selection cuts and simulated using the pp→WW process, where
the W bosons are decayed hadronically. The background consists of the same number of
QCD jets simulated through a sample of pp → jj events. Training of the neural network
weights for every model is performed using 500k of theW and background samples each. At
the end of each epoch, the performance is monitored on a separate validation sample con-
sisting of 100k jets. The final performance of each model is then evaluated using a further
independent sample of 100k jets with an equal number of signal and background events.

In figure 4 we show for each model the background rejection 1/εQCD against the signal
efficiency εW for W bosons, for jets passing a transverse momentum cut of pt > 500GeV.
Better performance translates to curves that achieve a higher background rejection for a
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Figure 4. Background rejection 1/εQCD versus signal efficiency εW for W jet tagging with trans-
verse momentum pt > 500GeV.

given signal efficiency, i.e. which are closer to the top right corner of the figure. We com-
pare the LundNet-3 and LundNet-5 models with three recent benchmarks: the ParticleNet
model introduced in [18], the RecNN model from [9] and the Lund+LSTM model from
the original Lund plane paper [33], which uses an LSTM network on the primary Lund
sequence. Both the RecNN and the Lund+LSTM models, while superior to heuristic sub-
structure algorithms, are vastly outperformed by all of the graph based methods considered.
The LundNet-3 model is able to achieve about the same signal purity as ParticleNet, but
can be trained in substantially less time, as will be discussed in more detail in section 5.3,
and takes only a small 3-dimensional input for each declustering node in the Lund plane.
By including more kinematic information, the LundNet-5 model is able to provide a slightly
higher performance, but as we will see in section 5, this comes at the price of being less
robust to non-perturbative effects than its lower-dimensional counterpart.

In figure 5, we show the same process but with a transverse momentum selection cut
of pt > 2TeV for the jets. Here we can observe roughly the same qualitative behaviour as
at lower transverse momentum, but with the LundNet-5 model now clearly outperforming
the remaining taggers even at high signal efficiencies. At higher transverse momentum, the
peak in the Lund plane associated with the W splitting, and the corresponding depletion
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Figure 5. Background rejection 1/εQCD versus signal efficiency εW for W jet tagging with trans-
verse momentum pt > 2TeV.

associated with the colour-singlet nature of the W , become more distinguishable. The
Lund+LSTM model, which relies purely on the primary Lund sequence, also shows a strong
performance, although it is still lags significantly behind all the graph-based approaches.

4.2 Top tagging

We now turn to the identification of jets originating from top quark decays. Top quarks are
of particular interest at the LHC, interacting strongly with the Higgs boson and providing a
valuable avenue in searches for new physics, as well as being the only quarks to decay before
hadronising. Here the signal data is obtained from the pp → tt̄ process in Pythia 8.223,
where the top quarks decay to hadrons and the jets are required to pass a 500GeV trans-
verse momentum cut. The background QCD jets are identical to the ones used in figure 4.
Each model is again trained using 500k signal and 500k background jets, with further
validation and testing samples that are both one tenth the size of the training data.

In figure 6, we show the QCD background rejection as a function of the top efficiency.
In this case, the Lund+LSTM model does not perform as well as RecNN. This is to be
expected, as it was designed for one or two-pronged jet identification and uses only infor-
mation from the primary Lund declustering sequence. It therefore contains information
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Figure 6. Background rejection 1/εQCD versus signal efficiency εTop for top jet tagging with
transverse momentum pt > 500GeV.

about the structure of only one of the initial decay products of the original top quark,
limiting the performance that can be achieved without input from secondary planes. It is
however interesting to see that in this process with more complex topology, the LundNet-5
model provides a substantial performance gain over existing state-of-the-art methods such
as ParticleNet. This is due to the nature of its input, which contains already high-level
kinematic information about the radiation patterns of the jet, making it much simpler for
the neural network to learn how to distinguish signals with more involved signatures. Thus
the LundNet-3 model achieves almost the same signal purity as the ParticleNet algorithm,
despite having as input only a reduced 3-tuple of kinematic variables per node and taking
about an order of magnitude less time to train. Interestingly, the performance gap between
the two LundNet taggers is entirely due to the addition of the subjet mass and azimuthal
angle ψ to the input features of each declustering for the LundNet-5 model.

4.3 Quark/gluon discrimination

Our final benchmark considers the discrimination between quark and gluon initiated jets,
a core challenge in collider physics which has seen much research in recent years [8, 52–58].
For this study, we consider a signal sample of 500k quark-initiated jets obtained through
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Figure 7. Background rejection 1/εGluon versus signal efficiency εQuark for quark/gluon discrimi-
nation between R = 0.4 anti-kt jets with transverse momentum pt > 500GeV.

the qq̄ → qq̄ process in Pythia 8.223, while the background is obtained from gg → gg

events. The jets are clustered with an anti-kt algorithm with radius R = 0.4 and are again
required to pass a transverse momentum pt > 500GeV and rapidity |y| < 2.5 selection cut.

The gluon-jet rejection as a function of the quark-jet efficiency is shown in figure 7.
In this case there is not as large a hierarchy between models, with the Lund+LSTM
model performing somewhat below the competing approaches. ParticleNet has a slight
edge over the other algorithms at small quark efficiencies, but is indistinguishable from
the LundNet-5 tagger at high efficiency. The LundNet-3 and RecNN models show similar
performance at high efficiency, with RecNN providing slightly higher gluon rejection at
lower quark efficiencies.

5 Robustness study

We will now investigate the robustness of the different models we considered in our bench-
marks. To this end we will consider three axes: their resilience to non-perturbative effects,
their resilience to detector effects, and the complexity and computational cost of each
tagger.
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5.1 Non-perturbative effects

Beyond its raw performance, it is important for practical applications that a tagger be
relatively robust to model-dependent non-perturbative effects. To carry out studies of
sensitivity to non-perturbative effects, we compare performance between a data sample of
both 50k signal and background jets produced at parton level, and a sample obtained with
hadronisation and underlying event models turned on in the event generator. The same
model, trained on hadron-level data, is evaluated on both samples for the comparison. For
this study, we use the same 2TeV W jet sample as was used in section 4.1 as well as the
corresponding models shown in figure 5, which are now used to label jets from both parton
and hadron-level data.

Figure 8 shows the robustness of the tagger in conjunction with its performance. This
robustness is measured through the resilience ζNP [59], calculated using both the efficiency
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on the hadron-level sample, ε, and that on the parton-level sample, ε′

ζNP =
(

∆ε2W
〈ε〉2W

+
∆ε2QCD
〈ε〉2QCD

)−1/2

, (5.1)

where ∆ε = ε − ε′ and 〈ε〉 = 1/2 (ε+ ε′). The efficiencies are obtained with a fixed cut
corresponding to a signal efficiency εW = 70% on the hadron-level sample. The curves in
figure 8 are obtained by increasing a transverse momentum cut on the kt variable of the
Lund plane, progressively removing declustering nodes that fall below the cut. Each curve
starts on the upper left of figure 8, with a model trained without any cuts on the Lund
plane, and ends in the lower right part of the figure with a model trained with a transverse
momentum cut ln kt/GeV > 2 that has higher resilience but lower performance due to the
removal of parts of the Lund tree. We can observe that despite their good performance,
the ParticleNet and RecNN models have very little resilience to non-perturbative effects,
and have no handles through which such robustness can be consistently imposed. Some-
what surprisingly, the LundNet-5 also offers relatively poor robustness to non-perturbative
effects. This is due to its higher dimensional input state, which allows the neural network
to extrapolate some information on emissions in the non-perturbative regime despite the
presence of a transverse momentum cut. In particular, the mass variable present in the
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Figure 10. Performance εW√
εQCD

versus resilience to detector effects.

input of the LundNet-5 model contains information about soft wide-angle emissions further
down the clustering tree, as these will increase the mass of the subjet even if they are then
removed after failing a kt cut. In contrast, the LundNet-3 model becomes very resilient to
non-perturbative effects as the transverse momentum cut is increased, outperforming the
Lund+LSTM model by a factor two for the same resilience value.

In figure 9 (left), we show the ROC curve for each model trained on the hadron-level W
data, with the ROC curve obtained on the parton-level data shown as a dotted line. The
lower panel provides the ratio between the parton-level ROC curve and the hadron-level
one. The right-hand side of figure 9 gives the ROC curve of the LundNet-3 models obtained
for several choices of the ln kt transverse momentum cut applied on the Lund tree. Here
we can observe the improved resilience as the kt cut is increased, with the ln kt/GeV > 1
model providing almost the same performance at parton and hadron level, albeit at the
cost of a factor 20 in background rejection when compared to the unconstrained model.
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Figure 11. Background rejection as a function of W tagging efficiency. Dotted lines indicate a W
tagger applied on detector-level data.

5.2 Detector effects

Let us now turn to the impact of detector effects on the model robustness. To this end,
we create a sample of 100k 2TeV W and QCD jets using Pythia 8.223, including fast de-
tector simulation with Delphes v3.4.1 using the delphes_card_CMS_NoFastJet.tcl card
to simulate both detector effects and particle flow reconstruction [60]. The effects of de-
tector granularity are then partially mitigated by applying a subjet-particle rescaling algo-
rithm [33, 61], where the Delphes particle-flow objects in a jet are reclustered into subjets
using a CA algorithm with Rh = 0.12 and rescaling the particle flow charged-particle and
photons by a factor

f =
∑
i∈subjet pt,i∑

i∈subjet(h±,γ) pt,i
. (5.2)

before discarding neutral hadron candidates. The resulting particles of all subjets are then
reclustered into a single jet on which the Lund tree can be measured.

Applying the 2TeV W taggers trained in section 4.1 on this sample, we can now
compute an index of resilience to detector effects ζD in the same way as was done for non-
perturbative effects, but taking now ε′ in equation (5.1) to be the detector-level efficiency.
We show in figure 10 the resilience as a function of performance εW /

√
εQCD for a signal

efficiency of εW = 70% on the hadron-level data. One can observe here that while for
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high performance, good resilience can be achieved, a transverse momentum cut in the
Lund plane does not result models that are particularly insensitive to detector effects.
Adding a further Lund-plane angular cut ln 1/∆ < 4 to remove unmitigated effects due to
electromagnetic calorimeter granularity did not provide any noticeable improvement, as is
shown in dashed lines in the figure for the Lund+LSTM model.

The limitations in achieving higher resilience values for any of the considered models
are due to the consistently enhanced performance of taggers at hadron-level. We show the
ROC curves for each model in figure 11 (left), with the dotted lines showing the hadron-
level model applied on detector-level data. Here one can note the performance of the
Lund+LSTM model on the detector-level sample, achieving performance quite close to
the LundNet and ParticleNet models. The LundNet-5 model in particular, is performing
slightly worse than LundNet-3 when applied on the detector-level sample, despite having
a substantial edge over it on the hadron-level data that both were trained on. The lower
panel gives the ratio between both curves, with the background rejection ratio of the
Lund+LSTM tagger with an angular cut ln 1/∆ < 4 shown in dashed lines. In the right-
hand side of figure 11, one can see the ROC curve of the LundNet-3 model trained for
increasing kt cuts, showing somewhat improved robustness at larger cut values.

5.3 Complexity of models

An important quality for a deep learning-based jet tagger is the simplicity of the model, and
the speed of its training and inference on new samples. To quantify these considerations
we measure three different metrics for the models:2

• the number of trainable parameters of the model,

• the training time of each model per data sample and per epoch, which provides a
measure of the time needed to train a full tagger on a given data set,

• and finally the inference time per sample of the trained model on new data points,
which provides a measure of how efficiently an existing model can be deployed to
label a given sample of jets.

We evaluate the training time on the 2TeV W and QCD training sample used previ-
ously in section 4.1, and the inference time on the corresponding test data of 100k jets.
The results are shown in table 2 for the graph-based models and the LSTM tagger. As
LundNet-3 and LundNet-5 only differs in the dimension of the input features, the number
of parameters and the computational cost are essentially the same, therefore we do not
distinguish between them in this section and provide numbers derived from the LundNet-3
tagger. The Lund+LSTM model has a much simpler architecture, resulting in only 67k
trainable parameters, significantly less than any of the graph-based models. It is however
not substantially faster than these larger models, and even underperforms the LundNet
models in inference time. The relatively long training time is partly due to the smaller
learning rate used when training the LSTM network, and the smaller number of epochs

2We do not include a comparison with RecNN as this model was trained on a CPU.
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Number of Training time Inference time
parameters [ms/sample/epoch] [ms/sample]

LundNet 395k 0.472 0.117

ParticleNet 369k 3.488 1.036

Lund+LSTM 67k 0.424 0.131

Table 2. Summary for each model of the number of parameters, training time per sample and
epoch, and inference time per sample. The time is measured in milliseconds as obtained when
running the models on an Nvidia GTX 1080 Ti card.
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Figure 12. Inference time per jet of the LundNet model as a function of the mean number of Lund
declusterings per 2TeV QCD jet. Each circle corresponds to a separate LundNet model trained for
a different kt cut, as indicated in the figure text.

needed for the Lund+LSTM model to converge. Due to its increased number of Edge-
Conv blocks, the LundNet model has 26k more parameters than ParticleNet. However, the
direct use of the Lund tree as the graph structure removes the need for a costly nearest-
neighbour search and also significantly reduces the number of edges for each node, therefore
increasing both the training and inference speed by almost an order of magnitude. This
is compounded by the fact that due to their higher-level kinematic inputs, the LundNet
models take significantly less epochs to converge to a good solution.3

3We note that in this benchmark the time needed to pre-process jets from list of particles to input data
to each model is not included. Due to its reliance on recursion, our python implementation takes about 4.3
ms per jet to recluster a jet and transform the clustering tree into a graph of Lund nodes. This is however
completely dependent on the data format used when saving Pythia events and can be therefore significantly
reduced through a more efficient processing pipeline implementation.
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An interesting side-effect of the kt cut applied in the Lund plane to improve the ro-
bustness of the model as described in previous sections is that it also reduces the number of
nodes present in the graph. As such, both the training and the inference time of the model
are expected to be reduced as the transverse momentum cut is increased and more nodes
are removed from the input graph. To demonstrate this we show in figure 12 the inference
time per sample as a function of the average number of Lund declusterings per QCD jet,
obtained through models trained with different Lund plane kt cuts, each of which is shown
as blue circle. As expected, the inference time scales linearly with the number of nodes in
the graph, such that computing time increases quadratically as the ln kt cut is reduced.

6 Conclusions

In this article, we have introduced LundNet, a novel algorithm used to detect signals at
the LHC. We showed that this method provides substantial improvements over existing
methods on the identification of key benchmark processes, as well as in training speed and
robustness to non-perturbative effects.

The LundNet model combines the power of graph convolutional networks with an effi-
cient representation of the radiation patterns within a jet to optimally extract information
from its substructure. Jets are represented through a Lund tree constructed from the CA
clustering tree of each jet. Each node of the Lund tree contains a tuple of kinematic infor-
mation for the corresponding pairwise splitting, used as input to the graph network. By
using the clustering tree structure to aggregate information in the graph convolution, the
weights of the LundNet model can be trained ten times faster than previous graph-based
methods such as ParticleNet, with a similar gain on the inference time when applying the
trained model to identify new jets.

We introduced two taggers, LundNet-3 and LundNet-5 which rely on a three- and
five-dimensional emission feature space respectively. The LundNet-5 tagger outperforms
current state-of-the-art methods on several pivotal jet tagging benchmarks, most notably
for the identification of jets originating from top decays, while the lower-dimensional
LundNet-3 tagger matches the performance of current jet taggers despite its reduced kine-
matic input size.

We provided a concrete study of its resilience to model-dependent non-perturbative
and detector effects. Through the use of an appropriate transverse momentum cut in
the Lund plane, we showed how one can establish an algorithm that retains high perfor-
mance while maintaining a handle on robustness. Due to its limited kinematic input, the
LundNet-3 tagger is best positioned to provide jet identification that is relatively insensi-
tive to non-perturbative effects and detector smearing, while substantially outperforming
previous methods based on the primary Lund plane.

These results offer a concrete avenue to implementing effective machine-learning based
taggers that can be robust to model-dependent effects present in the training data, a key
feature for real-life applications of artificial intelligence at the LHC. In this context, the
work presented in this article provides a key step towards a new generation of efficient,
robust and tractable jet substructure tools for LHC physics.
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