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holographic dual we re-visit well-known solutions for a probe D3-brane that describe this

theory with a symmetric-representation Wilson line “impurity”. We present evidence that
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1 Introduction

What effect does a quantum impurity, or a dilute concentration of quantum impurities, have

on a Landau Fermi Liquid (LFL)? This is considered a “solved problem” thanks to a suite

of complementary techniques, including the renormalization group (RG), Bethe ansatz,

large-N limits, Conformal Field Theory (CFT), and more. Typically, at sufficiently low

concentration and low temperature T , each impurity’s electric charge and/or magnetic mo-

ment will be screened by the conduction electrons, often leading to dramatic changes in the

LFL’s thermodynamic and transport quantities. For reviews, see for examples refs. [1–5].

Quite generally, quasi-bound states also form at the impurity: when the interaction

between the impurity and the electrons (more precisely, LFL quasi-particles) is non-zero,

the impurity spectral function develops a Lorentzian resonance whose residue and width

are fixed by the coupling constant and the electronic density of states at the impurity’s

energy level [1–5]. Physically, the resonance represents electrons bound to the impurity,

or rather quasi-bound, since they can escape into the bulk. Indeed, the resonance’s width

arises from virtual excursions of electrons away from the impurity, into the LFL, and back.

However, what if the LFL electrons are replaced by strongly-interacting degrees of

freedom? Do quasi-bound states form, and if so, what are their properties? Despite

considerable progress using the techniques mentioned above, in general these problems

remain unsolved.

In this paper we address these problems using the Anti-de Sitter (AdS)/CFT corre-

spondence, also known as holography. Specifically, we consider (9 + 1)-dimensional type

IIB supergravity (SUGRA) in AdS5 × S5, where AdS5 is (4 + 1)-dimensional AdS space

and S5 is a five-sphere. The holographic dual is (3 + 1)-dimensional N = 4 supersym-

metric (SUSY) SU(N) Yang-Mills (SYM) theory in the large-N limit with large ’t Hooft

coupling [6–9].
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Figure 1. Cartoons of the probe D3-brane solutions we study in this paper. The parallelograms at

the bottom represent the stack of D3-branes generating the background AdS5×S5, and the dashed

parallelogram at the top represents the AdS5 boundary. The shapes in between represent the probe

D3-brane solutions describing (a) the N = 4 Coulomb branch, where the D3-brane’s position ρv
maps to an adjoint scalar’s VEV, (b) a symmetric-representation 1/2-BPS Wilson line, and (c) such

a Wilson line screened by the Coulomb branch’s scalar VEV. We call these the “flat,” “cone,” and

“spike” D3-brane solutions, respectively.

We focus on well-known solutions for a probe D3-brane in AdS5 × S5 that are holo-

graphically dual to 1/2-BPS Wilson lines in symmetric representations of SU(N) on the

Coulomb branch of N = 4 SYM [10–16]. In CFT terms, these solutions describe Wilson

lines in states with a non-zero vacuum expectation value (VEV) of tr Φ2, with Φ an adjoint

scalar of N = 4 SYM. On this Coulomb branch SU(N) breaks to SU(N − 1) × U(1), so

the massless sector is SU(N − 1) N = 4 SYM plus U(1) N = 4 SYM, and the lightest

massive states are BPS multiplets bi-fundamental under SU(N − 1)×U(1), which include

the W-bosons.

Figure 1 illustrates the probe D3-brane solutions we consider. In figure 1 the vertical

axis is the holographic direction ρ, with the AdS5 boundary at ρ→∞ (top) and Poincaré

horizon at ρ = 0 (bottom). As an intuitive guide, at ρ = 0 we depict the initial stack of

coincident D3-branes that produce AdS5×S5, although these are not actually present: this

SUGRA solution has N units of five-form flux on the S5 but no explicit D3-brane sources,

i.e. the D3-branes “dissolve” into five-form flux. In figure 1 we suppress the S5. All the

D3-brane solutions we consider sit at a point on the S5, thus breaking its SO(6) isometry

to SO(5).

Figure 1a depicts the probe D3-brane solution describing the Coulomb branch, with

no Wilson line. Intuitively, we pull a single D3-brane from the stack of N coincident

D3-branes out to a constant value ρv (with v for VEV) of the holographic coordinate,

which maps to the symmetry-breaking scale 〈tr Φ2〉 6= 0. This solution clearly breaks

SU(N)→ SU(N−1)×U(1), with the U(1) being the probe D3-brane’s worldvolume gauge

invariance. Fluctuations of this D3-brane’s worldvolume fields represent fluctuations of the

U(1) N = 4 SYM fields at scales below the symmetry breaking scale 〈tr Φ2〉. This D3-brane

also breaks the AdS5 isometries to those of a Poincaré slice at fixed ρ, dual to 〈tr Φ2〉 6= 0

breaking the conformal group to the Poincaré group. Due to the Poincaré symmetry we

call this a “flat” D3-brane.
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Figure 1b depicts the probe D3-brane solution describing a 1/2-BPS Wilson line

in a symmetric representation of SU(N), with 〈tr Φ2〉 = 0. In the CFT, the Wilson

line is a static, point-like conformal defect that breaks the conformal group SO(4, 2) to

SO(1, 2) × SO(3), where SO(1, 2) are conformal transformations leaving the Wilson line

invariant (time translations, dilatations, and special conformal transformations involving

inversions through the Wilson line’s location), and SO(3) are rotations around the Wilson

line. Correspondingly, the probe D3-brane’s worldvolume is AdS2×S2, whose isometries are

SO(1, 2) and SO(3), respectively. The AdS2’s (0 + 1)-dimensional boundary is at the AdS5

boundary, at the Wilson line’s location. Graphically the D3-brane looks like a “cone” with

apex at the AdS5 boundary whose opening angle determines the dimension of the Wilson

line’s SU(N) representation.

Figure 1c depicts the probe D3-brane “spike” solution that interpolates between the

flat and cone D3-branes of figures 1a and 1b. At spatial infinity in any field theory direction

these solutions approach the flat D3-brane sitting at a fixed value of ρ, representing a point

on the Coulomb branch. However, a spike emerges from the D3-brane and reaches the

AdS5 boundary at a point in the field theory directions. In the near-boundary region the

worldvolume metric approaches AdS2 × S2 and the D3-brane resembles the cone solution.

These spike solutions are well known, having been re-discovered many times in the

last 20 years, in various contexts [10–13, 16–18]. However, to our knowledge no dual field

theory interpretation has been proposed for them. We propose interpreting them as Wilson

line “impurities” screened by the Coulomb branch VEV. To see why, simply recall that

in the holographic dictionary ρ corresponds to the energy scale of the dual CFT, with the

ultra-violet (UV) near the AdS5 boundary and infra-red (IR) near the Poincaré horizon.

In these solutions, clearly the impurity is present in the UV but absent in the IR, because

〈tr Φ2〉 has adjusted itself in space to screen the impurity, in a way that preserves spherical

symmetry around the impurity. In other words, these solutions represent a spherically-

symmetric screening cloud made of adjoint scalar VEV. The SU(N) adjoint is essentially

the combination of the fundamental and anti-fundamental representations, so intuitively

we can think of the screening cloud as a collection of adjoint scalar “dipoles” polarized by

the impurity.

In fact, another solution exists with the same boundary conditions as the spike, both

at the AdS5 boundary and at spatial infinity in the field theory, namely a superposition

of the flat and cone D3-branes. (This solution may only exist in the probe limit, where

these two D3-branes do not interact.) Per the usual holographic dictionary, the solution

with smaller on-shell action will be preferred. However, both of these solutions are SUSY

and so have vanishing action, hence neither is preferred over the other. The corresponding

field theory statement is that the scalar VEV can screen the impurity without changing

the energy from zero, i.e. no loss or gain of energy occurs. This is clearly a special feature

of SUSY, since in most impurity systems without SUSY, typically at T = 0 screening is

energetically favoured.

To support our interpretation of the spike solution as a screened impurity, we will

present “smoking gun” evidence, namely quasi-bound states. In SUGRA terms, we will

compute the spectrum of linearised fluctuations of D3-brane worldvolume fields about the
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spike solution and find quasi-normal modes (QNMs) holographically dual to massless U(1)

sector degrees of freedom quasi-bound to the Wilson line impurity.

Crucially, since T = 0 these QNMs arise not from the physics of horizons, but via

a mechanism that to our knowledge is novel. We need two boundary conditions for our

linearised worldvolume fluctuations. Near the spike’s tip, where the worldvolume is asymp-

totically AdS2 × S2, we impose normalisability. This corresponds to injecting energy by

fluctuating a source at the impurity. Infinitely far from the spike’s tip the worldvolume

is asymptotically flat, hence we find in- and out-going wave solutions. Here we require

fluctuations to be purely out-going, so that the energy we injected flows out of the system

at infinity, but no energy flows in [19]. Although our linearised fluctuation operator is

Hermitian, the latter boundary condition is non-Hermitian, thus giving us QNMs instead

of normal modes. In short, our injected energy leaks out at asymptotic infinity in the field

theory directions, in contrast to black hole QNMs, where energy is injected from infinity

and absorbed by the horizon.

Such a mechanism is clearly quite general, and will occur in any holographic system

where a continuum of bulk modes can scatter off a defect whose geometry is not simply AdS.

In field theory terms, such a mechanism will occur whenever a continuum of modes scatters

of a non-conformal defect, where the breaking of defect conformal symmetry is necessary

because a scale is needed to set the spacing between QNMs. We expect the same mechanism

to occur for example with any probe defect whose worldvolume is not simply AdS but is

asymptotically flat, like the spike D3-brane, or whose worldvolume is not AdS and not nec-

essarily asymptotically flat, but back-reacts, so that SUGRA modes can scatter off it. As so

often before, holography thus provides a very intuitive geometric picture of a generic phe-

nomenon: non-conformal defects will generically produce quasi-bound states of bulk modes.

We find several other generic features as well. We put the linearized fluctuation equa-

tions into the form of Schrödinger equations with potentials determined by the D3-brane’s

worldvolume geometry. The QNMs then correspond to meta-stable states, many of which

are quasi-bound in finite wells of these potentials. We then perform a standard quantum

mechanical scattering analysis: we scatter massless U(1) sector degrees of freedom off the

impurity and determine the resulting s- and p-wave phase shifts and associated cross sec-

tions. The meta-stable states produce rapidly changing phase shifts and peaks in the cross

sections whose locations and widths are determined by the QNMs. In other words, we

inject energy from infinity in field theory directions, and rather than being absorbed by a

horizon, the energy is reflected off the impurity, with signatures of the QNMs. The cross

section peaks are in fact Fano resonances, that is, asymmetric line-shapes that occur when-

ever a continuum scatters off a localized resonance [20]. Our Fano resonances are perfect

examples of the mechanism discovered in refs. [21–23], because they arise from the breaking

of (0 + 1)-dimensional conformal symmetry, in our case at the Wilson line impurity.

This paper is organized as follows. In section 2 we review the D3-brane spike solution.

In section 3 we determine the equations of motion of worldvolume fluctuations about the

spike. In section 4 we compute the QNM spectrum. In section 5 we compute the phase

shifts and cross sections. We conclude in section 6 with a summary, and suggestions for

future research.
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2 Probe D3-brane spike solutions

We will be interested in probe D3-branes in the AdS5 × S5 solution of type IIB SUGRA.

We write the metric GMN with M,N = 0, 1, . . . , 9 and four-form C(4) as

ds2 = GMNdx
MdxN =

ρ2

L2
ηµνdx

µdxν +
L2

ρ2
(
dρ2 + ρ2ds2S5

)
, (2.1a)

C(4) =
ρ4

L4
dt ∧ dx1 ∧ dx2 ∧ dx3, (2.1b)

where ρ is the holographic coordinate, with ρ = 0 the Poincaré horizon and ρ → ∞
the AdS5 boundary, L is the AdS5 radius of curvature, xµ = (t, x1, x2, x3) are the CFT

coordinates, and ds2S5 is the metric of a round unit-radius S5.

We will need only the bosonic part of the D3-brane action, SD3, whose bulk part (ignor-

ing boundary terms) is a sum of Dirac-Born-Infeld (DBI) and Wess-Zumino (WZ) terms,

SD3 = SDBI + SWZ, (2.2a)

SDBI = −TD3

∫
d4ξ
√
− det(g + F ), SWZ = TD3

∫
P [C(4)], (2.2b)

where TD3 = (2π)−3g−1s α′−2 is the D3-brane tension, with string coupling gs and

string length squared α′, ξa with a = 0, 1, 2, 3 are the worldvolume coordinates,

gab = ∂aX
M∂bX

NGMN and P [C(4)] are the pullbacks to the D3-brane of the bulk metric

and four-form, respectively, with D3-brane worldvolume scalars XM , and Fbc is the field

strength of the U(1) worldvolume gauge field Ab, which we have made dimensionless by

absorbing a factor of (2πα′).

To obtain the flat, cone, and spike solutions we choose a gauge ξµ = xµ and look

for static solutions in which ρ and At are the only non-zero worldvolume fields, and fur-

thermore are spherically symmetric and so depend only on the CFT radial coordinate

r ≡
√

(x1)2 + (x2)2 + (x3)2. For such an ansatz the worldvolume metric is,

gab dξ
adξb =

ρ2

L2

[
−dt2 +

(
1 +

L4

ρ4
ρ′2
)
dr2 + r2 ds2S2

]
, (2.3)

where ρ′ ≡ ∂rρ and ds2S2 is the metric of a round, unit-radius S2,

ds2S2 = dθ2 + sin2 θ dφ2, (2.4)

where θ∈ [0,π] and φ∈ [0,2π]. The only non-zero component of the field strength is a radial

electric field, Ftr. We choose a U(1) gauge in which Ar = 0, so that Ftr =−∂rAt≡−A′t.
The D3-brane action then takes the form

SD3 = −4π TD3

∫
dr r2

[
ρ4

L4

√
1 +

L4

ρ4
[ρ′2 − (A′t)

2] − ρ4

L4

]
. (2.5)

The equations of motion that follow from this action have the 1/2-BPS solution [10–13,16–18]

ρ = ρv +
L2Q

r
, At = ρ, (2.6)

– 5 –



J
H
E
P
0
3
(
2
0
2
0
)
1
8
8

where ρv > 0 and Q > 0 are integration constants, of dimensions (length) and (length)0,

respectively. This solution is the global minimiser of the SD3 in eq. (2.5), and indeed SD3

vanishes when evaluated on this solution, as required by SUSY [11] (the boundary terms

in the action also vanish when evaluated on this solution). In this solution the D3-brane

sits at a point on the S5, thus breaking the corresponding SO(6) isometry down to SO(5).

Our goal is to compute the spectrum of linearised fluctuations of D3-brane (bosonic)

worldvolume fields around the solution in eq. (2.6). Results for this spectrum are already

known in two limits, namely the flat and the cone D3-brane solutions, obtained by setting

one or the other integration constant to zero in eq. (2.6).

The flat D3-brane has ρv 6= 0 and Q = 0. In that case the worldvolume metric in

eq. (2.3) is simply a (3 + 1)-dimensional Minkowski metric times a constant overall factor

ρ2v/L
2, and At = ρv is constant, leading to a vanishing field strength, Ftr = 0. The linearised

fluctuations of all worldvolume fields are then simply plane waves with fixed momenta.

As mentioned in section 1, the flat D3-brane solution represents a non-zero adjoint

scalar VEV, 〈tr Φ2〉 ∝ ρ2v/L
4 6= 0, which breaks SU(N) → SU(N − 1) × U(1), producing

SU(N − 1) and U(1) N = 4 SYM multiplets coupled via a W-boson multiplet with mass

ρv/(2πα
′). Crucially, for the flat D3-brane’s worldvolume fields the “usual” holographic

dictionary does not apply. “Usual” means: solve for fields as functions of ρ, series expand

about the AdS5 boundary (i.e. in powers of 1/ρ), and then identify the leading, non-

normalizable terms as sources and the sub-leading, normalizable terms as VEVs. The flat

D3-brane sits at a fixed value of ρ, so such a procedure is clearly inapplicable. Instead, we

directly identify the flat D3-branes’ worldvolume fields as those of the U(1) N = 4 SYM

multiplet, and the D3-brane action as their effective action obtained by integrating out the

W-boson multiplet [16, 18, 24]. The linearised fluctuation of the D3-brane fields are thus

not dual to poles in retarded Green’s functions, rather they are identically the fluctuations

of the U(1) N = 4 SYM fields.

The cone D3-brane has ρv = 0 and Q 6= 0. In that case, after re-scaling t as

t → t̂ ≡ t
(
1 +Q−2

)−1/2
, (2.7)

the D3-brane worldvolme metric in eq. (2.3) becomes that of AdS2 × S2,

gab dξ
adξb = L2

(
1 +Q2

)(−dt̂2 + dr2

r2

)
+Q2L2 ds2S2 , (2.8)

where the AdS2 radius is L
√

1 +Q2 and the S2 radius is QL. The cone D3-brane intersects

the AdS5 boundary at the point r = 0, which on the worldvolume is the AdS2 boundary.

This solution has non-vanishing field strength Ftr = QL2/r2, indicating that the D3-brane

carries non-vanishing string charge 4NQ/
√
λ. Heuristically, we can imagine that these

solutions represent strings ending on the AdS5 boundary that have “puffed up” into a D3-

brane via a Myers effect [25]. A single string with AdS2 worldsheet is dual to a 1/2-BPS

Wilson line in the fundamental representation of SU(N) [26, 27]. Correspondingly, the

cone D3-brane is dual to a 1/2-BPS Wilson line at r = 0 in a symmetric representation of

SU(N) whose Young tableau has a number of boxes 4NQ/
√
λ [13–15, 26].
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The SO(1, 2) isometry of the worldvolume AdS2 factor indicates that the dual 1/2-

BPS Wilson line preserves the SO(1, 2) subgroup of the SO(4, 2) conformal group that

leaves the Wilson line’s position invariant. In other words, the 1/2-BPS Wilson line is a

conformal defect. As a result, two-point functions of operators localized on the Wilson

line are completely determined by the operators’ dimensions and charges under the SO(3)

rotational symmetry and SO(5) R-symmetry. Via holography, the corresponding statement

is that the linearised fluctuations of worldvolume fields are completely determined by their

masses and charges alone, as shown in ref. [28].

The spike D3-brane is the solution with both ρv 6= 0 and Q 6= 0. As mentioned in

section 1, we will interpret this solution as a 1/2-BPS symmetric-representation Wilson

line “impurity” screened by the Coulomb branch VEV in a spherically-symmetric fash-

ion [10–16]. Indeed, the worldvolume metric of this solution interpolates from the flat

D3-brane’s Minkowski metric far from the spike, r →∞, to the cone D3-brane’s AdS2×S2

metric near the spike, r → 0. The worldvolume field strength is the same as the cone

D3-brane, Ftr = QL2/r2.

In subsequent sections we will study the spectrum of linearised fluctuations of (bosonic)

worldvolume fields on the spike D3-brane. The results summarised above will appear as

limits: far from the spike, r →∞, the fluctuations will reduce to the flat D3-brane’s plane

waves, while near the spike, r → 0, we will find the cone D3-brane spectrum of ref. [28],

which is fully determined by the fluctuations’ masses and charges. To obtain QNMs, in the

r →∞ region we will impose that the fluctuations are purely out-going, and in the r → 0

region we will impose that the fluctuations are normalisable in AdS2. In physical terms,

we will inject energy through the impurity, which then “leaks out” to spatial infinity in

CFT directions.

The spike D3-brane reaches the AdS5 boundary, hence the usual holographic dictionary

applies: in principle, the spike D3-brane solution actually represents operators localized

on the Wilson line that have acquired SO(3)-symmetric VEVs that “mimic” the effects of

〈tr Φ2〉 6= 0. However we will not pursue such an interpretation. Instead, the results of the

following sections will suffice to justify the more intuitive interpretation that the Coulomb

branch VEV has screened the Wilson line impurity. These two interpretations must be

equivalent, but we will leave the task of proving so for future research.

Although in this work we restrict to solutions with ρv > 0, the solution eq. (2.6) is

also valid if ρv < 0 [29]. When ρv is negative the D3-brane does not flatten out, but

instead reaches all the way to ρ = 0. At small ρ the worldvolume of the brane is a

warped product of AdS2 and S2, with the S2 shrinking to zero size as ρ → 0. The D3-

brane thus becomes effectively two-dimensional in the deep IR, and resembles a marginally

bound state of 4NQ/
√
λ fundamental strings. This solution is holographically dual to a

symmetric representation Wilson line screened by a non-zero VEV of an impurity-localised

operator, such that in the IR the impurity looks like 4NQ/
√
λ coincident fundamental

representation Wilson lines. Similar to the spike solution, SUSY implies that this form of

screening may occur with no loss or gain of energy.
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A more general 1/2-BPS solution is known, namely a multi-centre solution with both

electric and magnetic fields [10, 11]. This more general solution is static but not spherically

symmetric, depending in general on all of the CFT spatial coodinates xi with i = 1, 2, 3. In

this solution ρ is determined by the Laplace equation in three-dimensional Euclidean space,

δij∂i∂jρ = 0, (2.9)

while the electric fields Fti and magnetic fields Fjk are completely determined by ρ via

vector-scalar duality conditions,

Fti = cosχ∂iρ,
1

2
εljkF

jk = sinχ∂iρ, (2.10)

where εijk is the Levi-Civita symbol (with ε123 = 1), and χ ∈ [0, 2π) is a free param-

eter. Eq. (2.9) shows that finding multi-centre solutions reduces to a problem in three-

dimensional electrostatics. In particular, any linear combination of solutions to eq. (2.9)

is again a solution, hence we can construct multi-centre solutions simply by taking linear

combinations of the single spike solution in eq. (2.6), placing the spikes anywhere we like

on the D3-brane worldvolume. The presence of both electric and magnetic fields indicates

that these spikes will generically be dual to mixed Wilson/’t Hooft lines. Using such multi-

centre solutions we can thus construct lattices of impurities, including lattices with broken

discrete symmetries, for example lattices of magnetic impurities that break time reversal.

A natural question then is whether such lattices produce non-trivial band structure, and

in particular whether they support (topologically-protected) massless modes. We return

to this question in section 6.

3 Linearised fluctuations

We now consider linearised fluctuations of D3-branes worldvolume fields around the spike

solution eq. (2.6). The spike solution preserves SUSY, and more specifically is 1/2-BPS,

hence the linearised fluctuations will form SUSY multiplets. We will focus on the bosonic

fluctuations, which include the six scalars describing the D3-brane’s position in transverse

directions and the four components of the U(1) worldvolume gauge field.

In fact, we will focus only on a subset of these bosonic fluctuations. The spike solution

preserves SO(3) rotations around the impurity, as well as an SO(5) R-symmetry. At the

linearised level, fluctuations in different SO(3) × SO(5) representations will decouple. We

will focus only on SO(5) singlets, which include the scalar fluctuation describing the D3-

brane’s position in the holographic coordinate ρ and the four U(1) gauge field components.

We thus introduce the small fluctuations about the spike solution eq. (2.6),

ρ(r)→ ρ(r) + δρ(t, r, θ, φ), Ab(r)→ Ab(r) + δAb(t, r, θ, φ), (3.1)

with δρ � ρ and δAb � Ab. The fluctuations δρ, δAt, and δAr are SO(3) scalars, which

following ref. [28] we expand in S2 scalar harmonics Y lm(θ, φ) with coefficients that depend
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only on t and r,

δρ(t, r, θ, φ) =

∞∑
l=0

l∑
m=−l

ρlm(t, r)Y lm(θ, φ), (3.2a)

δAt(t, r, θ, φ) =
∞∑
l=0

l∑
m=−l

Almt (t, r)Y lm(θ, φ), (3.2b)

δAr(t, r, θ, φ) =
∞∑
l=0

l∑
m=−l

Almr (t, r)Y lm(θ, φ). (3.2c)

The fluctuations of the S2 components of the U(1) gauge field, δAβ with β = (θ, φ) the

S2 coordinates in eq. (2.4), are an SO(3) vector, which we expand in S2 vector harmonics.

The complete set of vector-valued functions on S2 includes derivatives of scalar harmonics,

∂βY
lm, and derivatives of scalar harmonics combined with a Levi-Civita symbol, εβγ (with

εθφ = 1),

Ŷ lm
β (θ, φ) ≡ 1√

l(l + 1)
εβ
γ ∂γY

lm(θ, φ), (3.3)

where we raise and lower indices with the S2 metric. However, as explained in ref. [28]

we can use a partial gauge fixing to remove the former, hence we expand δAβ only in the

latter, again with coefficients that depend only on t and r,

δAβ(t, r, θ, φ) =

∞∑
l=1

l∑
m=−l

Blm(t, r)Ŷ lm
β (θ, φ). (3.4)

We next insert eqs. (3.2) and (3.4) into SD3 in eq. (2.2) and expand, obtaining

SD3 = S
(0)
D3 + S

(1)
D3 + S

(2)
D3 + . . . (3.5)

where the superscripts denote powers of fluctuations, so S
(0)
D3 is simply eq. (2.5) evaluated on

the solution in eq. (2.6), which vanishes due to SUSY as mentioned above. The equations

of motion require S
(1)
D3 = 0. The linearised equations of motion for the fluctuations come

from S
(2)
D3. To write S

(2)
D3 succinctly, we define

H ≡ L4/ρ4, F lmtr ≡ ∂tAlmr − ∂rAlmt , (ρlm)2 ≡ ρlmρl,−m, (3.6)

and similarly for (F lmtr )2,
(
Almt

)2
, etc. We find

S
(2)
D3 =−T3

∑
l,m

(−1)m
∫
dtdr r2

{
−1

2
(∂tρlm)2+

1−Hρ′2

2

[
(∂rρlm)2+

l(l+1)

r2
(ρlm)2

]

− 1+Hρ′2

2
(F lmtr )2− 1+Hρ′2

2r2
l(l+1)(Almt )2+

1

2r2
l(l+1)(Almr )2

+Hρ′2F lmtr ∂rρl,−m−
Hρ′2

r2
l(l+1)Almt ρl,−m

− 1+Hρ′2

2r2
(∂tBlm)2+

1

2r2
(∂rBlm)2+

1

2r4
l(l+1)(Blm)2+. . .

}
, (3.7)

– 9 –



J
H
E
P
0
3
(
2
0
2
0
)
1
8
8

where the . . . represents the terms involving the SO(5) vector fluctuations, which as men-

tioned above do not couple to the fluctuations we are considering. At this linearised level,

only fluctuations with the same values of l and |m| couple to one another. In particular, the

scalar harmonic coefficients ρlm, Almt and Almr couple to one another, via the terms in the

third line of eq. (3.7), but decouple from the vector harmonic coefficients Blm, as expected.

Since the equations of motion for the fluctuations do not depend on m, starting now

we will consider only fluctuations with m = 0 without loss of generality. We define the

notation ρlm=0 ≡ ρl and similarly for the other fluctuations. The equations of motion for

ρl, A
l
t, and Alr derived from S

(2)
D3 in eq. (3.7) are then, respectively,

∂r
[
r2
(
1−Hρ′2

)
∂rρl

]
−r2∂2t ρl−l(l+1)

(
1−Hρ′2

)
ρl+∂r

(
r2Hρ′2F ltr

)
+l(l+1)Hρ′2Alt = 0,

(3.8a)

∂r

[
r2
(
1+Hρ′2

)
F ltr−r2Hρ′2∂rρl

]
+l(l+1)

(
1+Hρ′2

)
Alt+l(l+1)Hρ′2ρl = 0, (3.8b)

∂t

[
r2
(
1+Hρ′2

)
F ltr−r2Hρ′2∂rρl

]
+l(l+1)Alr = 0. (3.8c)

Henceforth we will also focus only on a single Fourier mode in time of each fluctuation,

meaning we will take ρl(t, r) ≡ e−iωtρl(r) with frequency ω, and similarly for Alt and Alr.

(We use the same symbol for the fluctuation and its Fourier mode. The difference should

always be clear from the context.) Using the definition F ltr ≡ −iωAlr − ∂rAlt we can solve

eq. (3.8c) for Alr, and then plug the result into eqs. (3.8a) and (3.8b), thus obtaining two

coupled equations for ρl and Alt alone. Suitable linear combinations of those equations

produce new equations that are almost (though not quite) symmetric under the exchange

of ρl and Alt,

∂2rρl +

[
l(l + 1)− ω2r2

] [
r∂r

(
Hρ′2

)
− 2
]

+ 2ω2r2Hρ′2

r [ω2r2(1 +Hρ′2)− l(l + 1)]
∂rρl

+
l(l + 1)∂r(Hρ

′2)

ω2r2(1 +Hρ′2)− l(l + 1)
∂rA

l
t +

[
ω2(1 +Hρ′2)− l(l + 1)

r2

]
ρl = 0, (3.9a)

∂2rA
l
t −

[
l(l + 1)− ω2r2

]
∂r
(
Hρ′2

)
+ 2ω2rHρ′2

ω2r2(1 +Hρ′2)− l(l + 1)
∂rρl

−
l(l + 1)

[
r∂r(Hρ

′2) + 2
]

r [ω2r2(1 +Hρ′2)− l(l + 1)]
∂rA

l
t +

[
ω2(1 +Hρ′2)− l(l + 1)

r2

]
Alt = 0. (3.9b)

Solutions of eq. (3.9) have asymptotic expansions around the spike at r = 0 with forms

characteristic of asymptotically AdS2 spacetime, as expected,

ρl =
cρ−l−1
rl+1

[1 +O (r)] + dρl r
l [1 +O (r)] , (3.10a)

Alt =
ct−l−1
rl+1

[1 +O (r)] + dtl r
l
[
1 +O

(
r2
)]
, (3.10b)

where the complex-valued coefficients cρ−l−1, d
ρ
l , c

t
−l−1, and dtl are integration constants,

meaning they are independent of r and completely determine the coefficients of all other
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powers of r in eq. (3.10). The asymptotic expansions of the solutions around spatial infinity

r →∞ have forms characteristic of scalar harmonics in Minkowski spacetime, as expected,

ρl =
fρl (r)

r
e−i(ωr−lπ/2) +

gρl (r)

r
ei(ωr−lπ/2), (3.11a)

Alt = f tl (r) e
−i(ωr−lπ/2) + gtl (r) e

i(ωr−lπ/2), (3.11b)

where the complex-valued functions fρl (r), gρl (r), f tl (r), and gtl (r) are regular in r as r →∞.

For the vector harmonics Bl, the equation of motion for a single Fourier mode is

∂2rBl +

[
ω2
(
1 +Hρ′2

)
− l(l + 1)

r2

]
Bl = 0. (3.12)

A solution of eq. (3.12) has an asymptotic expansion around r = 0 with a form characteristic

of asymptotically AdS2 spacetime, as expected,

Bl =
cB−l
rl
[
1 +O

(
r2
)]

+ dBl+1 r
l+1

[
1 +O

(
r2
)]
, (3.13)

with integration constants cB−l and dBl+1. The asymptotic expansion of a solution around

r → ∞ has the form characteristic of a vector harmonic in Minkowski spacetime, as

expected,

Bl = fBl (r) e−i(ωr−lπ/2) + gBl (r) ei(ωr−lπ/2), (3.14)

where the two functions fBl (r) and gBl (r) are regular in r as r →∞.

Perfectly spherical fluctuations are special: setting l = 0 eliminates A0
t from eq. (3.9a),

which thus becomes an equation for ρ0 alone,

∂2rρ0 +

[
∂r ln

(
r2

1 +Hρ′2

)]
∂rρ0 + ω2(1 +Hρ′2) ρ0 = 0, (3.15)

while the equation for A0
t becomes simply ∂r of eq. (3.15). A solution of eq. (3.15) has an

asymptotic expansion around r = 0 of the form in eq. (3.10a)

ρ0 =
cρ−1
r

+ dρ0 +O (r) , (3.16)

where cρ−1 and dρ0 are clearly fluctuations of the parameters Q and ρv in the background

solution eq. (2.6), respectively. Changing Q means changing the representation of the

holographically dual 1/2-BPS Wilson line, hence we will take cρ−1 = 0 in all that fol-

lows. In other words, we will demand that ρ0 is normalisable in the asymptotically AdS2

region r → 0.

In fact, in all that follows we will consider only fluctuations normalisable in the asymp-

totically AdS2 region r → 0, that is, we will always take cρ−l−1 = 0 and ct−l−1 = 0 in

eq. (3.10) and cB−l = 0 in eq. (3.13), respectively.

In section 4 we will compute QNM solutions of eqs. (3.9) and (3.12), and in section 5

we will compute scattering solutions. Both types of solutions will be normalisable in the

asymptotically AdS2 × S2 region r → 0, as described in the previous paragraph. The
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(b) Q = 0.1

Figure 2. The complex frequency plane ω, in units of ρv/L
2. The black crosses denote QNM

frequencies of the fluctuation ρ0 when (a) Q = 0.01 or (b) Q = 0.1.

difference between them will appear in the boundary conditions in the asymptotically

Minkowski region r → ∞. For QNMs we will dial through values of ω until we find

normalisable solutions that are purely out-going in the asymptotically Minkowski region,

meaning fρl (r) = 0 and f tl (r) = 0 in eq. (3.11), or fBl (r) = 0 in eq. (3.14). For scattering

solutions we will imagine shooting waves in from infinity and measuring what comes back

out at infinity, so we allow both in- and out-going waves in the Minkowski region, but

where the out-going waves may have a phase shift compared to the in-going waves. For

example in eq. (3.11) the complex-valued coefficient gρl (r) may have a phase shift compared

to fρl (r), and similarly for the other fluctuations.

4 Quasi-normal modes

QNMs are normalisable, out-going solutions for the fluctuations. We compute the QNMs

via numerical shooting with parameter ω, the complex frequency. More specifically, we dial

through ω values, for each value numerically solving the fluctuations’ equations of motion,

always imposing normalisability in the asymptotically AdS2×S2 region r → 0, until we find

a purely out-going solution in the asymptotically Minkowski region r → ∞. The details

of the fluctuations’ asymptotics in both regions, and precisely which coefficients we set to

zero to define normalisability and out-going waves, appear in the previous section.

The dimensionless free parameters of the spike are ρv/L, which in the CFT determines

〈tr Φ2〉, and Q, which in the CFT determines the number of boxes in the Young tableau of

the Wilson line’s representation, as described below eq. (2.8). Our main question in this

section will thus be how the QNM frequencies, in units of ρv/L, vary with Q.

For the fluctuation ρ0, with equation of motion in eq. (3.15), our numerical results

for the QNM frequencies when Q = 0.01 and 0.1 appear in figure 2. We find the familiar

“Christmas tree” pattern of QNMs typical of holographic systems (though here without a

black brane horizon), namely two sets of QNMs reflection-symmetric about the Im(ω) axis

due to time-reversal symmetry, and descending into the complex ω plane with increasing

real parts and increasingly negative imaginary parts. In particular, going from Q = 0.01
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Figure 3. The complex frequency plane ω, in units of ρv/L
2, showing QNM frequencies of the fluc-

tuation ρ0. The curves (solid black, dashed red, dotted blue, dash-dotted orange, dash-dash-dotted

purple) are simply to guide the eye for each QNM’s motion down into the complex plane as Q in-

creases from 10−5 to 10−1. The curves connect the solid disks, which are separated by 10 data points.

in figure 2(a) to Q = 0.1 in figure 2(b), the QNMs’ real parts change very little, while

the imaginary parts become more negative, or in physical terms, the QNMs become less

stable. Figures 3 and 4 show the same phenomenon in more detail, for other ranges of Q.

One possible interpretation of this phenomenon is that in the CFT larger Q, and hence

a larger Young tableau, provides more “decay channels” for excitations at the impurity.

Figure 4(d) is a log-log plot of Im (ω) versus Q, and reveals a transition between power

laws as Q increases, from Im (ω) ∝ Q3 at small Q to Im (ω) ∝ Q3/4 at large Q.

Figure 5 shows our numerical results for the QNMs of the fluctuations ρl and Alt, with

equations of motion in eq. (3.9), when l = 1, 2, 3 and Q = 0.01 and 0.1. We find again that

if we fix l and increase Q (moving from left to right in one row of figure 5) then the QNMs’

real parts change very little while the imaginary parts become more negative, or in other

words the QNMs become less stable.

If we instead fix Q and increase l (moving down one column of figure 5), then we find

two different behaviours, depending on the size of Q. If Q is sufficiently small, then as we

increase l (moving down the left column of figure 5) the QNMs tend to move up, closer to

the Re(ω) axis, thus becoming more stable. In fact, as l increases, more and more QNMs

“line up” just below the Re(ω) axis. If we define the number of QNMs lining up this way

as QNMs with |Im (ω) |/Re (ω) < 10−2, then the number appears to grow approximately

linearly with l. Our numerics also suggest that this line of QNMs approaches the Re (ω)

axis exponentially quickly in l as l→∞. They may thus appear to be forming a branch cut

on the real axis as l increases, however they actually maintain order one spacing from each

other as l → ∞, in units of ρv/L
2, and in fact are not evenly spaced, or indeed have any

order in their spacing that we could discern. On the other hand, if Q is sufficiently large,

then as we increase l (moving down the right column of figure 5) the QNMs’ real parts

grow larger while the imaginary parts become more negative, or in other words the QNMs

become less stable. The critical value of Q that separates the two behaviours is Q ≈ 0.078.

– 13 –



J
H
E
P
0
3
(
2
0
2
0
)
1
8
8

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
0

5

10

15

20

(a)

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
-7

-6

-5

-4

-3

-2

-1

0

(b)

0.001 0.005 0.010 0.050 0.100

7.5

10.0

12.5

15.0
17.5
20.0

(c)

0.001 0.005 0.010 0.050 0.100
10-6

10-4

0.01

1

(d)

Figure 4. The real and imaginary parts of QNM frequencies of the fluctuation ρ0, in units of

ρv/L
2, as functions of Q. (a) and (b) have linear axes while (c) and (d) have logarithmic axes. The

curves (solid black, dashed red, dotted blue, dash-dotted orange, dash-dash-dotted purple) are to

guide the eye, and denote the same QNMs as in figure 3.

For the vector harmonic fluctuations Bl, with equation of motion in eq. (3.12), our

numerical results for the QNM frequencies when l = 1, 2, 3, 4 and Q = 0.01 and 0.1 appear

in figure 6. We find similar behaviour to the fluctuations of ρl and Alt in figures 2 and 5.

In particular, we find again that if we fix l and increase Q (moving from figure 6(a) to

(b)) then the QNMs’ real parts change very little but the imaginary parts become more

negative, i.e. the QNMs become less stable. If instead we fix Q and increase l then again

we find for small Q (figure 6(a)) the QNMs’ imaginary parts become less negative, i.e.

the QNMs become more stable, and some QNMs line up just below the Re (ω) axis, with

the same properties as before: as l increases, the number of QNMs that line up grows

approximately linearly in l, the line of QNMs approaches the Re (ω) axis exponentially

quickly in l, and the QNMs in the line maintain an uneven but order-one spacing from one

another. On the other hand, for large Q (figure 6(b)), as l increases the QNMs’ imaginary

parts become more negative, i.e. the QNMs become less stable. The critical value of Q

that separates the two behaviours is again Q ≈ 0.078.
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(f) l = 3 and Q = 0.1

Figure 5. The complex frequency plane ω, in units of ρv/L
2. The black crosses denote QNM

frequencies of the fluctuations ρl and Al
t when l = 1 (top row), l = 2 (middle row), and l = 3

(bottom row), for Q = 0.01 (left column) and Q = 0.1 (right column).
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(b) Q = 0.1

Figure 6. The complex frequency plane ω, in units of ρv/L
2, showing QNM frequencies of the

fluctuations Bl for (a) Q = 0.01 or (b) Q = 0.1 and l = 1, 2, 3, 4 (black crosses, red dots, orange

plus signs, blue squares, respectively).

We can gain useful intuition for these features of the QNMs by re-writing each fluctu-

ation’s equation of motion in the form of a Schrödinger equation. The equations of motion

for ρ0 in eq. (3.15) and for Bl in eq. (3.12) are of the generic form

∂2ry(r) + γ1(r)∂ry(r) +

[
ω2γ2(r)−

l(l + 1)

r2

]
y(r) = 0, (4.1)

where y(r) denotes the fluctuation ρ0 or Bl, and the coefficients γ1(r) and γ2(r) both depend

on ρv/L and Q but not on ω. If we define a new radial coordinate ζ via ∂rζ ≡
√
γ2(r),

with the boundary condition that ζ = 0 when r = 0, and we define a new fluctuation Ψ via

Ψ ≡ ζ eh y, (4.2)

where h is a function of ζ determined by

∂ζh ≡ −
1

ζ
+
∂rγ2(r) + 2γ1(r)γ2(r)

4 γ2(r)3/2
, (4.3)

where of course r is implicitly a function of ζ, then y(r)’s equation of motion eq. (4.1)

becomes a Schrödinger equation for Ψ(ζ),

∂2ζΨ +

[
ω2 − l(l + 1)

ζ2
− V (ζ)

]
Ψ = 0, (4.4)

with potential V (ζ) determined by γ1(r), γ2(r), and l,

V (ζ) ≡ 1

4

∂2rγ2(r)

γ2(r)2
− 5

16

(∂rγ2(r))
2

γ2(r)3
+

2∂rγ1(r) + γ1(r)
2

4γ2(r)
+ l(l + 1)

[
1

r2γ2(r)
− 1

ζ2

]
, (4.5)

where again r is implicitly a function of ζ.

– 16 –



J
H
E
P
0
3
(
2
0
2
0
)
1
8
8

For ρ0, the equation of motion in eq. (3.15) has

γ1(r) =
2

r
+

4Q2ρv
(QL2 + ρv r) [Q2 + (Q+ ρv r/L2)4]

, γ2(r) = 1 +
Q2

(Q+ ρv r/L2)4
. (4.6)

From ζ’s definition ∂rζ ≡
√
γ2(r), with the boundary condition that ζ = 0 when r = 0, we

find that ζ is given by

ζ =
1

ρv

[(
QL2+ρv r

)
2F1

(
−1

2
,−1

4
;
3

4
;− Q2

(Q+ρv r/L2)4

)
−QL2

2F1

(
−1

2
,−1

4
;
3

4
;− 1

Q2

)]
,

(4.7)

with leading-order asymptotics

ζ =

{
r
(
1 +Q−2

)1/2
, r → 0,

r, r →∞.
(4.8)

The Schrödinger potential obtained from eq. (4.5) then has leading-order asymptotics

V (ζ) =


4ρv

(1+Q2)3/2L2 ζ
−1, ζ → 0,

−Q2L8

ρ4v
ζ−6, ζ →∞.

(4.9)

For any Q this V (ζ) approaches +∞ as ζ → 0 and approaches zero from below as ζ → +∞,

and hence has a global minimum with V < 0 at some finite ζ. Figure 7(a) shows our

numerical results for this V (ζ) for several Q values, showing the expected behaviours as

ζ → 0 and ζ →∞. In figure 7(a) the global minimum with V < 0 at finite ζ is only visible

for small Q, but is indeed present for all Q, as we have confirmed numerically.

However, another key feature of V (ζ) in figure 7(a) is, for sufficently small Q, a peak

of finite height at some finite ζ, producing a potential well with a minimum at V > 0.

As Q increases, this peak becomes shorter and wider, although the former occurs more

rapidly than the latter: comparing V for Q = 10−3 and 10−2 in figure 7, clearly the peak

is smaller when 10−2. As Q increases beyond Q ≈ 0.0977 the peak becomes so short and

wide as to disappear completely. Our numerical results for the peak’s height ∆V , defined

as the difference in V between the top of the peak and the bottom of the potential well (i.e.

between the local maximum and local minimum), as a function of Q appears in figure 7(b).

For Q . 10−2 we find that ∆V is well-approximated by 3ρ2v/(2QL
4). Our numerical results

for the peak’s full width at half maximum, ∆ζ, as a function of Q appears in figure 7(c).

Some solutions of the Schrödinger equation will be “bound” in the potential well be-

tween the infinite barrier on the left at ζ = 0 and the finite barrier provided by the

peak on the right. More precisely, they will be “quasi-bound,” being able to tunnel

quantum mechanically under the peak on the right and escape to ζ → ∞. These so-

lutions will correspond to long-lived QNMs, meaning QNM frequencies with real parts

larger than their imaginary parts. For example, when Q = 10−2 these are the three high-

est pairs of QNMs in figure 2(a): in that case the peak in figure 7(a) (dashed orange)

has a height L4V/ρ2v ≈ 172, while the three highest pairs of QNMs in figure 2(a) have(
Re
(
L2ω/ρv

))2 ≈ 53, 103, 170 < 172.
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Figure 7. (a) The Schrödinger potential V (ζ) defined in eq. (4.5), in units of ρ2v/L
4, as a function

of ζ, in units of L2/ρv, for the fluctuation ρ0 with Q = 10−3, 10−2, 10−1, 1 (solid blue, dashed

orange, dotted red, dash-dotted black). The asymptotic behaviours are given in eq. (4.9): as ζ → 0

an infinite barrier appears, while V → 0− as ζ → ∞. For small Q a peak appears at finite ζ,

and hence a potential well, with local minimum at V > 0. As Q increases, the peak shrinks and

broadens, and eventually disappears when Q ≈ 0.0977. (b) Logarithmic plot of the peak’s height,

∆V , defined as the difference in V between the top of the peak and the bottom of the potential

well, in units of ρ2v/L
4, as a function of Q. The grey line is ∆V = 3ρ2v/(2QL

4), which is a good

approximation for Q . 10−2. (c) The full width at half maximum of the peak, ∆ζ, in units of

L2/ρv, as a function of Q.
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Figure 8. The Schrödinger potential V (ζ) defined in eq. (4.5), in units of ρ2v/L
4, as a function of

ζ, in units of L2/ρv, for the fluctuation Bl with (a) Q = 0.01 and (b) Q = 0.1 and l = 1, 2, 3, 4

(black dot-dashed, red dotted, orange dashed, solid blue, respectively).

In contrast, the other QNMs correspond to solutions “above” the peak, or present

when the peak is absent. Due to the infinite barrier at ζ → 0 these solutions will always

escape to ζ → ∞, however they have little or nothing in their way, so they will not be

long-lived: they correspond to QNM frequencies whose real and imaginary parts are of the

same order.

For the vector harmonic fluctuation Bl, the equation of motion in eq. (3.12) has

γ1(r) = 0, γ2(r) = 1 +
Q2

(Q+ ρv r/L2)4
. (4.10)

Since γ2(r) is the same as in the ρ0 equation of motion, ζ is again given by eq. (4.7).

However, because γ1(r) is different, the asymptotics of the potential are different,

V (ζ) =


2l(l+1)ρv

(1+Q2)3/2L2 ζ
−1, ζ → 0,

2l(l+1)QL2

ρv

[
1− 2F1

(
−1

2 ,−
1
4 ; 3

4 ;− 1
Q2

)]
ζ−3, ζ →∞.

(4.11)

For any Q this V (ζ) approaches +∞ as ζ → 0. In the second line of eq. (4.11) the factor

in square brackets is positive for all Q, hence for any Q this V (ζ) approaches zero from

above as ζ →∞. As a result, nothing requires V (ζ) to have a global minimum, in contrast

to the Schrödinger potential associated with ρ0.

Figure 8 shows our numerical results for the V (ζ) of Bl for Q = 0.01 and 0.1 and for

l = 1, 2, 3, 4. We see not only the expected asymptotic behaviours at ζ → 0 and ζ → ∞,

including in particular an infinite barrier at ζ → 0, but also a peak at finite ζ, producing

a potential well. In this case the peak is present for all Q we considered.

The behaviour of V (ζ) in figure 8 provides intuition for the behaviour of the QNMs of

Bl that we observed in figure 6. For example, if we fix Q = 10−2 and increase l, figure 8(a)

shows the peak growing in height, and correspondingly the potential well growing deeper.
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We then expect to see more long-lived QNMs: these are the QNMs that “line up” below

the real axis in figure 6(a). If instead we fix Q = 0.1, which is above the critical value

Q ≈ 0.078, and increase l then figure 8(b) shows that the peaks are shorter than at

Q = 10−2 (compare the vertical axes in figures 6(a) and (b)), and although the peak’s

height grows as l increases, the infinite barrier at ζ → 0 grows more quickly, so that the

potential well actually becomes shallower. As a result, we expect less stable QNMs, as

indeed we saw in figure 6(b), where the QNM frequencies’ imaginary parts become more

negative as l increases. If we fix l and increase Q, i.e. if we compare the same line between

figures 6(a) and (b), then we see the potential well become shallower, so in general we

expect QNMs to be less stable, as indeed we saw when comparing the same value of l

between figures 6(a) and (b).

In short, writing the fluctuations’ equations of motion in the form of Schrödinger equa-

tions provides simple but powerful intuition for the behavior of the QNMs. In particular,

the Schrödinger potentials characteristically exhibit an infinite barrier at the impurity,

r → 0, and a finite peak at some finite r, producing a potential well. The most stable

QNMs correspond to quasi-bound solutions in that potential well. The position of the

peak could also potentially provide a definition of the size of the screening cloud surround-

ing the impurity.

5 Scattering

In LFLs, screened impurities give rise not only to quasi-bound states, but also to phase

shifts in the electronic wave function. Heuristically, if we “shoot in” electrons from infinity,

they can be trapped at the impurity temporarily before escaping back to infinity. Such

resonant scattering produces peaks in the associated scattering cross section.

In this section we will consider scattering off the D3-brane spike. Heuristically, we will

“shoot in” fluctuations of D3-brane worldvolume fields from r →∞ towards the spike, and

then “measure” what comes back to r → ∞. In CFT terms, in the effective theory valid

below the W-boson mass scale, SU(N − 1) N = 4 SYM plus U(1) N = 4 SYM, we will

scatter waves of U(1) N = 4 SYM degrees of freedom off the screened Wilson line. We will

indeed find phase shifts and resonant scattering, producing peaks in cross sections. The

positions and widths of these peaks will be determined by the real and imaginary parts

of the QNM frequencies, respectively. Moreover, these peaks will have an asymmetric

shape characteristic of Fano resonances [20]. Such Fano resonances clearly arise from the

mechanism of refs. [21–23], namely the breaking of (0+1)-dimensional conformal symmetry

at the Wilson line.

We focus on the fluctuations ρ0, with equation of motion in eq. (3.15), and Bl, with

equation of motion in eq. (3.12). These equations take the generic form in eq. (4.1),

∂2ry(r) + γ1(r)∂ry(r) +

[
ω2γ2(r)−

l(l + 1)

r2

]
y(r) = 0. (5.1)

The asymptotics near the impurity, r → 0, and asymptotically far away, r → ∞, appear
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in eqs. (3.10) and (3.11) for ρ0 and eqs. (3.13) and (3.14) for Bl, with the generic form

y(r) =


cy−l−1

rl+1 [1 +O (r)] + dyl r
l [1 +O (r)] , r → 0,

fyl (r) e−i(ωr−lπ/2) + gyl (r) ei(ωr−lπ/2), r →∞,
(5.2)

where cy−l−1, d
y
l , f

y
l (r), and gyl (r) are complex-valued. To shoot in a wave that scatters off

the spike, and then measure the resulting phase shift of the wave that comes out, we will

impose gyl (r)→ −fyl (r)e2iδl as r →∞, where the phase δl in general depends on l, Q, and

ω. In contrast, for the QNMs we imposed a purely out-going boundary condition, fyl (r) = 0

with non-zero gyl (r), as mentioned at the end of section 3. Of course, for both the QNMs and

the scattering solutions we impose normalisablity in the r → 0 region, meaning cy−l−1 = 0.

Our objective is to determine the dependence of the phase shifts δl on l, Q, and ω. To

do so we use the variable phase method [30, 31], as follows. We define two new functions,

a(r) and δ̃l(r), via the ansatz

y(r) =
a(r)

r

(
e−i(ωr−lπ/2) − e2iδ̃l(r)ei(ωr−lπ/2)

)
, (5.3a)

∂ry(r) = −iωa(r)

r

(
e−i(ωr−lπ/2) + e2iδ̃l(r)ei(ωr−lπ/2)

)
. (5.3b)

In the asymptotic region r→∞ these new functions behave as a(r)→ rfyl (r) and δ̃l(r)→ δl,

so to compute the phase shifts δl we need to solve for δ̃l(r) and extract limr→∞ δ̃l(r). We

can obtain an equation for δ̃l(r) as follows. Requiring the expression for ∂ry(r) in eq. (5.3b)

to be the derivative of the expression for y(r) in eq. (5.3a) allows us to solve for ∂ra(r) in

terms of a(r), δ̃l(r), and ∂r δ̃l(r),

∂ra(r) = a(r)

[
1

r
− i∂r δ̃l(r) + cot

(
lπ

2
− ωr − δ̃l(r)

)
∂r δ̃(r)

]
. (5.4)

We then plug the ansatz in eq. (5.3) into the equation of motion eq. (5.1) and use eq. (5.4) to

eliminate ∂ra(r). The resulting equation has an overall factor of a(r), however a non-trivial

solution will have a(r) 6= 0, leaving us with an equation for δ̃l(r),

ω ∂r δ̃(r) +
1

2
ωγ1(r) sin

(
lπ − 2ωr − 2δ̃(r)

)
+
l(l + 1) + ω2r2(1− γ2(r))

r2
sin2

(
lπ

2
− ωr − δ̃(r)

)
= 0. (5.5)

To compute the δl we thus need to solve eq. (5.5). We do so via numerical shooting with

parameter ω, which unlike the QNM case we now restrict to real values. Specifically, we dial

through ω values, for each value solving eq. (5.5) with the boundary condition cy−l−1 = 0

to guarantee normalisability at r → 0, and then we extract limr→∞ δ̃l(r) = δl. We can

translate cy−l−1 = 0 into a boundary condition on δ̃l(r) by expanding the ansatz in eq. (5.3)

around r = 0 and demanding that a(r) and δ̃l(r) are regular there, which gives

cy−l−1 = e−ilπ/2
(
eilπ − e2iδ̃l(0)

)
a(0). (5.6)

We thus obtain cy−l−1 = 0 by imposing δ̃l(0) = π
2 l.
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Given a scattering phase shift δl as a function of ω, in analogy with quantum mechanics

we can define a scattering cross section proportional to sin2 (δl) /ω
2. For the fluctuation

ρ0, figure 9 shows the phase shift δ0 and cross section as functions of (real-valued) ω, and

also, for comparison, the QNMs from figure 2. The phase shift clearly changes rapidly

at certain ω, leading to resonances in the cross section whose positions and widths are

determined by the real and imaginary parts of the QNM frequencies, respectively. In other

words, if a QNM appears at some point (Re (ω) , Im (ω)) in the complex ω plane, then the

phase shift exhibits rapid variation near that Re (ω), and the corresponding cross section

exhibits a peak there, of width ∝ 2|Im (ω) |, which is obvious when comparing the three

figures in either column of figure 9. Such behaviour is familiar from quantum mechanics,

where rapidly-changing phase shifts and resonances in cross sections indicate quasi-bound

states of the Schrödinger potential.

On general grounds we expect the resonances in the cross section to have a Fano

line-shape [20]. A Fano resonance arises whenever a standard Lorentzian resonance, char-

acterised by a position and width, is coupled to a continuum of modes (in energy). If we

scatter modes from the continuum off the resonance, they have two options: either inter-

act with the resonance (resonant scattering) or not (non-resonant scattering). The Fano

lineshape is thus characterised not only by a position, height, and width, but also by the

Fano parameter, q, where q2 is proportional to the ratio of probabilities of resonant to non-

resonant scattering. A finite value of q changes the resonance’s line-shape from symmetric

(Lorentzian) to asymmetric (Fano). Specifically, the cross section of a Fano resonance is

σFano = σ0
(qΓ/2 + ω − ω0)

2

(Γ/2)2 + (ω − ω0)2
, (5.7)

with normalisation σ0, position ω0, and width Γ. The Fano line-shape reduces to a

Lorentzian when q→∞, which means infinite coupling between resonance and continuum.

A key observation of refs. [21–23] was that systems in which (0 + 1)-dimensional con-

formal symmetry is broken, for example by an RG flow induced by a relevant operator or

by an operator VEV, will generically give rise to Fano resonances. The reason is simple.

Conformal symmetry implies a continuum of modes, for example any spectral function

must be simply a power of ω determined by dimensional analysis, and hence must be

a featureless continuum. Producing a resonance with some ω0 and Γ obviously requires

breaking conformal symmetry. Crucially, in (0+1) dimensions the continuum cannot avoid

the resonance, unlike higher dimensions where modes from the continuum can avoid the

resonance either in real space (i.e. large impact parameter) or in momentum space. In

(0 + 1) dimensions the continuum has no place to escape the resonance, and the result is

therefore Fano line-shapes.

As mentioned in section 2, for the cone D3-brane the AdS2 factor in the worldvolume

geometry indicates (0 + 1)-dimensional conformal symmetry, which is then broken in the

spike solution, hence by the arguments above we expect Fano line-shapes. Numerically we

indeed find that the cross section resonances in figure 9 are of Fano form. For example,

figure 10 shows a fit of the Fano form in eq. (5.7) to the second peak from the left in

figure 9(c), with excellent agreement, where ω0 and Γ are determined by the real and
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Figure 9. (a) and (b) The phase shift δ0 for the fluctuation ρ0 as a function of real-valued frequency

ω for Q = 0.01 and 0.1. (c) and (d) The associated cross section sin2 (δ0) /ω2, in units of L4/ρ2v,

as a function of real-valued frequency ω, for Q = 0.01 and 0.1. (e) and (f) The complex ω plane,

where black crosses denote QNMs of ρ0, for Q = 0.01 and 0.1 (copied from figure 2). In all plots ω

is in units of ρv/L
2.
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Figure 10. Close-up of the second resonance from the left in figure 9(c), for fluctuations of ρ0 with

Q = 0.01. The black solid line is our numerical result, while the orange dashed line is the Fano line

shape from eq. (5.7) with position ω0 and width Γ determined from the nearest QNM frequency

to be ω0 − iΓ/2 ≈ (10.2− 0.0573i)ρv/L
2. Matching the position and height of the peak then gives

normalisation σ0 ≈ 1.96× 10−4L4/ρ2v and Fano parameter q ≈ −6.96.

imaginary parts of the associated QNM frequency, respectively, and numerically we find

q ≈ −6.96.

Figure 11 shows our numerical results for the phase shift, cross section, and QNMs

for p-wave scattering off the impurity, namely for the fluctuation Bl with l = 1. These

results are qualitatively similar to the s-wave case in figure 9, namely the phase shifts

vary rapidly at the real parts of QNM frequencies, and the cross sections have Fano reso-

nances at the same frequencies, with widths determined by the imaginary parts of QNM

frequencies. Indeed, we expect these features to be generic to all fluctuations of D3-brane

worldvolume fields.

6 Summary and outlook

In this paper we re-visited the well-known “spike” solutions for probe D3-branes in

AdS5 × S5, holographically dual to a symmetric-representation Wilson line on the Coulomb

branch of N = 4 SYM [10–13, 16–18]. We have presented compelling evidence that these

solutions describe a Wilson line screened by the adjoint scalar VEV, in a fashion similar to

impurity screening in a LFL. Intuitively, we imagine a spherically-symmetric cloud of the

adjoint scalar VEV that behaves as a collection of color dipoles polarized by the Wilson

line “impurity,” and reducing its effective “charge” to zero at spatial infinity. In particular,

by solving for linearised fluctuations of bosonic D3-brane worldvolume fields, we showed

that the Wilson line impurity supports quasi-bound states, scattering phase shifts, and

Fano resonances in scattering cross sections, just like an impurity screened by a LFL. Fur-

thermore, we claim that the mechanisms for these phenomena will be generic to screened

impurities in holography, as they arise simply from the fact that bulk modes can scatter off
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Figure 11. (a) and (b) The phase shift δ1 for the fluctuation Bl with l = 1 as a function of

real-valued frequency ω for Q = 0.01 and 0.1. (c) and (d) The associated cross section sin2 (δ1) /ω2,

in units of L4/ρ2v, as a function of real-valued frequency ω, for Q = 0.01 and 0.1. (e) and (f) The

complex ω plane, where black crosses denote QNMs of Bl with l = 1, for Q = 0.01 and 0.1 (copied

from figure 6). In all plots ω is in units of ρv/L
2.
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the localised spike of D3-brane and then escape to infinity, producing QNMs even without

a black hole horizon.

Our results suggest many avenues for further research. For example, we considered

only a subset of the bosonic fluctuations of the spike D3-brane worldvolume fields. What

about the other bosonic fluctuations, or the fermionic fluctuations?

In a LFL, a key feature of screened impurity physics is the Friedel sum rule [32].

The change in the electronic spectral function due to the impurity measures the average

charge bound to the impurity, or intuitively the total number of bound electrons, which

in turn determines
∑

l(2l + 1)dδl/dω, with phase shifts δl. Integrating up to the Fermi

level then gives the Friedel sum rule: the number of bound electrons is proportional to∑
l δl, which is typically approximated at low energies as simply δ0. The Friedel sum rule

comes from standard LFL Ward identities and hence holds for any strength of coupling

between the impurity and LFL electrons, or between the impurity electrons themselves

(Coulomb repulsion) [33, 34]. Intuitively, Friedel’s sum rule is a “node counting theorem”.

If δ0 > 0 then the LFL quasi-particles are drawn inwards, towards the impurity, and

every time δ0 passes through π the LFL quasi-particle wave function at infinity acquires a

new node, signalling that another unit of charge has been “lost,” i.e. another electron has

become bound to the impurity [4]. What happens to the Friedel sum rule when the LFL

is replaced by strongly-interacting degrees of freedom, with no quasi-particle description,

is an open question.

Presumably, for the worldvolume fields of the D3-brane spike, the change in spectral

functions should similarly determine
∑

l(2l + 1)dδl/dω. We computed both the spectral

functions of our bosonic excitations and their dδl/dω, but found no obvious relation between

the two. We can venture an explanation for why, namely a key difference between a LFL

and our system. In a LFL, both the impurity and the electrons are charged under the

U(1) of electromagnetism and/or the SU(2) of spin. In our system, on the other hand, the

spike is charged under the D3-brane’s U(1) worldvolume gauge field, but the worldvolume

fields we scattered off the spike are not: in the Abelian DBI action the worldvolume fields

couple non-linearly to the U(1) gauge field, but none of them are charged, i.e. none of

them have a covariant derivative with respect to the U(1) gauge field. Our scattering is

therefore more similar to scattering light off of a charged impurity than scattering electrons,

albeit in strongly-interacting N = 4 SYM rather than Maxwell theory. In any case, while

quasi-bound states, phase shifts, and cross section resonances are generic to impurities, the

nature of the Friedel sum rule clearly depends on what is being scattered.

Simple generalisations of the D3-brane spike can describe a variety of other single-

impurity systems. For example, worldvolume SL(2,R) transformations can convert the

electrically-charged spike into a magnetically-charged spike, or more generally a dyonic

spike. In CFT terms, SL(2,R) transformations can convert the Wilson line into an ’t

Hooft line, or more generally a mixed Wilson-t’ Hooft line. Furthermore, sending Q→ −Q
effectively “flips” the spike, so that now instead of extending up to the AdS5 bound-

ary it extends down to the Poincaré horizon. Such solutions describe W-bosons, or after

SL(2,R) transformations, magnetic monopoles, and more generally dyonic excitations of

the Coulomb branch (see for example refs. [16, 18, 24]). All of these can be characterised
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by their spectra of QNMs, and associated phase shifts and cross sections. The magnetically

charged solutions break parity symmetry, which allows for new couplings among worldvol-

ume fluctuations, so we expect that their QNMs will indeed be different from those of the

electric spike.

In fact, another quantity that may be crucial for characterising such impurities is

entanglement entropy, which can measure impurity entropy, i.e. the impurity’s ground

state degeneracy [35]. For a spherical entangling region centered on the impurity, the

change in entanglement entropy due to a Wilson line, both screened and not, and due to

a W-boson, has been computed in refs. [36–38]. Such entanglement entropy measures the

amount of correlation between the impurity and bulk degrees of freedom. For example,

the spike describes an order N entanglement entropy between the Wilson line and adjoint

scalar VEV, while the separate cone and flat D3-branes have zero entanglement entropy

at order N .

However, perhaps the most tantalising generalisation involves the multi-centre solu-

tions mentioned at the end of section 2. As mentioned there, these can describe lattices of

Wilson lines, or via the generalisations mentioned above, ’t Hooft lines, mixed Wilson-’t

Hooft lines, W-bosons, monopoles, etc. Sticking to Wilson lines for clarity, as we mentioned

in section 1 the adjoint scalar VEV can screen these or not, at no cost in energy, so in fact

we can construct a lattice with whatever mix we like of screened and un-screened Wilson

lines. We choose the sites of the lattice by hand, so we can construct lattices in one, two, or

three-dimensional sub-spaces of the (3 + 1)-dimensional N = 4 SYM, with whatever shape

we like (square, hexagonal, etc.). In the language of AdS/CFT, such Wilson line lattices,

and their SL(2,R) generalisations, are “non-normalisable,” however we can also construct

lattices of normalisable objects, namely the W-bosons and their SL(2,R) cousins.

Crucially, all of these are exact 1/2-BPS solutions at T = 0, which has advantages

and disadvantages. Among the advantages are that we have a vast class of exact solutions

in which translational symmetry is broken either explicitly, for example by Wilson lines,

or spontaneously, for example by W-bosons. We can therefore calculate the spectrum

of fluctuations of worldvolume fields, which via a holographic version of Bloch’s theorem

should give rise to a band structure. A key question then is whether that band structure

exhibits gapless modes, including in particular phonons or topologically-protected gapless

(edge) modes. In other words, can we use these types of solutions to construct a holographic

topological insulator? To be clear, by “insulator” we imagine the U(1) N = 4 SYM sector

as “electromagnetism,” so that the only charged excitations are in the W-boson multiplet,

which is gapped, hence the ground state is insulating. We can break discrete symmetries,

such as time reversal, by using ’t Hooft lines instead of Wilson lines, for example.

In many experimental systems, changing the concentration of impurities coupled to a

LFL results in (quantum) phase transitions. For example, in a Kondo lattice of magnetic

impurities coupled to a LFL, the competition between Kondo and RKKY interactions gives

rise to a quantum critical point [4]. The associated finite-T quantum critical phase is the

so-called strange metal state, which has an electrical resistivity ∝ T , unlike a LFL’s T 2.

Our holographic D3-brane lattices cannot exhibit any such quantum phase transition:

they are BPS and hence the impurities obey a no-force condition. No competition between
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interactions is present to produce a change in symmetry. Additionally, these BPS solutions

are only known exactly at T = 0, and indeed a non-zero T will generically break SUSY,

making exact solutions much more difficult to obtain. In fact, a T > 0 version of the cone

D3-brane solution may not exist [39]. As a result, the existing exact BPS solutions cannot

be used to study the finite-T behavior of observables such as electrical resistivity.

Nevertheless, despite these disadvantages, these classes of probe D3-brane solutions

clearly offer a vast array of important and worthwhile opportunities, which we intend to

pursue, using the results of this paper as a foundation.
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