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1 Introduction

Infrared (IR) divergences present in the scattering matrix elements of gauge and gravita-
tional theories have long been known to physicists [1, 2], and numerous attempts in the
1970s and 1980s have been made to render the scattering matrix elements in such theories
IR finite.1 A key idea in these approaches is to use modified asymptotic states to define the
scattering matrix, wherein the charged external states are dressed with a coherent state
of soft (low energy) photons [3–9]. The results have since been extended to non-abelian
gauge theories in [10–14] and more recently to perturbative gravity in [15].

Although many may argue that there is no need for an IR finite S-matrix when the
inclusive cross-section is IR finite (this follows from the KLN theorem [16, 17]), advances in
our understanding of how the soft theorems of quantum field theories (QFTs) are related to
asymptotic symmetries have brought newfound appreciation for what the IR divergences
in the S-matrix elements signify (see [18] for a review, as well as [19–29]). Soft theorems
restrict the form of the scattering amplitude in the IR (low energy) sector of any consistent
QFT; more precisely, they imply that ifm particles in an (n+m)-point scattering amplitude
are soft (i.e. have parametrically low energy compared to the remaining n particles), the
S-matrix element necessarily has the form

An+m
m soft particles−−−−−−−−−→ SmAn, (1.1)

where Sm is the soft factor associated tom soft gauge particles.2 The soft factor is universal
in that it depends only on the quantum numbers of the external particles, but not on the
detailed interactions in the theory.

In exploring the connection between soft theorems and asymptotic symmetries, it was
discovered that rather than having one unique vacuum state [18], as is typically assumed in

1This issue only arises in theories that do not confine and in which there exist massless charged asymp-
totic states.

2Sm could be either a c-number, as is the case for the leading soft photon and soft graviton theorems;
a matrix, as is the case for the leading soft gluon theorem; or a differential operator, as is in the case of the
subleading soft photon, gluon, and graviton theorems.
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quantum field theories, there is in fact an infinite degeneracy of vacua in such theories pa-
rameterized by the soft particles [30–32].3 Scattering processes that respect the asymptotic
symmetries of the theory involve in- and out-states residing in different vacua, and it is
the violation of precisely this fact in standard QFT that leads to infrared divergences. As
was shown in [19, 33], one can obtain an IR finite S-matrix after incorporating this infinite
degeneracy and the corresponding in- and out-states are the coherent states constructed
in [3, 5–9].

Although this infinite degeneracy in gauge (and gravitational) theories may seem sur-
prising at first, its existence can be deduced from a careful but straightforward application
of the covariant phase space formalism [34–38] to gauge theories. Here, the Hilbert space
of the theory is constructed by a careful study of the symplectic form of the theory on
asymptotic Cauchy slices of spacetime (on which the S-matrix is defined). Of particular
import are the boundary terms (i.e. terms localized on the boundary of the Cauchy slice) in
the symplectic form, which are responsible for the infinite vacuum degeneracy mentioned
earlier. In this paper, we will perform an analysis of the phase space of gauge theories,
study the corresponding Hilbert space, including the infinite-dimensional vacuum degener-
acy, and derive a factorization formula for the scattering matrix element between any two
vacuum states in the Hilbert space.

The outline of our paper is as follows. In section 2, we will review the relevant aspects
of symplectic geometry and the covariant phase space formalism. In section 3, we initiate
a careful methodical application of the formalism to generic non-abelian gauge theories.
We then focus to the case of four-dimensional gauge theories near I ± and construct the
Dirac brackets associated to the gauge fields. In section 4, we will canonically quantize the
classical theory and construct the Hilbert space. Finally, in section 5, we will explore the
vacuum sector of the theory and derive a Ward identity that allows us to relate an n-point
scattering amplitude involving arbitrary in- and out-vacuum states to the standard one
evaluated in QFT. We then show how the leading soft gluon theorem involving a single
soft gluon as well as multiple consecutive soft gluons are consequences of the Ward identity.

1.1 Summary of the paper

Because some of the derivations are rather tedious, we present in this section a (detailed)
summary of the important results in this paper.

Starting in section 3, we study non-abelian gauge theories with a gauge group G and
associated Lie algebra g on a globally hyperbolic d-dimensional manifold M. The fields
of the theory are a gauge field A and a generic set of matter fields Φi transforming in
finite-dimensional irreducible representations Ri of G (with i = 1, . . . , N). We assume that
the theory does not confine so the semi-classical analysis performed here generalizes to the
quantum theory as well. After setting up our conventions, in section 3.1 we use the covariant
phase space formalism (reviewed in section 2.2) to construct the phase space Γ (reviewed
in section 2.1) of the theory on a generic Cauchy slice Σ ofM. This includes establishing
an explicit coordinatization of Γ and the construction of the symplectic form Ω, which

3This vacuum degeneracy is not the degeneracy associated to the θ-vacuum.
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is a closed non-degenerate two-form on Γ. The main results for this procedure are given
in (3.19) and (3.20). The symplectic form can be inverted to obtain the Poisson brackets
on the phase space. In section 3.2, we turn to a study of canonical transformations, which
are diffeomorphisms on the phase space that preserve (in the sense of the Lie derivative)
the symplectic form. Two types of canonical transformations are studied — large gauge
transformations and isometry transformations. Canonical transformations are generated
(in the sense of the Poisson bracket) on the phase space by so-called Hamiltonian charges.
The Hamiltonian charge for large gauge and isometry transformations are given in (3.25)
and (3.27) respectively.

Thus far, we have studied generic non-abelian gauge theories in generic spacetimes.
In section 3.3 and thereafter, we focus our attention to the special case of non-abelian
gauge theories with massless scalar matter in four-dimensional Minkowski spacetime. The
restriction to scalar matter is only for convenience, and all the central results of this paper
generalize with trivial modifications to spinning fields. To simplify all the relevant results
derived in sections 3.1 and 3.2 to this special case, we work in flat null coordinates (u, r, z, z̄)
where the metric of Minkowski spacetime takes the form

ds2 = −du dr + r2 dz dz̄. (1.2)

The particular Cauchy slices on which we construct our phase spaces are taken to
be I + and I −. These are asymptotic boundaries of the spacetime and are relevant to
consider if one is interested in the scattering of massless particles (which is our eventual
goal). These surfaces are located at r → ±∞ while keeping (u, z, z̄) fixed. Their boundaries
are located at u→ ∓∞ and are denoted by I ±∓ .

To describe the symplectic form on these surfaces, we define

Cz = C∂zC
−1 = Az

∣∣
I +
−

= Az
∣∣
I−+

N±z = C∂zN
±C−1 =

∫
du ∂uA

±
z

Â±z = A±z − C∂zC−1

φ±i = rΦi
∣∣
I±

,

(1.3)

where C ∈ G and N± ∈ g. The equality and flatness of Az|I +
−

and Az|I−+ is a natural
(though perhaps not necessary) requirement in order for the phase spaces on I + and
I − to be isomorphic, and this is explained in the last part of section 3.3.2. With these
definitions, the symplectic form on I ± is then given in (3.101) to be

ΩI±(X,Y) = 2
g2

∫
d2z tr

[
X
(
∂z∂z̄N

±C−1)Y(C)−Y
(
∂z∂z̄N

±C−1)X(C)
]

+ 2
g2

∫
du d2z tr

[
∂uX(Â±z )Y(Â±z̄ )− ∂uY(Â±z )X(Â±z̄ )

]
+

N∑
i=1

∫
du d2z

(
∂uX(φ±i)CTY(φ±i)− ∂uY(φ±i)CTX(φ±i)

)
.

(1.4)
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Each line in (1.4) depends on a different set of fields — the first line on the soft gauge
fields C and N±, the second on the hard gauge fields Â±z and the third on the matter fields
φ±i. This split in Ω implies that the phase space also factorizes into the form

Γ = Γ±A,soft × Γ±A,hard × Γ±1 × · · · × Γ±N , (1.5)

where Γ±i is the phase space of Φi. Inverting the symplectic form (1.4), we determine
in (3.110) the Dirac brackets to be

{
Â±az (u, z, z̄), Â±bw̄ (u′, w, w̄)

}
= −g

2

4 δ
ab sign(u− u′)δ2(z − w)

{
N±a(z, z̄), Cbc(w, w̄)

}
= − g

2

4πf
acdCbd(w, w̄) ln |z − w|2

{
N±a(z, z̄), N±b(w, w̄)

}
= − g2

8π2 f
abc
∫
d2y ln |z − y|2 ln |w − y|2∂y∂ȳN±c(y, ȳ){

φ±i(u, z, z̄), φ±j(u′, w, w̄)CT} = −1
2δ

ij1 sign(u− u′)δ2(z − w)

all others = 0. (1.6)

The Hamiltonian charges for large gauge and isometry transformations can now also be
determined in these variables (see (3.112) in main text) to be

Qε = 2
g2

∫
d2z εaCab∂z∂z̄N

±b + 2
g2 f

abc
∫
du d2z εaÂ±bz ∂uÂ

±c
z̄

+ 1
2

N∑
i=1

∫
du d2z εa

(
∂u(φ±i)CTT ai φ

±i − (φ±i)CTT ai ∂uφ
±i
)

Pf =
∫
du d2z f

( 2
g2∂uÂ

±a
z ∂uÂ

±a
z̄ +

N∑
i=1

∂u(φ±i)CT∂uφ
±i
)

JY = 2
g2

∫
d2z Y zCazC

ab∂z∂z̄N
±b

+ 1
g2

∫
du d2z Y z

(
∂zÂ

±a
z̄

←→
∂u Â

±a
z − u∂z

(
∂uÂ

±a
z ∂uÂ

±a
z̄

))
+ 1

2

N∑
i=1

∫
du d2z Y z

(
∂u(φ±i)CT∂zφ

±i + ∂z(φ±i)CT∂uφ
±i − u∂z

(
∂u(φ±i)CT∂uφ

±i
) )

+ c.c.. (1.7)

Here, Pf generates translations and JY generates Lorentz transformations. In flat null
coordinates these are infinitesimally generated by Killing vectors described in (3.40). We
then use the Dirac brackets in (1.6) to demonstrate that these charges indeed generate the
proper transformations on the fields (see (3.114)):

{Qε, ·} = −δε( · ), {Pf , ·} = −δf ( · ), {JY , ·} = −δY ( · ). (1.8)

Up until this point, all of our results have been strictly classical. In section 4, we
canonically quantize the above constructed phase space. In the process, Dirac brackets {·, ·}
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and complex conjugation on the phase space become quantum commutators −i[·, ·] and
taking the adjoint on the Hilbert space, respectively. Together, (1.6) and (1.7) imply that
C and N± commute with the translation charges, including the Hamiltonian of the theory.
In other words, these operators carry zero energy and thus span an infinite-dimensional
vacuum Hilbert space. The space of vacuum states is constructed in section 4.2 and we
show that it is spanned by a set of basis vectors satisfying

Cab(z, z̄)|U,±〉 = Uab(z, z̄)|U,±〉

N±a(z, z̄)|U,±〉 = − ig
2

4π

∫
d2y ln |z − y|2U ba(y, ȳ)Db

U(y,ȳ)|U,±〉,
(1.9)

where the ± label in the ket state indicates whether it is a state on I + or I −, and
the DU(y,ȳ) operator is defined in (3.87) and more throughly explored in appendix B. As it
turns out, a generic vacuum state is not Lorentz invariant, thereby violating an assumption
oftentimes made in standard QFT. However, the |U = 1〉 vacuum is Lorentz invariant, and
we shall assume throughout this paper that this is the standard perturbative QFT vacuum.
For each fixed vacuum, the rest of the hard modes act on it to create a tower of energetic
states, thereby creating a Fock space (see section 4.1), whose annihilation operators are
given in (4.5). Having constructed the isomorphic Hilbert spaces on I + and I −, it is
natural to consider the overlap of states in the two Hilbert spaces. This quantity is known
as the scattering matrix, and is computed via the LSZ reduction formula in QFT. We
discuss this construction in section 4.3.

Finally, in section 5 we arrive at the main result of our paper. We use the large gauge
charge Qε and the definition of Cz to derive an elegant factorization formula that relates
the S-matrix evaluated in any in- and out-vacuum states to the one evaluated in standard
QFT (i.e. in the U = 1 vacuum). To be precise, in section 5.1, we show

〈U,+ |T{Oi11 (p1) · · · Oinn (pn)}|U ′,−〉

= δ(U − U ′)R1(U(z1, z̄1))i1j1 · · ·Rn(U(zn, z̄n))injn
〈
Oj11 (p1) · · · Ojnn (pn)

〉
U=1

.
(1.10)

Here, the left-hand-side denotes an n-point scattering amplitude evaluated in a U ′ and U
in- and out-vacuum respectively, and ik denotes the flavor indices (with respect to G) of
the particles created/annihilated by the operator Ok. The last term on the right-hand-
side denotes the standard QFT S-matrix. Because we know how to compute this using
Feynman diagrams, it follows we can determine the S-matrix element between any two
arbitrary vacua. Indeed, we conclude this paper in sections 5.2 and 5.3 by verifying the
above formula in two special cases — the first in which one gluon is taken to be soft and the
second in which two gluons are taken to be soft consecutively. In these cases, the leading
soft gluon theorem implies that the scattering amplitude undergoes a soft factorization,
and we show that it is a consequence of the factorization formula above.

– 5 –



J
H
E
P
0
3
(
2
0
2
1
)
0
1
5

2 Preliminaries

2.1 Symplectic geometry

In this section, we review the relevant aspects of symplectic geometry that will be important
in this paper. For a wonderful and more detailed exposition, we refer the reader to Chapter
20 of [39]. A more recent review can also be found in [38].

2.1.1 Conventions

We start by establishing our conventions for differential forms on a symplectic manifold Γ.
The space of functions on Γ is denoted by F(Γ), and a vector field X ∈ TΓ can be viewed
as the map X : F(Γ) → F(Γ) defined by X(f) = iXdf , where d and iX are the exterior
derivative and interior product on Γ. This is a derivative map so it satisfies the product
rule X(fg) = X(f)g + fX(g). The Lie bracket of two vectors is defined as

[X,Y](f) ≡ X(Y(f))−Y(X(f)). (2.1)

A q-form is a completely antisymmetric q-linear map Cq : TΓ⊗ · · · ⊗ TΓ→ F(Γ) that
takes q vectors as inputs, and we denote it by Cq(X1, . . . ,Xq). The space of q-forms on Γ
is Ωq(Γ), and in the special case where Ω ∈ Ω2(Γ) and Θ ∈ Ω1(Γ), the following identities
hold:

iXΩ(Y) = Ω(X,Y) (2.2)
dΘ(X,Y) = X(Θ(Y))−Y(Θ(X))−Θ([X,Y]) (2.3)

dΩ(X,Y,Z) = X(Ω(Y,Z))−Ω([X,Y],Z) + (cyclic in X,Y,Z). (2.4)

Lastly, the Cartan homotopy formula provides a very useful way of determining the
Lie derivative of a differential form:

£X = diX + iXd. (2.5)

We will use boldface letters throughout this paper to denote forms and vectors on Γ, in an
effort to distinguish them from spacetime forms and vectors.

2.1.2 Definitions

A phase space or symplectic manifold (Γ,Ω) is a smooth manifold Γ on which there exists
a closed non-degenerate two-form Ω known as the symplectic form:

Closed: dΩ = 0
Non-degenerate: iXΩ = 0 =⇒ X = 0 ∀ X ∈ TΓ.

(2.6)

Assuming H2(Γ) = 0,4 there exists a one-form Θ known as the symplectic potential such
that

Ω = dΘ =⇒ Ω(X,Y) = X(Θ(Y))−Y(Θ(X))−Θ([X,Y]), (2.7)
4If H2(Γ) 6= 0, then Θ is not globally defined. In such cases, auxilliary variables are required to describe

the action of the theory (which is related to the integral of Θ). This is the case for the Wess-Zumino terms
in the WZW model.
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where the implication follows from (2.3). The symplectic potential is defined only up to a
closed one-form, but if we also assume H1(Γ) = 0 so that all closed one-forms are exact,5 it
follows that Θ is defined only up to an exact one-form. As we will see in the section 2.1.3,
such shifts in Θ are related to canonical transformations.

We can think of Ω as a map Ω : TΓ→ Ω1(Γ) defined via

Ω(X) ≡ −iXΩ =⇒ Ω(X)(Y) = −Ω(Y)(X) = −Ω(X,Y). (2.8)

Since Ω is non-degenerate, there exists an inverse map Ω−1 : Ω1(Γ) → TΓ such that
Ω−1(Ω(X)) = X and Ω(Ω−1(C1)) = C1. The inverse map can also be thought of as an
antisymmetric bilinear map acting on one-forms defined as

Ω−1(C1,C′1) ≡ C1(Ω−1(C′1)) = −C′1(Ω−1(C1)), (2.9)

and we can easily derive the properties

Ω−1(Ω(X),Ω(Y)) = −Ω(X,Y), Ω(Ω−1(C1),Ω−1(C′1)) = −Ω−1(C1,C′1). (2.10)

2.1.3 Canonical transformations

Given the geometry of the phase space, diffeomorphisms on Γ that preserve the symplectic
form Ω are special and are known as symplectomorphisms (in the math community) or
canonical transformations (in the physics community). Infinitesimally, these are generated
by Hamiltonian vector fields Xf satisfying

£Xf
Ω = 0. (2.11)

Using (2.5) and the fact that Ω is closed (and that H1(Γ) = 0), we have

iXf
Ω = −df, f ∈ F(Γ). (2.12)

The function f is known as the Hamiltonian charge corresponding to Xf , and because
Ω is non-degenerate, the above equation defines f uniquely up to an additive constant.
This implies that there is then an invertible map between Hamiltonian vector fields and
functions on Γ modulo constant shifts. Using (2.8), the map can be described as

Ω(Xf ) = df ⇐⇒ Xf = Ω−1(df). (2.13)

This leads to the useful sequence of identities

Xf (g) = −Xg(f) = Ω(Xf ,Xg) = −Ω−1(df,dg) = −iXf
iXgΩ. (2.14)

Note that while Ω is preserved under canonical transformations, Θ is not. Rather, us-
ing (2.5) and (2.12), we find

£Xf
Θ = d(iXf

Θ− f). (2.15)

Thus, under canonical transformations, Θ transforms as a U(1) gauge potential and Ω is
its “gauge-invariant” field strength.

5If H1(Γ) 6= 0, then the holonomies of Θ around the non-contractible curves become relevant in the
quantum theory as vacuum angles. An example of this is the θ-vacuum angle in non-abelian gauge theories.
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2.1.4 Poisson bracket

Let Xf and Xg be two Hamiltonian vector fields corresponding to functions f and g

respectively. Then [Xf ,Xg] is also a Hamiltonian vector field since

£[Xf ,Xg ]Ω = [£Xf
,£Xg ]Ω = 0. (2.16)

Consequently, by (2.13) there exists a function h such that Ω([Xf ,Xg]) = dh. To determine
h, first act on both sides with iY to obtain Y(h) = Ω(Y, [Xf ,Xg]). Then by closedness of
Ω and (2.4), we have

dΩ(Xf ,Xg,Y) = 0 =⇒ Ω(Y, [Xf ,Xg]) = Y(Ω(Xf ,Xg)) = Y(h). (2.17)

Since this is true for an arbitrary vector field Y, it follows that the Hamiltonian charge
corresponding to [Xf ,Xg] is (up to an additive constant)

h = Ω(Xf ,Xg) ≡ −{f, g}, (2.18)

where we have defined the Poisson bracket as

{f, g} ≡ −Ω(Xf ,Xg) = Ω−1(df,dg). (2.19)

Closedness of Ω implies that the Poisson bracket satisfies the Jacobi identity

{f, {g, h}}+ {h, {f, g}}+ {g, {h, f}} = 0. (2.20)

2.2 Covariant phase space formalism

The dynamics of a system is typically described in terms of a Lagrangian, and the covariant
phase space formalism is a recipe that allows us to construct the phase space of a theory
given the Lagrangian. In this section, we will review the essential and relevant elements of
this formalism.

2.2.1 Conventions

We start by establishing our conventions for differential forms on spacetime. Let (M, g)
be a d-dimensional globally hyperbolic Lorentzian spacetime described by coordinates xµ.
We then adopt the conventions

(Cq ∧ C ′q′)µ1···µq+q′ = (q + q′)!
q!q′! (Cq)[µ1···µq(C

′
q′)µq+1···µq+q′ ]

(iξCq)µ1···µq−1 = ξµ(Cq)µµ1···µq−1

(dCq)µ1···µq+1 = (q + 1)∂[µ1(Cq)µ2···µq+1]

(∗Cq)µ1···µd−q = 1
q!εµ1···µd−q

ν1···νq(Cq)ν1···νq ,

(2.21)

where [ · · · ] denotes the weighted antisymmetrization of indices, e.g. ω[µν] = 1
2!(ω

µν −ωνµ),
and ε is the volume form defined via ε0···d−1 =

√
− det g. Vectors and forms in spacetime

– 8 –
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are not in boldface to distinguish them from the vectors and forms on the phase space Γ.
In this paper, we will assume that Hd−1(M) = 0 so all closed (d− 1)-forms are also exact.

A q-form can be integrated over a q-dimensional submanifold Σq ofM. Of particular
importance in this paper are the cases q = d− 1 and q = d− 2. In this case,∫

Σd−1
Cd−1 = −

∫
Σd−1

dΣµ (∗Cd−1)µ,
∫

Σd−2
Cd−2 = −1

2

∫
Σd−2

dSµν (∗Cd−2)µν , (2.22)

where dΣµ and dSµν are the area elements on the surfaces Σd−1 and Σd−2, respectively.
For general q-forms, Stokes’ theorem is∫

Σq
dCq−1 =

∮
∂Σq

Cq−1, (2.23)

where the orientation of ∂Σq is outward-directed with respect to Σq. For the special case
of q = d and q = d− 1, we can also express Stokes’ theorem as∫

Σd
ε∇µCµ =

∮
∂Σd

dΣµC
µ,

∫
Σd−1

dΣµ∇νC [µν] = 1
2

∮
∂Σd−1

dSµν C
µν , (2.24)

where ∇µ is the covariant derivative with respect to the metric g, and has the standard
definition when acting on tensors. To define its action more generally, it is convenient to
work with the vielbein eAµ , which satisfies gµν = ηABe

A
µ e

B
ν . The introduction of the vielbein

(which is necessary if there are spinors in the theory) introduces a new symmetry of the
theory, namely local Lorentz symmetry. The basic object in a local field theory is a field
ϕr, which transforms in some representation of the local Lorentz symmetry, with r, s, etc.
being the vector (internal space) indices in this representation. The covariant derivative ∇
is then defined to act via6

∇µϕr ≡ ∂µϕr + 1
2ωµρσ(Σρσ)rsϕs, ωµ

ρ
σ ≡ Γρµσ − e

ρ
A∂µe

A
σ , (2.25)

where ωµρσ is the spin connection and Σρσ are the generators of the Lorentz algebra in the
representation under which ϕ transforms. They satisfy the Lorentz algebra7[

Σµν ,Σρσ] = −
(
gµρΣνσ − gνρΣµσ − gµσΣνρ + gνσΣµρ). (2.26)

It is useful to note that the commutator of covariant derivatives takes a simple form

[∇µ,∇ν ]ϕr = 1
2Rµνρσ(Σρσ)rsϕs, (2.27)

where R is the Riemann tensor

Rρσµν ≡ ∂µωνρσ − ∂νωµρσ + ωµ
ρ
των

τ
σ − ωνρτωµτ σ. (2.28)

In the rest of this paper, in order to simplify our notation, we will suppress the internal
space indices on the fields.

6It is important to remember that we are assuming that our fields ϕ carry internal space indices only.
If they carry additional tensor indices (with respect to GL(d,R)) then we must modify (2.25) to include
the (standard) Christoffel symbol terms. Alternatively, tensor indices may be converted to internal space
indices using the vielbein, after which (2.25) can be used.

7The generators in the vector and spinor representation are (Σµνvec)ρσ = δµρ g
νσ − δνρg

µσ and Σµνspin =
− 1

4 [γµ, γν ] respectively (γµ are the Dirac matrices with {γµ, γν} = −2gµν).
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2.2.2 Solution space

A field theory living on M is described in terms of dynamical fields ϕi and background
fields ψ̊I (i and I are discrete labels). The configuration space F is the space of all allowed
field configurations that are defined by imposing boundary conditions on the fields, e.g. we
can impose Neumann boundary conditions on the fields on all or part of ∂M that allows
for finite energy flux through those boundaries. Note that each allowed field configuration
is a point in F.

In the next section, we will elevate a subspace of F to a phase space, so all quantities
on the phase space will be induced from those on F. For this reason, we will use the same
conventions for vectors and forms on F as we did for those on the phase space in section 2.1.
A vector X ∈ TF is defined as

X =
∑
i

∫
M
εXi

(
∇µ1···µnϕ

i ; gµν ,∇µ1···µnRµνρσ,∇µ1···µnψ̊
I ; x

) δ

δϕi
. (2.29)

where for all n ≥ 0, ∇µ1···µn ≡ ∇(µ1 · · · ∇µn) is the symmetric covariant derivative.8 Note
that in general, the vector components Xi are functions of the dynamical and background
fields, their derivatives, the metric, the Riemann tensor and its derivatives, and may also
have an explicit dependence on the coordinates. The vector acts on functions via

X(f) =
∑
i

∫
M
εXi

(
∇µ1···µnϕ

i ; gµν ,∇µ1···µnRµνρσ,∇µ1···µnψ̊
I ; x

) δf

δϕi
, (2.30)

and we refer to X(f) as the “variation of f with respect to X.”
The dynamics of a system can oftentimes be conveniently described by a Lagrangian

form L, which is a d-form onM and a function on F, i.e.

L = L
(
∇µ1···µnϕ

i ; gµν ,∇µ1···µnRµνρσ,∇µ1···µnψ̊
I
)
∈ Ωd(M)×F(F). (2.31)

Note that in a local theory, the Lagrangian does not have an explicit dependence on the
coordinates. The Lagrangian form is related to the more familiar Lagrangian density L via

L = εL
(
∇µ1···µnϕ

i ; gµν ,∇µ1···µnRµνρσ,∇µ1···µnψ̊
I
)
. (2.32)

The Lagrangian density is invariant under local Lorentz transformations, which implies

∑
i

∞∑
n=0

Πµ1···µn
i

(
Σµν
i

)
µ1···µn

ν1···νn∇ν1···νnϕ
i = 0, Πµ1···µn

i ≡ ∂L
∂(∇µ1···µnϕ

i) . (2.33)

We now consider the variation of L with respect to a vector X ∈ TF. Using the explicit form
of the Lagrangian (2.32) and the fact that X acts only on dynamical fields, we can write

X(L) = εX(L) = ε
∑
i

∞∑
n=0

Πµ1···µn
i ∇µ1 · · · ∇µnX(ϕi). (2.34)

8Antisymmetrized covariant derivatives simplify to the Riemann tensor (2.27), so without loss of gener-
ality all derivatives can be symmetrized.
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We simplify this further using “integration by parts”-style manipulations (IBP) to remove
all the derivatives from X(ϕi),9 and the total derivative terms obtained in the process can
then be absorbed into a boundary term. To see this explicitly, note that we can use IBP
on the n ≥ 1 terms in (2.34) to obtain

X(L) = ε
∑
i

ΠiX(ϕi) + ε∇µ1

∑
i

∞∑
n=1

Πµ1···µn
i ∇µ2 · · · ∇µnX(ϕi)

− ε
∑
i

∞∑
n=1
∇µ1Πµ1···µn

i ∇µ2 · · · ∇µnX(ϕi).
(2.35)

Applying IBP again to the third term and noting Πµ1···µn
i is symmetric in its indices, we get

X(L) = ε
∑
i

ΠiX(ϕi) + ε
∑
i

∞∑
n=1
∇µ1∇µ2Πµ1···µn

i ∇µ3 · · · ∇µnX(ϕi) (2.36)

+ ε∇µ1

∑
i

∞∑
n=1

(
Πµ1···µn
i ∇µ2 · · · ∇µnX(ϕi)−∇µ2Πµ1···µn

i ∇µ3 · · · ∇µnX(ϕi)
)
.

Continuing in this fashion until the only terms involving a derivative of X(ϕi) are total
derivatives, we get

X(L) = ε
∑
i

∞∑
n=0

(−1)n∇µ1···µnΠµ1···µn
i X(ϕi)

− ε∇µ1

∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµ1···µn
i ∇µk+1···µnX(ϕi),

(2.37)

where we used Πµ1···µn
i to symmetrize the derivatives. In the language of differential forms,

this result can be written as

X(L) =
∑
i

EiX(ϕi) + dθ(X), (2.38)

where

∗ Ei = −
∞∑
n=0

(−1)n∇µ1···µnΠµ1···µn
i (2.39)

[∗θ(X)]µ =
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i ∇µk+1···µnX(ϕi). (2.40)

Note that the equations of motion (i.e. the Euler-Lagrange equations) of the theory are

Ei = 0. (2.41)

The subspace of F defined by the equations above is known as the solution space S. The
tangent bundle TS consists of vector fields X satisfying the linearized equations of motion,
i.e.

X ∈ TS ⇐⇒ X(Ei) = 0. (2.42)

We shall henceforth work exclusively on the solution space, and field configurations that
live in S are said to be on-shell.

9This implies replacing a(Db)→ D(ab)− (Da)b for any derivative operator D and any quantities a, b.
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2.2.3 Symplectic form

To elevate the solution space to a phase space, we need to construct the symplectic form.
Note that X(L) is a d-form onM but a function on S. Consequently, θ is a (d−1)-form
onM and a one-form on S, i.e.

θ ∈ Ωd−1(M)× Ω1(S). (2.43)

θ is known as the symplectic potential current density. Note that (2.38) defines θ only up
to a closed and hence exact form (since Hd−1(M) = 0) in spacetime, i.e.

θ → θ + dκ, κ ∈ Ωd−2(M)× Ω1(S). (2.44)

Next, we define the symplectic current density as the exterior derivative of θ on S, i.e.

ω = dθ ∈ Ωd−1(M)× Ω2(S). (2.45)

By construction, ω is closed in S. However, it is also closed inM. To see this, note that
from (2.38) and (2.41),

dθ(X) = X(L). (2.46)

By using the definition of exterior derivative (2.3), we find as promised

dω(X,Y) = X(Y(L))−Y(X(L))− [X,Y](L) = 0. (2.47)

The pre-symplectic potential and pre-symplectic form are obtained by integrating θ and ω,
respectively, over a Cauchy slice Σ (which is a (d − 1)-dimensional spacelike submanifold
ofM whose domain of dependence is the entire spacetimeM):

Θ̃Σ(X) =
∫

Σ
θ(X), Ω̃Σ(X,Y) =

∫
Σ
ω(X,Y), (2.48)

where the orientation of Σ is taken so that the normal vector to Σ is future-directed. Note
that

Θ̃Σ ∈ Ω1(S), Ω̃Σ = dΘ̃Σ ∈ Ω2(S), (2.49)

so they are candidates for the symplectic potential and symplectic form, respectively. By
construction, the pre-symplectic form is closed, but it is not generically non-degenerate. We
can remedy this by factoring S into the degeneracy subspaces of Ω̃Σ as follows. For each
X0 ∈ ker Ω̃Σ and a point ϕ ∈ S, we construct the curve in S to which X0 is tangent. The
equivalence relation ∼ on S is defined by identifying all the points on this curve, and the
phase space is then Γ ≡ S/∼. By construction, the restriction of the pre-symplectic form
to Γ is both closed (but not necessarily exact) in Γ and non-degenerate, so the symplectic
potential and form on Γ are

ΘΣ = Θ̃Σ
∣∣
Γ, ΩΣ = Ω̃Σ

∣∣
Γ. (2.50)

A useful way to define Γ is to impose a gauge condition of the form

G[ϕ] = 0, (2.51)
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which uniquely maps each equivalence class of ∼ to a particular representative element.
To be precise, the gauge condition must be chosen so that for every ϕ ∈ S, there exists
a unique solution ϕ such that ϕ ∼ ϕ and G[ϕ] = 0. In this way, we can define Γ as a
subspace of S. Often, a convenient choice of the gauge condition can dramatically simplify
calculations, and we will make such a convenient choice when we study gauge theories in
flat spacetime in section 3.3.

This completes the construction of the phase space on a Cauchy slice Σ. Having
constructed the phase space and symplectic form, we can now use the ideas developed in
section 2.1 to discuss canonical transformations and the Poisson bracket. We recall here
two formulae regarding canonical transformations that will be useful in the remainder of
this paper:

ΩΣ(Y,Xf ) = Y(f [Σ]),
{
f [Σ], g[Σ]

}
Σ = −ΩΣ(Xf ,Xg), (2.52)

where f [Σ] is the Hamiltonian charge generating Xf on a given Σ, and {·, ·}Σ is the
associated Poisson bracket on Σ.

2.2.4 Isometries

In a local field theory, there is a special class of transformations on the phase space known
as isometries. These act on the fields of the theory via the Lie derivative:

Xξ =
∫
M
ε£ξϕ

i δ

δϕi
, (2.53)

where
(£ξg)µν = 2∇(µξν) = 0, £ξψ̊

I = 0. (2.54)

The action of the Lie derivative on the dynamical fields is

£ξϕ
i ≡ ξµ∇µϕi + 1

2∇[µξν]Σ
µν
i ϕi, (2.55)

where we recall that Σµν
i is the Lorentz generator in the representation under which ϕi

transforms. A similar formula holds for the background fields as well.
Vector fields ξ satisfying the first of the two equations in (2.54) are known asKilling vec-

tor fields, and they generate isometry transformations. The second equation then imposes
a further restriction and only selects those Killing vectors that preserve all the boundary
fields. Generically, vector fields that satisfy (2.53) cannot depend on the dynamical fields,
so Y(ξ) = 0 for all Y ∈ TΓ. It follows that [Y,Xξ] = 0.10 From this, we have

ω(Y,Xξ) = Y(θ(Xξ))−Xξ(θ(Y)) = Y(θ(Xξ))− diξθ(Y)− iξdθ(Y), (2.56)

where we used Xξ(θ(Y)) = £ξθ(Y) since θ(Y) is a local function of the fields (see (2.40)).
Using (2.38) with the on-shell condition (2.41), we have

ω(Y,Xξ) = Y(θ(Xξ)− iξL)− diξθ(Y), (2.57)
10If f is a local function of the fields, then Xξ(f) = £ξf , implying that [Y,Xξ](f) = £Y(ξ)f = 0. The

result can then be trivially extended to non-local functions that are integrals of local functions.
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and integrating this over Σ, we get

ΩΣ(Y,Xξ) = Y(Hξ[Σ])−
∮
∂Σ
iξθ(Y), Hξ[Σ] =

∫
Σ

(θ(Xξ)− iξL). (2.58)

Thus, we see by (2.52) that up to an extra term boundary, isometry transformations are
canonical transformations with Hamiltonian charge Hξ[Σ], i.e. the isometry charge. This
means that if we wish to have a phase space on which isometry transformations are canoni-
cal, additional restrictions that eliminate the boundary term must be imposed on the fields.

To finish this section, we will determine the explicit form of the isometry charge.
Using (2.22), the isometry charge can be written as

Hξ[Σ] = −
∫

Σ
dΣµ (∗θ(Xξ)− ∗iξL)µ. (2.59)

Using (2.40) and (2.55), the integrand can be written as

(∗θ(Xξ)− ∗iξL)µ = Aµνξν + Bµνρ∇[νξρ], (2.60)

where

Aµν ≡ gµνL+
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i ∇ν∇µk+1···µnϕ

i

Bµνρ ≡ 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i

(
Σνρ
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i.

(2.61)

Note that Bµνρ is antisymmetric in its last two indices. As we show in appendix A.1, Aµν

and Bµνρ satisfy on-shell the identities

∇µAµν +RνµρσBµρσ = 0, A[µν] +∇ρBρµν = 0. (2.62)

We now define the following quantities

Tµν ≡ A(µν) − 2∇ρB(µ|ρ|ν), (∗Hξ)µν ≡ (2B[µν]ρ − Bρµν)ξρ. (2.63)

Tµν is symmetric by construction, and we define Tµν to be the stress tensor of the theory.
Indeed, to show that it is conserved, note that by (2.62) we have

∇µTµν = ∇µA(µν) − 2∇µ∇ρB(µ|ρ|ν)

= −RνµρσBµρσ + [∇µ,∇ρ]Bρµν + 1
2 [∇µ,∇ρ]Bνµρ.

(2.64)

Using (2.27) to write the covariant derivative commutators in terms of the Riemann tensor
and then utilizing the symmetries of the Riemann tensor, the above expression vanishes.

Using the identities (2.62), we can now express (2.60) as

(∗θ(Xξ)− ∗iξL)µ = Tµνξν +∇ν(∗Hξ)µν . (2.65)

Substituting this into (2.59), we obtain

Hξ[Σ] = −
∫

Σ
dΣµ T

µνξν +
∮
∂Σ

Hξ. (2.66)

The first term is the well-known form of the isometry charge, but the calculation here shows
that there is an additional boundary contribution to the charge. Of course, it is important
to remember that the charge generates the appropriate transformations if and only if the
boundary term in (2.58) vanishes on the phase space.
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2.2.5 Boundary ambiguities

We noted previously in (2.44) that θ is not uniquely fixed by the Lagrangian and is am-
biguous up to an exact form. This implies a corresponding ambiguity in the symplectic
potential and form:

ΘΣ(X)→ ΘΣ(X) +
∮
∂Σ
κ(X), ΩΣ(X,Y)→ ΩΣ(X,Y) +

∮
∂Σ

dκ(X,Y). (2.67)

This ambiguity only modifies the symplectic structure by a boundary term. Strictly speak-
ing, as κ is not fixed by the Lagrangian, we need extra information to determine it and
define the phase space uniquely. Without such additional input, it is natural to consider
the most general κ allowed by locality. However, while such a generalization is interesting,
it is outside the scope of this paper, and we leave this for future work.

2.2.6 Dependence on Σ

Thus far, the phase space we constructed depends on the choice of Cauchy surface Σ. To
study the dependence of the symplectic potential and symplectic form on Σ, let Σ and Σ′

be two different Cauchy slices such that they, together with a time-like surface B, form the
boundary of a region V, as shown in the figure.

T
" iii.

B

Integrating (2.46) and (2.47) over the region V and using Stokes’ theorem, we find

ΘΣ(X)−ΘΣ′(X) = −ΘB(X) + X
(∫
V
L

)
(2.68)

ΩΣ(X,Y)−ΩΣ′(X,Y) = −ΩB(X,Y), (2.69)

where the sign for ΘΣ′ and ΩΣ′ differs from the others since its outward-directed normal
vector with respect to V is past-directed rather than future-directed. Due to the contri-
bution from the boundary B in the equation above, the symplectic form on Σ and Σ′ are
in general not equal, which means the deformation Σ→ Σ′ is not a canonical transforma-
tion. Since the Hamiltonian charges for canonical transformations are constructed using
the symplectic form, this implies that generically Hamiltonian charges on Σ and Σ′ are not
equal, i.e. they are not conserved.
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3 Classical gauge theories at null infinity

In this section, we will utilize the covariant phase space formalism to construct the phase
space of gauge theories on null infinity. We can then use the ideas developed in section 2.1
to construct the Poisson bracket and canonical transformations.

Let us begin by introducing some Lie algebra notations. We are interested in non-
abelian gauge theories with compact semi-simple gauge group G associated to a Lie algebra
g. It is possible to choose a basis of generators Xa on g such that

[Xa, Xb] = fabcXc, (3.1)

where fabc ∈ R are known as structure constants and satisfy the Jacobi identity

fd[abf c]de = 0. (3.2)

Note that the sum over repeated indices is implied (because indices are raised and lowered
with δab, we do not distinguish between raised and lowered indices). A general element of
the Lie algebra can be expanded in this basis as ε = εaXa ∈ g, and elements in the identity
component of the Lie group G0 are obtained by exponentiating Lie algebra elements, i.e.
g = exp ε ∈ G0.

Finite-dimensional unitary irreducible representations of G (and consequently g) are de-
noted by Ri : G → V ∗i (i labels the representation), where Vi is a vector space with elements
Φi. The generators in a representation Ri are denoted by T ai = Ri(Xa), and they satisfy

(T ai )CT = −T ai , trVi
[
T ai T

b
i

]
= −Tiδab, (3.3)

where Ti > 0 is known as the index of the representation, and the superscript “CT” is
used instead of † to denote the conjugate transpose since the latter is reserved later for the
adjoint of a quantum operator.11 The trace in the definition above depends on the index
of the representation, but we can define a representation-independent trace on g via

tr
[
XaXb] = − 1

Ti
trVi

[
T ai T

b
i

]
= δab. (3.4)

A particularly important representation is the adjoint representation, in which the
matrix elements of the generators are

(ta)bc ≡
[
adj(Xa)

]bc = −fabc. (3.5)

Note that these generators satisfy (ta)T = −ta, as is required by (3.3) and the fact that
fabc ∈ R. Furthermore, normalizing these generators so that Tadj = 1, we have

facdf bcd = δab. (3.6)

Lastly, we observe that for all g ∈ G, we have

adj(g)T = adj(g)−1, Ri(g−1)T ai Ri(g) = [adj(g)]abT bi . (3.7)
11Assuming the Lie algebra is real, i.e. εa ∈ R, (3.3) implies Ri(g)CT = Ri(g)−1, which means our

representation is indeed unitary.
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3.1 The phase space

The configuration space F of a gauge theory is labeled by a Lie algebra-valued one-form
gauge field A = Aaµ dxµ ⊗ Xa and a set of matter fields Φi ∈ Vi, i = 1, . . . , N . The field
strength F is defined as

F = dA+A ∧A = 1
2
[
∂µA

a
ν − ∂νAaµ + fabcAbµA

c
ν

]
dxµ ∧ dxν ⊗Xa. (3.8)

It is convenient to define a gauge covariant derivative D that acts on adjoint valued q-forms
Cq and matter fields as

DCq ≡ dCq +A ∧ Cq − (−1)qCq ∧A, DµΦi ≡ ∇µΦi +Ri(Aµ)Φi. (3.9)

Note that D has the properties

D2Cq = F ∧ Cq − Cq ∧ F, [Dµ, Dν ]Φi = 1
2RµνρσΣρσ

i Φi +Ri(Fµν)Φi. (3.10)

We consider theories in which the Lagrangian density L is a polynomial function of the
field strength, matter fields, and their symmetrized gauge covariant derivatives, so that the
spacetime d-form Lagrangian L is12

L = εL
(
Dα1···αnFµν , Dα1···αnΦi, Dα1···αn(Φi)CT

)
, (3.11)

where for all n ≥ 0, Dα1α2···αn ≡ D(α1 · · ·Dαn) denotes the symmetrized gauge covariant
derivatives. Note that L only depends implicitly on the gauge field A through the field
strength and covariant derivative, and we assume for simplicity that L is independent of
background fields (but there is implicit dependence on the metric).

The Lagrangian is invariant under the gauge transformations

A→ gAg−1 + gdg−1, Φi → Ri(g)Φi, g ∈ G. (3.12)

Infinitesimal gauge transformations are generated by the vector field

Xε =
∫
M
ε

[
−Dµε

a δ

δAaµ
+

N∑
i=1

(
−εa(Φi)CTT ai

δ

δ(Φi)CT + c.t.
)]
∈ TF, (3.13)

where c.t. denotes the conjugate transposed terms. Thus, the variation with respect to Xε is

Xε(A) = −Dε, Xε(Φi) = Ri(ε)Φi, (3.14)

and the invariance of the Lagrangian under infinitesimal gauge transformations implies
Xε(L) = 0.

Now, the variation of the Lagrangian with respect to X ∈ TF in general takes the
form

X(L) = tr
[
X(A) ∧ EA

]
+

N∑
i=1

(
(EΦ
i )CTX(Φi) + c.t.

)
+ dθ(X). (3.15)

12This forbids Chern-Simons type terms in the Lagrangian, so they must be considered separately.
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As we derive in appendix A.2, if we define

Πα1···αn;µν ≡ ∂L
∂(Dα1···αnFµν) , Πα1···αn

i ≡ ∂L
∂(Dα1···αnΦi) , (3.16)

then the equations of motion are

(∗EA)µ = −2
∞∑
n=0

(−1)nDνDα1···αnΠα1···αn;µν

−
∞∑
n=1

n∑
k=1

(−1)k
[
Dα2···αkΠµα2···αn;αβ , Dαk+1···αnFαβ

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dαn···αkΠµα2···αn

i T ai Dαk+1···αnΦi + c.t.
)
Xa

∗(EΦ
i )CT = −

∞∑
n=0

(−1)nDα1···αnΠα1···αn
i ,

(3.17)

and the symplectic potential current density is

[∗θ(X)]µ = −2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µνX(Aν)]

+
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβX(Dαk+1···αnFαβ)

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i X(Dαk+1···αnΦi) + c.t.
)
.

(3.18)

The equations of motion EA = EΦ
i = 0 define the solution space S, and vectors in the

tangent bundle TS satisfy the equations X(EA) = X(EΦ
i ) = 0.

Using (2.45) and (2.3), it follows that the symplectic current density is

[∗ω(X,Y)]µ = −2
∞∑
n=0

(−1)ntr [X(Dα1···αnΠα1···αn;µν)Y(Aν)]

+
∞∑
n=1

n∑
k=1

(−1)ktr
[
X(Dα2···αkΠµα2···αn;αβ)Y(Dαk+1···αnFαβ)

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
[
X(Dα2···αkΠµα2···αn

i )Y(Dαk+1···αnΦi) + c.t.
]

− (X↔ Y).

(3.19)

Integrating θ and ω over a Cauchy slice Σ ofM yields

Θ̃Σ(X) =
∫

Σ
θ(X), Ω̃Σ(X,Y) =

∫
Σ
ω(X,Y). (3.20)

The next step is to determine the kernel of the pre-symplectic form. In general, this depends
on the details of the Lagrangian (3.11). However, gauge invariance implies the existence of
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at least one class of vectors in the kernel. Letting X = Xε be the generator of infinitesimal
gauge transformations in (3.13), we derive explicitly in appendix A.3 that

Θ̃Σ(Xε) =
∮
∂Σ

tr [εQ] , Ω̃Σ(Y,Xε) =
∮
∂Σ

tr [εY(Q)] , (3.21)

where

(∗Q)µν = 2
∞∑
n=0

(−1)nDα1···αnΠα1···αn;µν . (3.22)

Importantly, note that the pre-symplectic form is written as an integral over the boundary
∂Σ, so if ε|∂Σ = 0 then Xε ∈ ker Ω̃Σ. This in turn means that we must identify solutions
that differ by such gauge transformations. Exponentiating this, we find that on the phase
space we must identity

(A,Φi) ∼
(
gAg−1 + gdg−1, Ri(g)Φi

)
, g

∣∣
∂Σ = 0. (3.23)

We refer to such gauge transformations as small gauge transformations, and solutions that
differ by small gauge transformations are identified on the phase space.

If additional degeneracies exist, then we must identify fields related via these additional
degeneracies as well. Letting ∼ denote all such equivalences, the phase space for gauge
theories is then Γ = S/∼, and the symplectic potential and symplectic form on the phase
space are ΘΣ = Θ̃Σ|Γ and ΩΣ = Ω̃Σ|Γ, respectively.

3.2 Canonical transformations

Having constructed the symplectic form on Σ in the previous subsection, we now proceed
with a discussion on canonical transformations. In this paper, we will consider two such
classes of canonical transformations.

Large Gauge Transformations (LGTs). These are gauge transformations generated
by a vector field Xε from (3.13), with ε satisfying the conditions Y(ε) = 0 for all Y ∈ TΓ,
i.e. ε is field independent, and ε|∂Σ 6= 0. Then (3.21) implies

ΩΣ(Y,Xε) = Y
(∮

∂Σ
tr [εQ]

)
= Y(ΘΣ(Xε)), £XεΘΣ(Y) = 0. (3.24)

It follows from (2.14) that LGTs are canonical, and the associated Hamiltonian charge is
by (2.15)

Qε[Σ] = ΘΣ(Xε) =
∮
∂Σ

tr [εQ] . (3.25)

Using (2.14), (2.19), and (3.14), this charge generates LGTs on the phase space as

{
Qε[Σ], A

}
Σ = Dε,

{
Qε[Σ],Φi}

Σ = −Ri(ε)Φi. (3.26)
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Isometry transformations. The Hamiltonian charge for isometry transformations is
given in (2.58). This can be evaluated using the methods described in section 2.2.4.
The calculation is almost identical, but given the special form of the gauge theory La-
grangian (3.11), the boundary term in the isometry charge takes a special form. We refer
the reader to appendix A.4 for the detailed computation, and will simply claim here that
the isometry charge is

Hξ[Σ] = −
∫

Σ
dΣµ T

µνξν +
∮
∂Σ

Hξ −QiξA[Σ], (3.27)

where Tµν and Hξ are defined as in (2.63) with the definitions for the tensors Aµν and
Bµνρ being

Aµν = gµνL − 2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µρF νρ]

+
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβDνDαk+1···αnFαβ

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
[
Dα2···αkΠµα2···αn

i DνDαk+1···αnΦi + c.t.
]

(3.28)

Bµνρ = 1
2

∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβ(Σνρ)αk+1···αn;αβ

α′k+1···α
′
n;α′β′Dα′

k+1···α′nFα
′β′

]

+ 1
2

N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
[
Dα2···αkΠµα2···αn

i (Σνρ
i )αk+1···αn

α′k+1···α
′
nDαk+1···αnΦi + c.t.

]
.

Note that these tensors (and therefore the first two terms in (3.27)) are gauge invariant.
Furthermore, the last term in (3.27) is a boundary term, so while it is invariant under small
gauge transformations, it is not invariant under large gauge transformations (see (3.30)).
Therefore, in addition to the usual “bulk” stress tensor term and a familiar boundary term
(cf. (2.66)), the isometry charge (3.27) also contains the large gauge charge (3.25) derived
in the previous subsection! Using (2.14), (2.19), and (3.14), this charge generates isometry
transformations on the phase space (assuming that the last term in (2.58) vanishes) as{

Hξ[Σ], A
}

Σ = −£ξA,
{
Hξ[Σ],Φi}

Σ = −£ξΦi. (3.29)

Charge algebra. Recall from our discussion in section 2.1.3 that the Hamiltonian
charges corresponding to the canonical transformations are defined only up to an addi-
tive constant. Therefore, the large gauge and isometry charges given in (3.25) and (3.27)
can in fact be shifted by an arbitrary constant. To fix this constant, note that given our
current charge definitions, we can use the Poisson brackets (3.26) and (3.29) to determine
that the charges satisfy the algebra{

Qε[Σ], Qε′ [Σ]
}

Σ = Q[ε,ε′][Σ]{
Hξ[Σ], Hξ′ [Σ]

}
Σ = H[ξ,ξ′][Σ]{

Hξ[Σ], Qε[Σ]
}

Σ = Qξ(ε)[Σ].
(3.30)
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As changing the charges by an additive constant necessarily changes this algebra, we will
fix the additive constant so that (3.30) is satisfied. This completely fixes the large gauge
and isometry charges to be (3.25) and (3.27).

3.3 Gauge theories in flat spacetime

The central quantity of interest in high energy physics is the scattering amplitude (or
S-matrix) in our universe, which for many purposes can be approximated as a four-
dimensional Minkowski spacetime M = R1,3. In a quantum theory, the S-matrix is
a unitary map between the in- and out-Hilbert spaces that are naturally defined on
Σ− = I − ∪ i− and Σ+ = I + ∪ i+, respectively. The two Hilbert spaces are isomet-
ric (i.e. they are isomorphic and have identical norms), and classically this implies the
existence of a symplectomorphism S (i.e. an isomorphism preserving the symplectic form)
between the phase spaces on Σ− and Σ+.

For the rest of the paper, we will be exploring the structure and properties of this
S-matrix. Motivated by the reasons given above, we shall restrict ourselves to studying
theories obeying the assumptions

1. We study gauge theories onM = R1,3 and construct the phase space on the Cauchy
surfaces Σ+ = I + ∪ i+ and Σ− = I − ∪ i−.

2. The phase spaces on Σ+ and Σ− are symplectomorphic, i.e. ΩΣ+ = ΩΣ− .

The assumptions described above are very general and apply to many theories of interest.
However, in order to keep our discussion more focused, we shall also make the assumption

3. All asymptotic states/particles are massless.

This allows us to disregard i± in our discussion and focus exclusively on null infinity I ±,
since only massive particles enter and exit the spacetime from i±. The absence of massive
particles in the far past and future implies that there is no energy flux/excitations through
these boundaries, so the fields (or more precisely, the field strengths) are all frozen on i±,
i.e. X(ϕ)|i± = 0. Thus, we will for the rest of the paper refer to our Cauchy slices as I ±

for convenience, but it is important to remember that we always implicitly mean Σ±. Most
notably, the only boundaries of Σ± are I ±∓ , and does not include I ±± .

3.3.1 Coordinates

To proceed further, we need to establish a coordinate system on R1,3. We shall work in flat
null coordinates (u, r, z, z̄), which are related to standard Cartesian coordinates by

xµ(u, r, z, z̄) = r

2

(
1 + |z|2 + u

r
, z + z̄,−i(z − z̄), 1− |z|2 − u

r

)
, (3.31)

so that the metric is
ds2 = ηµν dxµ dxν = −du dr + r2 dz dz̄. (3.32)

The Penrose diagram of Minkowski spacetime is shown in figure 1. Timelike curves begin
and end on the spacelike surfaces i− and i+, respectively, null curves begin and end on the

– 21 –



J
H
E
P
0
3
(
2
0
2
1
)
0
1
5

"""

÷i÷÷÷÷÷÷÷÷i÷×
i

Figure 1. Penrose Diagram of Minkowski spacetime.

null surfaces I − and I +, respectively, and spacelike curves end on the timelike boundary
i0 (spatial infinity).

We now want to focus on the null boundaries I ±,13 which are located at r = ±∞
while keeping (u, z, z̄) fixed. These hypersurfaces have the topology R×S2, and the future-
directed area element is

dΣµ
∣∣
I±

= −r
2

2 δ
µ
u du d

2z. (3.33)

The null generator along R is parameterized by u whereas the S2 is parameterized by the
stereographic coordinates (z, z̄). A useful feature of this coordinate system is that the point
on the celestial S2 labeled by (z, z̄) on I + is antipodal to point with the same label on I −.
The boundaries of I ± are located at u =∞ (I ±+ ) and u = −∞ (I ±− ). These all have the
topology of S2, and the outward-directed area element on I ±∓ (with respect to I ±) is

dSµν
∣∣
I±∓

= ∓2r2δ[µ
u δ

ν]
r d

2z. (3.34)

The isometries of Minkowski spacetime are translations and Lorentz transformations,
and their action on Cartesian coordinates is defined as xµ → Λµνxν + aµ with ΛT ηΛ = η.
We find it convenient to parameterize the translation parameter as aµ = xµ(u0, r0, z0, z̄0).

13The remaining boundaries (i± and i0) in these coordinates are described in appendix A.1.1 of [40], but
they will not play a role in this paper.
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Similarly, the Lorentz matrix that generates proper orthochronous Lorentz transformations
will be parameterized as

Λµν(P ) = −1
2tr

[
PCTσµPσ̄ν

]
, P =

(
d c

b a

)
∈ SL(2,C)/Z2, (3.35)

where σµ = (1, σi) and σ̄µ = (1,−σi). It can easily be verified that Λ(P ) satisfies the
defining property of a proper orthochronous Lorentz matrix, as well as the identity

Λ(P )Λ(P ′) = Λ(PP ′). (3.36)

The parameterization chosen here highlights the homomorphism between the four-
dimensional proper orthochronous Lorentz group SO+(1, 3) and the two-dimensional global
conformal group SL(2,C)/Z2. Using the parameterizations described above, we can deter-
mine Poincaré transformations of the flat null coordinates to be

(u, r, z) tr−→
(
u+ u0 + rr0

r + r0
|z − z0|2, r + r0,

rz + r0z0
r + r0

)
(3.37)

(u, r, z) LT−−→

u |τ ′(z)|
1 + u

4r
|τ ′′(z)|2
|τ ′(z)|2

,
r

|τ ′(z)|

(
1 + u

4r
|τ ′′(z)|2

|τ ′(z)|2

)
, τ(z)− τ ′(z)2

τ ′′(z)

u
2r
|τ ′′(z)|2
|τ ′(z)|2

1 + u
4r
|τ ′′(z)|2
|τ ′(z)|2

 ,
where

τ(z) = az + b

cz + d
. (3.38)

When we restrict ourselves onto I ±, these transformations drastically simplify to

(u, z) tr−→
(
u+ u0 + r0|z − z0|2, z

)
, (u, z) LT−−→

(
u|τ ′(z)|, τ(z)

)
. (3.39)

Thus, four-dimensional Lorentz transformations act as Mobiüs transformations (equiva-
lently, global conformal transformations) on the coordinates (z, z̄) on I ±. This is why
these coordinates are very useful for studying holography in flat spacetime, where the goal
is to recast four-dimensional scattering amplitudes (which are Lorentz covariant) as two-
dimensional correlators in a putative conformal theory living on (a transverse cut of) I ±.

Infinitesimally, translations and Lorentz transformations are respectively generated by
the Killing vectors ξtr

f and ξLT
Y , which are

ξtr
f = f∂u + ∂z∂z̄f∂r −

1
r

(∂z̄f∂z + ∂zf∂z̄)

ξLT
Y = 1

2∂zY
z(u∂u − r∂r) + Y z∂z −

u

2r∂
2
zY

z∂z̄ + c.c.,
(3.40)

where

f(z, z̄) = χ0(1 + |z|2) +χ1(z+ z̄)− iχ2(z− z̄) +χ3(1−|z|2), Y z = a+ bz+ cz2, (3.41)

with χµ ∈ R and a, b, c ∈ C. The Poincaré algebra then takes the form[
ξtr
f , ξ

tr
f ′
]

= 0,
[
ξLT
Y , ξtr

f

]
= ξtr

(Y z∂z− 1
2∂zY

z+c.c.)f ,
[
ξLT
Y , ξLT

Y ′
]

= ξLT
[Y,Y ′]. (3.42)
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3.3.2 Boundary conditions

Returning to our discussion of gauge theories in Minkowski spacetime, we want to define
the configuration space F. This requires us to choose appropriate boundary conditions
for the gauge and matter fields on I ± and i0.14 We obtain these by imposing finiteness
of energy-momentum and angular-momentum flux through I ±, which are the isometry
charges (3.27) corresponding to translations (ξ = ξtr

f ) and Lorentz transformations (ξ =
ξLT
Y ) respectively. To be precise, we define

Pf [Σ] ≡ Hξtr
f

[Σ], JY [Σ] ≡ HξLT
Y

[Σ], (3.43)

and require that
Pf [I ±] <∞, JY [I ±] <∞. (3.44)

Example I: scalar field. Consider a free massless complex scalar field Φ, which is
described by the Lagrangian density

L = −∇µΦCT∇µΦ. (3.45)

Using (2.61) and (2.63), we find that

Tµν = ∇µΦCT∇νΦ +∇νΦCT∇µΦ− gµν∇ρΦCT∇ρΦ, (∗Hξ)µν = 0. (3.46)

We can now determine the isometry charge for translations and Lorentz transformations
on I ± using (2.66) and (3.40). In particular, the (null) energy flux through I ± is

Pf=1[I ±] =
∫
du d2z lim

r→±∞
r2∂uΦCT∂uΦ. (3.47)

This is finite only if ∂uΦ = O(r−1) at large |r|, leading to the following asymptotic behavior
for the scalar field near I ±:15

Φ(u, r, z, z̄) = 1
r
φ±(u, z, z̄) + o(r−1) near r = ±∞. (3.48)

It is obvious then that the charge can also be written as

Pf=1[I ±] =
∫
du d2z ∂uφ

±CT∂uφ
±. (3.49)

Similarly, the angular-momentum flux through I ± can be computed by substitut-
ing (3.46) and ξLT

Y from (3.40) into (2.66). In particular, we have

JY z=1[I ±] = 1
2

∫
du d2z

(
∂uφ

±CT∂zφ
± + ∂zφ

±CT∂uφ
±), (3.50)

14One also needs boundary conditions on i± to define F, but these details will not be relevant to us.
15We adopt the notation where f(r) = o(g(r)) means lim

|r|→∞

f(r)
g(r) = 0, while f(r) = O(g(r)) means

lim
|r|→∞

f(r)
g(r) <∞.
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where we used (3.48). Finiteness of this charge requires that the integral over u be finite,
which is satisfied assuming16

φ±(u, z, z̄) = o(1) near u = ±∞. (3.51)

One can then verify that with these boundary conditions all the isometry charges are
finite. In addition, any phase space defined with these boundary conditions also has isom-
etry transformations as canonical transformations since (3.51) implies that the last term
in (2.58) vanishes, as required!

This completely describes all the relevant boundary conditions for a free scalar field.
In fact, these boundary conditions generalize to interacting massless scalar fields as well.
More specifically, if all the interactions in the Lagrangian are irrelevant, then the above
fall-offs continue to hold because irrelevant interaction terms do not affect the infrared, or
long-distance, physics. Relevant deformations of a free Lagrangian typically renormalize
the mass of the field and will thus end up violating Assumption (3). For this reason, we
shall assume that all interactions are irrelevant so that (3.48) and (3.51) are valid for all
scalar fields.

Example II: gauge field. Consider a non-abelian gauge field described by the Yang-
Mills Lagrangian

L = − 1
4g2 tr [FµνFµν ] . (3.52)

In this case, we use (3.28), (2.63), and (3.22) to determine

Tµν = 1
g2 tr

[
FµρF νρ −

1
4g

µνFρσF
ρσ
]
, (∗Hξ)µν = 0, (∗Q)µν = − 1

g2F
µν . (3.53)

Using (3.27), (3.25), and (3.40), the energy flux through I ± is derived to be

Pf=1[I ±] = 2
g2

∫
du d2z lim

r→±∞
tr [FuzFuz̄]±

1
g2

∫
d2z lim

u→∓∞
lim

r→±∞
r2 tr [AuFur] . (3.54)

The first term is finite only if Fuz = O(1) at large |r|, which naturally suggests

Az(u, r, z, z̄) = A±z (u, z, z̄) + o(1) near r = ±∞. (3.55)

The boundary conditions for the remaining components of the gauge field, as well as the
large |u| fall-offs of the gauge field, can be determined by examining the angular-momentum
flux. For instance, using (3.27), (3.25), and (3.40) again, we have

JY z=1[I ±] = 1
g2

∫
du d2z lim

r→±∞
tr
[
Fuz

(
r2Fur + Fzz̄

)]
± 1
g2

∫
d2z lim

u→∓∞
lim

r→±∞
r2 tr [AzFur] .

(3.56)

The first term is finite at large |r| only if Fur = O(r−2), so it is natural to impose Ar =
O(r−2) and Au = O(r−1) at large |r|. Since we already determined that Az = O(1) at

16Strictly speaking, finiteness of the charge imposes the slightly weaker condition φ± = O(1) at large |u|.
However, the constant piece of φ± is associated to soft scalar modes, which is beyond the scope of this paper.
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large |r| above, this also implies that the second term in (3.54) is finite. Furthermore, as in
the case of the scalar field, we also require the integral over u to be finite. The first term
immediately implies we should have

A±z (u, z, z̄) = O(1) near u = ±∞. (3.57)

Then, finiteness of the last term in (3.56) requires that the coefficient of r−2 in the large
r expansion of Fur should be finite at large |u|. As with the scalar field, these bound-
ary conditions also ensure that the boundary term in (2.58) vanishes so that isometry
transformations are indeed canonical!

To summarize, the large |r| fall-offs for the components of the gauge field are

Au(u, r, z, z̄) = O(r−1)
Ar(u, r, z, z̄) = O(r−2)
Az(u, r, z, z̄) = A±z (u, z, z̄) + o(1).

(3.58)

As with the scalar field, these fall-offs generally hold for interacting theories as well. Indeed,
gauge invariance prohibits the presence of any relevant interaction terms. Following the
same procedure as above, we can determine the boundary fall-offs for all the fields in
the theory near I ±. Although our results are completely general, we shall assume for
simplicity that all matter fields Φi are scalars so the preceding discussion above will suffice.

Gauge condition. As described in the paragraph below (2.50), we need to impose a
gauge condition to describe the phase space as a subspace of the solution space S. The
gauge choice we adopt is

Au = 0, Ar
∣∣
u=0 = 0. (3.59)

Before proceeding, we need to verify that this is indeed a good gauge condition. To be
precise, we need verify that every equivalence class of (3.23) contains a unique solution
that satisfies the gauge condition. This means we need to show that for every solution
(Ā, Φ̄i) ∈ S, there exists a unique g ∈ G such that

gĀug−1 + g∂ug−1 = 0, (gĀrg−1 + g∂rg−1)
∣∣
u=0 = 0, g

∣∣
I±∓

= 0. (3.60)

It is clear that this system of first order differential equations has a unique solution. The
first equation can be solved up to an integration constant c1(r, z, z̄). Substituting this
solution into the second equation yields a first order differential equation for c1(r, z, z̄),
which in turn is solvable up to an integration constant c2(z, z̄). The final condition is then
used to uniquely solve for c2(z, z̄), thus completing the proof. Upon imposing this gauge,
the allowed LGTs on Γ are now generated by g ≡ g(z, z̄) ∈ G.

Boundary condition on i0. Finally, to complete our discussion of the configuration
space, we need to describe the boundary conditions for the fields near spatial infinity.
In particular, we need to choose boundary conditions so that Assumption (2) holds.
From (2.69) with Σ = Σ+,Σ′ = Σ−, and B = i0, we see that Σ+ is symplectomorphic
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to Σ− only if Ωi0 = 0. The simplest way to achieve this is to require that the gauge and
matter fields induced on i0 vanish, i.e.17

A
∣∣
i0

?= 0, Φi
∣∣
i0

?= 0. (3.61)

These are the usual boundary conditions assumed in field theories, but they are actually too
strong for our purposes. In fact, (3.61) is not preserved under LGTs, so they preclude the
existence of LGTs in the phase space. The non-existence of LGTs would be problematic,
as the presence of infrared divergences in QFTs has been shown to be intimately related
to LGTs [19–29, 33].

Instead, we propose to include all boundary conditions that are large gauge equivalent
to (3.61) at i0, so that we have

A
∣∣
i0

= CdC−1 =⇒ F
∣∣
i0

= 0, Φi
∣∣
i0

= 0, C ≡ C(z, z̄) ∈ G. (3.62)

Here, C is restricted to depend only on (z, z̄) since we are working in the gauge (3.59),
where the allowed LGTs are generated by g(z, z̄) ∈ G. This extended phase space then
allows for LGTs by construction. Furthermore, this extended phase space is obtained from
the previous phase space by an LGT, and since LGTs are canonical transformations, the
vanishing of the symplectic form Ωi0 = 0 is preserved. This implies by (2.69) that the
extended phase space remains symplectomorphic, so Assumption (2) is satisfied.

It is important to remember that (3.62) is a constraint on the phase space. In the
theory of symplectic geometry (equivalently, see Dirac’s formulation of constrained phase
spaces [41]), it is generically not possible to impose constraints on a phase space while
simultaneously preserving the invertibility of the symplectic form. Oftentimes, additional
“gauge conditions” (i.e. second class constraints) are required. These gauge conditions are
determined in the manner described in the paragraph below (2.49), and as we shall see, we
will have to explicitly impose them in section 3.3.4.

3.3.3 Symplectic structure on I±

The fact that the fields fall off on I ±, as is evidenced by (3.48) and (3.58), greatly simplifies
the symplectic structure there. This is because derivatives and products of fields fall off
faster than the fields themselves, so terms in the Lagrangian involving too many derivatives
or fields do not contribute on I ±. Indeed, as we will now demonstrate, only the quadratic
term contributes.

First, it is useful to separate the terms in the Lagrangian that contribute on I ± from
those that do not by decomposing the Lagrangian as

L = LYM + Lmat, LYM = − 1
2g2 tr [F ∧ ∗F ] , Lmat =

∑
i

Lkin
i + Linter, (3.63)

where LYM is the pure Yang-Mills Lagrangian, g the gauge field coupling constant, and
Lmat the part of the Lagrangian that includes the matter kinetic terms Lkin

i and the
17Note that (3.61) fixes three of the four components of the gauge field to zero, while the remaining

(normal) component is fixed by Gauss’ law.
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interaction terms Linter. The precise structure of the matter kinetic terms depends on the
Lorentz spin of the field, but since we are assuming for simplicity that all matter fields
are scalars, we have18

Lkin
i = εLkin

i , Lkin
i = −(DµΦi)CT(DµΦi). (3.64)

Since we are planning to demonstrate that only quadratic terms contribute, and Linter

only contains terms that are cubic order or higher, we will not need to worry about it in
the limit Σ→ I ±.

Using the decomposition (3.63), the equations of motion for the gauge field is by (3.17)

D ∗ F = g2 ∗ Jmat, (3.65)

where the one-form current Jmat is covariantly conserved, i.e. D∗Jmat = 0, and is explicitly
given by

(Jmat)µ = 2
∞∑
n=0

(−1)nDνDα1 · · ·Dαn(Πmat)α1···αn;νµ

−
∞∑
n=1

n∑
k=1

(−1)k
[
Dα2 · · ·Dαk(Πmat)µα2···αn;αβ , Dαk+1 · · ·DαnFαβ

]
(3.66)

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
[
Dα2 · · ·Dαk(Πmat

i )µα2···αnT ai Dαk+1 · · ·DαnΦi + c.t.
]
Xa,

where Πmat is defined as in (3.16) with the replacement L → Lmat. Given the structure of
the matter Lagrangian (3.63) and (3.64), the matter current takes the form

(Jmat)µ =
N∑
i=1

((
DµΦi

)CT
T ai Φi − (Φi)CTT ai D

µΦi
)

+ (J inter)µ. (3.67)

where J inter is the contribution from Linter.
Likewise, we can determine from (3.18) and (3.20) that the symplectic potential on

I ± is

ΘI±(X) = − 1
g2

∫
I±

tr [X(A) ∧ ∗F ] +
N∑
i=1

(
Θkin
i

)
I±

(X) + Θinter
I± (X), (3.68)

where terms with the superscripts “kin” and “inter” are determined using (3.18) and (3.20)
with the replacement L → Lkin,Linter.

The contribution from the matter kinetic terms can be determined using the explicit
form of Lkin. Since we are assuming that Φi is a scalar field, applying (3.64) to (3.18) and
then integrating yields(

Θkin
i

)
I±

(X) =
∫

I±

(
X(Φi)CT ∗DΦi + ∗D(Φi)CTX(Φi)

)
= 1

2

∫
du d2z

[
X(φ±i)CT∂uφ

±i + ∂u(φ±i)CTX(φ±i)
]
,

(3.69)

18The matter kinetic terms in (3.64) contain some interactions as well, but we keep them to preserve
manifest gauge invariance.
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where we used (3.48) in the last equality.19 The contribution of Linter, on the other hand,
vanishes on I ±. To see this, we recall that all terms in Linter contain Lorentz invariant
products of three or more fields, and therefore so does θinter(X). This implies that each
term in the integrand θinter(X) falls off at least as fast as O(r−3). However, the integration
measure grows as O(r2), so upon integrating each term falls off at least as fast as O(r−1),
which means Θinter

I± (X) vanishes.
Thus, the full symplectic potential on I ± is

ΘI±(X) = − 1
g2

∫
I±

tr [X(A) ∧ ∗F ] +
N∑
i=1

(
Θkin
i

)
I±

(X). (3.70)

Using (2.3), it immediately follows that the symplectic form is Ω = ΩA
I± + Ωmat

I± , where

ΩA
I±(X,Y) = 1

g2

∫
I±

tr [X(A) ∧ ∗DY(A)− (X↔ Y)]

Ωmat
I± (X,Y) =

N∑
i=1

∫
du d2z

[
∂uX(φ±i)CTY(φ±i)− (X↔ Y)

]
.

(3.71)

Due to Assumption (2), the full symplectic form Ω on I + and I − are equal, which is why
it does not require a ± label. Furthermore, because the symplectic form is in block diagonal
form, the phase space on I ± factorizes into many components, one for each field, so that20

Γ = Γ±A × Γ±1 × · · · × Γ±N . (3.72)

For the rest of the section, we will focus on Γ±A, the gauge field component of the phase
space.

3.3.4 Constraints

Thus far in section 3.3.3, we have derived the symplectic form (3.71) without imposing
any constraints. We now want to impose the boundary condition (3.62) on the gauge field.
Since spatial infinity meets I + and I − at the boundaries I +

− and I −+ respectively, we
can write the constraints as

A
∣∣
I +
−

= A
∣∣
I−+

= CdC−1, C ≡ C(z, z̄) ∈ G. (3.73)

Once we impose this constraint, we claim that the gauge field symplectic form ΩA
I±

from (3.71) is no longer invertible in the constrained phase space. To see why, first write
out the symplectic form in flat null coordinates so that

ΩA
I±(X,Y) = 1

g2

∫
du d2z tr

[
∂uX(A±z )Y(A±z̄ ) + ∂uX(A±z̄ )Y(A±z )− (X↔ Y)

]
, (3.74)

19If X ∈ TS, then it is true that X(Φi) has the same fall-off near I± as Φi itself. However, for certain
types of transformations, e.g. symmetry transformations that are spontaneously broken, it is interesting
to consider vectors for which X(Φi) and Φi do not have the same fall-off. Such vectors play a role in the
subleading soft theorems and have been studied in [42–46], but we will not consider such cases in this paper.

20Note that while the full phase space Γ is the same on I + and I−, its factorization into components
is not.
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where we have used (3.58) to compute the large r limit. Next, it is convenient to introduce
the boundary fields

Cz ≡ A±z
∣∣
I±∓

= C∂zC
−1, N±z ≡

∫
du ∂uA

±
z , Â±z ≡ A±z − Cz, (3.75)

where Cz does not have a ± superscript since it is independent of I ± by (3.73). For
reasons that will become clear shortly, we refer to Cz and Nz as soft gauge modes and Âz
as hard gauge modes. In terms of these soft and hard modes, the symplectic form becomes

ΩA
I±(X,Y) = 2

g2

∫
du d2z tr

[
∂uX(Â±z )Y(Â±z̄ )− ∂uY(Â±z )X(Â±z̄ )

]
+ 1
g2

∫
d2z tr

[
X(N±z )Y(Cz̄) + X(N±z̄ )Y(Cz)− (X↔ Y)

]
.

(3.76)

Thus, we see that the symplectic form breaks up into two pieces, one involving the soft
modes (the second term) and one involving the hard modes (the first term), indicating that
the gauge field phase space further factorizes to

Γ±A = Γ±A,soft × Γ±A,hard. (3.77)

We now want to impose the constraint (3.75) and write the symplectic form in terms of C
and N±z . Substituting the constraint into the soft part of (3.76), we get after some algebra

ΩA,soft
I± (X,Y) = 1

g2

∫
d2z tr

[
X
(
C−1(DC

z N
±
z̄ +DC

z̄ N
±
z

))
Y(C)− (X↔ Y)

]
, (3.78)

where we have defined the gauge covariant derivative with respect to C so that for any M
in the adjoint representation we have

DC
z M ≡ ∂zM + [Cz,M ] = C∂z(C−1MC)C−1. (3.79)

We can now finally demonstrate why (3.78) is not invertible. Consider the vector

X±v =
∫
d2z tr

[
iDC

z v(z, z̄) δ

δN±z (z, z̄)
− iDC

z̄ v(z, z̄) δ

δN±z̄ (z, z̄)

]
, (3.80)

where v(z, z̄) ∈ g. It can easily be verified that for all Y ∈ TΓ±A,soft, we have

ΩA,soft
I± (Y,X±v ) = 0 =⇒ X±v ∈ ker ΩA,soft

I± . (3.81)

This means that the symplectic form (which is actually the pre-symplectic form in the
constrained system) is non-invertible, and we need to follow the procedure outlined in the
paragraph below (2.49). Introducing the equivalence X ∼ X + X±v on the tangent space,
we can exponentiate this to determine the equivalence on the phase space to be

N±z ∼ N±z + iDC
z v. (3.82)

Analogous to (3.59), we can define the soft phase space uniquely by imposing a gauge
condition that maps every element on Γ±A,soft to its equivalence class. From (3.82), N±z is
defined up to an arbitrary DC

z v(z, z̄) function, so we can fix our gauge by choosing

DC
z N

±
z̄ −DC

z̄ N
±
z = 0. (3.83)
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Using (3.79), we can rewrite this condition as

∂z
(
C−1N±z̄ C

)
− ∂z̄

(
C−1N±z C

)
= 0, (3.84)

and on S2 (which is topologically trivial), this equation has the unique solution

N±z = C∂zN
±C−1 = DC

z

(
CN±C−1), N±a = (N±a)∗. (3.85)

Substituting this back into (3.78), the soft part of our gauge field symplectic form becomes
in terms of the fields C and N±

ΩA,soft
I± (X,Y) = 2

g2

∫
d2z tr

[
X
(
∂z∂z̄N

±C−1)Y(C)− (X↔ Y)
]
. (3.86)

Unfortunately, even after imposing the equivalence relation (3.82), the symplectic form
ΩA,soft

I± is still not invertible. To demonstrate this, we will need to construct another vector
in TΓ±A,soft belonging to ker ΩA,soft

I± . To this end, we first introduce the derivative operator
Da
C(z,z̄), which is defined so that its action on C is given by

Da
C(w,w̄)C(z, z̄) = −XaC(z, z̄)δ2(z − w). (3.87)

The properties of this operator (and why it is a derivative operator) are more fully explored
in appendix B, but for our purposes here it suffices to know that such an operator exists.
Using (3.87), we can define the vector

X±ε,η =
∫
d2z

[
−
(
C(z, z̄)εC−1(z, z̄)

)a
Da
C(z,z̄) +

(
[N±(z, z̄), ε] + η

) δ

δN±(z, z̄)

]
, (3.88)

where ε, η ∈ g are independent of (z, z̄).21 It is straightforward to check that
ΩA,soft

I± (X±ε,η,Y) = 0 for any vector Y, which means that X±ε,η ∈ ker ΩA,soft
I± . We must

therefore introduce another equivalence relation X ∼ X + X±ε,η, and upon exponentiating
we obtain the phase space equivalence relation

(C,N±) ∼
(
Cg, g−1N±g + η

)
, (3.89)

where g ∈ G and η ∈ g are spacetime constants. Strictly speaking, to define the phase
space, we must quotient out by this equivalence relation by imposing a gauge condition.
However, it is more convenient for our purposes to not gauge fix but rather implicitly
identify the fields related via the equivalence (3.89), which means our results must be
invariant under (3.89).

3.3.5 Charges

Having constructed the phase space, we can turn to constructing the large gauge and
isometry charges.

21Actually, we only require η to obey ∂z∂z̄η = 0, but we will not consider this more general possibility.
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Large Gauge Transformations. The LGT charge was derived in (3.25) with Q being
defined in (3.22). Using the explicit form of the Lagrangian (3.63), we compute

Q = 1
g2 ∗ F +Qinter, (3.90)

where Qinter is the contribution from Linter. For the same reasons as those described
below (3.69), Qinter does not contribute on I ±, which means the charge generating LGTs
on I ± is simply

Qε[I ±] = 1
g2

∫
I±∓

tr [ε ∗ F ] = ∓ 1
g2

∫
d2z lim

u→∓∞
lim

r→±∞
r2tr [εFur] . (3.91)

Note that due to Assumption (2), the charges on I + and I − are equal, i.e. Qε[I +] =
Qε[I −], so we shall simply denote these by Qε. Recall from (3.30) that these charges
satisfy the charge algebra {

Qε, Qε′
}

= Q[ε,ε′], (3.92)

where as with the charges, we have dropped the subscript I + or I − from the Poisson
bracket due to Assumption (2).

It is illuminating to rewrite the above charge so that it consists of a soft part and a
hard part. Using Stokes’ theorem, we can rewrite the charge as

Qε = 1
g2

∫
I±

d
(
tr [ε ∗ F ]

)
= 1
g2

∫
I±

tr [Dε ∧ ∗F ] +
∫

I±
tr
[
ε ∗ Jmat

]
. (3.93)

Writing this explicitly in flat null coordinates and using the constraints (3.75) and (3.85),
we get

Qε = 2
g2

∫
d2z tr

[
C−1εC∂z∂z̄N

±
]

+ 1
2

∫
du d2z tr

[
ε

( 4
g2
[
Â±z , ∂uÂ

±
z̄

]
+ J±mat

u

)]
, (3.94)

where using (3.48), (3.58) and (3.67), we get

J±mat
u = lim

r→±∞
r2Jmat

u =
N∑
i=1

(
∂u(φ±i)CTT ai φ

±i − (φ±i)CTT ai ∂uφ
±i
)
Xa. (3.95)

Note that the contribution from J inter vanishes on I ± for the same reasons as those
outlined in the paragraph below (3.69).

As promised, we see that just like the phase space, the LGT charge decomposes into
a soft part (the first term in (3.94)) and a hard part (the second term in (3.94)), and we
denote the soft (hard) part by Q±soft

ε (Q±hard
ε ). Again, note that while the total LGT

charge does not depend on I + or I −, its decomposition into a soft and a hard part does.

Isometries. The isometry charge is given by (3.27) and (3.28) with the definitions (2.63).
Using the explicit form of the Lagrangian (3.63), we find that (∗Hξ)µν = 0 and

Tµν = 1
g2 tr

[
FµρFν

ρ − 1
4gµνFρσF

ρσ
]

+ Tmat
µν , (3.96)
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where Tmat
µν is the contribution from the matter fields. Given the structure of the matter

Lagrangian (3.63) and (3.64), this takes the form

Tmat
µν =

N∑
i=1

(
(DµΦi)CTDνΦi + (DνΦi)CTDµΦi − gµν(DρΦi)CTDρΦi

)
+ T inter

µν , (3.97)

and T inter
µν is the contribution from Linter. As was the case with the LGT charge, this

does not contribute on I ±. It follows upon substituting the explicit form of the Killing
vectors (3.40), the stress tensor (3.96), and the LGT charge (3.94) into (3.27) that the
isometry charges for translations and Lorentz transformations on I ± are

Pf [I ±] =
∫
dud2z f

( 2
g2 tr

[
∂uÂ

±
z ∂uÂ

±
z̄

]
+

N∑
i=1

∂u(φ±i)CT∂uφ
±i
)

JY [I ±] = 2
g2

∫
d2zY ztr

[
∂zC

−1C∂z∂z̄N
±
]

+ 1
g2

∫
dud2zY ztr

[
∂zÂ

±
z̄

←→
∂u Â

±
z −u∂z

(
∂uÂ

±
z ∂uÂ

±
z̄

)]
(3.98)

+ 1
2

N∑
i=1

∫
dud2zY z

(
∂u(φ±i)CT∂zφ

±i+∂z(φ±i)CT∂uφ
±i−u∂z

(
∂u(φ±i)CT∂uφ

±i
))

+c.c.,

where we have used the constraints (3.75) and (3.85), as well as the boundary fall-off con-
ditions (3.48) and (3.58), to extract the leading non-vanishing terms. By Assumption (2),
we have Pf [I +] = Pf [I −] and JY [I +] = JY [I −], so we shall simply denote them as
Pf and JY , respectively. These charges also satisfy the charge algebra (3.30). Explicitly,
using (3.42), we can work out{

Pf , Pf ′
}

= 0,
{
JY , Pf

}
= P(Y z∂z− 1

2∂zY
z+c.c.)f ,

{
JY , JY ′

}
= J[Y,Y ′]. (3.99)

Similarly, we can work out the action of these charges on the LGT charge to be{
Pf , Qε

}
= 0,

{
JY , Qε

}
= QY (ε). (3.100)

3.3.6 Dirac brackets

Recall from (3.71), (3.76), and (3.86) that the full symplectic form is given by

ΩI±(X,Y) = 2
g2

∫
d2z tr

[
X
(
∂z∂z̄N

±C−1)Y(C)−Y
(
∂z∂z̄N

±C−1)X(C)
]

+ 2
g2

∫
du d2z tr

[
∂uX(Â±z )Y(Â±z̄ )− ∂uY(Â±z )X(Â±z̄ )

]
+

N∑
i=1

∫
du d2z

(
∂uX(φ±i)CTY(φ±i)− ∂uY(φ±i)CTX(φ±i)

)
,

(3.101)

where the first line is the contribution from the soft part of the gauge field, the second line
that from the hard part of the gauge field, and the last line that from the scalar matter
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fields. We can now use this to determine the Dirac brackets (i.e. the Poisson brackets in the
constrained phase space) between the various fields. As we mentioned previously, the fact
that the symplectic form breaks up into the three above pieces means that the phase space
factorizes into the soft gauge sector, the hard gauge sector, and the matter sector. Thus,
the fields living in different sectors have vanishing Dirac brackets, and we can determine
the remaining Dirac brackets by studying each sector separately.

We begin by examining the soft sector of the symplectic form, given by the first line
of (3.86). To rewrite the trace in terms of explicit coordinates, it is convenient to work
in the adjoint representation and express C as a matrix in the adjoint representation
so that C(z, z̄) ≡ Cab(z, z̄). The components Cab however are not free and satisfy the
constraints (3.7), which are in explicit coordinates given by

(Cab)∗ = Cab, CacCbc = CcaCcb = δab, fdefCadCbeCcf = fdefCdaCebCfc = fabc.

(3.102)
Recalling that the representation-independent trace ′′tr′′ in (3.101) is negative the trace
in the adjoint representation (see (3.4) with the fact Tadj = 1), the first line of (3.101)
becomes

ΩA,soft
I± (X,Y) = 2

g2 f
bcd
∫
d2z

(
X(Cac∂z∂z̄N±d)Y(Cab)− (X↔ Y)

)
. (3.103)

While we are now able to determine the Dirac brackets using the equations from sec-
tion 2.1.4, given the special form of the above symplectic form, we instead employ an
alternative and quicker method, which we shall now describe.

In classical mechanics, the standard symplectic form is written in Darboux coordinates
and is given by

Ω(X,Y) = X(pi)Y(xi)−Y(pi)X(xi), (3.104)

and the associated Poisson brackets are {xi, pj} = δij , {xi, xj} = {pi, pj} = 0. Upon
comparison, we see that the symplectic form (3.103) is precisely of this form, albeit with
more complicated quantities in the place of pi and xi. It then immediately follows that{

Cab(z, z̄), Ccd(w, w̄)
}

= 0{
f bcdCac∂z∂z̄N

±d(z, z̄), f b′c′d′Ca′c′∂w∂w̄N±d
′(w, w̄)

}
= 0{

f bcdCac∂z∂z̄N
±d(z, z̄), Ca′b′(w, w̄)

}
= −g

2

2 δ
aa′δbb

′
δ2(z − w).

(3.105)

From these equations, we can extract the Dirac brackets between C and N± as well as N±

with itself. These are given by

{
N±a(z, z̄), Cbc(w, w̄)

}
= − g

2

4πf
acdCbd(w, w̄) ln |z − w|2

{
N±a(z, z̄), N±b(w, w̄)

}
= − g2

8π2 f
abc
∫
d2y ln |z − y|2 ln |w − y|2∂y∂ȳN±c(y, ȳ),

(3.106)

where in deriving them we used (3.2), (3.6), and (3.102) repeatedly.
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Next, we turn to the hard gauge sector of the gauge field symplectic form, which is given
by the second line of (3.101). This also has the same form as (3.104), so it immediately
follows that the only non-vanishing Dirac bracket is

{
∂uA

±a
z (u, z, z̄), Â±a′w̄ (u′, w, w̄)

}
= −g

2

2 δ
aa′δ(u− u′)δ2(z − w). (3.107)

Integrating in u and fixing the integration constant using the antisymmetry of the bracket,
we get {

Â±az (u, z, z̄), Â±bw̄ (u′, w, w̄)
}

= −g
2

4 δ
ab sign(u− u′)δ2(z − w). (3.108)

Likewise, we want to determine the Dirac bracket involving the matter fields from the third
line of (3.101). Note that the matter sector and the hard sector of the symplectic form have
exactly the same structure, so essentially repeating the same calculation as above we get

{
φ±i(u, z, z̄), φ±j(u′, w, w̄)CT} = −1

2δ
ij1 sign(u− u′)δ2(z − w), (3.109)

where 1 is the identity matrix in vector space associated to representation Ri. This com-
pletes our computation of all the Dirac brackets, and to summarize, we collect here all the
Dirac brackets on our constrained phase space determined in (3.106), (3.107), and (3.109):

{
Â±az (u, z, z̄), Â±bw̄ (u′, w, w̄)

}
= −g

2

4 δ
ab sign(u− u′)δ2(z − w)

{
N±a(z, z̄), Cbc(w, w̄)

}
= − g

2

4πf
acdCbd(w, w̄) ln |z − w|2

{
N±a(z, z̄), N±b(w, w̄)

}
= − g2

8π2 f
abc
∫
d2y ln |z − y|2 ln |w − y|2∂y∂ȳN±c(y, ȳ){

φ±i(u, z, z̄), φ±j(u′, w, w̄)CT} = −1
2δ

ij 1 sign(u− u′)δ2(z − w)

all others = 0. (3.110)

For future use, we also compute the Dirac brackets involving the constrained fields Cz and
N±z . Using (3.75) and (3.85) and substituting them into (3.110), we get{

Caz , C
b
w

}
=
{
Caz , C

b
w̄

}
= 0{

Caz , N
±b
w

}
= − g

2

4π
Cac(z, z̄)Cbc(w, w̄)

(z − w)2{
Caz̄ , N

±b
w

}
= g2

2 δ
abδ2(z − w){

N±az , N±bw
}

= 0{
N±az , N±bw̄

}
= g2

2 f
abcCcd(w, w̄)N±d(w, w̄)δ2(z − w)

− g2

8π2 f
dec
∫
d2y

Cad(z, z̄)Cbe(w, w̄)
(z̄ − ȳ)2(w − y)2 N±c(y, ȳ).

(3.111)

Using the brackets (3.110) and (3.111), we can now verify that (3.94) and (3.98) indeed
generate the appropriate canonical transformations on the phase space. First, we write
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the charges out in the adjoint representation as

Qε = 2
g2

∫
d2z εaCab∂z∂z̄N

±b + 2
g2 f

abc
∫
du d2z εaÂ±bz ∂uÂ

±c
z̄

+ 1
2

N∑
i=1

∫
du d2z εa

(
∂u(φ±i)CTT ai φ

±i − (φ±i)CTT ai ∂uφ
±i
)
,

Pf =
∫
du d2z f

( 2
g2∂uÂ

±a
z ∂uÂ

±a
z̄ +

N∑
i=1

∂u(φ±i)CT∂uφ
±i
)

JY = 2
g2

∫
d2z Y zCazC

ab∂z∂z̄N
±b (3.112)

+ 1
g2

∫
du d2z Y z

(
∂zÂ

±a
z̄

←→
∂u Â

±a
z − u∂z

(
∂uÂ

±a
z ∂uÂ

±a
z̄

))
+ 1

2

N∑
i=1

∫
du d2z Y z

(
∂u(φ±i)CT∂zφ

±i + ∂z(φ±i)CT∂uφ
±i − u∂z

(
∂u(φ±i)CT∂uφ

±i
) )

+ c.c..

It then follows from (3.110) that

{Qε, ·} = −δε( · ), {Pf , ·} = −δf ( · ), {JY , ·} = −δY ( · ), (3.113)

where

δεC = εC, δεN
± = 0, δεÂ

±
z = −[Â±z , ε], δεφ

±i = εaT ai φ
±i,

δfC = δfN
± = 0, δf Â

±
z = f∂uÂ

±
z , δfφ

±i = f∂uφ
±i,

δY C = (Y z∂z + Y z̄∂z̄)C, δYN
± = (Y z∂z + Y z̄∂z̄)N±,

δY Â
±
z =

[
Y z∂z + Y z̄∂z̄ + ∂zY

z + 1
2(∂zY z + ∂z̄Y

z̄)u∂u
]
Â±z ,

δY φ
±i =

[
Y z∂z + Y z̄∂z̄ + 1

2(∂zY z + ∂z̄Y
z̄)u∂u

]
φ±i.

(3.114)

4 Canonical quantization

In the previous section, we examined in detail the phase space for classical non-abelian
gauge theories, and in particular described it separately in terms of local I + and I −

variables. We now want to elevate our classical fields to quantum fields and quantize the
phase space via canonical quantization. This involves finding an irreducible representation
R : F(Γ) → H∗, where H is a Hilbert space, so that functions on the phase space Γ (or
equivalently, points in Γ) are mapped to linear operators acting on a Hilbert space H.
Under this map, Dirac brackets {·, ·} on the phase space become quantum commutators
−i[·, ·] on the Hilbert space, and complex conjugation on the phase space becomes taking
the adjoint on H, i.e.[

R(f),R(g)
]

= iR({f, g}), R(f∗) = R(f)†. (4.1)

As we will work exclusively in the Hilbert space, we will simply denote R(f) by f .
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Recall from (3.72) and (3.77) that the phase space Γ factorizes into the soft and hard
gauge sectors and the matter sectors. This implies that the corresponding Hilbert space
also factorizes as

H = H±A,soft ×H±A,hard ×H±1 × · · · × H±N . (4.2)

We now proceed to explore each of these sectors below.

4.1 Radiative Hilbert space: H±A,hard ×H±1 × · · · × H±N

We start by describing the space of hard states, which are spanned by the hard operators
Â±z and the matter fields φ±i. Using (4.1), the quantum commutators for the hard fields
are determined from (3.110) to be[

Â±az (u, z, z̄), Â±bz̄′ (u′, z′, z̄′)
]

= − ig
2

4 δab sign(u− u′)δ2(z − z′)[
φ±i(u, z, z̄), φ±j(u′, z′, z̄′)†

]
= − i2δ

ij1 sign(u− u′)δ2(z − z′),
(4.3)

and the fields obey the adjoint property

(Â±az )† = Â±az̄ , (φ±i)† = φ±i∗. (4.4)

We now attempt to construct the radiative Hilbert space as a Fock space. The first step
will be to define creation and annihilation operators. For ω > 0, the annihilation operators
are defined as22

O±a(+)(p(ω, z, z̄)) ≡ −4
√

2π
g

1
ω

∫
du e

i
2ωuF±auz

O±a(−)(p(ω, z, z̄)) ≡ −4
√

2π
g

1
ω

∫
du e

i
2ωuF±auz̄

O±Φi(p(ω, z, z̄)) ≡ −4π
ω

∫
du e

i
2ωu∂uφ

±i

O±Φi†(p(ω, z, z̄)) ≡ −4π
ω

∫
du e

i
2ωu∂uφ

±i†,

(4.5)

where the (±) subscript denotes the helicity, and the (on-shell) momentum is parameterized
in flat null coordinates as

pµ(ω, z, z̄) = ω

2
(
1 + |z|2, z + z̄,−i(z − z̄), 1− |z|2

)
. (4.6)

Using (4.4), we note that the creation operators are related to (4.5) by the sign of ω, so
that

O±a(±)(p)
† = −O±a(∓)(−p), O±Φi(p)

† = −O±Φi†(−p). (4.7)

Thus, we see that the subscript (±) indicates the helicity only if p0 > 0, and negative the
helicity if p0 < 0. Using (4.3), it is straightforward to verify that the nonzero commutators
between creation and annihilation operators are[

O±a(h)(p),O
±b
(h′)(p

′)†
]

= (2π)3δh,h′δ
ab(2p0)δ3(~p− ~p ′)[

O±Φi(p),O
±
Φj (p

′)†
]

=
[
O±Φi†(p),O

±
Φj†(p

′)†
]

= (2π)3(2p0)δij1 δ3(~p− ~p ′),
(4.8)

22When we integrate these operators over ω, e.g. when taking the Fourier transform, we will adopt the
Cauchy prinicpal value method for resolving the 1

ω
singularity.
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where we used the identity

(2p0)δ(3)(~p− ~p ′) = 4
ω
δ2(z − z′)δ(ω − ω′). (4.9)

Because (4.8) is the standard commutation relation for creation and annihilation operators,
this verifies that the operators in (4.5) can indeed be understood as annihilation operators.

We can now construct the Hilbert space in the usual way, and define vacuum states as
those that are annihilated by all annihilation operators, i.e.

O±a(h)(p)|U,±〉 = O±Φi(p)|U,±〉 = O±Φi†(p)|U,±〉 = 0. (4.10)

As we will explore in section 4.2, the vacuum state is not unique, but is instead an infinite-
dimensional space spanned by basis states labeled by U(z, z̄) ∈ G. The remaining (basis)
states in the hard Hilbert space are then constructed by acting on the vacuum state with
creation operators. A typical hard state has the form

O±a1
(h1)(p1)† · · · O±al(hl)(pl)

†O±Φi1 (p′1)† · · · O±Φim (p′m)†O±Φj1†(p
′′
1)† · · · O±Φjn†(p

′′
n)†|U,±〉. (4.11)

4.2 Soft Hilbert space: H±A,soft

The soft Hilbert space is spanned by the soft operators C and N±. These soft operators
commute with the translation generators Pf from (3.98), and hence in particular with the
Hamiltonian of the theory H = Pf=1.23 This means C and N± must carry zero energy and
momentum, which immediately implies that the vacuum state is not unique, and that there
is an infinite-dimensional space of vacua generated by acting on any vacuum state repeat-
edly with the soft operators. In this subsection, we shall characterize this space of vacua.

The algebra of operators in the soft Hilbert space is obtained by applying (4.1)
to (3.110) to yield[

Cab(z, z̄), Ccd(w, w̄)
]

= 0[
N±a(z, z̄), Cbc(w, w̄)

]
= − ig

2

4π f
acdCbd(w, w̄) ln |z − w|2

[
N±a(z, z̄), N±b(w, w̄)

]
= − ig

2

8π2 f
abc
∫
d2y ln |z − y|2 ln |w − y|2∂y∂ȳN±c(y, ȳ),

(4.12)

which also implies the commutators by (3.111)[
Caz , C

b
w

]
=
[
Caz , C

b
w̄

]
= 0[

Caz , N
±b
w

]
= − ig

2

4π
Cac(z, z̄)Cbc(w, w̄)

(z − w)2[
Caz̄ , N

±b
w

]
= ig2

2 δabδ2(z − w)[
N±az , N±bw

]
= 0[

N±az , N±bw̄
]

= ig2

2 fabcCcd(w, w̄)N±d(w, w̄)δ2(z − w)

− ig2

8π2 f
dec
∫
d2y

Cad(z, z̄)Cbe(w, w̄)
(z̄ − ȳ)2(w − y)2 N±c(y, ȳ).

(4.13)

23This Hamiltonian generates translations in u, while the Hamiltonian that generates translations in x0

is Pf=1+|z|2 .
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From (3.85), (3.102) and (4.1), we have

Cab(z, z̄)† = Cab(z, z̄), N±a(z, z̄)† = N±a(z, z̄). (4.14)

We now construct the soft Hilbert space as follows. Since the Hermitian operators Cab

commute with each other, there exists an orthogonal basis on H±A,soft that diagonalizes
these operators. Labeling these basis states for H±A,soft by |U,±〉, we have

Cab(z, z̄)|U,±〉 = Uab(z, z̄)|U,±〉, U(z, z̄) ∈ G. (4.15)

These states can be normalized so that

〈U,± |U ′,±〉 = δ(U − U ′),
∫

[dU ] δ(U − U ′)f(U ′) = f(U), (4.16)

where the measure [dU ] is taken to be the left-invariant Haar measure on G so that

[dU ] = [d(gU)], g ∈ G =⇒ δ(gU − gU ′) = δ(U − U ′). (4.17)

Therefore, a generic state in H±A,soft can be written in the U basis as

| f,±〉 =
∫

[dU ]|U,±〉f(U) =⇒ f(U) = 〈U,± | f,±〉, (4.18)

where f(U) is known as the vacuum wave-function.
We now want to determine how N± acts on |U,±〉. Inserting the commutator involving

N± and C between two vacuum states, we get using (3.110)

(U(w, w̄)− U ′(w, w̄))〈U ′,±|N±a(z)|U,±〉 = − ig
2

4π U(w, w̄)ta ln |z − w|2δ(U − U ′). (4.19)

If we recall the derivative operator Db
U(y,ȳ) introduced in (3.87) (and explored more fully

in appendix B), which is defined so that its action on U is

Db
U(y,ȳ)U(z, z̄) = −XbU(y, ȳ)δ2(z − y), (4.20)

then one can show after some algebra that (4.19) is satisfied given that the action of N±

on the basis states is

N±a(z, z̄)|U,±〉 = − ig
2

4π

∫
d2y ln |z − y|2U ba(y, ȳ)Db

U(y,ȳ)|U,±〉. (4.21)

We can now determine how the charge Qε and JY act on the vacuum states (recall Pf
annihilates the vacuum states). Applying (4.21) to (3.94) and (3.98) and noting that the
hard part of the charges annihilate the vacuum, we obtain

Qε|U,±〉 = −i
∫
d2z εa(z, z̄)Da

U(z,z̄)|U,±〉, JY |U,±〉 = i

∫
d2z Y zUaz D

a
U(z,z̄)|U,±〉,

(4.22)
where Uz = U∂zU

−1, and we had to utilize the third property of (B.28) in deriving this
result. The fact that J±Y acts non-trivially on the vacuum states |U,±〉 means that states
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in the infinite-dimensional space of vacua are generically not Lorentz invariant. This may
be surprising, since it is in contradiction to a standard assumption made in perturbative
QFT regarding gauge theories — that the vacuum is unique and Lorentz invariant. As
we hope to explore further in future work, it is precisely this dissonance that leads to the
presence of infrared divergences. For now, however, we observe that by (4.22), the U = 1
vacuum state is Lorentz invariant. We will assume that this is the standard vacuum from
perturbative QFT, and shall refer to this as the “QFT vacuum.”

Finally, we want to determine how |U,±〉 transforms under a finite LGT. The charge
that generates finite LGTs is obtained by exponentiating (4.22), so that

Ωg = exp[−iQε], (4.23)

where g = exp ε. Using (4.1) to elevate (3.26) and (3.92) to quantum commutators, i.e.[
Qε,Φi] = −iRi(ε)Φi,

[
Qε, Qε′

]
= iQ[ε,ε′], (4.24)

we can derive the properties

ΩgΩg′ = Ωgg′ , Ω−1
g OΩg = R(g)O, (4.25)

where O is any operator living in a representation R. Using in particular the second
property above, we can show that

Ωg|U,±〉 = | gU,±〉, (4.26)

where the overall normalization of |gU,±〉 is fixed using (4.17). Thus, we see that an LGT
parameterized by g takes an eigenstate of Cab with eigenvalue Uab to another eigenstate of
Cab with eigenvalue (gU)ab.

4.3 The S-matrix

A fundamental quantity of interest in QFTs is the S-matrix, or the scattering amplitude,
and it captures the overlap between an (n −m)-particle in-state with an m-particle out-
state. Given an in-vacuum |U ′,−〉 and an out-vacuum |U,+〉, the S-matrix is given via the
LSZ reduction formula (we have suppressed explicit color/flavor indices on the operators
to avoid notational clutter)

An(U,+|p1, . . . , pn|U ′,−) = 〈U,+ |T
{[
O1
]
h1

(p1) · · ·
[
On
]
hn

(pn)
}
|U ′,−〉, (4.27)

where T is the time-ordering operator (it moves all out-operators to the left and in-
operators to the right), and

[
Ok
]
h
(p) ≡ i lim

p2→0
p2
∫
d4x e−ip·xε

µ1···µ|h|
(h) (p)[Φk]µ1···µ|h|(x), (4.28)

where h labels the helicity of particle if the energy p0 is positive (the particle is outgoing),
and labels negative the helicity of the particle if the energy p0 is negative (the particle
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is incoming).24 Note that Φi is any normalized local operator that creates or annihilates
the one-particle state corresponding to Oi with polarization tensor εµ1···µ|h|

(h) . To write the
polarization tensor explicitly, note that it satisfies the properties

ε
µ1···µ|h|
(±|h|) (p) = εµ1

(±)(p) · · · ε
µ|h|
(±) (p), ε(+)(p)∗ = ε(−)(p), ε(h)(p) · ε(h′)(p)∗ = δh,h′ , (4.29)

so in the gauge Au = 0, we have

εµ(+) = 1√
2

(z̄, 1,−i,−z̄), εµ(−) = 1√
2

(z, 1, i,−z), (4.30)

where we parameterized the momentum using (4.6). In particular, note that εµ(+) labels
either an outgoing positive helicity gluon or an incoming negative helicity gluon, whereas
εµ(−) labels either an outgoing negative helicity gluon or an incoming positive helicity gluon.

We now want to apply (4.28) to the case of the gauge field A, i.e. we want to evaluate

Oa±(p) ≡ i

g
lim
p2→0

p2
∫
d4x e−ip·xεµ(±)(p)A

a
µ(x). (4.31)

Parametrizing the off-shell momentum in flat null coordinates as

pµ = ω

2
(
1 + |z|2 + µ, z + z̄,−i(z − z̄), 1− |z|2 − µ

)
, (4.32)

so that p2 = −µω2, we can rewrite the on-shell limit p2 → 0 as µ→ 0. Evaluating (4.31) for
an outgoing positive helicity (or incoming negative helicity) operator in these coordinates,
we obtain

Oa+(p) = −
√

2iω2

4g lim
µ→0

µ

∫
du dr d2w re

iωu
2 + iωr

2 (|z−w|2+µ)Aaw(u, r, w, w̄) (4.33)

= −
√

2iω2

4g lim
µ→0

1
µ

∫
du dr d2w re

iωu
2 + iωr

2µ (|z−w|2+µ)
(
Aaz
(
u, rµ−1, z, z̄

)
+O(z − w)

)
where O(z − w) captures all terms proportional to z − w and we rescaled r → r/µ in the
second line. Dividing the integral into the regions r > 0 and r < 0, and noting that the
µ→ 0 limit sends Az → A±z in those regions, we obtain

Oa+(p) =
√

2i
g

lim
µ→0

∫
du d2w e

iωu
2

µ

(|z − w|2 + µ)2
(
A+a
z (u, z, z̄)−A−az (u, z, z̄) +O(z − w)

)
.

(4.34)
Next, taking the on-shell limit µ→ 0, and observing the identity

lim
µ→0

µ

(|z − w|2 + µ)2 = 2πδ2(z − w), (4.35)

we get

Oa+(p) = 2π
√

2i
g

∫
du e

iωu
2
(
Â+a
z (u, z, z̄)− Â−az (u, z, z̄)

)
, (4.36)

24In general, we adopt the convention where the ± subscript labeling an operator indicates the helicity
of the operator if the corresponding particle is outgoing. This means when we refer to the helicity of a
particle, we implicitly assume that it is outgoing unless otherwise specified.
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where we have decomposed the gauge field into the soft and hard modes via (3.75); notice
that the delta function from (4.35) has eliminated all the O(z − w) terms. Finally, noting
that F±auz = ∂uÂ

±a
z and using (4.5), we get

Oa+(p) = O+a
(+)(p)−O

−a
(+)(p). (4.37)

When all the particles are hard, the S-matrix evaluated via the LSZ reduction formula
is simply an overlap between the in- and out-states. To see this, we note that when ω > 0,
the time-ordering operator in (4.27) moves O−a(+)(p) all the way to the right to annihilates
the ket vacuum state, so only the first term contributes. If ω < 0, the operators are creation
operators according to (4.7), and the time-ordering operator moves O+a

(+)(p) all the way to
the left to annihilates the bra vacuum state, so only the second term contributes. Therefore,
when inserting Oa+ into an S-matrix element with ω 6= 0,

Oa+(p) =

O
+a
(+)(p) ω > 0
O−a(−)(−p)

† ω < 0,
(4.38)

where we used (4.7) to write the ω < 0 case explicitly as a creation operator.
On the other hand, consider the operator insertion of (4.37) in the soft (ω → 0) limit.

Expanding the operator insertion near ω = 0, we get by substituting (4.5) into (4.37)

Oa+(p) = − lim
ω→0

4
√

2π
g

1
ω

(
N+a
z −N−az

)
+O(ω0). (4.39)

Repeating this procedure, we could similarly get for an outgoing negative helicity gluon

Oa−(p) = − lim
ω→0

4
√

2π
g

1
ω

(
N+a
z̄ −N−az̄

)
+O(ω0). (4.40)

5 Soft factorization of the S-matrix

The S-matrix defined in (4.27) is a complicated quantity that, in general, depends on all
the details of the theory. However, as we will show in this section, its dependence on the
vacuum state is completely fixed, and the result is given by (1.10) in the introduction. We
will derive this result in section 5.1 (see (5.8)). In the subsequent subsections, we show
how the leading single and consecutive double soft theorems follow from (5.8).

5.1 Ward identity

Consider the insertion of the operator Cab(z, z̄) into a scattering amplitude involving vacua
|U,+〉 and |U ′,−〉, two eigenstates of Cab. Since Cab(z, z̄) commutes with all operators with
energies not strictly zero (including the soft operator N+a

z −N−az , which was shown in (4.39)
to arise as a soft limit), we have

〈U,+ |Cab(z, z̄)T{O1(p1) · · ·On(pn)}|U ′,−〉= 〈U,+ |T{O1(p1) · · ·On(pn)}Cab(z, z̄)|U ′,−〉.
(5.1)
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The vacua are Cab eigenstates, so it follows by (4.15) and the fact that Cab is Hermitian
that [

Uab(z, z̄)− U ′ab(z, z̄)
]
〈U,+ |T{O1(p1) · · · On(pn)}|U ′,−〉 = 0, (5.2)

which in turn implies

〈U,+ |T{O1(p1) · · · On(pn)}|U ′,−〉 = δ(U − U ′) 〈O1(p1) · · · On(pn)〉U , (5.3)

where the time-ordering operator is henceforth implicitly included in the 〈 · · · 〉U correlator.
To evaluate the right-hand-side, we first note that obviously〈

Ω−1
g O1(p1) · · · On(pn)Ωg

〉
U

=
〈
[Ω−1

g O1(p1)Ωg] · · · [Ω−1
g On(pn)Ωg]

〉
U
. (5.4)

Recalling from (4.25) that

Ω−1
g Ok(pk)Ωg = [Ok]g(pk) = Rk(g(zk, z̄k))Ok(pk), (5.5)

substituting this and (4.26) into (5.4) yields

〈O1(p1) · · · On(pn)〉U = R1(g(z1, z̄1)) · · ·Rn(g(zn, z̄n)) 〈O1(p1) · · · On(pn)〉g−1U . (5.6)

As this is true for any g ∈ G, we can set g = U so that

〈O1(p1) · · · On(pn)〉U = R1(U(z1, z̄1)) · · ·Rn(U(zn, z̄n)) 〈O1(p1) · · · On(pn)〉U=1 . (5.7)

Substituting this into (5.3) and reinstating the explicit color/flavor indices ik and jk, we
immediately obtain

〈U,+ |T{Oi11 (p1) · · · Oinn (pn)}|U ′,−〉

= δ(U − U ′)R1(U(z1, z̄1))i1j1 · · ·Rn(U(zn, z̄n))injn
〈
Oj11 (p1) · · · Ojnn (pn)

〉
U=1

,
(5.8)

which is exactly (1.10) as promised. Note that the scattering amplitude on the right-
hand-side is simply the standard U = 1 perturbative QFT S-matrix element, which we
can evaluate using Feynman diagrams and soft theorems. Therefore, the above equation
allows us to determine the scattering amplitude between any in-vacuum |U ′,−〉 with any
out-vacuum |U,+〉. Since the |U,±〉 vacua form a complete basis of the vacuum sector, this
means we can now compute the scattering amplitude involving any hard operators as well
as the soft limit of such operators between any two arbitrary in- and out-vacua.

We conclude this subsection with the following observation. Recall that the operator
C is only defined up to the identification (3.89), which means if g ∈ G is a constant in
spacetime, we must have

〈O1(p1) · · · On(pn)〉U=g = 〈O1(p1) · · · On(pn)〉U=1 . (5.9)

Applying (5.7) to this case involving a constant g, we get

〈O1(p1) · · · On(pn)〉U=1 = R1(g) · · ·Rn(g) 〈O1(p1) · · · On(pn)〉U=1 . (5.10)
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This is simply the statement of global color charge conservation of the S-matrix, since if
g = 1 + εaXa is an infinitesimal global gauge transformations, then (5.10) becomes

n∑
k=1

T ak 〈O1(p1) · · · On(pn)〉U=1 = 0, (5.11)

which is the standard global color conservation equation. More generally, we can similarly
derive that in a non-trivial U vacuum, global gauge conservation is given by∑

k

U ba(zk, z̄k)T bk 〈O1(p1) · · · On(pn)〉U = 0, (5.12)

where we used (3.7) to write it in the above form.

5.2 Single soft gluon limit

The soft gluon theorem describes the factorization of a scattering amplitude in which one or
many gluons are soft, i.e. they have energies much smaller than the typical energy scale of
the scattering amplitude. If m gluons have soft momenta qi in an (n+m)-point scattering
amplitude, the factorization is of the form

An+m
qi→0−−−→ SmAn, (5.13)

where An is the scattering amplitude involving the remaining n hard particles, and the soft
factor Sm (which may be an operator) depends on the quantum numbers (e.g. momentum,
color, flavor) of the external states but does not depend on other details of the theory.25

Expanding Sm as a Laurent series in terms of the energies of the soft gluons, it has at
leading order the structure

Sm = 1
q0

1 · · · q0
m

[
Ŝm +O(q1, · · · , qm)

]
, (5.14)

where Ŝm depends on (1) the momentum, color, and flavors of the hard particles, (2) the
directions of the soft gluons and (3) the ratio of energies between various individual soft
gluons. In the rest of this subsection, we will explore the soft factor Ŝm for m = 1, i.e.
the single soft gluon limit, and show that the factorization of the S-matrix follows from
the Ward identity (5.8). We will then generalize this to include multiple consecutive soft
gluon limits in the next subsection.

For the case m = 1, we can derive using Feynman diagrams in perturbative QFT
(which means the fields live in the U = 1 vacuum) that the amplitude in our conventions
factorizes in the soft limit as

〈Oah(q)O1(p1) · · · On(pn)〉U=1
q→0−−−→ ig

n∑
k=1

pk · ε(h)(q)
pk · q − iε

T ak 〈O1(p1) · · · On(pn)〉U=1 , (5.15)

25The subleading soft gluon theorem, which we will not discuss here, depends very loosely on the inter-
action terms in the Lagrangian. In particular, the kinematical structure of the subleading term in Sm is
universal, but the overall normalization is not.
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where the correlators 〈 · · · 〉 implicitly include a time-ordering operator. Using the momen-
tum parameterization (4.6) to write q ≡ (ω, z, z̄) and pk ≡ (ωk, zk, z̄k), as well as (4.30),
the soft theorem (5.15) becomes, depending on the helicity h,

lim
ω→0

ω
〈
Oa+(q)O1(p1) · · · On(pn)

〉
U=1 =

√
2ig

n∑
k=1

T ak
z − zk

〈O1(p1) · · · On(pn)〉U=1

lim
ω→0

ω
〈
Oa−(q)O1(p1) · · · On(pn)

〉
U=1 =

√
2ig

n∑
k=1

T ak
z̄ − z̄k

〈O1(p1) · · · On(pn)〉U=1 .

(5.16)

We will now show that (5.16) follows directly from the Ward identity (5.8). First, we recall
from (4.39) that inserting an outgoing positive (or incoming negative) helicity soft gluon
inside the S-matrix corresponds to

lim
ω→0

ω
〈
Oa+(q)O1(p1) · · · On(pn)

〉
U

= −4
√

2π
g

〈(
N+a
z −N−az

)
O1(p1) · · · On(pn)

〉
U
. (5.17)

Because of the implicit time-ordering operator in the correlator, N+
z and N−z are moved all

the way to the left and right, respectively, to act on the vacuum. Using (3.85) and (4.21),
we know that

N±az |U,±〉 = − ig
2

4π

∫
d2y

Uab(z, z̄)U cb(y, ȳ)
z − y

Dc
U(y,ȳ)|U,±〉. (5.18)

It follows after some algebra that〈
U,+|T

{(
N+a
z −N−az

)
O1 · · · On

}
|U ′,−

〉
= ig2

4π δ(U − U
′)
∫
d2y

Uab(z, z̄)U cb(y, ȳ)
z − y

Dc
U(y,ȳ)〈O1 · · · On〉U ,

(5.19)

where we had to use the second and third lines of (B.28). Using (5.3) and substituting this
into the right-hand-side of (5.17), we get

lim
ω→0

ω
〈
Oa+(p)O1(p1) · · · On(pn)

〉
U

= −
√

2ig
∫
d2y

Uab(z, z̄)U cb(y, ȳ)
z − y

Dc
U(y,ȳ) 〈O1(p1) · · · On(pn)〉U .

(5.20)

Finally, expanding out 〈O1 · · · On〉U via (5.7) and acting on all the factors of U with Dc
U(y,ȳ)

using (4.20), we obtain the single soft gluon theorem in a general U vacuum state:

lim
ω→0

ω
〈
Oa+(p)O1(p1) · · · On(pn)

〉
U

=
√

2ig
n∑
k=1

Uab(z, z̄)U cb(zk, z̄k)
z − zk

T ck 〈O1(p1) · · · On(pn)〉U .

(5.21)
Setting U = 1 results in the first line of (5.16). The second line of (5.16) is shown
similarly, except we would start by computing the S-matrix element involving an outgoing
negative (or incoming positive) helicity soft gluon Oa− instead of (5.17). This completes
our derivation of the single soft gluon theorem from the Ward identity (5.8).
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5.3 Multiple consecutive soft gluon limits

In the previous subsection, we considered the single soft gluon limit and computed the soft
factor Sm=1 from (5.8). This result can be easily extended to the case where m > 1 gluons
are taken to be soft in a consecutive manner. Since the gluons are taken to be soft one at a
time, we can determine the soft gluon factor Sm by repeatedly applying the single soft gluon
theorem m times. We can then derive the multiple consecutive soft gluon theorem from the
Ward identity (5.8) by applying the argument given in the previous subsection m times.

Nevertheless, it is interesting to compute the commutator of consecutive soft limits[
lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oah(q)Oa′h′(q′)O1(p1) · · · On(pn)

〉
U
, (5.22)

since there are two methods of doing the computation, and they should certainly agree!
The first method is to simply take the approach mentioned in the above paragraph and
evaluate (5.22) by taking the two single soft limits one at a time and then taking their
difference. The second method is to demonstrate that the commutator of limits in (5.22)
can be related to the commutator of soft modes, which will allow us to use the commuta-
tors (4.12) (or equivalently (4.13)) and reduce (5.22) to a single soft limit. We will now
demonstrate that these two methods yield the same answer, thereby serving as a verifica-
tion of the commutators (4.12) on the Hilbert space. For simplicity, though, we will only
work in the U = 1 vacuum.

We begin by evaluating (5.22) using the first method. For conciseness, we will denote
the set of hard operators collectively as

X ≡ O1(p1) · · · On(pn). (5.23)

Now, taking q′ soft first (i.e. q′ � q, pk) and using the single soft theorem (5.15), we find

〈
Oah(q)Oa′h′(q′)X

〉
U=1

q′→0−−−→ ig

[
faa

′c q · ε(h′)(q′)
q · q′ − iε

+ δac
n∑

k′=1

pk′ · ε(h′)(q′)
pk′ · q′ − iε

T a
′

k′

]
〈Och(q)X〉U=1 ,

(5.24)
where we used the fact Oah(q) transform in the adjoint representation. Next, taking q soft
and repeating the procedure, we find that the consecutive double soft gluon theorem is〈
Oah(q)Oa′h′(q′)X

〉
U=1

(5.25)

q′→0 then q→0−−−−−−−−−−→ (ig)2
[
faa

′c q ·ε(h′)(q′)
q ·q′− iε

+δac
n∑

k′=1

pk′ ·ε(h′)(q′)
pk′ ·q′− iε

T a
′

k′

]
n∑
k=1

pk ·ε(h)(q)
pk ·q− iε

T ck 〈X〉U=1 .

Because we want to compute the commutator of soft limits in (5.22), we also need to
compute the two soft limits in the opposite order. This is easily determined by exchanging
the primed and unprimed quantities in (5.25), and the answer is〈
Oah(q)Oa′h′(q′)X

〉
U=1

(5.26)

q→0 then q′→0−−−−−−−−−−→ (ig)2
[
fa
′ac q

′ ·ε(h)(q)
q′ ·q− iε

+δa
′c

n∑
k=1

pk ·ε(h)(q)
pk ·q− iε

T ak

]
n∑

k′=1

pk′ ·ε(h′)(q′)
pk′ ·q′− iε

T ck′ 〈X〉U=1 .
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This means the commutator of soft limits is[
lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oah(q)Oa′h′(q′)X

〉
U=1

= −(ig)2faa
′cωω′

n∑
k=1

∆(h,h′)(pk)T ck 〈X〉U=1 , (5.27)

where
∆(h,h′)(pk) ≡

pk · ε(h)(q)
pk · q − iε

pk · ε(h′)(q′)
pk · q′ − iε

+
ε(h)(q) · ε(h′)(q′)

q · q′ − iε

−
q · ε(h′)(q′)
q · q′ − iε

pk · ε(h)(q)
pk · q − iε

−
q′ · ε(h)(q)
q′ · q − iε

pk · ε(h′)(q′)
pk · q′ − iε

.

(5.28)

Note that in deriving (5.27) we used color conservation (5.11). Evaluating ∆(h,h′)(pk) in
flat null coordinates, we get

∆(±,±)(pk) = 0, ∆(+,−)(pk) = − 1
ωω′

2
|z − z′|2

z̄ − z̄k
z − zk

z′ − zk
z̄′ − z̄k

. (5.29)

Substituting this back into (5.27), we find that the commutator of two consecutive soft
limits is[

lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oa±(q)Oa′± (q′)X

〉
U=1

= 0 (5.30)[
lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oa+(q)Oa′− (q′)X

〉
U=1

= (
√

2ig)2 faa
′c

|z − z′|2
n∑
k=1

z̄ − z̄k
z − zk

z′ − zk
z̄′ − z̄k

T ck 〈X〉U=1 .

We now want to show that we obtain the same answer using the second method of
evaluating (5.22). Begin by considering the first line of (5.30), where we are inserting the
soft operators Oa+(q)Oa′+ (q′). Taking q′ soft and using (4.39), we get

lim
ω′→0

ω′
〈
Oa+(q)Oa′+ (q′)X

〉
U=1

= −4
√

2π
g

〈
Oa+(q)

(
N+a′
z′ −N

−a′
z′
)
X

〉
U=1

. (5.31)

Because there is an implicit time-ordering operator in the correlator 〈 · · · 〉U=1, this means
N+
z is moved all the way to the left and N−z is moved all the way to the right. Next, taking

q soft, we get

lim
ω→0

lim
ω′→0

ωω′
〈
Oa+(q)Oa′+ (q′)X

〉
U=1

= 32π2

g2

〈(
N+a′
z′ N+a

z −N+a′
z′ N−az −N+a

z N−a
′

z′ +N−az N−a
′

z′
)
X

〉
U=1

.
(5.32)

Note that the ordering of the operators is determined by the fact N+a′
z′ is on the left of

N+a
z since the q′ → 0 limit is taken first, so N+a′

z′ is moved to the left first. Similarly, N−a′z′

is on the right of N−az (the ordering of the two remaining terms is just due to the implicit
time-ordering operator). Since we want to compute a commutator of two soft limits, we
also need to compute the correlator when the soft limits are taken in reverse. Repeating
the above procedure yields

lim
ω′→0

lim
ω→0

ωω′
〈
Oa+(q)Oa′+ (q′)X

〉
U=1

= 32π2

g2

〈(
N+a
z N+a′

z′ −N
+a′
z′ N−az −N+a

z N−a
′

z′ +N−a
′

z′ N−az
)
X

〉
U=1

.
(5.33)
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Subtracting (5.33) from (5.32), we find[
lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oa+(q)Oa′+ (q′)X

〉
U=1

= −32π2

g2

〈([
N+a
z , N+a′

z′
]
−
[
N−az , N−a

′

z′
])
X

〉
U=1

.

(5.34)
We can now evaluate the commutators between the constrained soft modes using (4.13),
and since

[
N±az , N±a

′

z′
]

= 0, this immediately implies the first line of (5.30), where both
operators have positive helicity.

Similarly, we want to verify the first line of (5.30) for the case where both soft operators
Oa−(q)Oa′− (q′) have negative helicity. The procedure is almost exactly the same as that used
to derive (5.34), except because we are inserting Oa−Oa

′
− instead of Oa+Oa

′
+ on the left-hand-

side of (5.30), according to (4.40) we simply need to replace N±az with N±az̄ and N±a′z′ with
N±a

′

z̄′ . Making the replacements in (5.34) and using the fact that
[
N±az̄ , N±a

′

z̄′
]

= 0, the
commutator of soft limits vanish as well.

Finally, we want to verify the second line of (5.30) using the second method. As we
mentioned in the previous paragraph, because we are inserting Oa′− instead of Oa′+ on the
left-hand-side of (5.30), we just need to replace N±a′z′ with N±a′z̄′ in (5.34), resulting in[

lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oa+(q)Oa′− (q′)X

〉
U=1

= −32π2

g2

〈([
N+a
z , N+a′

z̄′
]
−
[
N−az , N−a

′

z̄′
])
X

〉
U=1

.

(5.35)
Evaluating the commutators using (4.13), we get[

lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oa+(q)Oa′− (q′)X

〉
U=1

(5.36)

= 4ifaa′c
∫
d2y

[ 1
(z−y)2(z̄′− ȳ)2 −4π2δ2(z−y)δ2(z−z′)

]〈(
N+c(y, ȳ)−N−c(y, ȳ)

)
X

〉
U=1

.

Now, we want to derive the insertion of N+a−N−a between two U = 1 vacua. Using (4.21)
and following similar steps used in deriving (5.19), we obtain〈(

N+a(y, ȳ)−N−a(y, ȳ)
)
X

〉
U

= − ig
2

4π

n∑
k=1

ln |y − zk|2U ba(zk, z̄k)T bk 〈X〉U , (5.37)

which means for the special case where U = 1, we have〈(
N+a(y, ȳ)−N−a(y, ȳ)

)
X

〉
U=1

= − ig
2

4π

n∑
k=1

ln |y − zk|2T ak 〈X〉U=1 . (5.38)

Substituting this back into (5.36) we obtain[
lim
ω→0

, lim
ω′→0

]
ωω′

〈
Oa+(q)Oa′− (q′)X

〉
U=1

= g2

π
faa

′c
n∑
k=1

[∫
d2y

ln |y − zk|2

(z − y)2(z̄′ − ȳ)2 − 4π2δ2(z − z′) ln |z − zk|2
]
T ak 〈X〉U=1

= − 2g2

|z − z′|2
faa

′c
n∑
k=1

z̄ − z̄k
z − zk

z′ − zk
z̄′ − z̄k

T ck 〈X〉U=1 , (5.39)

where in the last step we used global color conservation (5.11). Comparing this with the
second line of (5.30), we see that they match exactly.
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A Explicit derivation of select equations

A.1 Derivation of (2.62)

In this section, we prove the identities

∇µAµν +RνµρσBµρσ = 0, A[µν] +∇ρBρµν = 0, (A.1)

where Aµν and Bµνρ are given in (2.61) to be

Aµν ≡ gµνL+
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i ∇ν∇µk+1···µnϕ

i

Bµνρ ≡ 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i

(
Σνρ
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i.

(A.2)

Starting with the first equation in (A.1), we use (A.2) to write

∇µAµν +RνµρσBµρσ

= ∇νL+
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ∇µ2···µkΠµµ2···µn
i ∇ν∇µk+1···µnϕ

i

+
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i ∇µ∇ν∇µk+1···µnϕ

i (A.3)

+ 1
2R

ν
µρσ

∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i

(
Σρσ
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i

=
∑
i

∞∑
n=0

Πµ1···µn
i ∇ν∇µ1···µnϕ

i +
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ1···µkΠµ1···µn
i ∇ν∇µk+1···µnϕ

i

−
∑
i

∞∑
n=1

n−1∑
k=0

(−1)k∇µ1···µkΠµ1···µn
i ∇ν∇µk+1···µnϕ

i,

where in obtaining the second equality we used (2.27) to rewrite the last term, used the fact
Πµµ2···µn
i is completely symmetric to symmetrize covariant derivatives, and then relabeled

the summation index.
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It is clear that the second and third terms cancel when 1 ≤ k ≤ n− 1. Therefore, we
have

∇µAµν +RνµρσBµρσ =
∑
i

∞∑
n=0

Πµ1···µn
i ∇ν∇µ1···µnϕ

i +
∑
i

∞∑
n=1

(−1)n∇µ1···µnΠµ1···µn
i ∇νϕi

−
∑
i

∞∑
n=1

Πµ1···µn
i ∇ν∇µ1···µnϕ

i (A.4)

=
∑
i

∞∑
n=0

(−1)n∇µ1···µnΠµ1···µn
i ∇νϕi

= 0,

where we used in the second equality that the first and third term cancel except for the
n = 0 case, and in the last equality we noted that the term vanishes by (2.39) with the
fact ∗Ei = 0. This proves the first equality in (A.1).

Next, we turn to the second equation in (A.1). Again, we find using (A.2)

A[µν] +∇ρBρµν = 1
2

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i ∇ν∇µk+1···µnϕ

i

− 1
2

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠνµ2···µn
i ∇µ∇µk+1···µnϕ

i (A.5)

+ 1
2

∞∑
n=1

n∑
k=1

(−1)k∇µ1···µkΠµ1···µn
i

(
Σµν
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i

+ 1
2

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠρµ2···µn
i

(
Σµν
i

)
µk+1···µn

νk+1···νn∇ρ∇νk+1···νnϕ
i,

where we have used the fact that the Lorentz generators Σi are covariantly constant and
used Πµ1···µn

i to symmetrize the covariant derivatives. To simplify this expression, we note
the identity(

Σµν
i

)
σ(µk+1···µn)

ρ(νk+1···νn) = δρσ
(
Σµν
i

)
(µk+1···µn)

(νk+1···νn) +
(
Σµν

vec
)
σ
ρδ
νk+1
(µk+1

· · · δνnµn), (A.6)

which means using the explicit form of Σµν
vec from Footnote 7, we have

δρσ
(
Σµν
i

)
(µk+1···µn)

(νk+1···νn) =
(
Σµν
i

)
σ(µk+1···µn)

ρ(νk+1···νn) −
(
δµσg

νρ − δνσgµρ
)
δ
νk+1
(µk+1

· · · δνnµn).

(A.7)
Using this, the last term in (A.5) becomes

1
2

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠρµ2···µn
i

(
Σµν
i

)
µk+1···µn

νk+1···νn∇ρ∇νk+1···νnϕ
i

= 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠσµ2···µn
i

(
Σµν
i

)
σ(µk+1···µn)

ρ(νk+1···νn)∇ρ∇νk+1···νnϕ
i

− 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠµµ2···µn
i ∇ν∇µk+1···µnϕ

i

+ 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠνµ2···µn
i ∇µ∇µk+1···µnϕ

i

(A.8)
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Substituting this back into (A.5) and cancelling terms, we get

A[µν] +∇ρBρµν

= 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ1···µkΠµ1···µn
i

(
Σµν
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i (A.9)

+ 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ2···µkΠσµ2···µn
i

(
Σµν
i

)
σ(µk+1···µn)

ρ(νk+1···νn)∇ρ∇νk+1···νnϕ
i.

Finally, we note that since Πσµ2···µn
i is completely symmetric, all the lower indices of

Σµν
i in the second sum are naturally symmetrized. Since Lorentz transformations do not

modify the symmetry properties of a tensor and Σµν
i lies in the tensor representation,

symmetrization of the lower indices implies the symmetrization of the upper indices as
well. Thus, (A.9) becomes

A[µν] +∇ρBρµν = 1
2
∑
i

∞∑
n=1

n∑
k=1

(−1)k∇µ1···µkΠµ1···µn
i

(
Σµν
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i

− 1
2
∑
i

∞∑
n=1

n−1∑
k=0

(−1)k∇µ1···µkΠµ1···µn
i

(
Σµν
i

)
µk+1···µn

νk+1···νn∇νk+1···νnϕ
i, (A.10)

where we have relabeled the indices µ2 → µ1, . . . , µn → µn−1, σ → µn, and ρ → νk and
then changed the summation index in the second term from k → k + 1. Noting that for
1 ≤ k ≤ n− 1 the terms cancel, we obtain

A[µν] +∇ρBρµν = 1
2
∑
i

∞∑
n=1

(−1)n∇µ1···µnΠµ1···µn
i ϕi

− 1
2
∑
i

∞∑
n=1

Πµ1···µn
i

(
Σµν
i

)
µ1···µn

ν1···νn∇ν1···νnϕ
i

= 0,

(A.11)

where we noted in the second equality that we can include the n = 0 term in each sum as
they cancel out, and that the resulting terms vanish by (2.39) with the fact ∗Ei = 0 and
by local Lorentz invariance of the Lagrangian (2.33).

A.2 Derivation of (3.17) and (3.18)

We provide here a detailed derivation of the equations of motion and the symplectic po-
tential current density for a gauge theory with Lagrangian

L = εL
(
Dα1···αnFµν , Dα1···αnΦi, Dα1···αn(Φi)CT

)
, (A.12)

where Dα1···αn ≡ D(α1 · · ·Dαn) is the symmetrized gauge covariant derivative. The proce-
dure implemented here is very similar to the one described in section 2.2.2, but due to the
fact that the derivatives here are gauge covariant derivatives, a few additional complications
arise and we discuss these here.
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We recall that the variation of L with respect to a generic vector X takes the general
form

X(L) = tr
[
X(A) ∧ EA

]
+

N∑
i=1

(
(EΦ
i )CTX(Φi) + c.t.

)
+ dθ(X). (A.13)

Note that EA and EΦ
i are the equations of motion and are (d − 1)- and d-forms on M

respectively. Setting L = εL and taking the spacetime Hodge dual on both sides, we have

X(L) = −tr
[
∗
(
X(A) ∧ EA

)]
−

N∑
i=1

(
∗(EΦ

i )CTX(Φi) + c.t.
)
− ∗dθ(X)

= −tr
[
X(Aµ)(∗EA)µ

]
−

N∑
i=1

(
∗(EΦ

i )CTX(Φi) + c.t.
)
−∇µ[∗θ(X)]µ.

(A.14)

However, we can also write the variation of the Lagrangian density with respect to X as

X(L) =
∞∑
n=0

tr [Πα1···αn;µνX(Dα1···αnFµν)] +
N∑
i=1

∞∑
n=0

(
Πα1···αn
i X(Dα1···αnΦi) + c.t.

)
, (A.15)

where we have defined for convenience

Πα1···αn;µν ≡ ∂L
∂
(
Dα1···αnFµν

) , Πα1···αn
i ≡ ∂L

∂
(
Dα1···αnΦi

) , (A.16)

By recasting (A.15) into the form (A.14), we can thus obtain explicitly the equations of
motion and the symplectic potential current density θ(X). We proceed to analyze the
terms in (A.15) one at a time. Denote the terms depending on Πα1···αn;µν collectively as
X(L)|F (i.e. the first term in (A.15)), and the terms depending on Πα1···αn

i collectively as
X(L)|Φi . We first compute X(L)|Φi as it is the easiest. Recalling the action of the gauge
covariant derivative,

DµΦi = ∇µΦi +Ri(Aµ)Φi, (A.17)

we get

X(L)
∣∣
Φi =

∞∑
n=0

Πα1···αn
i X(Dα1···αnΦi) (A.18)

= ΠiX(Φi) +
∞∑
n=0

Πα1···αn
i Dα1X(Dα2···αnΦi) +

∞∑
n=0

Πα1···αn
i Ri(X(Aα1))Dα2···αnΦi.

We now perform “integration by parts”-style manipulations (IBP) in the second term to get

X(L)
∣∣
Φi = ΠiX(Φi) +∇α1

∞∑
n=1

Πα1···αn
i X

(
Dα2···αnΦi)

−
∞∑
n=1

Dα1Πα1···αn
i X

(
Dα2···αnΦi)+

∞∑
n=1

Πα1···αn
i Ri(X(Aα1))Dα2···αnΦi.

(A.19)

Noting that we can write any of the symmetrized covariant derivatives Dα2···αn above as
Dα2Dα3···αn since Πα1···αn

i is completely symmetric, and that for any k = 1, . . . , n we have

X
(
DαkDαk+1···αnΦi) = DαkX

(
Dαk+1···αnΦi)+Ri(X(Aαk))Dαk+1···αnΦi, (A.20)
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we can substitute this for k = 2 into the third term of the last equality of (A.19) to get

X(L)
∣∣
Φi = ΠiX(Φi)

+∇α1

( ∞∑
n=1

Πα1···αn
i X

(
Dα2···αnΦi)− ∞∑

n=1
Dα2Πα1···αn

i X
(
Dα3···αnΦi))

+
( ∞∑
n=1

Πα1···αn
i Ri(X(Aα1))Dα2···αnΦi −

∞∑
n=1

Dα2Πα1···αn
i Ri(X(Aα1))Dα3···αnΦi

)

+
∞∑
n=1

Dα1α2Πα1···αn
i X

(
Dα3···αnΦi). (A.21)

Repeating this process of using IBP until all the derivatives have been removed from
X(Φi) in the last term, we obtain

X(L)
∣∣
Φi = ∇α1

∞∑
n=1

n∑
k=1

(−1)k−1Dα2···αkΠα1···αn
i X

(
Dαk+1···αnΦi)

+
∞∑
n=1

n∑
k=1

(−1)k−1Dα2···αkΠα1···αn
i Ri(X(Aα1))Dαk+1···αnΦi

+
∞∑
n=0

(−1)nDα1···αnΠα1···αn
i X

(
Φi).

(A.22)

Next, we now want to similarly evaluate X(L)|F . Following nearly identical reasoning
and noting that Fµν transforms in the adjoint representation, which means that (A.17)
reduces to

DαFµν = ∇αFµν +
[
Aα, Fµν

]
, (A.23)

we have

X(L)
∣∣
F

=
∞∑
n=0

tr
[
Πα1···αn;µνX

(
Dα1···αnFµν

)]
= ΠµνX

(
Fµν

)
+ tr

[
∇α1

∞∑
n=1

Πα1···αn;µνX
(
Dα2···αnFµν

)
(A.24)

−
∞∑
n=1

Dα1Πα1···αn;µνX
(
Dα2···αnFµν

)
+
∞∑
n=1

Πα1···αn;µν[X(Aα1), Dα2···αnFµν
]]
.

This has exactly the same structure as (A.19), except Dα is acting in the adjoint rep-
resentation instead of representation Ri, and there is an overall trace over the adjoint
representation. This allows us to repeat exactly the same steps as above to obtain

X(L)
∣∣
F

= ∇α1

∞∑
n=1

n∑
k=1

(−1)k−1tr
[
Dα2···αkΠα1···αn;µνX

(
Dαk+1···αnFµν

)]

+
∞∑
n=1

n∑
k=1

(−1)k−1tr
[
Dα2···αkΠα1···αn;µν

[
X(Aα1), Dαk+1···αnFµν

]]

+
∞∑
n=0

(−1)ntr
[
Dα1···αnΠα1···αn;µνX

(
Fµν

)]
.

(A.25)
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To write the last term using X(Aµ) instead of X(Fµν), we observe

X(Fµν) = ∂µX(Aν)− ∂νX(Aµ) +
[
X(Aµ), Aν

]
+
[
Aµ,X(Aν)

]
= DµX(Aν)−DνX(Aµ).

(A.26)

Substituting this into (A.25) yields

X(L)
∣∣
F

= ∇α1

∞∑
n=1

n∑
k=1

(−1)k−1tr
[
Dα2···αkΠα1···αn;µνX

(
Dαk+1···αnFµν

)]

+ 2∇µ
∞∑
n=1

(−1)ntr
[
Dα1···αnΠα1···αn;µνX(Aν)

]

+
∞∑
n=1

n∑
k=1

(−1)k−1tr
[
Dα2···αkΠα1···αn;µν

[
X(Aα1), Dαk+1···αnFµν

]]

− 2
∞∑
n=0

(−1)ntr
[
DµDα1···αnΠα1···αn;µνX(Aν)

]
.

(A.27)

To summarize, we have

X(L) = X(L)
∣∣
F

+
N∑
i=1

(
X(L)

∣∣
Φi + c.t.

)
, (A.28)

where the right-hand-side is explicitly given by (A.22) and (A.27).
We can now match this with (A.14) to obtain ∗EA, ∗EΦ

i , and ∗θ. Starting with ∗θ,
this is just the negative of the sum of terms that are inside a total derivative from (A.22)
and (A.27):

[∗θ(X)]µ =
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβX

(
Dαk+1···αnFαβ

)]

− 2
∞∑
n=0

(−1)ntr
[
Dα1···αnΠα1···αn;µνX(Aν)

]

+
( N∑
i=1

∞∑
n=1

n∑
k=1

(−1)kDα2···αkΠµα2···αn
i X

(
Dαk+1···αnΦi)+ c.t.

)
.

(A.29)

Next, ∗EA can be determined by noting that it depends on X(Aµ), and hence the second
term of (A.22) (and its conjugate transpose) and last two terms of (A.27). The second
term of (A.22) can be written as

∞∑
n=1

n∑
k=1

(−1)k−1Dα2···αkΠα1···αn
i X(Aaα1)T ai Dαk+1···αnΦi

= tr
[
XaX(Aα1)

] ∞∑
n=1

n∑
k=1

(−1)k−1Dα2···αkΠα1···αn
i T ai Dαk+1···αnΦi

= tr
[
X(Aµ)

∞∑
n=1

n∑
k=1

(−1)k−1Dα2···αkΠµα2···αn
i T ai Dαk+1···αnΦiXa

]
,

(A.30)
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where in the first equality we wrote Aaα1 as a trace, and in the last equality we pulled the
rest of the expression (which is a c-number) into the trace. The last two terms of (A.27)
can be written as

∞∑
n=1

n∑
k=1

(−1)k−1tr
[
Dα2···αkΠα1···αn;µν[X(Aα1), Dαk+1···αnFµν

]]
− 2

∞∑
n=0

(−1)ntr
[
DµDα1···αnΠα1···αn;µνX(Aν)

]
= −

∞∑
n=1

n∑
k=1

(−1)k−1tr
[
X(Aµ)

[
Dα2···αkΠµα2···αn;αβ , Dαk+1···αnFαβ

]]
+ 2

∞∑
n=0

(−1)ntr
[
X(Aµ)DνDα1···αnΠα1···αn;µν)

]
.

(A.31)

It follows (∗EA)µ, i.e. the negative of the term multiplying X(Aµ), is

(∗EA)µ = −2
∞∑
n=0

(−1)nDνDα1···αnΠα1···αn,µν

−
∞∑
n=1

n∑
k=1

(−1)k
[
Dα2···αkΠµα2···αn;αβ , Dαk+1···αnFαβ

]
+

N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i T ai Dαk+1···αnΦi + c.t.
)
Xa.

(A.32)

Finally, (∗EΦ
i )CT is negative of the remaining term, i.e. last term in (A.22):

(∗EΦ
i )CT = −

∞∑
n=0

(−1)nDα1···αn(Πi)α1···αn . (A.33)

Collecting our results, we have

(∗EA)µ = −2
∞∑
n=0

(−1)nDνDα1···αnΠα1···αn;µν

−
∞∑
n=0

n∑
k=1

(−1)k
[
Dα2···αkΠµα2···αn;αβ , Dαk+1···αnFαβ

]

+
N∑
i=1

∞∑
n=0

n∑
k=1

(−1)k
(
Dαn···αkΠµα2···αn

i T ai Dαk+1···αnΦi + c.t.
)
Xa

∗(EΦ
i )CT = −

∞∑
n=0

(−1)nDα1···αnΠα1···αn
i

[∗θ(X)]µ = −2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µνX(Aν)]

+
∞∑
n=0

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβX(Dαk+1···αnFαβ)

]

+
N∑
i=1

∞∑
n=0

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i X(Dαk+1···αnΦi) + c.t.
)
,

(A.34)

which is precisely (3.17) and (3.18).
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A.3 Derivation of (3.21)

We give a detailed derivation of the pre-symplectic potential and form acting on the vector
Xε generating gauge transformations. First, we need to compute θ(Xε) and ω(Y,Xε).
Recall that the vector generating gauge transformations is given by (3.13) to be

Xε =
∫
M
ε

[
−Dµε

a δ

δAaµ
+

N∑
i=1

(
−εa(Φi)CTT ai

δ

δ(Φi)CT + c.t.
)]
∈ TF, (A.35)

which implies
Xε(Aν) = −Dνε

Xε(Dαk+1···αnFαβ) = −
[
Dαk+1···αnFαβ , ε

]
Xε(Dαk+1···αnΦi) = εaT ai Dαk+1···αnΦi.

(A.36)

Substituting this into (A.34) with X = Xε, we get

[∗θ(Xε)]µ = 2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µνDνε]

−
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβ [Dαk+1···αnFαβ , ε]

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)ktr
[
ε
(
Dα2···αkΠµα2···αn

i T ai Dαk+1···αnΦi + c.t.
)
Xa
]

= 2∇νtr
[
ε
∞∑
n=0

(−1)nDα1···αnΠα1···αn;µν
]

+ tr
[
ε
(
∗EA

)µ]
,

(A.37)

where we used the trick introduced in (A.30) to write the last term in the first equality as
a trace, and then used IBP on the first term to get the second equality. The second term
in the last line vanishes on-shell, so recalling (3.22), which defines

(∗Q)µν ≡ 2
∞∑
n=0

(−1)nDα1···αnΠα1···αn;µν , (A.38)

we then have on-shell

[∗θ(Xε)]µ = ∇νtr [ε(∗Q)µν ] =⇒ θ(Xε) = d
(
tr [εQ]

)
. (A.39)

Integrating over Σ, it then follows by Stokes’ theorem that

Θ̃Σ(Xε) =
∮
∂Σ

tr [εQ] , (A.40)

proving the first equation of (3.21).
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To prove the second equation of (3.21), recall that the symplectic potential current
density between two arbitrary vectors X and Y is given by (3.19) to be

[∗ω(X,Y)]µ = −2
∞∑
n=0

(−1)ntr [X(Dα1···αnΠα1···αn;µν)Y(Aν)]

+
∞∑
n=1

n∑
k=1

(−1)ktr
[
X(Dα2···αkΠµα2···αn;αβ)Y(Dαk+1···αnFαβ)

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
[
X(Dα2···αkΠµα2···αn

i )Y(Dαk+1···αnΦi) + c.t.
]

− (X↔ Y).

(A.41)

Setting X = Xε and using (A.36), we obtain upon substituting into (A.41)

[∗ω(Y,Xε)]µ = ∇νtr [εY ((∗Q)µν)] + tr
[
εY
(
(∗EA)µ

)]
, (A.42)

where we used exactly the same methods as those employed in (A.37), and ∗Q is given
in (A.38). Since the second term vanishes on-shell, we have

[∗ω(Y,Xε)]µ = ∇νtr
[
εY
(
(∗Q)µν

)]
=⇒ ω(Y,Xε) = d

(
tr [εY(Q)]

)
. (A.43)

Integrating over Σ and using Stokes’ theorem, we find

Ω̃Σ(Y,Xε) =
∮
∂Σ

tr [εY(Q)] , (A.44)

which is the second equation of (3.21).

A.4 Derivation of (3.27)

In this section, we derive the isometry charge, Hξ[Σ]. The procedure employed here is very
similar to the one in section 2.2.4. However, given the special form of the gauge theory La-
grangian, we will discover that our boundary term contains a particularly interesting piece.

Recall from (2.59) that the isometry charge is

Hξ[Σ] = −
∫

Σ
dΣµ (∗θ(Xξ)− ∗iξL)µ. (A.45)

Starting with (A.34) and (2.53), we have

(∗θ(Xξ)− ∗iξL)µ = ξµL − 2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µν£ξAν ]

+
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβ£ξDαk+1···αnFαβ

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i £ξDαk+1···αnΦi + c.t.
)
.

(A.46)

We begin by simplifying the second term above. Using the fact that

£ξAν = ξρ∇ρAν +Aρ∇νξρ = ξρFρν +∇ν(ξρAρ) + [Aν , ξρAρ], (A.47)
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we get upon substituting this into the second term of (A.46) and using IBP

− 2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µν£ξAν ]

= −∇νtr [ξρAρ(∗Q)µν ]− 2ξρ
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µνFρν ]

+ 2
∞∑
n=0

(−1)ntr [ξρAρDνDα1···αnΠα1···αn;µν ] ,

(A.48)

where ∗Q is given in (A.38). Next, to simplify the last two terms of (A.46), recall that the
Lie derivative is defined in (2.55) to act via

£ξϕ
i = ξµ∇µϕi + 1

2∇[µξν]Σ
µν
i ϕi = ξµDµϕ

i + 1
2∇[µξν]Σ

µν
i ϕi − ξµRi(Aµ)ϕi, (A.49)

where we replaced the (spacetime) covariant derivative with a gauge covariant derivative
at the cost of a term involving the gauge field. It follows that the third term in (A.46)
becomes
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβ£ξDαk+1···αnFαβ

]
= ξν

∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβDνDαk+1···αnFαβ

]
+ 1

2∇[νξρ]

∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβ(Σνρ)

αk+1···αnαβ
α′k+1···α

′
n;α′β′Dα′

k+1···α′nFα
′β′

]
−
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβξρ

[
Aρ,Dαk+1···αnFαβ

]]
, (A.50)

where we used the fact Dαk+1···αnFαβ lives in the adjoint representation. Likewise, the
fourth term in (A.46) becomes
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i £ξDαk+1···αnΦi + c.t.
)

= ξν

N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i DνDαk+1···αnΦi + c.t.
)

+ 1
2∇[νξρ]

N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i

(
Σνρ)

αk+1···αn
α′k+1···α

′
nDα′

k+1···α′nΦi + c.t.
)

−
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)ktr
[(
ξρAρDα2···αkΠµα2···αn

i T ai Dαk+1···αnΦi + c.t.
)
Xa
]
, (A.51)

where we used the trick introduced in (A.30) to write the last term as a trace. Substi-
tuting (A.48), (A.50), and (A.51) into (A.46) and noting that on-shell ∗EA from (A.34)
vanishes, we obtain

(∗θ(Xξ)− ∗iξL)µ = Aµνξν + Bµνρ∇[νξρ] −∇νtr [ξρAρ(∗Q)µν ] , (A.52)
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where

Aµν = gµνL − 2
∞∑
n=0

(−1)ntr [Dα1···αnΠα1···αn;µρF νρ]

+
∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβDνDαk+1···αnFαβ

]

+
N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i DνDαk+1···αnΦi + c.t.
)

(A.53)

Bµνρ = 1
2

∞∑
n=1

n∑
k=1

(−1)ktr
[
Dα2···αkΠµα2···αn;αβ(Σνρ)

αk+1···αn;αβ
α′k+1···α

′
n;α′β′Dα′

k+1···α′nFα
′β′

]

+ 1
2

N∑
i=1

∞∑
n=1

n∑
k=1

(−1)k
(
Dα2···αkΠµα2···αn

i

(
Σνρ
i

)
αk+1···αn

α′k+1···α
′
nDα′

k+1···α′nΦi + c.t.
)
.

We can now follow precisely the steps described in appendix A.1 to prove the identi-
ties (A.1). Making the same definitions as in (2.63), we can then write

(∗θ(Xξ)− ∗iξL)µ = Tµνξν +∇ν(∗Hξ)µν −∇νtr [ξρAρ(∗Q)µν ] . (A.54)

Thus, by (A.45) the isometry charge is

Hξ[Σ] = −
∫

Σ
dΣµ T

µνξν +
∮
∂Σ

Hξ −QiξA[Σ], (A.55)

which is (3.27).

B The derivative operator Da
U(z,z̄)

B.1 The explicit form of Da
U(z,z̄)

Recall that the operator Da
U(z,z̄) was defined to act on U(w, w̄) via

Da
U(z,z̄)U(w, w̄) ≡ −XaU(z, z̄)δ2(z − w). (B.1)

To see that this is indeed a derivative operator, we would like to work out what Da
U(z,z̄) is

explicitly. Begin by writing U = expφ, so that

U(z, z̄) = eφ(z,z̄) =
∞∑
n=0

1
n!φ(z, z̄)n. (B.2)

We will now show that if Da
U(z,z̄) takes the form

Da
U(z,z̄) = Mab(φ(z, z̄)) δ

δφb(z, z̄) , where Mab(φ)Xb =
∞∑
m=0

am[
m times︷ ︸︸ ︷

φ, [φ, · · · , [φ,Xa] · · · ]],

(B.3)
then there exists a set of am such that (B.1) is satisfied. This would prove that Da

U(z,z̄) is
a derivative operator.
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To determine am, we must first prove that

P (m) ≡ [
m times︷ ︸︸ ︷

φ, [φ, · · · , [φ,Xa] · · · ]] =
m∑
p=0

(−1)m+p
(
m

p

)
φpXaφm−p. (B.4)

We prove this via induction. For m = 0 we have P (0) = Xa, which is trivially true.
Assuming that (B.4) holds for m, we want to prove that it also holds for m + 1. We
compute

P (m+ 1) = [φ, P (m)] =
m∑
p=0

(−1)m+p
(
m

p

)
φp+1Xaφm−p −

m∑
p=0

(−1)m+p
(
m

p

)
φpXaφm+1−p

=
m+1∑
p=0

(−1)m+1+p
[(

m

p− 1

)
+
(
m

p

)]
φpXaφm+1−p (B.5)

=
m+1∑
p=0

(−1)m+1+p
(
m+ 1
p

)
φpXaφm+1−p,

thus completing the proof. Noting that we can always interchange two sums via
∞∑
n=0

n∑
m=0

Fm,n−m =
∞∑
m=0

∞∑
n=m

Fm,n−m =
∞∑
m=0

∞∑
n=0

Fm,n, (B.6)

by substituting (B.4) into (B.3), we get

Mab(φ)Xb =
∞∑
m=0

m∑
p=0

am(−1)m+p
(
m

p

)
φpXaφm−p

=
∞∑
p=0

∞∑
m=0

am+p(−1)m
(
m+ p

p

)
φpXaφm.

(B.7)

It follows upon using (B.3) and ignoring the overall δ2(z − w) factor that (we keep the
(z, z̄) dependence for φ implicit for notational simplicity)

Da
U(z,z̄)U(w, w̄) = Mab(φ) δ

δφb

∞∑
n=0

1
n!φ

n

= −Mab(φ)
∞∑
n=0

n∑
k=0

1
(n+ 1)!φ

kXbφn−k

= Mab(φ)
∞∑
k=0

∞∑
n=0

(−1)k+1

(n+ k + 1)!φ
kXbφn

=
∞∑
k=0

∞∑
n=0

∞∑
m=0

∞∑
p=0

(−1)m+k+1

(n+ k + 1)!

(
m+ p

p

)
am+pφ

p+kXaφm+n

= −
∞∑
n=0

Xaφn
n∑

m=0

am
(n−m+ 1)!

+
∞∑
k=1

∞∑
n=0

φkXaφn
n∑

m=0

k∑
p=0

(−1)k−p+1

(n−m+ k − p+ 1)!

(
m+ p

p

)
am+p,

(B.8)
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where we repeatedly used (B.6). We know from (B.1) that this must equal −
∑∞
n=0

1
n!X

aφn

(again ignoring the overall delta function δ2(z − w)). Therefore, by comparing this
with (B.8), we see that in order for Da

U(z,z̄) to have the form assumed in (B.3), we re-
quire the coefficients am to satisfy

n ≥ 0 :
n∑

m=0

n!
(n−m+ 1)!am = 1

n ≥ 0, k ≥ 1 :
n∑

m=0

k∑
p=0

(−1)k−p+1

(n−m+ k − p+ 1)!

(
m+ p

p

)
am+p = 0.

(B.9)

We can determine am from the first equation as follows. Multiplying both sides of the
first equation with xn

n! and then summing over n, we find

ex =
∞∑
n=0

n∑
m=0

xn

(n−m+ 1)!am =
∞∑
m=0

amx
m
∞∑
n=0

xn

(n+ 1)! = ex − 1
x

∞∑
m=0

amx
m, (B.10)

where we used (B.6). It follows
∞∑
m=0

amx
m = xex

ex − 1 =
∞∑
m=0

Bm(1)xm

m! , (B.11)

where we used the definition of the Bernoulli polynomials Bm(x) [47]. Since Bm(1) = B+
m

are the Bernoulli numbers,26 comparing the coefficients on both sides results in

am = B+
m

m! . (B.12)

We now need to check that the second equation in (B.9) is satisfied given (B.12).
Repeating a similar procedure as above, we multiply both sides of the second equation by
xnyk and then sum over n and k to get

0 =
∞∑
k=1

∞∑
n=0

n∑
m=0

k∑
p=0

(−1)k−p+1

(n−m+ k − p+ 1)!

(
m+ p

p

)
xnykam+p (B.13)

=
∞∑
m=0

∞∑
n=0

∞∑
p=0

∞∑
k=0

xn+myk+p (−1)k+1

(n+ k + 1)!

(
m+ p

p

)
am+p −

∞∑
m=0

∞∑
n=0

(−1)
(n+ 1)!x

n+mam

= −
∞∑
n=0

∞∑
k=0

xnyk
(−1)k

(n+ k + 1)!

∞∑
p=0

∞∑
m=0

xmyp
(
m+ p

p

)
am+p + 1

x

∞∑
n=0

xn+1

(n+ 1)!

∞∑
m=0

amx
m,

where we applied (B.6). The sum over n in the second term just yields ex − 1, while the
sum over n and k in the first term yields

∞∑
n=0

∞∑
k=0

xnyk
(−1)k

(n+ k + 1)! =
∞∑
n=0

n∑
k=0

xn−kyk
(−1)k

(n+ 1)!

= 1
x+ y

∞∑
n=0

xn+1 − (−y)n+1

(n+ 1)!

= ex − e−y

x+ y
.

(B.14)

26There are two conventions for Bernoulli numbers, where B+
m = Bm(1) and B−m = Bm(0), and the only

difference is B±1 = ± 1
2 . Mathematica uses the convention B−m.
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Substituting these all back into (B.13) and using (B.6) one last time yields

0 = −e
x − e−y

x+ y

∞∑
p=0

∞∑
m=0

xmyp
(
m+ p

p

)
am+p + ex − 1

x

∞∑
m=0

amx
m

= −e
x − e−y

x+ y

∞∑
m=0

m∑
p=0

xm−pyp
(
m

p

)
am + ex − 1

x

∞∑
m=0

amx
m

= −e
x − e−y

x+ y

∞∑
m=0

am(x+ y)m + ex − 1
x

∞∑
m=0

amx
m.

(B.15)

To prove that the am from (B.12) satisfies this above equation, it suffices to substi-
tute (B.11) into the right-hand-side of the above equation and show that the equation
holds. Indeed, we have

− ex − e−y

x+ y

∞∑
m=0

am(x+ y)m + ex − 1
x

∞∑
m=0

amx
m

= −
(
ex − e−y

x+ y

)(
(x+ y)ex+y

ex+y − 1

)
+
(
ex − 1
x

)(
xex

ex − 1

)
= 0,

(B.16)

proving that (B.12) also satisfies the second equation of (B.9). Thus, substituting (B.12)
into (B.3), we see that Da

U(z,z̄) is the derivative operator

Da
U(z,z̄) = Mab(φ(z, z̄)) δ

δφb(z, z̄) , where Mab(φ)Xb =
∞∑
m=0

B+
m

m! [
m times︷ ︸︸ ︷

φ, [φ, · · · , [φ,Xa] · · · ]].

(B.17)

B.2 Properties of Da
U(z,z̄)

We now show that Da
U(z,z̄) satisfies some useful properties. First, it is straightforward to

check via induction that for any power k, we have[
Da
U(z,z̄),D

b
U(w,w̄)

]
U(y, ȳ)k = fabcδ2(z − w)Dc

U(z,z̄)U(y, ȳ)k. (B.18)

Assuming an arbitrary function f(U) can be written as a Taylor series in U , this means[
Da
U(z,z̄),D

b
U(w,w̄)

]
f(U(y, ȳ)) = fabcδ2(z − w)Dc

U(z,z̄)f(U(y, ȳ)). (B.19)

Next, we want to define integration over the measure [dU ]. Note that this is not
trivial, since the functions U(z, z̄) are constrained, e.g. they satisfy non-trivial identities
like (3.102). However, we can define the measure to be the left-invariant Haar measure, so
that [dU ] = [d(gU)]. It follows∫

[dU ] f(U) =
∫

[d(gU)] f(gU) =
∫

[dU ] f(eεU), (B.20)
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where in the last step we wrote g = exp ε for some Lie algebra element ε ∈ g. This then
implies

δ(U − U ′) = δ(gU − gU ′). (B.21)

Now, we can write

eε(z,z̄)U(z, z̄) = U(z, z̄) + ε(z, z̄)U(z, z̄) +O(ε2)

= U(z, z̄)−
∫
d2w εa(w, w̄)Da

U(w,w̄)U(z, z̄) +O(ε2).
(B.22)

More generally, we can also prove via induction that the above equation holds if we replace
U(z, z̄) with U(z, z̄)k. Therefore, assuming f(U) admits a Taylor series, we have

f
(
eε(z,z̄)U(z, z̄)

)
= f

(
U(z, z̄)

)
−
∫
d2w εa(w, w̄)Da

U(w,w̄)f
(
U(z, z̄)

)
+O(ε2). (B.23)

Using this equation along with (B.21) with g = exp ε, we have

δ(U − U ′) = δ(eεU − eεU ′)

= δ(U − U ′)−
∫
d2z εa(z, z̄)

(
Da
U(z,z̄) + Da

U ′(z,z̄)

)
δ(U − U ′),

(B.24)

which implies (
Da
U(z,z̄) + Da

U ′(z,z̄)

)
δ(U − U ′) = 0. (B.25)

Finally, note that applying (B.23) to (B.20), we get∫
[dU ] f(U) =

∫
[dU ] f(U)−

∫
d2w εa(w, w̄)

∫
[dU ]Da

U(z,z̄)f(U) +O(ε2). (B.26)

Requiring that this equation be satisfied to linear order in ε, we obtain∫
[dU ]Da

U(z,z̄)f(U) = 0. (B.27)

Collecting (B.19), (B.25), and (B.27), we have[
Da
U(z,z̄),D

b
U(w,w̄)

]
= fabcδ2(z − w)Dc

U(z,z̄)(
Da
U(z,z̄) + Da

U ′(z,z̄)

)
δ(U − U ′) = 0∫

[dU ]Da
U(z,z̄) = 0.

(B.28)
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