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1 Introduction

The color-kinematics duality is a conjectured property of the perturbative expansion of
gauge theory amplitudes proposed by Bern, Carrasco, and Johansson (BCJ) [1]. It was
born as a means of constructing gravity amplitudes via the double-copy procedure [2]. The
range of application of these techniques have been remarkably wide, from amplitudes to
classical solutions of General Relativity and gravitational wave emission patterns, to string
theory. A comprehensive review can be found in [3].

It is therefore all the more remarkable that the property at the root of these develop-
ments, the color-kinematics duality, is known to hold to arbitrary multiplicity for tree-level
processes [4–7]. In particular, it is still a conjectured property of loop amplitudes, and it
is even less clear how it is implemented at the level of non-linear classical solutions. If the
conjecture can be proven true at higher loops, it would not only be very useful in sim-
plifying computations of scattering amplitudes, but would also reflect a deep relationship
between perturbative gauge theories and quantum gravity, invisible at the level of their
respective Lagrangians.

This duality has been extensively checked for amplitudes at loop orders with a bottle-
neck at five loops [8–10]. Despite its many successes, we remain completely ignorant as to
whether or not the duality continues to hold true or as to how it should be applied in a
completely general setting.
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Our approach to this problem, which has proven useful in the past, will be to use
string theory. At tree-level, the color-kinematics duality is indeed fully understood from
string theory. It originates from fundamental identities in open-string theory scattering
amplitudes, known since the early days of dual models [11], today known as monodromy
relations [4, 5, 11–13]. Those relations were generalized to loop-level in [14, 15], and recently
seen to emanate from a deeper mathematical structure known as twisted homology [16–20].

Over the past few years a related approach based on ambitwistor string theory has
emerged, see, e.g., [21–27] (various other recent worldsheet approaches to color-kinematics
duality include [28–37]), which gives a handle on the problem of constructing BCJ nu-
merators, at a cost of introducing linearized propagators which need to be transformed
into quadratic ones using non-trivial partial fraction identities. Despite many successes of
this research direction, our goal here is to obtain Feynman diagrams directly from world-
sheet degenerations, which at present is understood most appropriately in the case of
string theory.

Mysterious transverse integrals in the monodromy relations: these relations,
however, revealed another conundrum: in open string theory, gauge bosons are represented
by strings with color charges at their ends, the Chan-Paton factors. This implies that vertex
operators of gluons are always inserted at the boundaries of open-string worldsheets. The
mysterious feature of the monodromy relations and their associated twisted cycles at loop-
level is that they involve integrating the vertex operators of gluons into the bulk of the
worldsheet. From the perspective of string theory, this is an exotic phenomenon, which,
presently, has no physical interpretation. In [14, 19, 38] it was suggested that they are
related to the color-kinematics duality, but this statement was not made precise.

The labeling problem in the color-kinematics duality: a Yang-Mills amplitude
can be written as an expansion involving only trivalent Feynman diagrams by expanding
the four-point vertex for instance. In d space-time dimensions, the n-gluon Yang-Mills
amplitude at the L-th loop order is then written as∫ L∏

i=1

dd`i
(2π)d

∑
trivalent
graphs Γ

1
SΓ

nΓ cΓ
DΓ︸ ︷︷ ︸

= I(`1, . . . , `L)

. (1.1)

Contributions from each trivalent graph features kinematic numerators nΓ, which depend
on external and internal kinematics; the color factors cΓ, which are products of structure
constants fabc; and products of Feynman propagators DΓ associated to this specific graph.
A symmetry factor 1/SΓ also needs to be inserted.

Color-kinematics duality states that, given all triples of color factors cΓ’s obeying
Jacobi identities of the form

cs ct cu

+ =
(1.2)

– 2 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
8

there exists a representation of the amplitude where the kinematic numerators nΓ also
satisfy the same Jacobi identities. When this representation exists, fewer kinematic nu-
merators have to be computed, e.g. planar graphs relate to non-planar graphs: this reduces
the complexity of computing the amplitude.

However, this representation suffers from some ambiguities. A natural one is the
possibility to shift the numerators by quantities that vanish in a Jacobi identity. This is
a structural ambiguity akin to gauge redundancy. A more severe ambiguity, and one we
address in the text in our framework, comes from the freedom of redefining loop momenta
in field theory. This means that a notion of “the” integrand I(`1, . . . , `L) as in eq. (1.1) is
usually ill-defined.

In contrast, string theory has a well defined notion of the integrand, on which a global
definition of loop momentum can be introduced using the formalism of chiral splitting [38,
39]. It is then likely that following this notion of integrand the through the field-theory
(or tropical [40]) limit gives, if not a canonical, at least a “nice” representation for a field
theory integrand. Figure 1 illustrates this problem in the case of n = 4 particles. The
labeling induced by string theory is that the loop momentum always starts after leg 4: this
is a gauge choice coming from fixing translation invariance on the annulus. The problem
is that there are Jacobi identities which exchange the position of this leg and modify the
definition of the loop momentum in mismatching ways.

In field theory, one is able to cook up a solution and declare that the numerator of
the mismatched graph is equal to that of the other, but at higher loop order this question
become more tricky. This phenomenon is called the labeling problem and is actually one
of the bottleneck in finding color-kinematics satisfying representations. There are no rules
to determine which graphs should be used at higher loop orders, e.g. no rule to tell if
graphs with different labeling of internal loop momenta should count as different graphs
with different numerators or not.

One goal of this paper is to use in the field-theory limit of string theory monodromy
relations to see what string theory has to say about this question.

Summary of the results:

• We find that the field theory limit of the monodromy relations produces numerators
which automatically satisfy Jacobi identities inside the graph, i.e., in those places
where the definition of the loop momentum would not be changed by a Jacobi move,
as explained above.

• We characterize the extra contributions arising from the bulk transverse integrals of
the annulus present in the monodromy relations. We carefully compute their field
theory limit and show that it produces two types of graphs: contact terms, and graphs
with trees attached to the loop. The existence of the first class was suggested in [41],
but the second are completely new. These graphs enter the monodromy relations
in a crucial way by removing the graphs where a Jacobi identity would be ambigu-
ous otherwise, in the sense that it would require a cancellation between two graphs
with different definitions of the loop momentum. Therefore, string theory evades
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Figure 1. Illustration of the labeling problem. At one-loop in string theory the loop momentum
can be globally defined by the property that it always starts after the n-th leg, here leg 4 on the
left-hand side box graph. Top: example of BCJ identity which does not change the definition of
the loop momentum. Bottom: identity which changes the definition of the loop momentum. Note
that the rightmost graph has a correctly defined loop momentum because leg 1 is to the left of leg
4.

the problem of loop-momentum redefinition by effectively removing the ambiguous
identities.

We would like to add that it is not our intention to imply that monodromy relations
lead to BCJ-satisfying numerators. In particular, the stringy way to solve the monodromies,
as we detail in this text, does not produce BCJ identities at those points where the loop
momentum jumps, and rather adds contact terms so as to satisfy the monodromy relations.

In the discussion section we elaborate on the significance of these results in the context
of gravity. Contact terms to be squared seem in particular unavoidable, which furnishes
an a posteriori justification for the generalized double-copy procedure of [8, 9]. This also
hints towards the physical role of the bulk integrals as a possible new underlying structure
in the color-kinematics duality.

The paper is organized as follows. In section 2, we review the mechanism of the
field theory limit and the monodromy relations. In section 3, we describe the field theory
limit of the bulk contours and how they generate contact terms and triangle-type graphs.
This can be seen as a new item in the Bern-Kosower rules, required for the monodromy
relations. In section 4 we show how the field theory limit of the monodromy relations
produces numerators which satisfy BCJ identities in the bulk, and how the bulk contours
remove the terms in which the BCJ identities could have been spoiled by redefinitions of
the loop momentum. We summarize the paper in section 5, where we also comment on
the extensions of to higher-loop orders and interpretation of bulk cycles in the context of
double-copy.
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Figure 2. Example of a separating degeneration at one-loop.

2 Reviews of the tropical limit and monodromy relations

2.1 Field-theory limit and Bern-Kosower rules

In this section, we present a short review of the field-theory limit of open-string theory [42–
45]. Field theory amplitudes are generated by sending α′ → 0 in a string amplitude, more
precisely α′ki · kj � 1 for all i, j. We take all external states to be massless, k2

i = 0. In the
absence of UV divergences, the leading order contributions to this amplitude, after suitable
rescaling, become Feynman graphs.1 This scaling limit can be also understood as coming
from a tropicalization of the moduli space of punctured Riemann surfaces [40], therefore
in the text we will use the terms tropical limit and field-theory limit interchangeably. We
refer to [40] for conventions, signs and factors of π and 2’s which are necessary for a clean
analysis of the limit. It is crucial to keep track of these factors given how delicate some
cancellations are.

In the field theory limit, the moduli space integration of string theory only receives con-
tributions from regions near its boundaries, corresponding to the Riemann surface degener-
ating into graphs with different topologies. Intuitively, the open-string worldsheet becomes
a collection of infinitely long and thin ribbons, with widths proportional to

√
α′, joining

and splitting at interaction points. The resulting object depends only on the length of
the edges which correspond to Schwinger proper-time parametrization of Feynman graphs
after suitable rescaling. At one-loop, this process is systematized by the Bern-Kosower
rules [42–45]. We refer the reader to [46] for a thorough review, and recall below only the
aspects of these rules necessary for our purposes. For concreteness, we will focus on the
one-loop case but the basic idea generalizes to all genera: we comment on the higher-loop
case in the discussion section 5.

There are two types of degenerations at the boundaries of the moduli space: separating
and non-separating. A separating degeneration occurs when the original surface pinches
and splits into two surfaces connected at a point, or equivalently by an infinitely long
strip, see figure 2. A non-separating degeneration occurs when the pinched surface is a
connected surface with a double-point, see figure 3. As an example, take a one-loop open-
string amplitude with n ordered punctures on the same worldsheet boundary. Its field
theory limit generates all possible trivalent graphs that have this ordering: the n-gon, and
all other one-loop graphs with trees attached to the loop. The attached trees are generated

1When there are UV divergences, it is sufficient, for our purposes, to truncate the modulus integrations
in the amplitudes, as our relations are valid pointwise in the moduli space. This results in Schwinger
proper-time amplitudes with a hard cut-off of order α′ for the Schwinger proper-time.
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Figure 3. Example of a non-separating degeneration at one-loop.

from boundary components where two or more punctures get very close together and the
worldsheet pinches as depicted on the right of figure 2. The generic case of a g-loop graph
with particles ordered on the g + 1 boundaries obey the same mechanism. Therefore, all
graphs which respect a given ordering are generated in the field-theory limit.

However, this does not mean that a given string amplitude has support on all of these
graphs. For instance, supersymmetry can prevent the appearance of certain graphs, such
as triangles in maximally supersymmetric theories, see [47–52]. What happens in this case
is that the string integrand has zero support on those degenerations at leading order in α′.

What properties of a string integrand indicate whether or not it has support on a
given boundary of the moduli space? To answer this question, we specialize to one-loop,
but the statements below are generic since they depend only on the local structure of the
propagator and not the topology (genus) of the surface. A typical string integrand assumes
the following form

ϕ({zi}) × e−α
′`2 Im τ−2πα′

∑n

i=1 `·ki Im zi+
∑

i<j
ki·kjGij , (2.1)

where the exponent, which is traditionally called Koba-Nielsen factor, is universal to all
string amplitudes, and ϕ is a theory-dependent function with no branch cuts. The annulus
is defined by a rectangle of height t and width 1/2, so that τ = it. The punctures zi live on
both boundaries, 0 ≤ Im zi ≤ t and Re zi = 0, 1/2. We follow the conventions of [14, 19].
The Koba-Nielsen factor is constructed out of the following function,2

Gij := G(zi − zj) = −α′ log
∣∣∣∣ϑ1(zi − zj)

ϑ′1(0)

∣∣∣∣ (2.2)

explicitly given by

G(z)/α′ = − log | sin(πz)|+ 2
∞∑
m=1

qm

1− qm
1
m

cos(2πmz) + c(τ) . (2.3)

Here ϑ1 is the first Jacobi theta function, q = e2πiτ is the nome of the Riemann surface
with modular parameter τ and c(τ) is a function that eventually drops out of computations
due to momentum conservation. For the annulus we have τ ∈ iR; for more conventions

2It differs from the Green’s function 〈X(zi)X(zj)〉 by a non-holomorphic term proportional to
(Im zij)2/ Im τ . We always compensate this term by working in the chiral splitting formalism [39], which
introduces a loop momentum integration. Consequently, we always work at fixed loop momentum, i.e.
before integration.
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see appendix A. The monodromy properties of the integrand are entirely given by this
factor, which contains all the branch cuts of the integrand. In other words, it controls the
monodromy structure regardless of the matter content in a specific scattering process.

The remaining part of the integrand, ϕ, is naively given by a polynomial in the deriva-
tives of G and kinematic constant terms (powers of internal and external momenta). Bern
and Kosower proved that it is always possible to find a sequence of integrations by part so
that the ϕ has only first derivatives of G [42–45], see also the review [46].3 Therefore, the
function ϕ can always be written as a polynomial in Ġij , and takes the most general form:

ϕ({zi}) =
∑
α

cα
∏

(i,j)∈α
Ġij , (2.4)

where α is a set of pairs of labels (i, j) appearing in a given term and cα’s contain the polar-
ization and kinematic dependence of the amplitudes. Note that n powers of Ġ correspond
to a numerator with n powers of the loop momentum in the field theory limit.

Now, following Bern and Kosower consider the pair (i, j) ∈ α. We ask whether a given
monomial ϕα =

∏
(i,j)∈α Ġij splits off a tree or not. There are two cases: 1) Ġij appears

with two or no powers, i.e., Ġ2
ij ⊂ ϕα or Ġij 6⊂ ϕα, or 2) exactly one power of Ġij appears

in ϕα. The mechanism of the field theory limit, systematized by the Bern-Kosower rules,
stipulates that case 1 gives an integrand with no support on graphs where legs (i, j) forms
an external tree, while case 2 gives has support on those graphs, as well on other graphs,
where (i, j) do not split off a tree.

Case 1: no (ij)-tree. In the field theory limit, the annulus becomes infinitely long, so
that τ → i∞, zj → i∞ with a tropical scaling

Im zj = Yj
πα′

, Im τ = T

πα′
, (2.5)

The quantities Yj and T are the field theory Schwinger proper-times of the graph. The
propagator reduces to

Gij = − log(| sinh(Yj − Yi)/α′|) = −|Yj − Yi|/α′ +O(e−2|Yij |/α′), (2.6)

where terms with non-zero powers of q are exponentially suppressed in the field theory
limit and drop out.4 Equation (2.6) approaches, as expected, the worldline propagator
−|Yj − Yi| in the limit α′ → 0, when taking into account the factor of α′ in eq. (2.1).

3This reasoning is valid at one-loop. Possible obstructions at higher loop involve the risk that integration
by parts may interact non-trivially with picture changing operators.

4The story is more complicated than this and depends on the amount of supersymmetry. The string
partition function may possess terms of order q−1 or q−1/2 which extract residues at order q1 or q1/2. The
effect of these terms, fully systematized in the original Bern-Kosower rules, is to adapt the number of powers
of Ġij in the numerator to the amount of SUSY and the spin of the particles. It does not change the fact
that the integrand is solely made of powers of Ġij .
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Case 2: (ij)-tree. A tree graph occurs when a separating degeneration pinches off a
punctured disk from the original surface, or equivalently when a set of punctures comes in-
finitesimally close to each other. Consider the case where two particles, zi and zj , approach
each other such that a three-punctured disk splits off. The answer to our question above
is that a string integrand will have support on this degeneration if ϕα contains exactly one
power of Ġij .

In the region zi − zj � 1, the integrand can then be written by as

ϕ({zi}) e
∑

r,s
kr·ksGrs = Ġije

ki·kjGij ×
(
ϕ̃ e
∑

r,s 6=i kr·ksGrs
) ∣∣∣∣

zi=zj
+O(zi − zj), (2.7)

where the Bern-Kosower rules stipulate that the O(zi − zj) terms drop out in the field
theory limit. Thus, the only part of the integrand which still depends on the variable zi is
Ġije

ki·kjGij . From the derivative of the Green’s function,

∂zG(z) = −ϑ1(z)′

ϑ1(z) = −π cot(πz)− 4π
∞∑
m=1

qm

1− qm sin(2πmz) (2.8)

and from Gij , we retain only the first term in the q-expansion, as the O(q) terms are
exponentially suppressed in the limit (2.5). Then, on an integration contour where yi =
Im zi approaches yj = Im zj from below, we perform the tropical limit rescaling and zoom
around the piece of the contour near yj . For a term involving Ġijeki·kjGij this gives us

Itrop = i

∫ yj

yj−L
dyi cot(iπ(yj − yi))eα

′k1·kj log(−i sin(iπ(yj−yi)))

= (sinh(πL))α′k1·kj

πα′k1 · kj
= 1
πα′k1 · kj

+O(1), (2.9)

where L is some cut-off which drops out in the limit. Besides, since L was inserted by
hand, the full integral cannot depend on it order-by-order in α′, it must therefore vanish
when taking into account the other parts of the contour, where yi is above yj . An explicit
example is given in eqs (4.8), (4.9), where we see that the dependence on L is pushed to
O(α′)2 compared to leading order.

On the right hand side of (2.9) we recognize immediately the propagator of a tree sub-
graph with legs i and j. If particle yi approaches from above the result is the same apart
from an overall minus sign from the antisymmetry of the cotangent function. After inte-
grating out yi in this way the rest of the integrand is given by the previous integrand with
Ġji removed and zi replaced everywhere by zj . In section 3, we will redo this calculation
to extract the field theory limit of the bulk contours entering the monodromy relations.
Because the standard string amplitudes do not involve those contours, their analysis was
absent from the older literature on the field theory limit of strings.

2.2 Monodromy relations

Monodromy relations [4, 5, 13] are linear relations between open-string theory amplitudes
known to exist at tree-level since the early days of dual models [11]. These relations can
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be used to solve for a basis of the BCJ color-kinematics duality, see references above and
also [6]. They were extended to loop level in [14, 15, 41], and formalized in the context of
twisted homologies by the present authors in [19]. The reader should refer to [19] for more
details, conventions and proofs of the identities used in this paper.

Mathematically, monodromy relations are linear relations between integrals over the
configurations space of points on sliced genus-g Riemann surfaces, whose integrand involves
a multi-valued function, the Koba-Nielsen factor, Tg. At tree-level, this function is given by

T0({z1, . . . , zn}) =
∏
i<j

(zj − zi)α
′ki·kj , (2.10)

where ki is the momentum associated with puncture zi. The monodromy relations at tree-
level can be expressed as relations among color-ordered open-string amplitudes, where a
single puncture circulates around, starting from its original position. Taking the ordering
12 . . . n and circulating 1 for instance gives Plahte’s relations [11]:

n−1∑
i=1

e
±πiα′k1·

∑i

j=2 kjAtree(2, . . . , i, 1, i+1, . . . , n) = 0, (2.11)

where Atree(1, . . . , n) denotes tree-level open string amplitudes in a particular color order-
ing. These are two separate relations labeled by a sign ±.

At loop-level, the monodromy relations can be expressed as relations between color-
ordered open-string loop integrands: they hold at fixed surface moduli and fixed loop
momenta. Most of the contributions to these relations are integrated over the usual open-
string cycles, i.e., the particles are ordered along the g+1 boundaries of a Riemann surface,
in accordance with a given Chan-Paton ordering. But there are also unavoidable contribu-
tions from bulk cycles, coming from contours that run in the interior of the surface, along
its A-cycles, see, e.g., the red lines in figure 4. It is worth recalling that, so far, they have
no interpretation as originating from the string theory path-integral.

At genus one, fixing m−1 punctures on one boundary and n−m−1 on the other (we
fix zm = it by translation invariance), the monodromy relations can be written as

m−1∑
i=1

e
±πiα′k1·

∑i

j=2 kj I(2, 3, . . . , i, 1, i+1, . . . ,m|m+1, . . . , n)

+
n∑

i=m
e
±πiα′k1·(`+

∑i

j=2 kj) I(2, . . . ,m|m+1, . . . , i, 1, i+1, . . . , n) (2.12)

= ∓ e±πiα′k1·`
(
e
±πiα′k1·

∑m

j=2 kjJa±(2, . . . ,m|1,m+1, . . . , n)

−Jc±(2, . . . ,m|m+1, . . . , n, 1)
)
,

where I(· · · | · · · ) denote a physical integration contour with the two slots denoting the
ordering of punctures on each boundary, and Ja± , Jc± denotes the contributions integrated
along A-cycles as denoted in figure 4. Those are the relations we use in this paper. The
relation with minus signs in the phases and Ja−/c− is obtained by drawing the same
vanishing contour, but on a reflected rectangle, see [19, figure 9].
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z2

z3

zm

zm+1

zm+2

I(12...n|m+ 1...n)

I(2...m|m+1, 1,m+2, ..., n)

Ja+
(2...m|1,m+ 1...n)

Jc+
(2...m|m+ 1...n, 1)

zm

z2zm−1

zm+1

zn. . .

. . . zn

...

...

z3

→

Figure 4. Illustration of monodromies relations coming from the vanishing of an integral around
the closed blue contour,cv for a generic non-planar amplitude. Left: open string annulus, with
punctures. Red line: A-cycle, along which the Riemann surface is cut, defines where the loop
momentum `µ =

∫
A
∂Xµ is measured. Blue cycle: the contour over which the puncture z1 is

being integrated. As no pole exist in the bulk, the full integral vanishes. Each segment along the
boundary. Right: rectangle representation of the annulus, with depictions of contours for z1. The
I contours are usual open string boundary contours, the J are bulk contours.

The general form of the J terms is

Ja/c±(2, . . . ,m|1,m+1, . . . , n) =
∫

∆

∏
i 6=1,m

dzie
−2πα′`·

∑n

i 6=1 ki Im(zi)

×
∏
i,j 6=1
|G(zi, zj)|α

′ki·kj
∫ ±1/2

0
dx1T1(z1), (2.13)

where x1 = Re z1. The integration contours are Im z1 = 0 for Jc± and Im z1 = t for Ja± .
The contour ∆ is the usual one for the n−2 punctures distributed along the two boundaries
and we have fixed the m-th puncture to zm = τ = it. The function T1(z1) is obtained from
analytic continuation of the string integrand in the variable z1,

T1(z1) := e2πiα′k1·` z1
m∏
j=2

(−iϑ1(iyj−z1))α
′k1·kj

n∏
j=m+1

ϑ2(iyj−z1)α′k1·kj . (2.14)

The field theory limit of the physical I terms in the relations is known and given by the
Bern-Kosower rules, as explained in the previous subsection. In the next section, we will
provide an analysis of the field theory limit of the J terms in the monodromy relations.
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3 Field theory limit of bulk contours at one-loop

3.1 Overall phases

We analyze here the field theory limit of the J cycles from (2.12). The relevant part is the
piece of the contour running along the A-cycle,

Ja± :=
∫ ±1/2

0
T1(x+ it)ϕ(x+ it) dx, (3.1)

Jc± :=
∫ ±1/2

0
T1(x)ϕ(x) dx, (3.2)

with T1 defined as (2.14). For now we take the string integrand ϕ = 1 in order to analyze
the overall complex phase that these contributions have in the field theory limit. For
definiteness we look at the integral Ja+ in detail, while the other phases can be obtained
from similar computations.

Define E as the exponent of the function T1 = eα
′E(z), that is

E(z) = 2iπ` · k1z +
m∑
j=2

k1 · kj log(−iϑ1(iyj − z)) +
n∑

j=m+1
k1 · kj log ϑ2(iyj − z). (3.3)

Now we take the tropical limit using eq. (2.5), but keep the stringy lower-case variables so
as to not clutter the notation with factors of π and α′. As α′ → 0 we can safely drop the
higher-order terms in q and wj = exp(2iπzj) in log(−iϑ1) and log(ϑ2). What remains are
logarithms of trigonometric functions, log(−i sin(·)) and log(cos(·)) (see appendix A). The
sine and cosine functions are a sum of two terms, one of which is exponentially growing,
the other suppressed. On the a+ contour, we have z = x+ it, which gives

−i sin(π(iyj − z)) = −1
2e

2π(t−ix−yj)(1− e−2π(t−ix−yj)), (3.4)

−i sin(π(it− z)) = i sin(πx), (3.5)

cos(π(iyj − z)) = 1
2e

2π(t−ix−yj)(1 + e−2π(t−ix−yj)) (3.6)

for j 6= m. Upon taking the logarithm we can also discard the exponentially suppressed
terms e−2π(t−ix−yj), which correspond the exchange of massive string states. The exponent
then reduces to

E(it+ x)→ 2iπ` · k1(it+ x) + π
m−1∑
j=2

k1 · kj(t− yj − ix+ iπ)

+ π
n∑

j=m+1
k1 · kj(t− yj − ix) + k1 · km(sin(πx) + iπ/2). (3.7)

Here we recover the iπ
∑m−1
j=2 k1 · kj from the term log(−1) = log(eiπ) in (3.4). This is the

usual phase in the monodromy relations obtained from the projection onto the physical
branch of the analytically continued function T1(z). But note that we have also obtained
a term iπk1 · km/2 with an unusual factor of one half, originating from the overall factor

– 11 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
8

of i = eiπ/2 in (3.5). We can take it to define a canonical branch for these bulk contours.
It would be very interesting to see what is its significance in the worldsheet CFT but we
leave such considerations to future investigations.

In summary, we find that, in the field theory limit, the contour (3.1), has the follow-
ing phase:

e
iπα′(

∑m−1
j=2 k1·kj+k1·km/2)

. (3.8)

The computation on the c+ contour is essentially the same and produces the phase

eiπα
′k1·km/2 . (3.9)

Before concluding this part, let us emphasize the following point. At a generic value of
α′, the integrals Ja/c± are complex, unlike the integrals on the physical contours, which
are purely real for real kinematics. When applying monodromies, those physical integrals
acquire a phase, which is unambiguous. The situation is different for the integrals Ja/c± ,
since even when factoring out the phase mentioned above the integral remains complex.5

What the phase above mean is that, taking the field theory limit of the integrands, the
first term of the α′ expansion is real and given by Feynman graphs, but higher order terms
remain complex. Therefore, when we write

Ja/c± '
α′→0

e
iπα′(

∑m−1
j=2 k1·kj+k1·km/2) × (Feynman graphs + O(α′)) , (3.10)

we do not mean that the higher order terms in α′ are real, in contrast with the physical
integrals where it is indeed true.

3.2 Contact terms and triangles

We now turn to the evaluation of the integral over x in (3.1). As in the usual Bern-Kosower
rules reviewed in section 2.1, there are two cases of interest: when the integrand contains a
monomial with exactly one derivative of the worldsheet propagator; and when it doesn’t.
Taking this into consideration we again write a generic integrand along the A-cycles as

ϕ(z1) = ϕ1Ġ(zm − z1) + ϕ2 (3.11)

where ϕ1 and ϕ2 don’t contain any monomials on derivatives of the propagator with ar-
guments involving z1. We take the ordering of Ja/c± the same as in (2.12), but note that
since these calculations are only sensitive to the local structure of the integrand near z1 the
results below are valid for any other permutations provided the gauge zm = it is kept fixed.

Triangles: triangle graphs are generated by monomials that have exactly one derivative
of the worldsheet propagator, which in the field theory limit reduces to a cotangent function,
see eq. (2.8). Just like in Bern-Kosower rules, the field theory limit is only affected by local
behavior, so it is sufficient to consider the case of J̃a± with ϕ(x+it) = Ġ(zm−z1) = Ġ(−x),

5These points were already discussed in [19] where it was observed that no canonical choice of branch
exist for these integrals.
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that is ϕ1 = 1 and ϕ2 = 0; the result will be similar for the contours J̃c± . In the tropical
limit, this integral descends to an integral of the form

Jtrop,a± =
∫ ±1/2

0
cot(−πx)eα′icx+α′k1·km log sin(πx)dx. (3.12)

Where momentum conservation was used to rewrite the x-dependence of the expo-
nent (3.7) as

icx+ k1 · km sin(πx) with c = π(2`+ km) · k1 . (3.13)

This integral can be computed by expanding the exponential eα′icx since this term is regular
when x→ 0, and we are interested only in the first few orders in α′. These give the integrals:

J 0
trop,a± = −

∫ ±1/2

0
cot(πx)eα′k1·km log(sin(±πx))dx = − 1

α′πk1 · km
+O(1) (3.14)

J 1
trop,a± = − α′icx

∫ ±1/2

0
x cot(πx)eα′k1·km log(sin(±πx))dx = −α′icx log(2)

2π +O(α′) (3.15)

The first integral (3.14) produces a tree-like contribution, which is the analogue of the
standard case described by the Bern-Kosower rules when two punctures collide on the
boundary, except that now it happens in the bulk.6

The next term in the α′ expansion (3.15) produces terms at two orders higher in α′

than the contribution from (3.14), so J 1
trop,a± does not contribute in the field theory limit.

The second order in α′ is important here, because the monodromies can be seen as O(1)
and O(α′) relations, therefore a term at first order could possibly enter the first order
monodromies. However, we shown below that this does not happen.

In order to fix normalizations we reproduce here also the triangle computation arising
from the physical contour, where z1 approaches zm = it, from below, z1 ∼ iy:

Itrop = i

∫ t

t−L
cot(iπ(t− y))eα′k1·km log(−i sin(iπ(t−y)))dy

= (sinh(πL))αk1·km

παk1 · km
= 1
α′πk1 · km

+ log(sinh(πL))
π

+O(α′).
(3.16)

and we see that triangles from the A-cycle contours and from the physical contours have
the same normalization. As explained in (2.9), L is an IR cut-off which drops off when
taking into account the part of the integration that is between ym−1 and t− L.

Contact term: finally, we return to the bulk contour and investigate the case ϕ =
ϕ2 = 1, so that it does not contain a derivative of the Green’s function and no subtree is
generated. The integration can be done explicitly and leads to∫ ±1/2

0
eα
′k1·km log sin(±πx)dx =

Γ
(

1
2(α′k1 · km + 1)

)
2
√
πΓ
(
α′k1·km

2 + 1
) = ±1

2 ∓ α
′k1·kmlog(2)/2 +O(α′2)

(3.17)
6Note that, contrary to computation in eq. (2.9), it was not necessary to zoom in a neighborhood of

zm = it, the triangle contribution came from the full integral between 0 and ±1/2. This is the case
because we already dropped higher order terms, which are exponentially suppressed. Colliding the punctures
produces the same pole and cut-off of order α′ relative to the pole, which drops out, as in eq. (2.9) and
eq. (3.16) below.
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+ O(α′2)

zm=0

1

m

1

m
+ 1

2α
′

Figure 5. Graphs appearing in the field theory limit of the bulk cycles.

giving an important factor of ±1/2 at leading order. Since in the limit the particles z1
and zm are squeezed together, we interpret the leading order in (3.17) as a diagram with
a contact term involving particles 1 and m as depicted in figure 5.

Note that since we do not rescale z1 in the field theory limit the contributions from
the above integrals come at a higher order in α′ than the other terms in the monodromy
relations. This is easily seen by looking at how the moduli space measure scales for different
terms in the monodromy relations (2.12). In the I contributions all coordinates are rescaled
in the field theory limit such that

dτ
n∏

i=1;i 6=m
dzi → (α′)−ndT

∏
i=1;i 6=m

dYi (3.18)

while the contributions from J have an overall (α′)n−1 from the measure since the co-
ordinate z1 is not scaled in the limit. Another way of seeing this is to realize that each
propagator in a trivalent graph in the field theory limit has to come with a factor of πα′.
This comes from the fact that propagators are generated in the tropical limit by integrals
of the tropical Koba-Nielsen factor, where Mandelstam variables are multiplied by πα′.
This implies that the contact term comes with an overall extra πα′ term compared with
the other terms.

Note also the presence of a relative factor of −i in front of the contact term coming from
the measure: the original integration contour for z along the imaginary axis is such that
under analytic continuation dy = −idz. Since the J terms are integrated along the real
axis where dz = dx, a relative factor of i should be added. The triangle terms originating
from J also have this extra −i for the same reason but due to another factor of i coming
from the analytic continued −iϑ1(zm − z1) in the integrand the overall coefficient of these
terms is −1, the same as if particle 1 was above m in a contribution away from the edges.

4 Field theory limit of the monodromy relations

Let us now turn to studying the field theory limit of the relations. We start by reviewing
the tree-level setup to recall how the limit works in this simple case.
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At finite α′, the monodromy relations (2.12) are two linearly-independent identities.
Plahte’s relations (2.11), can therefore be rewritten as their sum and differences, leading to

n−1∑
i=1

cos
(
πα′k1 ·

i∑
j=2

kj

)
Atree(2, . . . , i, 1, i+1, . . . , n) = 0,

n−1∑
i=1

sin
(
πα′k1 ·

i∑
j=2

kj

)
Atree(2, . . . , i, 1, i+1, . . . , n) = 0.

(4.1)

As α′ → 0, the trigonometric functions are simplified as sin(πα′s) ' πα′s, cos(πα′s) ' 1
and Atree descends to the field theory amplitude AFT

tree, leading to

n−1∑
i=1

AFT
tree(2, . . . , i, 1, i+1, . . . , n) = 0, (4.2)

n−1∑
i=1

(
k1 ·

i∑
j=2

kj

)
AFT

tree(2, . . . , i, 1, i+1, . . . , n) = 0. (4.3)

The first relations are the Kleiss-Kuijf relations [53], while the second are the fundamental
BCJ relations, known to be equivalent to BCJ relations between graphs [6, 54], as initially
observed in [4, 5].

A more cavalier way to arrive at these identities is by taking the field theory limit
before taking their linear combinations in (4.1), and extract the O(1) and O(α′) from the
phases only. This is requires, in theory, to check that no O(α′) arise from the amplitude
themselves and mixes up with the α′ coming form the amplitudes. Both relations obtained
in both ways are identical.7

At loop level, it is not hard to convince oneself that this shortcut reasoning works for
the standard part of the relations, which involve usual I integrands, since they are purely
real. But there are also new terms, the J bulk contours, which are complex and do not have
a well-defined phase. Therefore terms of the form J+±J− occur and one needs to be careful
in handling them. It turns out that the analysis at orders O(1) and O(α′) continues to
hold, due to (anti)-symmetry properties of the J±’s under complex conjugation. Therefore
we shall present the analysis of the field theory limit in terms of O(1) and O(α′) relations
directly, rather than sums and differences, as it is less cumbersome.

Following up on the discussion above, we consider only the + monodromy relation in
eq. (2.12). They take the schematic form:∑

i

eiα
′πφiIi +

∑
j

eiα
′πθjJj = 0 , (4.4)

7An interesting related point, which, to our knowledge, was not raised in the literature before, is the
following (see also [55]). From the + relation, involving only cosines of the phases, one can see that any
order α′ correction to the amplitude AFT , Aα′ , must satisfy independently the Kleiss-Kuijf relations of the
form

∑
permuations Aα′ = 0. Therefore, any O(α′) corrections to the amplitude which would occur in the

O(α′) relations would cancel up independently of the O(α′) terms coming expanding the phases. Indeed,
the O(α′) relations would write

∑
α′k · kAFT +

∑
Aα′ = 0 and the second sum vanishes, in virtue of what

was said above.
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i

1

i
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Figure 6. Contributions from different boundaries that cancel each other.

where the phases φj and θj consist of combinations of external and internal kinematic
invariants, and the indices i, j runs over the set of contours in the relation. In the field
theory limit, our analysis in section 3 shows that the integrands behave as

Ii = IFT
i +O(α′2), (4.5)

Jj = −J FT
j − iπα′J CT

j +O(α′2), (4.6)

where the superscript FT denotes contributions from the usual trivalent graphs appearing
in the field theory limit as described in the previous section. In other words, IFT and J FT

are simply sums of trivalent graphs with a common definition of the loop momentum. The
superscript CT denotes contact terms that appear with an extra factor of −iπα′ in front
as described at the end of section 3. Other signs and factors of iπα′ are also carefully
explained there. In other words, J CT is the result of taking all the graphs appearing in
J FT and removing the legs generated by subtrees from the bulk integrals.

In the field theory limit the monodromy relations are therefore written as(∑
i

IFT
i −

∑
j

J FT
j

)
+ iπα′

(∑
i

φiIFT
i −

∑
j

θjJ FT
j − J CT

j

)
+O(α′2) = 0 . (4.7)

As noted above, and originally observed in [14], these relations split into two different sets.
The O(1) term constitute the Bern-Dixon-Dunbar-Kosower relations [56, 57] at one loop,
and contain the relations found in [54] at two loops as shown in [14]. For the planar case
at O(1) they are the Boels-Isermann relations [58, 59].

Our goal in the next two subsections is to study in detail these two relations, and in
particular characterize exactly the types of graphs which enter the relations.

4.1 Cancellations at O(1)

At O(1), there are two main classes of graphs that we need to investigate: those coming
from an integrand containing a monomial on Ġi1, and the others. As explained in section 3,
the former produces a tree where particles i and 1 attach to the rest of the graph; the latter
produces a propagator connecting particles i and 1.8 These two situations can be visualized
as two ways of attaching particles i and 1 to the main graph using a “bridge”, as in figure 6.
The cancellation within these classes of diagrams is immediate: for each diagram with a

8Contact terms can also be produced in the J contours but these only contribute at higher order in α′.
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1

i

i

1

zi

Figure 7. Graphs with attached trees that cancel each other due to a relative minus sign.

propagator between 1 and i originating from a contour where z1 is in one boundary, the
same diagram is also generated from a term where z1 is in the other boundary but with a
negative sign, see figure 6. Since at this order the phases in the monodromy relation do
not contribute, these diagrams cancel term by term.

The diagrams with attached trees also cancel term by term, but care must be taken
for the edge cases, that is, when z1 approaches 0 or it. If the triangle diagrams originate
from a contour away from z = 0 or z = it as in figure 7, they cancel term by term due
to the antisymmetry of Ġi1 in the integrand. This is explicitly shown below. In (4.8), z1
approaches zi from below, and in (4.9), where approaches zi from above:

I0
trop = i

∫ yi

yi−L
cot(iπ(yi − y))eα′k1·km log(−i sin(iπ(yi−y)))dy

= (sinh(πL))α′k1·ki

πα′k1 · ki
= 1
α′πk1 · ki

+ log(sinh(πL))
π

+O(α′), (4.8)

I1
trop = i

∫ yi+L

yi

cot(iπ(yi − y))eα′k1·km log(−i sin(iπ(y−yi)))dy

= −(sinh(πL))α′k1·ki

πα′k1 · ki
= − 1

α′πk1 · ki
− log(sinh(πL))

π
+O(α′). (4.9)

Since phases do not contribute at this order, these diagrams are simply summed and
therefore cancel. Note that the dependence on the L is pushed to order (α′)2, preventing
the risk of spoiling the O(α′) relations. As argued in section 2.1, all dependence in L should
vanish in the full contour.

At the edges, z1 = 0 or z1 = it, the argument given above does not apply. There are
triangles generated by these edge terms, see figure 8(a) and (b), but they come with different
labeling of the loop momenta and cancellation is not possible at fixed loop momentum with
just these terms. However, as demonstrated in section 3.2, the J terms produce diagrams
with trees attached with the right propagator prefactor to cancel these edge contributions.
The integrals in eqs. (3.12) and (3.16) give precisely the correct sign for this cancellation to
occur. Moreover, they have the same loop momentum assignment, which gives a complete
cancellation, at fixed loop momentum. These extra contributions are depicted in figure 8,
(c) and (d).

This concludes our analysis of the field theory limit of the monodromy relations at
order O(1).
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zm=it

z1

z1
zm=it

zm=0
z1

zm=0
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(a) (b) (c) (d)

m 1 1 m m 1 1 m

`+ k1`+ k1 ``

Figure 8. Four graph degenerations near the worldsheet edges, (a-d). Top: worldsheet (gray) with
puncture z1 approaching zm from various boundaries. Bottom: corresponding graphs with resulting
(1m) tree pinching off.

4.2 Cancellation at O(α′) and BCJ triples

The only new graph that has to be considered is the contact term that appears at O(α′)
in the expansion of the J ’s, see figure 5. This is a structurally new mechanism. Unlike
before, where at O(α′) only the phases from the exponentials contributed, here we see an
order O(α′) coming from the diagram itself. It is remarkable to see that this term precisely
cancels the other graphs generated by the monodromies. Notwithstanding, the cancellation
itself is not surprising since we know that the relations hold at finite α′ [19] and the field
theory limit is simply a consequence of these relations.

Like at tree-level, the cancellation will depend on two mechanisms: the fact that
the O(α′) terms of the phases conspire to cancel propagators in the graphs resulting in
the grouping of numerators from different graphs into BCJ triples; and that the string
theory, through the Bern-Kosower rules, produces automatically color-kinematics satisfying
numerators, in the field theory limit, for the graphs where the definition loop momentum
does not jump in a Jacobi identity. To our knowledge, this last observation is new and we
shall devote some time explaining it now.

Numerators away from the A-cycle. For cycles away from the edges we can argue
that numerators obey color-kinematics as follows (see also [20]). Consider a Jacobi identity
with legs 1 and j. Generically, a string theory numerator will be of the form

ϕ = Ġj1ϕ1 + ϕ2, (4.10)

where ϕ1 and ϕ2 do not contain any terms with single poles as z1 → zj (this definition
allows ϕ2 to have a Ġ2

j1 term). This integrand gives three types of graphs in the field
theory limit, each with its respective numerator ns, nt or nu, see figure 9. The term Ġj1ϕ1
produces diagrams with attached trees, which we call triangle-type, and diagrams with
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(s)

(t)
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Figure 9. Illustration where the s-, t-, u-channel graphs come from on the worldsheet.

propagators connecting 1 and j, which we call box-type, in analogy with the situation at
four points. These come with numerators

n1,triangle = 2ϕ1, n1,box = ϕ1, (4.11)

where the factor of 2 comes from rewriting the propagators in the standard form 1/(k1·kj) =
2/(k1 + kj)2. The term ϕ2 produces only box type graphs with numerator

n2,box = ϕ2. (4.12)

The numerators for each graph are the following combinations of the above:

ns = n1,box + n2,box,

nt = n1,triangle,

nu = −n1,box + n2,box,

(4.13)

which can be immediately checked to satisfy

ns − nt = nu. (4.14)

This is the kinematic Jacobi identity. We conclude that numerators given by string theory
away from the origin of the loop momentum obey color-kinematics duality.

Numerators near the A-cycle. The above argument cannot hold near the A-cycles
of the worldsheet since the monodromy relations do not have the required contours either
above or below the A-cycle where the surface is cut. However, there are contributions
along this cycle, the J integrands, which exactly cancel the leftover numerators. To see
this explicitly consider again a generic integrand of the form

ϕ = Ġm1ϕ1 + ϕ2, (4.15)

where zm is the position of the particle fixed at the corner of the cut worldsheet. There
are six contours that contribute to graphs where 1 and m are adjacent, divided in two sets
of three coming either from the top or the bottom of the rectangle.
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Consistency with monodromy relations near the A-cycle. For example, one set
of diagrams with mutually consistent definition of loop momenta comes from a term where
both particles are on the same boundary I(. . . 1,m| . . . ), one where they are on different
boundaries I(. . .m|1 . . . ), and one where 1 is integrated along an A-cycle: J (. . .m|1 . . . ).
These are depicted in figure 10. The monodromy phases produce a coefficient of the box-
type diagram that can be simplified:

k1 ·
m−1∑
i=2

ki − k1 ·
(

m∑
i=2

ki − `
)

= −k1 · (km − `) = (km − `)2

2 − (k1 + km − `)2

2 . (4.16)

The second term cancels the propagator between 1 and m in these diagrams leaving behind
a contact diagram with coefficient 1

2(ϕ1 + ϕ2). Recall that J produces a contact diagram
with exactly the same form as the one leftover from the box type but with a coefficient
−1

2ϕ2. This cancels one of the terms leaving only the 1
2ϕ1. The last term should be canceled

by the triangle-type term, which can be seen easily: both I(. . . 1,m| . . . ) and J (. . .m|1 . . . )
produce triangles with phase coefficients

k1 ·
(
m−1∑
i=2

ki

)
− k1 ·

(
m−1∑
i=2

ki + km
2

)
= −1

2k1 · km, (4.17)

which, combined with the integrand numerator ϕ1, cancels the leftover term exactly. In
this cancellation we see the crucial role played by the unusual 1/2 phase that appears in
J . More precisely, we have:

k1 ·
m−1∑
i=2

ki (ϕ1 + ϕ2)( +

m

1

` m

1

`

ϕ1 ) −k1 ·
(

m∑
i=2

ki − `

)
(ϕ1 + ϕ2)

`m

1

−k1 ·
(

m−1∑
i=2

ki +
1
2km

)
ϕ1 − 1

2ϕ2

`m

1

m

1

`

= k1 · (`− km)(ϕ1 + ϕ2)

m

1

`

− 1
2k1 · kmϕ1

1

m
` m

1

`

− 1
2ϕ2

⇒ 1
2 (ϕ1 + ϕ2)

m

1

`
m

1

` m

1

`

− 1
2ϕ1 − 1

2ϕ2 = 0

(4.18)

Consistency with monodromy relations away from the A-cycle. As described
in [38, 41], the mechanism of cancellation of the propagators also works for cycles that
lie away from the A-cycles. To see this in detail consider the generic non-planar terms
I(. . . , 1, j, . . . | . . . , p, . . . ) and I(. . . , j, 1, . . . | . . . , p, . . . ) where particle 1 is away from the
edge and particle p is some fixed particle with which we use to group together graphs with

– 20 –



J
H
E
P
0
3
(
2
0
2
1
)
0
4
8

I(. . . , 1,m| . . .)

Ja+
(. . . ,m|1, . . .)

I(. . . ,m|1, . . .)

Figure 10. Contours that produce graphs where particles 1 and m are adjacent in the field theory
limit and which have mutually consistent definition of the loop momentum. Three more contours
are on the lower side of the annulus.

the same internal momenta as in figure 11. The graphs of interest are those where in the
field theory limit the worldsheet degenerates such that particle p sits right before 1 an j
in the resulting cyclic ordering. A tree-type graph can only be generated when 1 and j sit
on the same boundary, so it comes with a coefficient

k1 ·
j∑
i=2

ki, (4.19)

which cancels the propagator in the tree-type graph with 1 right after j, giving a contact
term with numerator nt. The two box-type graphs are generated from both the planar and
non-planar string amplitude, in this case their phase coefficients combine:

k1 ·

j−1∑
i=2

ki −
p−1∑
i=2

ki + `

 = −k1 ·

p−1∑
i=j

ki − `


= 1

2

`− p−1∑
i=j

ki

2

− 1
2

`− k1 −
p−1∑
i=j

ki

2

(4.20)

for the diagram with 1 before j and

1
2

`− p−1∑
i=j+1

ki

2

− 1
2

`− k1 −
p−1∑
i=j+1

ki

2

(4.21)

for the diagram with j before 1. These give four canceled propagators but only two of them
are related to the BCJ triple where 1 and j are exchanged, that is, we look for the terms
that cancel the propagator between 1 and j. Minding the signs (all particles are taken as
incoming), these are the first term in (4.20) and the second term in (4.21), the other two
give contributions to other BCJ triples. The result is two contact terms with numerators
ns and nu. Since we canceled the propagator between 1 and j for these box-type graphs
and the exchange propagator for the tree-type graph, they all produce the same contact
term graph with a numerator given by the sum

ns − nt − nu = (ϕ1 + ϕ2)− 2ϕ1 − (−ϕ1 + ϕ2) = 0. (4.22)
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j/1

p

1/j

p+ 1

p− 1

1/j

j/1

q2

p

p− 1

j 1

p

α′ → 0
+

α′ → 0

1/j

j/1

q2

p

1/j

j/1

q2

p

Figure 11. How graphs participating on a particular BCJ triple are generated. Top: planar graphs
contribute to tree and box-type graphs. Bottom: non-planar graphs only contributes to box-type
diagrams. (We use q2 = (

∑j−1
i=2 ki +

∑n
i=p ki + `)2 = (`−

∑p−1
i=j ki − k1)2.)

In more detail, we have:

1
2 (`−

p−1∑
i=j

ki)
2 ns +k1 ·

j∑
i=2

ki nt − 1
2 (`− k1 −

p−1∑
i=j+1

ki)
2 nu

= (ns − nt − nu)

1

j

j

1 1

j

1

j

(4.23)

This proof is completely generic and leads us to the conclusion that any set of numera-
tors obtained from the Bern-Kosower rules at one loop, after bringing it to the form (2.4), is
automatically in a BCJ satisfying representation. Again, this analysis holds for the numer-
ators of those graphs involved in BCJ identities which do not relabel the loop momentum.

5 Discussion

5.1 Summary of results

Field theory limit of the bulk cycles. As we have seen in the text, the bulk contours
contribute significantly to both in the O(1) and O(α′) relations, at fixed loop momentum.9

However, at fixed loop momentum, as shown above, they are needed for an exact cancella-
tion between graphs (including tree-type graphs) already at O(1), which are identical but
for the definition of the loop momentum.

9It was first observed in [14, 15] that the O(1) relations can be seen as amplitudes relations once the
loop momentum is integrated out, these are the Bern-Dixon-Dunbar-Kosower relations [56]. As the bulk
integrals simply differ by a relabelling of the loop momentum they cancel each other out after integration
since the phases don’t contribute at this order.
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At O(α′) they are essential for complete cancellation. We showed that in the field
theory limit of these cycles there is an unconventional phase in front of the J contours.
This is a hitherto new phase, not seen before:

e±
1
2 iα
′πk1·km . (5.1)

The unusual factor of 1/2 was crucial for a complete cancellation among diagrams at fixed
loop momentum.

As mentioned previously there’s no physical justification from string theory as for the
existence and importance of those bulk contours, although they are unavoidable in the
theory of twisted cycles [19]. Our analysis shows that they are related to ambiguities that
arise in shifting loop momentum and restore the well-definedness of the string integrand
under loop momentum redefinition.

BCJ numerators in Bern-Kosower representations. In checking the exact cancel-
lations between all graphs appearing in the monodromy relations, we also studied “stan-
dard” cancellations, where no ambiguity linked to loop-momentum definition arise. We
found that all Bern-Kosower numerators satisfy BCJ identities away from the points where
loop-momentum jumps. To our knowledge, this is a new result. Below, we comment on
the fact that we expect this to hold to any loop order, since it stems from the elementary
properties of the derivative of the worldsheet Green’s function; antisymmetry, and local
behavior.

5.2 Towards KLT and higher loops

Contact-terms of higher valency in a KLT formulation. In [19], we argued that a
complete basis of integration cycles for the Kawai-Lewellen-Tye [60] construction at loop-
level has to include bulk cycles. The bulk cycles described there, and used here, are those
where only one particle moves in the interior the annulus. Because the construction [19]
was recursive, it is not hard to see that twisted cycles have to include cycles where more
than one particle is inside the annulus.10

In the tropical limit, those higher-bulk cycles would generalize our analysis, and give
rise to contact terms where k propagators are canceled, if k particles sit in the bulk. A
more thorough analysis is left over for future work.

Following up on the discussion in [19], one could therefore speculate about the form of
a KLT formula at loop level. Since the bulk cycles are unavoidable, and since in the field
theory limit they create contact-terms, we are lead to expect the following. In a general
formulation of the double copy in string theory, á la KLT, one should expect to find squared
contact-term graphs and products of ordinary graphs and contact-term graphs.

This would arise from a KLT formulation, where twisted cycles are multiplied together
by a yet-to-be discovered momentum kernel.

10Actually, apart from the one particle whose position is gauge fixed by translation invariance, all particles
could even be on those cycles. Which of those cycles would be related by monodromy relations can also be
worked out within our formalism.
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2 3

1 4

Figure 12. Our Jacobi identities do not involve doing purely internal BCJ moves at higher loops.

It is however interesting to remark that, in the context of the generalized double
copy [8, 9], contact-terms were only needed at high loop orders (five loops), while they
would seem to appear naturally already at one-loop.

This conundrum makes the question of figuring out a KLT formula at loop level even
more pressing and interesting.

Higher-loop generalizations. While extension of our results to higher-loop integrands
requires extra care and is left for future work, let us briefly comment on which parts
generalize straightforwardly and which need new analysis.

First of all, let us delineate which BCJ triples we expect to be describable within
our framework. Higher-genus monodromy relations, at least as described in [14, 15, 19],
only involve identities corresponding to a puncture traveling along boundaries of the cut
Riemann surface. Therefore, these identities always involve BCJ triples that have at least
one external leg. An example of an “internal” BCJ triple at four loops, which is not
contained in our framework, is shown in figure 12.

Secondly, the Jacobi identities related to triplets without loop-momentum ambiguity
(away from the A-cycles) have been described in [19, 38]. The phase factors of the mon-
odromies were shown to adequately cancel neighboring propagators and regroup graphs by
BCJ triplets. Indeed, one can straightforwardly extend the reasoning of section 4.2 and
show that, if a Bern-Kosower representation is provided at higher loops for a worldline inte-
grand, it has to satisfy color-kinematics duality. In other words, granted that Bern-Kosower
representations may be found at higher loops, we claim that corresponding numerators
which do not redefine the origin of loop momenta should obey Jacobi identities.11

Finally, we can discuss triples in the neighborhood of the A-cycles: those suffer from
the loop-momenta ambiguities analogous to the ones at one loop. Here a genuinely new
feature arises: the J cycles can be pinched between holes of a Riemann surface in the
tropical limit, cf. figure 13 for a 3-loop Mercedes diagram degeneration. Apart from this

11Concerning this latter question, one may worry about a few things. In the RNS formalism, the super-
moduli space non-splitness [61, 62] prevents the naive existence of a purely bosonic integrand, which is the
type of the Bern-Kosower representations. Sen’s vertical integration [63, 64] is in principle a prescription
to project the supermoduli space integral to a bosonic one, but nothing is known about whether or not this
could lead to Bern-Kosower representations. One may for instance worry that during the integration by
parts process to reach a Bern-Kosower integrand (with single derivatives of the Green’s function), vertex
operators could collide with picture changing operators. If this happens, additional contact-term like con-
tributions may be expected. In purely bosonic representations (bosonic string, pure spinors), there are no
such obstructions and, since the integration by part sequence which leads to a given Bern-Kosower integrand
does not depend on the genus of the Riemann surface, one may expect these representations to exist.
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2

3

42

3

4

A1

A2

A3

B1

B2

B3

Figure 13. Mercedes graph degeneration. Left: the decomposition of the Riemann surface in terms
of A- and B-cycles. The loop momenta `I are flowing through AI for I = 1, 2, 3. Right: the J
cycles (green) get trapped between the B cycles in the neighborhood of the Mercedes degeneration.

important issue, which will be carefully addressed elsewhere, the analysis for other types
of degenerations is quite similar to the one at genus one.

Let us therefore finish the paper with a brief discussion of those cases and illustrate it
with a two-loop example.

The arguments of section 4.2 generalize to higher loops immediately, as they depend
only on the local properties of derivatives of the Green’s function: its antisymmetry on the
worldline ∂ziGWL(zi, zj) = −∂ziGWL(zj , zi) and the local behavior ∂zG(z) ∼ 1/z, which
gives rise to subtree graphs required for t-channel graphs.12

Considering the types of graphs present at higher loops, each internal strips of the
string graphs have their lengths ti undergoing tropical scaling, ti ∼ Ti/(2πα′), and the J
cycles contribute contact-terms with width 1/2. One aspect of the discussion is simpler
at higher loops compared to one loop: there are no triangles generated by the internal J
contours with only one puncture. This stems from the fact that the translation invariance
which, at one-loop, allowed to fix one point at the origin of the J cycles is absent at higher
loops.13 Therefore, puncture 1 will not be able to go infinitesimally close to m on a J
cycle, as in figure 8 for instance.14

We now consider an explicit example: the planar two-loop monodromy represented by
integrating the position of leg 1 within the two loop surface of figure 14. It reads

I(1234| · |·) + eiπk1·k2I(2134| · |·) + eiπk1·k23I(2314| · |·)
+ eiπk1·k234I(2341| · |·) + eiπk1·`1I(234|1|·) + eiπk1·`2I(234| · |1)

= eiπk1·`1(Ja,1 − Jc,1) + eiπk1·`2(Ja,2 − Jc,2), (5.2)
12See [40, 65] for the explicit expressions of the worldline Green’s function at higher genus coming from

the tropical or field theory limit of string theory. Along an edge, it is given by the geometric distance
between two points, whose derivative is just the sign function, and therefore antisymmetric.

13This also raises the possibility at one loop that a different gauge choice could lead to removing those
graphs. But the definition of the loop momentum would be modified and would introduce some extra
parameter related to the distance at which the loop momentum is measured relative to an origin of the
coordinate system. This parameter would possibly affect the monodromy relations and we do not know
what effect it would have in terms of graph representation in the field theory limit.

14One could wonder if a configuration where puncture m collides towards the origin of the J cycles at
the same time as puncture 1 but along a J cycle, could not lead to a triangle. Such degenerations are of
higher order and measure zero at leading order in α′.
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3

I(2341| · |· )

I(234|1|·)

I(1234| · |· )

I(234| · |1)

Ja,1

Jc,1

Ja,2

Jc,2 I(2314| · |· )

I(2134| · |· )

Figure 14. Two-loop string amplitude with contours from eq. (5.2).

(a) (b) (c)

(d) (f) (g)

1

2 3

4
`1

1

2

3

4

4

2

3

1

`1

4

2

3

1

`2
`1 `2 `2

4

2

3

1 4

2

3

1

`1+k1 `1
`2+k1`2

`1
`2

Figure 15. Cancellation systematics at two-loops. Top: two-loop string amplitude with contours
from eq. (5.2). Red lines correspond to propagators canceled by the phases of the monodromy
relations. Bottom: contact terms generated by the J contours. While these graphs seem to
constitute a Jacobi triplet, this would imply different definitions of the loop momentum than those.
Therefore the graphs cannot cancel at fixed loop momentum in the monodromy relations. The role
of the contact terms from the Ja/c,1/2 integrals is precisely to remove these terms.

where the various contours are depicted on the figure (for more details see [19]). The field
theory limit of this relation produces, as usual, two identities, one at order O(1) and one
at O(α′). At leading order, the graphs cancel in virtue of the antisymmetry of the Ġ
propagator; no contact terms contribute, as they higher order in α′. At the next order,
the phases produce α′ factors and the contact terms do contribute. We focus on graphs
involved in the Jacobi identity which flips leg 1 past the origin of the J cycles on the outer
boundary, which is the analogue of the one-loop case we studied above.

The graphs (a) in figure 15 come from the contours I(1234| · |·) and I(234|1|·), likewise
(b) comes from I(2341| · |·) and I(234| · |1) and (c) from I(234| · |1) and I(234|1|·). An
inspection of the phases in eq. (5.2) at order α′ shows that correct inverse propagators
are reconstructed to cancel the propagators connected at the origin of the J cycles, as
in, e.g., eq. (4.20). This results in three contact-term graphs, which are equal, apart from
the important fact that they have different definitions of the loop momenta. Therefore,
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they cannot cancel by a BCJ mechanism and another contribution from the monodromy
relation is needed to remove those graphs.15

The J cycles come to the rescue here, once again. Although we have not computed
this coefficient from first principle, if the contact they give rise to comes with a coefficient
1/2, in strict analogy with the one-loop case, the two types of contributions cancel each
other out term-by-term, at fixed loop momentum: the contact term (d) comes from Ja,1,
(e) from Jc,2, and (f) from Jc,1 and Ja,2. Each of these contact terms has the exact same
loop-momentum assignment as the graphs with canceled propagators pictured above on
figure 15.

Furthermore, one can see that no other region of the moduli space can produce the
corresponding terms. The cancellation therefore must happen in this way. In this sense
we have bootstrapped the field theory limit of the J contours from the knowledge that
the monodromy relations must be satisfied. The only ambiguity that could arise in this
bootstrap reasoning relates is the relative coefficient of Jc,1 and Ja,2 in the sum that cancels
the contribution I(234| · |1) + I(234|1|·) giving rise to the diagram (c). But this coefficient
does not play a role in the field theory limit (only the sum does) so it is guaranteed that
(c) and (g) cancel exactly.
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A Jacobi theta functions

Here we briefly summarize our conventions used to derive (2.3) and the following formulae.
We take the odd Jacobi theta function to be defined by:

ϑ1(z, τ) = 2q1/8 sin(πz)
∞∏
n=1

(1− qn)(1− qnw)(1− qnw−1), (A.1)

where w = e2iπz and q = e2iπτ is the nome. The first derivative in z evaluated at z = 0 is
then given by

ϑ′1(0, τ) = 2πη3(τ) = 2πq1/8
∞∏
n=1

(1− qn)3, (A.2)

where η(τ) is the Dedekind eta function. This leads to

ϑ1(z, τ)
ϑ′1(0, τ) = sin(πz)

π

∞∏
n=1

(1− qnw)(1− qnw−1)(1− qn)−1. (A.3)

15Remember that the relations hold at fixed loop-momentum.
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Taking a logarithm, performing a Taylor expansion in qn, and collecting constant terms
and those that only depend on τ into a function c(τ) gives

log ϑ1(z, τ)
ϑ′1(0, τ) = log(sin(πz))−

∞∑
n=1

∞∑
m=1

1
m
qnm(wm + w−m) + c(τ). (A.4)

This is finally summed to

log ϑ1(z, τ)
ϑ′1(0, τ) = log(sin(πz))− 2

∞∑
m=1

1
m

qm

1− qm cos(2πmz) + c(τ), (A.5)

which is the expression used in (2.3).
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