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Abstract: We compute the topological entanglement entropy for a large set of lattice

models in d-dimensions. It is well known that many such quantum systems can be con-

structed out of lattice gauge models. For dimensionality higher than two, there are gener-

alizations going beyond gauge theories, which are called higher gauge theories and rely on

higher-order generalizations of groups. Our main concern is a large class of d-dimensional

quantum systems derived from Abelian higher gauge theories. In this paper, we derive

a general formula for the bipartition entanglement entropy for this class of models, and

from it we extract both the area law and the sub-leading terms, which explicitly depend

on the topology of the entangling surface. We show that the entanglement entropy SA in

a sub-region A is proportional to log(GSDÃ), where GSDÃ is the ground state degener-

acy of a particular restriction of the full model to A. The quantity GSDÃ can be further

divided into a contribution that scales with the size of the boundary ∂A and a term which

depends on the topology of ∂A. There is also a topological contribution coming from A

itself, that may be non-zero when A has a non-trivial homology. We present some examples

and discuss how the topology of A affects the topological entropy. Our formalism allows

us to do most of the calculation for arbitrary dimension d. The result is in agreement with

entanglement calculations for known topological models.
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1 Introduction

The concept of entanglement entropy in quantum many-body systems is increasingly gain-

ing relevance for both the quantum information and the condensed matter theory commu-

nities. In the latter case, the interest comes from applying ideas of quantum information

that could provide new tools for the study of quantum many-body systems and, in con-

sequence, to deepen the understanding of their quantum phases. In particular, questions

about the scaling of this entropy with the system size appear to be relevant as an indicator

for quantum entanglement. Of particular interest is the scaling of entanglement entropy for
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ground states of gapped systems, since they often follow an area law [1–3]. More precisely,

if we consider a distinguished sub-region A of the total system, the scaling of entanglement

entropy is linear with the boundary of the region, ∂A. See [2] for a detailed account on the

occurrence of area laws for the entanglement entropy of quantum systems.

The growing interest on the study of entanglement entropy in quantum many-body

systems arises from different points of view. For example, a source of interest in the scaling

area law of entanglement entropy comes from asking whether a quantum many-body system

can be simulated by a classical computer. The scaling of entanglement entropy specifies

how well a given many-body quantum state can be approximated by a matrix-product

state or a PEPS [4]. More importantly for the purposes of this work, the topological

entanglement entropy [3, 5] arises as an interesting probe for topological order [6–8] in

quantum states. The entanglement entropy calculated in the ground states of topologically

ordered states follows an area law plus a universal correction indicating the presence of

long-range entanglement.

Topological phases of matter are usually characterized by exhibiting long-range entan-

glement and non-local order parameters such as the ground state degeneracy (GSD) and

topological spins. In addition, entanglement entropy turns out to be a good measure of

the presence of topological order [9, 10]. Details about the connection between topological

entanglement entropy and topological order are for example exposed in [5, 8, 11]. For two

dimensional topological phases, the scaling of the entanglement entropy presents a constant

term [3, 5] that corresponds to the topological entropy. This result is examined in detail

for the Toric Code in [11–14]. In this paper, we show that this extends to Abelian higher

gauge models in all dimensions. Indeed if the model is topological, it presents a non-zero

topological entropy given in terms of the higher cohomology groups of both the bulk and

the boundary ∂A of the subregion A.

In general, two dimensional topological order and topological entropy are relatively

well understood. The same cannot be said about higher dimensional topological phases.

Our interest here is to shed some light on the main features of topological entanglement

entropy in dimensions higher than two. To do so, we restrict ourselves to study Abelian

lattice models that come from higher gauge theories, such as the ones studied by [15–

23]. Some of these models are topological. They present a ground state degeneracy that

depends on the topology of the underlying manifold, and extended excitations generalizing

anyons to higher dimensions. The models presented here can be interpreted as higher

gauge generalizations of the Toric Code. This simplification allows us to work in arbitrary

dimensions and to understand in detail how these models depend on the topology of the

underlying manifold. In the present work we look at the topological entropy and how it

depends on the topology of the subregion A.

The definition of entanglement entropy is straightforward: we consider a bipartition of

the system into a sub-region A and its complement (B). Let ρ be the density matrix of the

ground space state, defined in the whole lattice. Then, ρA = TrB(ρ) is the reduced density

matrix, obtained by tracing out the contribution from region (B). The entanglement

entropy is then defined as the von Neumann entropy of the reduced density matrix, namely,

SA := −Tr (ρA log ρA) . (1.1)
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In a gapped phase, the entanglement entropy is expected to satisfy an area law as the

leading term. The topological information is contained in subleading terms and, in general,

it is not easy to extract. Several prescriptions [3, 5] were constructed in order to extract

the topological correction to the entanglement entropy in two dimensional gapped systems.

These prescriptions have been generalized [24, 25] for d = 3 and, consequently, used to

successfully obtain the entanglement entropy of fracton models [26, 27].

In this paper, we study the entanglement entropy of n-dimensional Abelian higher

gauge theories, all at once, without the need to adapt the procedure for each dimension.

This can be achieved by using the language of homological algebra, in which higher gauge

theories are naturally described as shown in [19]. The way the entanglement entropy is

obtained, in essence, relies on the fact that the lattice models are constructed as stabilizer

codes [28]. Similar calculations for stabilizer codes are performed in [12, 29–32]. The result

obtained for the entanglement entropy relates this quantity to the ground state degeneracy

of an associated model, which we write as

SA = log
(
GSDÃ

)
, (1.2)

where GSDÃ is the ground state degeneracy of a particular restriction of the original model,

to be defined in section 4.1. We show that this result allows us to write SA as a sum of two

terms. The first one S∂A is in agreement with the area laws depending on the geometry

of the boundary ∂A, while the second term STopo is explicitly topological, depending on

the topology of both the bulk of the region A and its boundary ∂A. This result holds

for any higher gauge theory in the sense of [19] and for any dimension d. We explicitly

calculate examples where the topological term depends not only on the Betti numbers of

the subregion A and its boundary ∂A, but also on more exotic properties.

The paper is structured as follows. In section 2 we begin by reviewing Abelian higher

gauge theories in detail, this is done by giving explicitly an example. Next, in section 3

we show how these models are easily described in the language of homological algebras,

as described in detail in [19]. In section 4 the calculation of the entanglement entropy is

performed, and we show how to extract both the area law and the topological entropy from

it. In section 5 we apply the results of section 4 to examples in 2D and 3D. We end the

paper with some final remarks in section 6.

2 Models from Abelian higher gauge theories. The warm-up example

Before we define our class of models in full generality, it is convenient to first present an

examples in 3 dimensions. It will be described in the usual way as a many-body system

defined on a lattice. The Hilbert space H consists of quantum states attached to elements of

the lattice such as vertices, links, and plaquettes. A Hamiltonian H acting on H completes

the picture.

In section 3 we will introduce a formalism that allows us to describe all models in

this class in a unified way for all dimensions; this is made possible by employing a few

constructions coming from homological algebra. As far as the present section, we don’t

need to be concerned with all the homological details, but we will point out some of the
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chain complexes that will be part of the construction presented in section 3. It is worth

mentioning again that the example exhibited in this section is merely illustrative. We

choose to present the model for a 3-dimensional cubic lattice to be more intuitive. Through

our formalism, to be presented in section 3, these models can be defined and studied in

any dimension d for more general cell decompositions, including simplicial complexes.

2.1 0, 1, 2-gauge in 3D

This model is a generalization of an ordinary gauge theory. In addition to the states local-

ized on the links and labeled by an Abelian group G1, we also have states associated with

plaquettes that are labelled by another Abelian group G2, and states on vertices associated

to the Abelia group G0. Here we use the additive notation for the group operation. When

G0, G2 are trivial we recover the Quantum Double model defined in 3-dimensions. When

G0 = 0, this class of models corresponds to an Abelian version of the models constructed

in [17, 18], where 2-groups were considered. We will leave the discussion about the relation

between our formalism and the one based on 2-groups (or more generally, n-groups) to

section 3. Here we are working with a particular case of Abelian 2-groups, where the only

data we need is expressed by the group homomorphism ∂G2 : G2 → G1.

For simplicity, we consider a 3-dimensional space Σ discretized by a cubic lattice. Let

K0,K1,K2 and K3 be the sets of vertices, links, faces and cubes, respectively. For each

vertex v ∈ K0 we have a Hilbert space Hv with orthornomal basis {|h〉 , h ∈ G0}. For each

link l ∈ K1 we have a Hilbert space Hl with orthornomal basis {|g〉 , g ∈ G1}. For each

plaquette p ∈ K2 we have a Hilbert space Hp with orthornomal basis {|α〉 , α ∈ G2}. We

call this kind of model a 0, 1, 2-gauge theory to indicate that there are quantum states

associated with sets K0 (vertices), K1 (links) and K2 (plaquettes). The total Hilbert space

is the tensor product over all local Hilbert spaces, namely

H =
⊗
v∈K0

Hv
⊗
l∈K1

Hl
⊗
p∈K2

Hp. (2.1)

It is convenient to represent a basis element of H as functions (f0, f1, f2), where fi : Ki →
Gi, for i = 0, 1, 2. We will use a notation where each element of the lattice will have a

group element attached in order to represent the functions fi.

The Hamiltonian has the form

H = −
∑
v∈K0

Av −
∑
l∈K1

Al −
∑
l∈K1

Bl −
∑
p∈K2

Bp −
∑
c∈K3

Bc, (2.2)

and is composed by a sum of commuting projectors labelled by vertices, links, plaquettes

and cubes. The vertex operator Av is a sum of gauge transformations. In other words,

Av =
1

|G1|
∑
g∈G1

Agv , where: Agv = . (2.3)

Higher gauge transformations appear in the definition of Al:

Al =
1

|G2|
∑
β∈G1

Aβl .
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Figure 1. The action of Aβl is shown on an initial arbitrary basis state, involving the link l ∈ K1

and its four adjacent plaquettes.

The elementary transformation Aβl acts on the adjacent plaquettes with β ∈ G2 and on

the link with (∂G2 β), as shown in figure 1.

The 0-holonomy operator, Bl, compares the gauge fields of adjacent vertices with the

map ∂G1 applied to the link degree of freedom, namely

Bl = δ(x− y, ∂G1 g) . (2.4)

The 1-holonomy is not exactly the same as in the Quantum Double models: the operator

Bp is defined by

Bp = δ
(
a+ b− c− d, ∂G2 α

)
. (2.5)

Note that this operator gives eigenvalue 1 when the holonomy of the plaquette is equal

to ∂G2 α. To distinguish it from the ordinary holonomy, this operator is usually called fake

holonomy. Here we will use the name 1-holonomy instead.

To simplify our notation, we will denote ∂G2 α simply by ∂α whenever there is no danger

of ambiguity. The 2-holonomy operator Bc measures the sum of the degrees of freedom

living on the plaquettes that compose the boundary of the cube c, with eigenvalue 1 when

the result of the sum equals zero and eigenvalue zero otherwise, as defined in equation (2.6):

Bc = δ

 6∑
j=1

(−1)ojαj , 0

 , (2.6)

where oj = {0, 1} takes into account the relative orientation of the faces with respect to the

cube, similarly to the 2-holonomy operator. A discussion about the topological properties

of this model, such as ground state degeneracy (GSD), will be postponed until we present

the general formalism.

The data needed to cast this model into the formalism of section 3 is as follows. One

needs to specify a pair of chain complexes. The first one represents the discretization of

the manifold and is given by

0 ↪→ C3
∂3−→ C2

∂2−→ C1
∂1−→ C0 → 0, (2.7)
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where Ci is generated by Ki and ∂i is the boundary map, for i = 1, 2, 3. The algebraic

data is also a chain complex of the form

0 ↪→ G2
∂G2−−→ G1

∂G1−−→ G0 → 0. (2.8)

Example 2.1. G0 = G1 = Z2, G2 = Z4.

The groups that label the degrees of freedom are chosen to be G0 = G1 = Z2 = {0, 1}
and G2 = Z4 = {0, 1, 2, 3}. Moreover, the homomorphism that relates 1, 2-gauge fields

is chosen to be such that ∂G2 (1) = 1. As in the previous example, we use a graphical

description for the basis states as follows:

• a dotted line through a plaquette when it holds a |2〉p state, and an oriented dashed

line for the |1, 3〉p states,

• for the links we picture a gray surface orthogonal to it for |1〉l state, no surface for

the |0〉l state,

• a gray volume for vertices in |1〉v state.

The flat configurations of the theory are those that are invariant under the actions of Bl,

Bp and Bc for all link l, plaquettes p and cubes c of the lattice. Such configurations consist

of dotted or dashed loops, conditions that are enforced by Bc. The 1-holonomy operator

Bp implies that every dashed line encloses a gray surface, which is the boundary of a gray

volume. If Σ has the topology of a 3-dimensional ball, there is only one ground state

given by

|GS〉 =
∏
v

Av
∏
l

Al
⊗
v

|1〉v
⊗
l

|1〉l
⊗
p

|1〉p . (2.9)

For manifolds with exotic topologies, the number of ground states depends on the number

of non-equivalent non-contractible closed surfaces one can drawn over Σ. The topological

nature of this model will become clearer when we introduce the general formalism in 3.

Now that we are familiar with some examples of Abelian higher gauge theories, we are

ready to describe them all at once using a more general mathematical structure. The more

general framework that is going to be exhibited in the next section also allows to compute

the entanglement entropy, in the more general case, as we will show in section 4.

3 Review of Abelian higher gauge theories

The model presented on section 2 is an example of what we call Abelian higher gauge

theories introduced in [19]. It is useful to describe them using a formalism borrowed

from Homological Algebra since it allows us to handle a large class of models of arbitrary

dimensions. In this section we recall from [19] only the basic notation and results needed

to calculate the entanglement entropy for any such model. We refer to [19] for further

details. We have indicated in the last section that the models are parameterized by two

chain complexes. The first one is geometrical in nature and accounts for the structure of the
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lattice. As for the second, it is a chain complex of finite Abelian groups encoding the higher

gauge group of the model. There will be one model (Hilbert space and Hamiltonian) for

any such choice of chain complexes. The choices corresponding to the example was given

in section 2.

A simplicial decomposition is a natural choice for lattices of any dimension. Although

the formalism can accommodate for any finite cell decomposition we will assume that the

lattice K is made of simplices. In other words

K = K0 ∪K1 ∪ · · · ∪Kd,

where Kn is the (finite) set of n-dimensional simplices. We would like to point out that

there are no further assumptions on K, which makes the formalism very flexible. For

instance, K may have a boundary and may not have a uniform dimension

It is a standard procedure [33] to associate to K a chain complex

0→ Cd
∂Cd−−→ Cd−1

∂Cd−1−−−→ · · ·
∂C2−−→ C1

∂C1−−→ C0 → 0, (3.1)

which we will denote by (C(K), ∂C), where 0 represents the trivial group. We recall that

Cn is the Abelian group freely generated by Kn. In other words, if we write the group

operation as an addition operation, c ∈ Cn is given by a formal linear combination

c =
∑
x∈Kn

n(x)x (3.2)

with n(x) ∈ Z. The homomorphisms ∂Cn : Cn → Cn−1 are the usual boundary maps.

To describe the higher gauge groups that label the degrees of freedom in the simplicial

complex, we introduce a chain complex (G, ∂G) of finite Abelian groups given by

0→ Gd
∂Gd−−→ Gd−1

∂Gd−1−−−→ · · ·
∂G2−−→ G1

∂G1−−→ G0 → 0, (3.3)

where 0 denotes the trivial group and ∂Gn : Gn → Gn−1 are group homomorphisms such

that ∂Gp ◦ ∂Gp+1 = 0, for any 0 ≤ p ≤ d. Note that the d = 2 case, i.e., the chain

0→ G2
∂G2−−→ G1 → 0 (3.4)

can be recast into the language of strict 2-groups or equivalently, crossed modules, which

were used in [17] to construct models of topological phases in 3 + 1 dimensions based on

higher gauge theories. A crossed module is a quadruple G = (G1, G2, ∂, .), where G1 and

G2 are groups, ∂ : G2 → G1 is a group homomorphism and . : G1 ×G2 → G2 is an action

of G1 on G2, which satisfies the following conditions:

∂(g . α) = g(∂α)g−1, (3.5)

(∂β) . α = βαβ−1. (3.6)

Since we consider only Abelian groups, the chain (3.4) defines a crossed module with trivial

action. In fact, the general case where the chain complex (G, ∂G) is composed of d + 1

groups can be reformulated in the language of (Abelian) strict (d+ 1)-groups.

– 7 –
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· · · Cn+1 Cn Cn−1 · · ·

· · · Gn+1 Gn Gn−1 · · ·

∂Cn+2 ∂Cn+1

fn+1

∂Cn

fn

∂Cn−1

fn−1

∂Gn+2 ∂Gn+1 ∂Gn ∂Gn−1

Figure 2. A configuration f ∈ hom(C,G)0, consisting on a collection of homomorphisms {fn}.

Now, we define a gauge configuration f to be an assignment of a group element g ∈ Gn
for each element x ∈ Kn. In other words, a gauge configuration is a sequence f = {fn}dn=0

of functions such that

fn : Kn → Gn, (3.7)

x 7→ fn(x). (3.8)

Strictly speaking, we should call f a higher-gauge configuration. Only in the case when

all groups except G1 are trivial f is a proper gauge configuration, as can be seen from the

examples of last section. For simplicity, we will keep using “gauge configuration” to mean

a generic f .

Because Cn is freely generated by Kn, each map fn in (3.7) defines a unique group

homomorphism fn : Cn → Gn, which is given by the extension of fn by linearity, i.e., if

c ∈ Cn as in (3.2), then

fn(c) =
∑
x∈Kn

n(x)fn(x).

We use the same name fn to denote a gauge configuration as in 3.7 and a homomor-

phism fn : Cn → Gn since there is a one to one correspondence between them. The set

Hom(Cn, Gn) of homomorphisms is also an Abelian group if we set

(fn + f̃n)(x) = fn(x) + f̃n(x), fn, f̃n ∈ Hom(Cn, Gn).

It is useful to collect all such Abelian groups in a single direct sum. This simple fact allows

us to view a gauge configuration f as an element of the direct sum

hom(C,G)0 :=

d⊕
n=0

Hom(Cn, Gn) (3.9)

of Abelian groups. Thus, a gauge configuration can be represented by a collection of maps

between chain complexes, as depicted by the diagram in figure 2. We would like to point

out that figure 2 is not a commuting diagram. When this happens, f ∈ hom(C,G)0 is

called a chain map and, as we will see, the corresponding gauge configuration is gauge

equivalent to the trivial one.

We are now in position to define the model by providing a Hilbert space H of states

|ψ〉 and a Hamiltonian operator H acting on H. The set hom(C,G)0 is finite. Let H be

the complex vector space generated by the orthonormal basis {|f〉}f∈hom(C,G)0 . In other

– 8 –
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· · · Cn+1 Cn Cn−1 · · ·

· · · Gn+1 Gn Gn−1 · · ·

∂Cn+2 ∂Cn+1 ∂Cn ∂Cn−1

∂Gn+2 ∂Gn+1 ∂Gn ∂Gn−1

gn+2 gn−1 gn gn−1

Figure 3. An element g ∈ hom(C,G)(C,G)1 as a sequence {gn}dn=0 of skewed maps.

words, a state ψ ∈ H is given by a linear combination

|ψ〉 =
∑

f∈hom(C,G)0

ψ(f) |f〉 , (3.10)

where ψ(f) ∈ C, and the internal product is 〈f |g〉 = δ(f, g). We can explicit the orthonor-

mal basis {|f〉} as a tensor product over the local degrees of freedom living on the simplexes

labeled by the groups.

|f〉 =
⊗
v∈K0

|f(v)〉
⊗
l∈K1

|f(l)〉
⊗
p∈K2

|f(p)〉
⊗
· · ·
⊗
s∈Kd

|f(s)〉 , (3.11)

where the tensor product is made over all the 0-simplexes (vertices v), 1-simplexes (links

l), 2-simplexes (plaquette p),. . . through to the d-simplexes associated to a group of the

chain (G, ∂G). In order to define the Hamiltonian, we will need to introduce more groups

other than hom(C,G)0 given by (3.9). Let us consider the groups hom(C,G)p defined by

hom(C,G)p :=
d⊕

n=0

Hom(Cn, Gn−p). (3.12)

An element g ∈ hom(C,G)p is a sequence {gn}dn=0 of homomorphisms gn : Cn → Gn−p.

The example of hom(C,G)1 is shown in figure 3.

An important observation is that the sequence of groups hom(C,G)p can be made into a

co-chain complex. This is achieved by considering maps δp : hom(C,G)p → hom(C,G)p+1,

defined by:

(δph)n = hn−1 ◦ ∂Cn − (−1)p∂Gn−p ◦ hn, (3.13)

with h ∈ hom(C,G)p. In fact, it is straightforward to verify that δp+1 ◦ δp = 0, which turns

the sequence

· · · δ−2

−−−−→ hom(C,G)−1
δ−1

−−−−→ hom(C,G)0
δ0−−−→ hom(C,G)1

δ1−−−→ · · · (3.14)

into a co-chain complex. The expression above shows only the part of the sequence that

is relevant for the present application, please refer to [19] for a more detailed account.

Associated to this co-chain complex, there are the so-called Brown cohomology groups [34]

Hp(C,G) = ker(δp)/Im(δp−1), (3.15)

– 9 –
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which, as shown in [34], are isomorphic to the direct product of the cohomology groups of

the chain complex (C(K), ∂C) with coefficients in the homology groups of (G, ∂G), i.e.,

Hp(C,G) ∼=
d⊕

n=0

Hn(C,Hn−p(G)). (3.16)

From (3.16), it is clear that the cohomology groups defined in equation (3.15) are topo-

logical invariants of the manifold described by the chain complex (C(K), ∂C). The Brown

cohomology plays a major role in our formalism, as we will see in the following sections.

We refer the reader to [19, 34] and references therein for a more detailed account on Brown

cohomology and on the isomorphism (3.16).

To complete the description, we need to define a chain complex that is the dual

of (3.14). This will be done by dualizing the groups Gn as follows. Let Hom(Gn,U(1)) be

the set of homomorphisms a : Gn → U(1), for each 0 ≤ n ≤ d. Since each Gn is Abelian,

this is nothing but the set of irreducible unitary representations of Gn, denoted by Ĝn. Let

us give Ĝn a structure of an Abelian group. Let a, b ∈ Ĝn and g ∈ Gn. Let us write the

group operation in Ĝn as a+ b and the inverse of a as −a. The group is defined by setting

(a+ b)(g) = a(g)b(g) and (−a)(g) = (a(g))−1. In order to dualize (3.14) we first define the

dual hom(C,G)p of (3.12) as

hom(C,G)p :=
d⊕

n=0

Hom(Cn, Ĝn−p). (3.17)

As before, an element m ∈ hom(C,G)p is a sequence {mn}dn=0 with mn ∈ Hom(Cn, Ĝn−p).

Each mn is completely defined by its values on the generators x ∈ Kn. This allows us to

introduce a pairing

〈·, ·〉 : hom(C,G)p × hom(C,G)p → U(1)

(m, f) 7→ 〈m, f〉 (3.18)

given by

〈m, f〉 =

d∏
n=0

∏
x∈Kn

mn(x)(fn(x)). (3.19)

Let us define a boundary map δp : hom(C,G)p → hom(C,G)p−1 given by

〈δpm, f〉 = 〈m, δp−1f〉, (3.20)

where m ∈ hom(C,G)p and f ∈ hom(C,G)p−1. Clearly, δp ◦ δp+1 = 0 and thus the chain

complex dual to (3.14) that we will need is given by

· · · δ−1←−−−− hom(C,G)−1
δ0←−−− hom(C,G)0

δ1←−−− hom(C,G)1
δ2←−−− · · · . (3.21)
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3.1 Operators and Hamiltonian

The Hamiltonian we presented as an example in section 2 have a similar structure. It is a

sum of operators that can be divided in two types. There are higher gauge transformations

and diagonal operators measuring higher holonomies. In the general formalism, these two

sets of operators in H come from the co-chain complex (3.14) and the chain complex (3.21),

respectively. The first set of operators is parametrized by hom(C,G)−1 whereas the second

one by hom(C,G)1.

For t ∈ hom(C,G)−1 and m ∈ hom(C,G)1 we define:

At |f〉 := |f + δ−1t〉 , (3.22)

Bm |f〉 := 〈m, δ0f〉 |f〉 . (3.23)

The interpretation of (3.22) and (3.23) can be derived from the special case when the

chain complex (3.3) is made of trivial groups except for G1. The resulting model has the

familiar form of a gauge theory on the lattice. In this case, it follows that a configuration

f ∈ hom(C,G)0 assigns one group element of G1 for each link of the lattice, as expected in a

ordinary gauge theory. Furthermore, t ∈ hom(C,G)−1 gives a group element g(v) ∈ G1 for

each vertex v of the lattice. One can verify that At performs on each vertex v an ordinary

gauge transformation with parameter g(v). As for the general case, f and At define what we

mean by higher gauge configurations and higher gauge transformations. As we pointed out

before, we will keep calling them gauge configurations and gauge transformations. Going

back to the special case, we need to look at the eigenvalue 〈m, δ0f〉 of Bm to see what is it

measuring. It follows from the definition that δ0f ∈ hom(C,G)1 and m ∈ hom(C,G)1, it

assigns to each face p of the lattice its holonomy hp and a unitary representation χp ∈ U(1)

respectively. Operators Bm are therefore measuring the number
∏
p χp(hp) depending on

all holonomies of the lattice.

The first thing to be noticed is that both At and Bm are not localized as they act on

the entire lattice. For the definition of the Hamiltonian, however, we need to define local

projectors. This is easily achieved by taking t and m with a local support in the lattice K

and averaging over the groups.

Definition 3.1 (Localized maps). Let x ∈ Kn, g ∈ Gn+1 and r ∈ Ĝn−1. We define the

local maps ê[n, x, r] ∈ hom(C,G)1 and e[n, x, g] ∈ hom(C,G)−1 by

e[n, x, g](y) :=

{
g, if y = x

0, otherwise
(3.24)

ê[n, x, r](f) := r(fn(x)), (3.25)

where y ∈ K, and f ∈ hom(C,G)p.

Definition 3.2 (Local projector operators). Let x ∈ Kn, g ∈ Gn+1, r ∈ Ĝn−1. We

define local gauge projector An,x and local holonomy projector Bn,x as:

An,x =
1

|Gn+1|
∑

g∈Gn+1

Ae[n,x,g], (3.26)

Bn,x =
1

|Gn−1|
∑

r∈Ĝn−1

Bê[n,x,r]. (3.27)

– 11 –



J
H
E
P
0
3
(
2
0
2
0
)
1
6
7

The Hamiltonian operator H is defined as

H = −
d∑

n=0

∑
x∈Kn

An,x −
d∑

n=0

∑
x∈Kn

Bn,x. (3.28)

It is straightforward to show that An,x and Bn,x are commuting projectors. Further-

more, in the special case where the chain complex (G, ∂G) has only G1 different from the

trivial group, we recover the quantum double model with group G1. Also, by choosing

(G, ∂G) we can reproduce the example we have discussed in the last section.

This Hamiltonian is actually frustration free since there is at least one state that gives

eigenvalue 1 for all An,x and Bn,x. Let |0〉 denotes the state labeled by the trivial element

of the group hom(C,G)0. It corresponds to a configuration that maps all elements of Kn

to 0 ∈ Gn for all n. Let us define

|0〉G =

d∏
n=0

∏
x∈Kn

An,x |0〉 .

One can show that |0〉G is non zero and

An,x |0〉G = |0〉G , (3.29)

Bn,x |0〉G = |0〉G , (3.30)

for all 0 ≤ n ≤ d and x ∈ Kn. Therefore, a state |ψ〉 is in the ground state H0 if and only if

An,x |ψ〉 = |ψ〉 , (3.31)

Bn,x |ψ〉 = |ψ〉 , (3.32)

for all 0 ≤ n ≤ d and x ∈ Kn.

It is useful to characterize H0 in another way. Let us consider the following operators:

1. projector A0 given by

A0 =
1

|hom(C,G)−1|
∑

t∈hom(C,G)−1

At, (3.33)

that maps any state |f〉 ∈ H into a normalized sum of gauge equivalent states;

2. projector B0 given by

B0 =
1

|hom(C,G)1|
∑

m∈hom(C,G)1

Bm, (3.34)

which gives eigenvalue 1 for a state |f〉 ∈ H, only if satisfies f ∈ ker(δ0); in other

words, it projects onto the flat holonomy sector of H.

As stated in [19], the projector Π0 on the ground state subspace H0 can be written as

Π0 := A0B0 . (3.35)
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Furthermore, the dimension of H0 is determined by the zeroth Brown cohomology group

H0(C,G) of the cochain complex in eq. (3.14), which explicitly shows how the ground state

degeneracy depends on the topology of the underlying manifold. This result can be stated

more precisely as follows:

Theorem 3.3 (Dimension of the ground state subspace). The dimension GSD =

dim(H0) of the ground state subspace H0 is given by the number of flat states |ker(δ0)|,
modulo the gauge equivalence |Im(δ−1)|, that is

GSD =
|ker(δ0)|
|Im(δ−1)|

= |H0(C,G)| =
d∏

n=0

|Hn(C,Hn(G))|. (3.36)

Proof. The proof of this theorem can be found in [19] as its main result.

3.2 Example

To see how this general framework works, let us review the example given in section 2, this

time built from the formalism presented in section 3.

3.2.1 0, 1, 2-gauge

The 0, 1, 2-gauge model presented in section 2.1 comes from the chain complex (C, ∂G)

given in equation (2.7). We show the relevant maps in figure 4, in particular:

• Classical gauge configurations now consider degrees of freedom on plaquettes given

by maps f2 ∈ Hom(C2, G2), in addition to the link configurations defined by f1 ∈
Hom(C1, G1), and the configurations for the vertices f0 ∈ Hom(C0, G0). In figure 4

they are represented as straight lines.

• The generalized notion of gauge transformations include 1-gauge transformations

given by maps t0 ∈ Hom(C0, G1) and 2-gauge transformation, from every link to its

neighbor plaquettes t1 ∈ Hom(C1, G2). In figure 4 they are represented as skewed

dotted lines.

• We have as holonomy maps: the 1-holonomy with the functions m1 ∈ Hom(C1, Ĝ0),

the 1-holonomy which is measured by maps m2 ∈ Hom(C2, Ĝ1) and the 2-holonomy

measured by m3 ∈ Hom(C3, Ĝ2). They are nt represented in the figure, but they

would be skewed in the opposite direction of the gauge transformations.

So the Hamiltonian in equation (2.2) is obtained by the decomposition for the maps:

H = −
∑
x∈K0

1

|G1|
∑
g∈G1

Ae[0,x,g] −
∑
x∈K1

1

|G2|
∑
g∈G2

Ae[1,x,g] +

−
∑
y∈K1

1

|G0|
∑
r∈Ĝ0

Bê[1,y,r] −
∑
y∈K2

1

|G1|
∑
r∈Ĝ1

Bê[2,y,r] −
∑
y∈K3

1

|G2|
∑
r∈Ĝ2

Bê[3,y,r]. (3.37)

Now that we have familiarized with the general theory with the help of the example,

we are ready to proceed onto the next section, where we present the main results of this
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0 C3 C2 C1 C0 0

0 G2 G1 G0 0

∂C3 ∂C2

f2

∂C1

f1

∂G2

m3 t1 t0

Figure 4. Chain complexes for the 0, 1, 2-gauge model 4.

paper. The calculation of the entanglement entropy for all Abelian higher gauge theories

can be carried out in general. The result obtained relates the entanglement entropy of

an Abelian higher gauge theory to the GSD of a related theory, as we will precisely see.

Furthermore we also compute the topological contribution to the entanglement entropy.

4 Entanglement entropy in Abelian higher gauge theories

In this section we calculate the entanglement entropy for the class of models defined in [19]

and reviewed in section 3. We begin by defining the bipartition of the
(
C(K), ∂C

)
chain

complex into a subcomplex
(
C(KA), ∂CA

)
and its complement. We then observe that an

associated higher gauge theory can be defined in the subcomplex (C(KA), ∂CA ) which will

be useful for both the calculation and the interpretation of the results. As usual, we begin

by introducing the density matrix ρ in terms of the ground state projector of (3.35). The

reduced density matrix ρA = TrB(ρ) is then obtained and shown to be best written in terms

of the local operators of the higher gauge theory defined in the subcomplex
(
C(KA), ∂CA

)
.

The entanglement entropy is the von Neumann entropy of the reduced density matrix

SA := −Tr(ρA log ρA).

The result we obtain relates this quantity to a restricted gauge theory in region A. In par-

ticular, we show that the entanglement entropy of a higher gauge theory with Hamiltonian

as in (3.28) is equal to the logarithm of the ground state degeneracy GSDÃ of a related

higher gauge theory restricted to region A, in other words

SA = log
(
GSDÃ

)
.

We further analyze the result to extract the topological information. As we will explain in

section 4.43, the entropy SA has two terms:

SA = S∂A + STopo, (4.1)

where S∂A scales with the size of the boundary and STopo is a constant contribution de-

pending on the topology of A and its boundary ∂A.

4.1 Bipartition of the geometrical chain complex

We recall from section 3 that the geometrical content of the model is given by the chain

complex (C(K), ∂C) encoding the lattice. We consider a simplicial chain complex for

– 14 –
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convenience. In order to calculate the entanglement entropy we first need to define the

bipartition of the lattice. The system is divided into two regions A and B, where A is the

region we have access, as in [27, 29, 30].

We split the simplicial complex K =
⋃d
n=0Kn into a subcomplex KA of dimension

d by choosing a smaller subset Kd,A ⊂ Kd together with their subcomplexes of smaller

dimension. Then KA is a subcomplex as the boundary maps are well defined, i.e. their

image belong to the subcomplex KA. For each 0 ≤ n ≤ d dimension the sets of n-simplices

is divided in the form Kn = Kn,A ∪Kn,B, where Kn,A is the set of n-simplices in region A

and Kn,B the set of simplices in region B. We do this in such a way that KA =
⋃d
n=0Kn,A

is a subcomplex of K. Note that in general the complement KB is not a simplicial complex

on its own, as its boundary maps may have image in KA.

Let Cn,A be the n-chain group generated by the n-simplices, x ∈ Kn,A, of region A.

Let also ∂Cn,A : Cn,A → Cn−1,A be the restriction of the boundary map ∂Cn into the subset

Kn,A. Clearly ∂Cn,A ◦ ∂Cn+1,A = 0. This makes
(
C(KA), ∂CA

)
into a chain complex

Cd,A
∂Cd,A−−−→ Cd−1,A

∂Cd−1,A−−−−→ · · ·
∂C2,A−−→ C1,A

∂C1,A−−→ C0,A. (4.2)

Let us apply the construction reviewed in section 3 to the
(
C(KA), ∂CA

)
complex together

with the same chain complex of Abelian groups in (3.3), namely

0→ Gd
∂Gd−−→ Gd−1

∂Gd−1−−−→ · · ·
∂G2−−→ G1

∂G1−−→ G0 → 0. (4.3)

Homomorphisms between the two chain complexes (4.2) and (4.3) can be constructed

giving rise to the groups

hom(CA, G)p :=
⊕
n

Hom(Cn,A, Gn−p).

Elements of such groups are sequences of morphisms fn,A : Cn,A → Gn−p whose support

lies on KA. For example, a gauge configuration on region A is an assignment of a group

element g ∈ Gn for each element x ∈ Kn,A. This is, a collection of maps fA = {fn,A} for

n = 0, 1, . . . , d, where:

fn,A : Kn,A → Gn,

x 7→ fn,A(x).

Therefore, gauge configurations in A can be viewed as elements of the group

hom(CA, G)0 =
⊕
n

Hom(Cn,A, Gn).

The set of vectors {|f〉A}, labeled by group elements f ∈ hom(CA, G)0, form a basis of the

Hilbert space HA. In other words, a state |Ψ〉A ∈ HA is written as

|Ψ〉A =
∑

f∈hom(CA,G)0

Ψ(f) |f〉A .
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Similarly, we have the group hom(CA, G)−1 whose elements serve as parameters for the

higher gauge transformations as well as the dual group hom(CA, G)1 that parametrizes the

higher gauge holonomy operators. More importantly, a higher gauge theory in region A

can be defined by considering a chain complex similar to the one in (3.14), that is,

hom(CA, G)−1
δ−1
A−−→ hom(CA, G)0

δ0A−→ hom(CA, G)1, (4.4)

where the co-boundary map δpA : hom(CA, G)p → hom(CA, G)p−1 is defined by

(δpAf)n := fn−1,A ◦ ∂Cn,A − (−1)p∂Gn−p ◦ fn,A.

4.2 Reduced density matrix

As usual, we start by introducing the density matrix ρ of the model with Hamiltonian (3.28),

given by

ρ :=
Π0

tr (Π0)
=

Π0

GSD
, (4.5)

where Π0 : H → H0 is the ground state projector of eq. (3.35) and GSD stands for the

ground state degeneracy of eq. (3.36). We start from a product state, a linear combination

of the ground space states, which are independent states.

From (3.35) we know that the ground state projector Π0 can be written in terms of

the projectors in (3.33) and (3.34) as

Π0 =

 1

|hom(C,G)−1|
∑

t∈hom(C,G)−1

At

 1

|hom(C,G)1|
∑

m∈hom(C,G)1

Bm

 . (4.6)

However, we want to re-parametrize the two sums in the above equation such that they

run over non trivial elements only. In other words, we want to factor the redundancies out

of the sums, reframing the sum as sum over classes. This can be achieved by looking at the

group structure of hom(C,G)−1 and hom(C,G)1. Take for instance hom(C,G)−1 whose

elements parametrize the higher gauge transformations of the theory. The redundancies

in the sum over t ∈ hom(C,G)−1 of (4.6) come from elements that act trivially over

quantum states (examples of such elements are shown in section 5). Recall that gauge

transformations act on actual states by means of the δ−1 operator. Thus, we can identify the

elements of hom(C,G)−1 that act trivially on states: they form a subgroup of hom(C,G)−1

called the kernel and given by ker(δ−1) := {t ∈ hom(C,G)−1 | δ−1(t) = 0}, where 0 ∈
hom(C,G)0 is the identity element that labels the trivial gauge configuration. Morever,

non-trivial gauge transformations are parametrized by elements of hom(C,G)−1 that are

not mapped to the identity by δ−1, they define a subgroup of hom(C,G)0 known as image

and denoted Im(δ−1). Both the kernel and the image of the co-boundary map, δ−1, are

related to each other by the first isomorphism theorem [35] which in this case reads

hom(C,G)−1

ker(δ−1)
' Im(δ−1). (4.7)
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Elements of the quotient group in the above expression are the cosets of ker(δ−1) in

hom(C,G)−1. This is:

hom(C,G)−1

ker(δ−1)
:= {[t] | t ∈ hom(C,G)−1},

where the coset [t] = {t+ hi, hi ∈ ker(δ−1)} consists on all elements of hom(C,G)−1 that

differ from t by an element in ker(δ−1). This is precisely what we need to factor the sums

in (4.6). The sum over t ∈ hom(C,G)−1 can be replaced by a sum over the cosets of

ker(δ−1) in hom(C,G)−1 as follows:∑
t∈hom(C,G)−1

At =
∑

[s]∈hom(C,G)−1

ker(δ−1)

|ker(δ−1)|As,

where s ∈ [s] is an arbitrary representative of the coset. A similar argument holds for the

sum over m ∈ hom(C,G)1 which allows to factor out the redundancies from the second sum

in (4.6). By doing this, we ensure that the sums run over independent group elements only:

Π0 =

 1

|Im(δ−1)|
∑

[t]∈hom(C,G)−1

ker(δ−1)

At


 1

|Im(δ1)|
∑

[m]∈hom(C,G)1
ker(δ1)

Bm

 , (4.8)

note that we have used |hom(C,G)−1| = |ker(δ−1)||Im(δ−1)| to simplify the normalization

factor of the first sum. A similar identity holds for the second sum. This leaves us with

the density matrix of (4.5) written as:

ρ =
1

GSD

1

|Im(δ−1)||Im(δ1)|

 ∑
[t]∈hom(C,G)−1

ker(δ−1)

At


 ∑

[m]∈hom(C,G)1
ker(δ1)

Bm

 . (4.9)

We can now proceed to the calculation of the reduced density matrix. Let us consider

the bipartition of the geometric chain complex
(
C(K), ∂C

)
described in section 4.1. This

procedure splits the Hilbert space into two subspaces H = HA⊗HB. Then, we obtain the

reduced density matrix by taking the partial trace over region B, this is:

ρA := TrB(ρ). (4.10)

To evaluate the partial trace we consider a basis {|fn,B〉}, where fn,B ∈ hom(CB, G)0

is the restriction of the tensor product 3.11 over simplexes only belonging to B. Therefore

we can write the basis dividing the tensor product:

|f〉 = |fA〉 ⊗ |fB〉 , (4.11)

where |fA〉 is the tensor product over the elements belonging to the subcomplex A, the

same for complementary B. For simplicity, let us denote its basis as {|bi〉}, with i =
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1, 2 . . . , dim(HB). The reduced density matrix is now written:

ρA =
1

GSD

1

|Im(δ−1)||Im(δ1)|
∑
i

〈bi|

∑
[t]

∑
[m]

AtBm

 |bi〉 , (4.12)

where [t] ∈ hom(C,G)−1

ker(δ−1)
and [m] ∈ hom(C,G)1

ker(δ1)
. Both At and Bm are traceless operators unless

they are equal to the identity operator, as we show in proposition A.1 of appendix A.

Because of this, the only terms that survive the partial trace are those for which At and

Bm act as identity in HB. In other words, the only operators that survive the partial

trace are those that act exclusively on HA. In terms of local operators this means that all

holonomy operators labeled by simplexes that belong to region A will survive the trace. The

case of gauge transformations is more subtle since we need to discard gauge transformations

labeled by elements that lie at the boundary of A as well, see appendix A.

To account for such operators we use the restricted gauge theory defined by the complex

in (4.4) with a slight modification. We are interested on further restricting such a theory

by allowing gauge transformations that act on the interior of KA only. In other words, we

want to discard the gauge transformations at the boundary ∂A. To this intent, let us give

a more precise notion of interior of A. Let Kn,Ã = {x ∈ Kn,A |x ∩ ∂A = ∅} be the set of

all n-simplices that have no intersection with the boundary of A. Then, the interior of A

is the set Ã :=
⋃d
n=0Kn,Ã.

Recall from section 3 that the higher gauge transformations of a higher gauge theory

are parametrized by elements of the group hom(C,G)−1. Thus, to account for gauge

transformations that act exclusively on the interior of A we just need to consider the

subgroup of hom(CA, G)−1 whose support is contained on Ã only. This can be done using

the notion of interior of A as follows: consider homomorphisms whose support lie on the

interior of A, namely Hom(Cn,Ã, Gn+1). Let then:

hom(CÃ, G)−1 :=
d⊕

n=0

Hom(Cn,Ã, Gn+1),

with elements f ∈ hom(CÃ, G)p consisting on collections of maps f = {fn}:

fn : Kn,Ã → Gn+p, (4.13)

x 7→ fn(x), (4.14)

where x ∈ Kn,Ã and fn(x) ∈ Gn+p.
It is straightforward to show that hom(CÃ, G)p is a subgroup of hom(CA, G)p. More-

over, we can define the restriction of the co-coundary operator δp into the interior of A.

This is, δp
Ã

:= δp|Ã, such that the sequence

hom(CÃ, G)−1
δ−1

Ã−−→ hom(CA, G)0
δ0A−→ hom(CA, G)1, (4.15)

is a co-chain complex, i.e., δ0A ◦ δ
−1
Ã

= 0. This co-chain complex encodes an Abelian higher

gauge theory over KA whose gauge transformations are restricted to act on the interior of

A only.
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We can now return to equation (4.12) and evaluate the partial trace of the density

matrix ρ, which yields

ρA =
1

GSD

1

|Im(δ−1)||Im(δ1)|

(∑
p,q

ApBq

)
TrB(1B), (4.16)

where the sums now run over independent internal gauge transformations

p ∈
hom(CÃ, G)−1

ker(δ−1A )
, (4.17)

and non-trivial holonomy values in A

q ∈ hom(CA, G)1
ker(δ1|A)

. (4.18)

Finally, observing that Tr(1B) = dim(HB) we get for the reduced density matrix:

ρA =
1

GSD

dim(HB)

|Im(δ−1)||Im(δ1)|

(∑
p,q

ApBq

)
.

The above expression can be further simplified as follows: observe that by applying

the first isomorphism theorem [35] on the sequence of eq. (3.14) it is easy to show that the

dimension of the Hilbert space factors into

dim(H) =
∣∣hom(C,G)0

∣∣ =
∣∣ker(δ0)

∣∣ ∣∣Im(δ0)
∣∣ .

Also, in appendix B we show that
∣∣Im(δ0)

∣∣ = |Im(δ1)| this allows us to write:

GSD |Im(δ−1)||Im(δ1)| = dim(H) = dim(HA) dim(HB),

which in turn yields for the reduced density matrix,

ρA =
1

dim(HA)

(∑
p,q

ApBq

)
. (4.19)

4.3 Entanglement entropy

Having found the reduced density matrix in (4.19) we are able to calculate its Von Neumann

entropy, also known as entanglement entropy. This calculation will require us to evaluate

the logarithm of ρA at some point and this is usually done using a series expansion. In this

sense, we will start by calculating the square of ρA:

ρ2A =
1

dim(HA)2

(∑
p,q

ApBq

)∑
p′,q′

Ap′Bq′

 =
|Im(δ0A)||Im(δ−1

Ã
)|

dim(HA)2

(∑
p,q

ApBq

)
,

where in the last equality the factors in the numerator come from rearranging the sums

over p′ ∈ hom(CÃ,G)−1

ker(δ−1
A )

and over q′ ∈ hom(CA,G)1
ker(δ1|A) . This leaves for the square of the density

matrix:

ρ2A =
|Im(δ0A)||Im(δ−1

Ã
)|

dim(HA)
ρA = λ ρA. (4.20)
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Now we can calculate the logarithm of ρA by series expansion, which yields: log(ρA) =
log(λ)
λ ρA. Finally the entanglement entropy is:

SA = −Tr(ρA log(ρA)) = −Tr(ρA log(λ)) = log(1/λ)Tr(ρA) = log(1/λ), (4.21)

where we have used Tr(ρA) = 1. Let us look at the λ factor more carefully, since it encodes

the essential information about the entanglement entropy of the model. By recalling that

dim(HA) =
∣∣hom(CA, G)0

∣∣ =
∣∣ker(δ0A)

∣∣ ∣∣Im(δ0A)
∣∣, we are able to write:

1

λ
=

dim(HA)∣∣Im(δ0A)
∣∣ ∣∣∣Im(δ−1

Ã
)
∣∣∣ =

∣∣ker(δ0A)
∣∣∣∣∣Im(δ−1

Ã
)
∣∣∣ , (4.22)

Equation (4.22) is already very interesting since it relates 1/λ to the ground state degener-

acy (GSD) of the model restricted to HA and for which gauge transformations act in the

interior of A only. By replacing this expression into eq. (4.21) we are able to state our first

result, that the entanglement entropy is given by:

SA = log

 ∣∣ker(δ0A)
∣∣∣∣∣Im(δ−1

Ã
)
∣∣∣
 = log

(
GSDÃ

)
. (4.23)

We want to highlight that the only requirement we asked for the bipartition is that the

simplicial complex K is divided into a subcomplex KA and its complement. Therefore, this

result is very general since it is valid for any higher gauge theory of the type described in

sections 2, 3 and constructed in [19] and for any arbitrary dimension.

4.4 Topological entanglement entropy

Having a general result for the bipartition entanglement entropy SA, given by equa-

tion (4.23), it is natural to ask if it is possible to extract from it both the area law and

the sub-leading, possibly topological terms, explicitly exhibiting its dependency on both

the geometry and the topology of the region A. Here we give an answer to this question

and show how SA depends on A. We demonstrate that the topological contribution to

the entanglement entropy comes from topological invariants of the sub-region A and from

topological invariants of the entangling surface ∂A. These invariants are related to Brown’s

cohomology groups [34]. One can express the cohomology groups of Brown as a product of

all cohomology groups of the manifold in question with coefficients in the homology groups

of the chain complex of groups (4.3) (see [34] for further details). Thus, for higher gauge

theories, the topological entanglement entropy depends on the Betti numbers of A and ∂A,

but the actual relation is more involved than the case of 1-gauge theories.

Let’s consider equation (4.23). It depends on the quantity GSDÃ, the ground state

degeneracy of a model restricted to the region A without gauge transformations at the

boundary ∂A. This quantity can be rewritten in the following way: multiplying and

dividing it by |Im(δ−1A )|, i.e., the order of the group image of δ−1A , we have

GSDÃ = GSDÃ

|Im(δ−1A )|
|Im(δ−1A )|

=
|ker(δ0A)|
|Im(δ−1

Ã
)|
|Im(δ−1A )|
|Im(δ−1A )|

= GSDA
|Im(δ−1A )|
|Im(δ−1

Ã
)|
, (4.24)
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where, from theorem 3.3, GSDA = |ker(δ0A)|/|Im(δ−1A )| is the ground state degeneracy

of the model restricted to region A. As explained in section 3, GSDA = |H0(CA, G)|,
where |H0(CA, G)| is the order of the zeroth Brown cohomology group of the complex

(CA, G). Therefore, GSDA is a topological invariant of A. However, there are more

topological contributions to the entanglement entropy coming from the entangling surface

∂A, which can have non-trivial topology. They are hidden in the term |Im(δ−1A )|/|Im(δ−1
Ã

)|,
which essentially counts the number of non-equivalent gauge transformations labelled by

simplexes at the boundary ∂A of A. To see this, first we note that, in the same way we

constructed a co-chain complex that encodes an Abelian higher gauge theory defined on

the region A but with higher gauge transformations restricted to act on the interior Ã of A,

we can also construct a co-chain complex that represents an Abelian higher gauge theory

defined on A but with higher gauge transformations that act only on the boundary ∂A

of A.

Let Kn,∂A = {x ∈ Kn,A|x ∩ Ã = ∅} be the set of n-simplices that have no intersection

with the interior of A. Clearly, Kn,Ã ∩ Kn,∂A = ∅ and Kn,Ã ∪ Kn,∂A = Kn,A. Higher

gauge transformations over A are parameterized by elements of the group hom(CA, G)−1.

Therefore, the transformations that act over the boundary of A are parameterized by

the subgroup hom(C∂A, G)−1 ⊂ hom(CA, G)−1, whose elements are collections of maps

f = {fn} such that, for each 0 ≤ n ≤ d, fn : Kn,∂A → Gn+1 has support in the boundary

of A. Then, we define the restriction δ−1∂A = δ−1A |∂A of the co-boundary map δ−1A , therefore

hom(C∂A, G)−1
δ−1
∂A−−→ hom(CA, G)0

δ0A−→ hom(CA, G)1 (4.25)

is a co-chain complex since δ0A ◦ δ
−1
∂A = 0. This co-chain complex defines an Abelian

higher gauge theory on A with higher gauge transformations labelled by elements of ∂A.

From (4.15) and (4.25), we can establish the following result:

Lemma 4.1.
|Im(δ−1A )|
|Im(δ−1

Ã
)|

= |Im(δ−1∂A)|. (4.26)

Proof. See appendix C.

We can then focus in studying the set Im(δ−1∂A). First, note that we can construct,

for any −d ≤ p ≤ d, the group hom(C∂A, G)p =
⊕d−1

n=0 Hom(Cn,∂A, Gn−p) and the co-

boundary map δp∂A : hom(C∂A, G)p → hom(C∂A, G)p+1, just as we did above. Therefore,

we can construct the co-chain complex

hom(C∂A, G)−d
δ−d∂A−−→ · · ·

δ−2
∂A−−→ hom(C∂A, G)−1

δ0∂A−−→ hom(C∂A, G)1 → · · · , (4.27)

and, for this co-chain complex, we can also define the Brown cohomology groups

Hp(C∂A, G) = ker(δp∂A)/Im(δp−1∂A ). (4.28)

Now, for any −d ≤ p ≤ d, we have that

|Im(δp∂A)| = |hom(C∂A, G)p|
|Hp(C∂A, G)||Im(δ

(p−1)
∂A )|

. (4.29)
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Indeed, since δp∂A : hom(C∂A, G)p → hom(C∂A, G)p+1 is a group homomorphism, the first

isomorphism theorem says that

hom(C∂A, G)p/ker(δp∂A) ∼= Im(δp∂A), (4.30)

which implies that

|Im(δp∂A)| = |hom(C∂A, G)p|
|ker(δp∂A)|

. (4.31)

Now, from equation (4.28), we have that

|Hp(C∂A, G)| =
|ker(δp∂A)|
|Im(δp−1∂A )|

, (4.32)

so, substituting |ker(δp∂A)| = |Hp(C∂A, G)||Im(δp−1∂A )| into (4.31), we get (4.29). This equa-

tion is a recursion relation that allows us to write |Im(δp∂A)| in terms of |Im(δp−1∂A )|. In

particular, for p = −1,

|Im(δ−1∂A)| = |hom(C∂A, G)−1|
|H−1(C∂A, G)||Im(δ−2∂A)|

. (4.33)

Applying (4.29) once more, we have

|Im(δ−1∂A)| = |hom(C∂A, G)−1||H−2(C∂A, G)|
|H−1(C∂A, G)||hom(C∂A, G)−2|

|Im(δ−3∂A)|. (4.34)

This procedure can be continued until we finally reach

|Im(δ−d∂A)| = |hom(C∂A, G)−d|
|H−d(C∂A, G)||Im(δ

−(d+1)
∂A )|

. (4.35)

This ends the recursion since |Im(δ
−(d+1)
∂A )| = 1 because hom(C∂A, G)−(d+1) = {0} and

δ
−(d+1)
∂A is the inclusion map. Putting all together, we have

|Im(δ−1∂A)| =
d∏
p=1

|hom(C∂A, G)−p|α|H−p(C∂A, G)|−α, (4.36)

where α = 1 when p is odd and α = −1 when p is even. Thus, we can write |Im(δ−1∂A)|
as a product of terms that depend on the geometry of the entangling surface ∂A, i.e.,

the |hom(C∂A, G)p| terms, with terms that depend on the topology of ∂A, that is, the

|Hp(C∂A, G)| terms, for −d ≤ p ≤ −1.

We can now go back to the entaglement entropy SA. We have that, from equa-

tions (4.23), (4.24) and lemma 4.1,

SA = log
(
GSDÃ

)
= log(GSDA) + log

(
|Im(δ−1∂A)|

)
. (4.37)

From (4.36), we have

log
(
|Im(δ−1∂A)|

)
=

d∑
p=1

(−1)p+1log
(
|hom(C∂A, G)−p|

)
+

d∑
p=1

(−1)plog
(
|H−p(C∂A, G)|

)
.
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Now, as explained in [19], here we are considering the case where there are finitely many n’s

such that Kn is non-empty, and each of these non-empty sets are also finite. Moreover, all

groups Gn appearing in the chain complex (G, ∂G) are finite. Thus, the groups hom(C,G)p

are finite for all p, and their order is given by

|hom(C,G)p| =
d∏

n=0

|Hom(Cn, Gn−p)| =
d∏

n=0

|Gn−p||Kn|. (4.38)

In particular,

|hom(C∂A, G)−p| =
d−1∏
n=0

|Gn+p||Kn,∂A|, (4.39)

and thus

log
(
|hom(C∂A, G)−p|

)
= log

(
d−1∏
n=0

|Gn+p||Kn,∂A |

)
=

d−1∑
n=0

|Kn,∂A|log (|Gn+p|) . (4.40)

Now, using the isomorphism (3.16), we can write

log(GSDA) = log
(
|H0(CA, G)|

)
=

d∑
n=0

log (|Hn(CA, Hn(G))|) , (4.41)

and

d∑
p=1

(−1)plog
(
|H−p(C∂A, G)|

)
=

d−1∑
n=0

d∑
p=1

(−1)plog (|Hn(C∂A, Hn+p(G))|) . (4.42)

Therefore, the entanglement entropy SA can be written as

SA = S∂A + STopo, (4.43)

where

S∂A =

d−1∑
n=0

d∑
p=1

(−1)p+1|Kn,∂A|log (|Gn+p|) (4.44)

is the “area law” term, that is, the term which explicitly depends only on the geometry of

∂A, and

STopo =
d∑

n=0

log (|Hn(CA, Hn(G))|) +
d−1∑
n=0

d∑
p=1

(−1)plog (|Hn(C∂A, Hn+p(G))|) (4.45)

is the topological entanglement entropy, i.e., the term that explicitly depends on the topol-

ogy of both A and ∂A. To calculate it, we must be able to compute cohomology groups

with coefficients in the homology groups of the chain complex (G, ∂G). Cohomology with

coefficients is related to the usual integral homology through the universal coefficient theo-

rem (see [33] for a general reference), which states that, for any Abelian group D and any

0 ≤ n ≤ d,

Hn(C,D) ∼= Hom(Hn(C), D)⊕ Ext1(Hn−1(C), D), (4.46)
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0 Cd · · · C2 C1 C0 0

0 G1 0

∂Cd ∂C3 ∂C2 ∂C1

f1m2 t0

Figure 5. We obtain the chain complexes that define Abelian 1-gauge theories in d dimensions by

setting G0 = G2 = 0 in example 2.1. The relevant maps are the configurations associated to the

links f1, the gauge transformations t0, and the 1-holonomies m2, as explained in 4.

where Hn(C) is the homology group of order n with integer coefficientes of the chain

complex C = (C, ∂C). The Ext1 term is related to the torsion part of Hn(C), and it is

trivial whenever Hn(C) is free. Writting Hn(C) ∼= Zβn ⊕ Ti, where Zβn corresponds to the

free part of Hn(C), βn being the Betti number of order n of the chain complex C, and Ti
is its torsion part, we can see that indeed there is a relation between STopo and the higher

Betti numbers of both the region A and its boundary ∂A. In particular, when we consider

manifolds with torsion-free homology groups, the Ext1 term in (4.46) is trivial and we have

as a result

|Hn(C,D)| = |Hom(Hn(C), D)| = |Hom(Zβn , D)| = |D|βn . (4.47)

However, the dependency on the Betti numbers of A and ∂A can be non-trivial when the

homology groups have torsion. In this case we must compute the Ext1 term. In section 5,

we illustrate our results by calculating the entanglement entropy of several examples coming

from higher gauge theories, which include the familiar Quantum Double Models in their

Abelian versions.

5 Examples

In this section we calculate the entanglement entropy of the model shown in section 2.

We will use this example to demonstrate how the topology of both A and ∂A affect the

entanglement entropy. For 1-gauge theories (Abelian Quantum Double Models), we recover

well-known general results for any dimension d.

5.1 1-gauge theories

We consider the general Abelian 1-gauge theory, also known as the Abelian Quantum

Double model, but now in any dimension d. This theory is defined by the chain complexes

in figure 5. This example can be seen as a particular case of the d-dimensional version of

the model introduced in 2.1, where the only non-trivial group is G1.

The geometrical chain complex, generated by the simplicial complex K =
⋃d
n=0Kn,

corresponds to the d-dimensional manifold M in which the theory is defined. Let’s consider

a bipartition of this manifold into two regions, A and B, where A is a d-dimensional closed

immersed submanifold of M , as in the general case discussed in section 4.1. This corre-

sponds to splitting the simplicial complex K as K =
⋃d
n=0Kn,A ∪Kn,B, where

⋃d
n=0Kn,A
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0 Cd,A · · · C2,A C1,A C0,A 0

0 G1 0

∂Cd,A ∂C3,A ∂C2,A ∂C1,A

f1m2 t0

Figure 6. Chain complexes that define Abelian 1-gauge theories in d dimensions for a subregion

A, as explained in 4. The maps are the ones explained in 5 restricted to the subcomplex KA.

is a subcomplex of K. Therefore, following the general procedure shown in section 4.1, we

can construct for region A the chain complexes shown in figure 6.

From these chain complexes, as was demonstrated in sections 4.1, 4.2 and 4.4, the

following cochain complexes are well defined for this theory:

hom(CA, G)−d
δ−dA−−→ · · ·

δ−2
A−−→ hom(CA, G)−1

δ0A−→ hom(CA, G)1 → · · · , (5.1)

hom(C∂A, G)−d
δ−d∂A−−→ · · ·

δ−2
∂A−−→ hom(C∂A, G)−1

δ0∂A−−→ hom(C∂A, G)1 → · · · . (5.2)

We can then apply equation (4.43) to find the entanglement entropy SA of this theory.

First, let’s compute S∂A, given by equation (4.44). We have that

S∂A =

d−1∑
n=0

d∑
p=1

(−1)p+1|Kn,∂A|log(|Gn+p|). (5.3)

This quantity depends only on the simplicial complex of the boundary of A and on the

higher gauge groups of the theory in question. For 1-gauge, there is only one non-trivial

gauge group G1, all other groups being equal to {0}, as is shown in figure 6. Therefore,

since the order of trivial groups is equal to one, the only term which will survive in the

double sum in equation (5.3) is the n = 0, p = 1 term, and we have as a result

S∂A = |K0,∂A|log(|G1|). (5.4)

Thus, we have indeed an “area law” term, because S∂A is proportional to the number of

vertices in the boundary of A, which is essentially the size of the boundary. We are only

left to calculate STopo. From equation (4.45), we know that

STopo =

d∑
n=0

log (|Hn(CA, Hn(G))|) +

d−1∑
n=0

d∑
p=1

(−1)plog (|Hn(C∂A, Hn+p(G))|) . (5.5)

We will leave the topology of A and ∂A unspecified for a moment and proceed as far

as possible. For a 1-gauge theory, the non-trivial piece of the chain complex (G, ∂G) is

given by

0
∂G2−−→ G1

∂G1−−→ 0, (5.6)

and the only non-trivial homology group related to this chain complex is

H1(G1) = ker(∂G1 )/Im(∂G2 ) = G1.
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Therefore, in the first term of (5.5) the only non-zero contribution to the sum comes from

n = 1, while for the second term of (5.5) the only non-zero contribution to the sum comes

from n = 0, p = 1. Hence, the topological entanglement entropy in Abelian 1-gauge theories

is given by

STopo = log
(
|H1(CA, G1)|

)
− log

(
|H0(C∂A, G1)|

)
. (5.7)

Then, to compute STopo we need to calculate the order of the cohomology groups

H1(CA, G1) and H0(C∂A, G1), with coefficients in G1. To do so, we employ the univer-

sal coefficient theorem for cohomology (4.46), which states that

Hn(C,G1) ∼= Hom(Hn(C), G1)⊕ Ext1(Hn−1(C), G1), (5.8)

for every 0 ≤ n ≤ d, where Hn(C) is the nth homology group with integer coefficients of

the chain complex C. Here we only need the n = 0 and n = 1 cases. For n = 0, there is no

Ext term [33], so

H0(C∂A, G1) ∼= Hom(H0(C∂A), G1). (5.9)

We have also that H0(C∂A) ∼= Zβ0(∂A), where β0(∂A) is the zeroth Betti number of ∂A.

Therefore,

H0(C∂A, G1) ∼= Hom(Zβ0(∂A), G1) (5.10)

and hence

|H0(C∂A, G1)| = |Hom(Zβ0(∂A), G1)| = |G1|β0(∂A). (5.11)

Likewise, the Ext term is trivial for the n = 1 case, and we can write

H1(CA, G1) ∼= Hom(H1(CA), G1). (5.12)

So in general, the topological entanglement entropy for Abelian 1-gauge theories reads

STopo = log (|Hom(H1(CA), G1)|)− β0(∂A)log (|G1|) , (5.13)

and it depends on the number of non-contractible curves one can draw over region A, as

well as on the number of connected components of ∂A. To proceed further, we need to

specify the topology of A. For example, if A has the topology of a d-dimensional ball,

its first homology group is trivial and hence we get that STopo = −β0(∂A)log (|G1|), i.e.,

it is only sensitive to the number of connected components of the entangling surface ∂A.

If we take A = T d, where T d is the d-torus T d = (S1)d, we have that H1(CA) ∼= Zβ1(A),
where β1(A) is the first Betti number of A which, in this case, is equal to β1(A) = d. Then

|Hom(H1(CA), G1)| = |G1|β1(A) and

STopo = (β1(A)− β0(∂A))log (|G1|) .

It is important to mention that we could also build theories with degrees of freedom

attached to other components of the lattice, such as its 2-simplices (plaquettes). Doing so,

we have a particular case of a 2-gauge theory. As we will see in the following discussion,

this makes the topological entanglement entropy depend on higher Betti numbers. An

example of such model is the 4-dimensional Toric Code [36]. Note that in [36] it is not
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0 Cd · · · C3 C2 C1 C0 0

0 G2 0

∂Cd ∂C3 ∂C2

f2

∂C1

m3 t1

Figure 7. Chain complexes that define Abelian 1-gauge theories in d dimensions with degrees of

freedom living at the faces of the lattice. f2 are the configurations, t1 are the gauge transformations

labeled by links, and there is also m3 as the 2-holonomies.

called a 2-gauge theory. We do so in order to be consistent with our formalism. Let’s

then consider an Abelian 2-gauge theory in d-dimensions with degrees of freedom living at

the 2-simplices of the lattice. The chain complexes describing this model is presented in

figure 7.

We can repeat exactly the same steps we did for calculating the entanglement entropy

of the 1-gauge model obtained from the chain complexes in figure 5. Hence, we can skip this

discussion and right away apply the formula (4.43) to calculate the entanglement entropy

of this model. Here, since the only non-trivial group is G2, the only non-zero terms in the

sum that define S∂A are the p = 1, n = 1 and p = 2, n = 0 terms, so S∂A is given by

S∂A = |K1,∂A|log(|G2|)− |K0,∂A|log(|G2|) = (|K1,∂A| − |K0,∂A|) log(|G2|). (5.14)

Note that this term vanishes for a 3-dimensional region A with periodic boundary condi-

tions. Now, since the only non-trivial piece of the group chain complex shown in figure 7 is

0
∂G3−−→ G2

∂G2−−→ 0,

the only non-trivial homology group associated to this complex is

H2(G) = ker(∂G2 )/Im(∂G3 ) = G2.

Thus, the non-zero contribution to the first term of STopo comes from the term with n = 2,

while the non-zero contributions to the second term of STopo come from the terms with

p = 1, n = 1 and p = 2, n = 0. Therefore, the topological entanglement entropy of this

model is given by

STopo = log
(
|H2(CA, G2)|

)
+ log

(
|H0(C∂A, G2)|

)
− log

(
|H1(C∂A, G2)|

)
. (5.15)

Again, using the universal coefficient theorem (4.46) to calculate the cohomologies, we first

note that there is no Ext term for n = 0 and it is trivial for n = 1. Therefore,

|H0(C∂A, G2)| = |Hom(H0(C∂A), G2)| = |G2|β0(∂A), (5.16)

|H1(C∂A, G2)| = |Hom(H1(C∂A), G2)|, (5.17)

where we used again that H0(C∂A) ∼= Zβ0(∂A). However, applying the theorem to |H2(CA, G2)|,
we have that

|H2(CA, G2)| = |Hom(H2(CA), G2)||Ext1(H1(CA), G2)|, (5.18)
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and we can’t say much about Ext1(H1(CA), G2) without knowing the homology group

H1(CA). For example, whenever H1(CA) is free, wich happens when we, for instance, choose

A to be a d-dimensional ball or a d-torus, Ext1(H1(CA), G2) = {0} and we have that

|H2(CA, G2)| = |Hom(H2(CA), G2)|,

and the topological entanglement entropy now is related to the number of non-contractible

curves and surfaces one can draw over ∂A and A, respectively, and therefore STopo depends

on higher Betti numbers of both A and ∂A.

To give an example where the Ext term is non-trivial, take the 4-dimensional manifold

A = RP 3 × [0, 1], i.e., the product of the real projective space with the unit interval. It is

a manifold whose boundary is ∂A = RP 3 ∪ RP 3. The homology groups of RP 3 are

Hn(RP 3) =


Z, if n = 0 or n = 3,

Z2, if n = 1,

0, otherwise.

(5.19)

Let’s compute the second homology group of A. By Künneth’s theorem [37], we have that

H2(RP 3 × [0, 1]) ∼=
⊕
i+j=2

Hi(RP 3)⊗Hj([0, 1])

= H0(RP 3)⊗H2([0, 1])⊕H2(RP 3)⊗H0([0, 1])⊕H1(RP 3)⊗H1([0, 1])

∼= (Z⊗ {0})⊕ ({0} ⊗ Z)⊕ (Z2 ⊗ {0}),

that is,

H2(RP 3 × [0, 1]) ∼= Z⊕ Z⊕ Z2. (5.20)

The first homology group of A = RP 3 × [0, 1] can be computed in the same way:

H1(RP 3 × [0, 1]) ∼=
⊕
i+j=1

Hi(RP 3)⊗Hj([0, 1])

= H0(RP 3)⊗H1([0, 1])⊕H1(RP 3)⊗H0([0, 1])

∼= (Z⊗ {0})⊕ (Z2 ⊗ Z),

that is,

H1(RP 3 × [0, 1]) ∼= Z⊕ Z2 ⊗ Z. (5.21)

Then, from equation (5.18), we have

|H2(CA, G2)| = |Hom(Z⊕ Z⊕ Z2, G2)||Ext1(Z⊕ Z2 ⊗ Z, G2)|
= |G2|4|Ext1(Z⊕ Z2 ⊗ Z, G2)|,

and Z2 ⊗ Z ∼= Z2 [37] and that

Ext1(Z⊕ Z2, G2) ∼= Ext1(Z, G2)⊕ Ext1(Z2, G2) ∼= Ext1(Z2, G2),
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0 C2 C1 C0 0

0 G1 G0 0

∂C2 ∂C1

f1 f0

∂G1

m2 t0

Figure 8. Chain complexes for the 0, 1-gauge model in 5.2. The configurations for the links are

determined by f1, while for the vertices by f0. The gauge transformations are given by t0, while

we have the 1-holonomies m2 and 0-holonomies m1 not shown in the figure.

because Ext1(Z, G2) = {0} [33], we have

|H2(CA, G2)| = |G2|4||G2/2G2|, (5.22)

where we used that Ext1(Zn, G) ∼= G/nG, for any n ∈ N and any Abelian group G [33].

Now, the order of the cohomology groups (5.16) and (5.17) of the boundary ∂A = RP 3 ∪
RP 3 are

|H0(C∂A, G2)| = |G2|2, (5.23)

|H1(C∂A, G2)| = |Hom(Z2 ⊕ Z2, G2)| = |G2|4, (5.24)

and thus, the topological entanglement entropy is given by

STopo = log(|G2|4|G2/2G2|) + log(|G2|2)− log(|G2|4), (5.25)

i.e.,

STopo = log(|G2/2G2|) + 2log(|G2|). (5.26)

Expanding the results found in the literature [25, 38], here we demonstrated that

the topological entanglement entropy depends not only on the topology of the entangling

surface ∂A, but also on the topological properties of the bulk region A. Moreover, the

Betti numbers of A and ∂A are not the only information needed to obtain the topological

entropy. For some models, it may depend also on torsion properties of the sub-region A

and its boundary, captured mainly by the Ext1 functor.

5.2 (2D) 0, 1-gauge theories

Let’s consider a 0, 1-gauge theory, a particular case of the one exhibited in section 4 with

G2 = 0. For simplicity, we focus in the 2-dimensional case, but the discussion presented

here can immediately be extended to any dimension d. The chain complexes defining this

theory are shown in figure 8.

Again, we divide the lattice into two regions, A and B, where for A we have a sub-

complex
⋃d
nKn,A. Following the general procedure shown in section 4.1, we can construct

for region A the chain complex (CA, ∂
C
A ) and find that the entanglement entropy SA is

given by equation (4.43). Let’s calculate first S∂A. It is straightforward to see that the
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only non-zero contribution to the sum in (4.44) is given by the n = 0, p = 1 term. So we

have that

S∂A = |K0,∂A|log(|G1|), (5.27)

and it is again an “area law”. Now, consider the (G, ∂G) chain complex of this theory:

0
∂G2−−→ G1

∂G1−−→ G0
∂G0−−→ 0. (5.28)

The non-trivial homology groups associated to this chain complex are

H0(G) = ker(∂G0 )/Im(∂G1 ), (5.29)

H1(G) = ker(∂G1 )/Im(∂G2 ). (5.30)

So, the non-zero contributions to the topological entanglement entropy (4.45) are

STopo = log
(
|H0(CA,H0(G))|

)
+ log

(
|H1(CA,H1(G))|

)
− log

(
|H0(C∂A,H1(G))|

)
. (5.31)

This result is true for any Abelian finite groups G0 and G1. However, now we have to

specify these groups in order to calculate the homology groups (5.29) and (5.30). Thus,

let’s first consider the model with G0 = Z2 = {0, 1} and G1 = Z4 = {0, 1, 2, 3}. The map

∂G1 : Z4 → Z2 is defined by ∂G1 (1) = 1. The homology groups (5.29) and (5.30) are thus

H0(G) = ker(∂G0 )/Im(∂G1 ) = Z2/Z2 = {0}, (5.32)

H1(G) = ker(∂G1 )/Im(∂G2 ) = Z2. (5.33)

The topological entanglement entropy of this model is thus

STopo = log
(
|H1(CA,Z2)|

)
− log

(
|H0(C∂A,Z2)|

)
. (5.34)

Note that this result is equal to the G1 = Z2 1-gauge theory. Again, this model exhibits

the same topological properties as the Toric Code.

We can also consider the model where G0 = Z2 and G1 = Z2, with ∂G1 : Z2 → Z2

being the identity map. In this case, both H0(G) and H1(G) are equal to the trivial group,

and the topological entanglement entropy is equal to zero, confirming the non-topological

nature of this model.

5.3 (3D) 1, 2-gauge theories

This time we consider the case of the 1, 2-gauge theory (section 2.1 and section 4 with

G0 = 0). Although here we treat the 3-dimensional case, the procedure below can right

away be extended to arbitrary dimensions d. The chain complexes that define this theory

are reproduced here in figure 9.

Once more, we divide the lattice into two regions, A and B, where region A is such

that we have a subcomplex KA. From the general procedure shown in section 4.1, we can

construct for region A the chain complex (CA, ∂
C
A ) and then find that the entanglement

entropy SA is given by equation (4.43). To compute it for this model, let’s calculate first
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0 C3 C2 C1 C0 0

0 G2 G1 0

∂C3 ∂C2

f2

∂C1

f1

∂G2

m3 t1 t0

Figure 9. Chain complexes for the 1, 2-gauge model. The configurations maps are f2 for faces,

f1 for links, the gauge transformations are the t0, t1; while the 2-holonomies are given by m3, the

1-holonomies by m2.

S∂A. We see that the only non-zero contributions to the sum in (4.44) are the ones given

by the n = 0, p = 1, n = 1, p = 1 and n = 0, p = 2 terms. Therefore

S∂A = |K0,∂A|log (|G1|) + |K1,∂A|log (|G2|)− |K0,∂A|log (|G2|) (5.35)

= |K0,∂A|log (|G1|) + (|K1,∂A| − |K0,∂A|)log (|G2|) . (5.36)

Note that, if we were dealing with a two dimensional system with periodic boundary

conditions, the terms proportional to log(|G2|) would cancel out, as the number of links

and vertices is the same, and we would have the same result as the one found in the

1-gauge case.

Now, to calculate the topological entanglement entropy STopo, given by equation (4.45),

first we consider the chain complex (G, ∂G) of this model:

0
∂G3−−→ G2

∂G2−−→ G1
∂G1−−→ 0. (5.37)

The non-trivial homology groups associated to this chain complex are as follows:

H1(G) = ker(∂G1 )/Im(∂G2 ), (5.38)

H2(G) = ker(∂G2 )/Im(∂G3 ). (5.39)

Thus, STopo is given by

STopo = log
(
|H1(CA,H1(G))|

)
+ log

(
|H2(CA,H2(G))|

)
− log

(
|H0(C∂A,H1(G))|

)
+

(5.40)

− log
(
|H1(C∂A,H2(G))|

)
+ log

(
|H0(C∂A,H2(G))|

)
.

(5.41)

To proceed further, let’s choose the model where G2 = Z4, G1 = Z2 and ∂G2 : Z4 → Z2

such that ∂G2 (1) = 1. We can then calculate the homology groups (5.38) and (5.39) to be

H1(G) = {0}, (5.42)

H2(G) = Z2. (5.43)

Therefore, the topological entanglement entropy of this model is

STopo = log
(
|H2(CA,Z2)|

)
− log

(
|H1(C∂A,Z2)|

)
+ log

(
|H0(C∂A,Z2)|

)
. (5.44)
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0 C4 C3 C2 C1 C0 0

0 G3 G2 G1 0

∂C4 ∂C3

f3

∂C2

f2

∂C1

f1

∂G3 ∂G2 ∂G1

m4 t0t2 t1

Figure 10. Chain complexes for the 1, 2, 3-gauge model.

This formula is equal to the 2-gauge (5.15) case, with degrees of freedom living in the

plaquettes of the lattice and G2 = Z2. Note that we never used the fact that we are

dealing with a 3-dimensional system to derive equation (5.44), which means that the same

result holds for dimension d ≥ 3. Then, if we for example take d = 4, this choice of

groups for the 1, 2-gauge model imposes that its long-range entanglement characteristics,

detected by the topological entanglement entropy, are the same as the 4D Toric Code one

studied in [36]. Other choices of groups may generate 1, 2-gauge models with more unusual

behaviors.

5.4 (4D) 1, 2, 3-gauge theories

Now we consider the 1, 2, 3-gauge theory in four dimensions. We do this to show that our

formalism allows us to readily shift from a 3-dimensional presented in 2.1 case to a 4D, our

formalism can be extended to any arbitrary dimension d. The chain complexes that define

this theory is shown in figure 10.

We again divide the lattice into two regions, A and B, where region A is such that we

have a subcomplex
⋃d
n=0Kn,A. The general procedure shown in section 4.1 allows us to

construct for region A the chain complex (CA, ∂
C
A ) and thus we can find the entanglement

entropy SA using equation (4.43). To calculate it for the 1, 2, 3-gauge model, let’s study

first the term S∂A. We see that the only non-zero contributions to the sum in (4.44) are

the ones given by the p = 1, n = 0, 1, 2, p = 2, n = 0, 1 and p = 3, n = 0 terms. Therefore

S∂A = |K0,∂A|log (|G1|) + |K1,∂A|log (|G2|) + |K2,∂A|log (|G3|) +

− |K0,∂A|log (|G2|)− |K1,∂A|log (|G3|) + |K0,∂A|log (|G3|) ,

that is,

S∂A = |K0,∂A|log

(
|G1||G3|
|G2|

)
+ |K1,∂A|log

(
|G2|
|G3|

)
+ |K2,∂A|log (|G3|) . (5.45)

To calculate the topological entanglement entropy (4.45), we first consider the chain com-

plex (G, ∂G) of the 1, 2, 3-gauge model:

0
∂G4−−→ G3

∂G3−−→ G2
∂G2−−→ G1

∂G1−−→ 0. (5.46)

The non-trivial homology groups associated to it are the following ones:

H1(G) = ker(∂G1 )/Im(∂G2 ), (5.47)

H2(G) = ker(∂G2 )/Im(∂G3 ), (5.48)

H3(G) = ker(∂G3 )/Im(∂G4 ). (5.49)
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Hence, STopo is given by

STopo = log
(
|H1(CA,H1(G))|

)
+ log

(
|H2(CA,H2(G))|

)
+ log

(
|H3(CA,H3(G))|

)
+

log
(
|H0(C∂A,H1(G))|

)
− log

(
|H1(C∂A,H2(G))|

)
− log

(
|H2(C∂A,H3(G))|

)
+

+ log
(
|H0(C∂A,H2(G))|

)
+ log

(
|H1(C∂A,H3(G))|

)
− log

(
|H0(C∂A,H3(G))|

)
.

(5.50)

Note that the topological entanglement entropy does not change from the 3D to the 4D

case, because the homological groups are the same. To give a more concrete example, let’s

consider the case where G1 = G2 = G3 = Z4 and the homomorphisms ∂G3 (1) = ∂G2 (1) = 1.

The lattice is a discretization of a solid ball S3. In this case, we can calculate the homology

groups (5.47), (5.48) and (5.49). They are

H1(G) = Z4/Z2
∼= Z2, (5.51)

H2(G) = {0}, (5.52)

H3(G) = Z2. (5.53)

Therefore, the topological entanglement entropy of this model is

STopo = log
(
|H1(CA,Z2)|

)
+ log

(
|H3(CA,Z2)|

)
− 2log

(
|H0(C∂A,Z2)|

)
+

− log
(
|H2(C∂A,Z2)|

)
+ log

(
|H1(C∂A,Z2)|

)
. (5.54)

Let’s use the universal coefficient theorem to compute these cohomology groups. We have

that, as before,

|H0(C∂A,Z2)| = |Hom(H0(C∂A),Z2)| = 2β0(∂A), (5.55)

|H1(C∂A,Z2)| = |Hom(H1(C∂A),Z2)|, (5.56)

|H1(CA,Z2)| = |Hom(H1(CA),Z2)|. (5.57)

Since in this case ∂A = S2, we have that β0(∂A) = 1, H1(C∂A) = H1(CA) = {0}. Therefore,

|H1(C∂A,Z2)| = |H1(CA,Z2)| = 1. Now,

|H2(C∂A,Z2)| = |Hom(H2(C∂A),Z2)||Ext1(H1(C∂A),Z2)|, (5.58)

|H3(CA,Z2)| = |Hom(H3(CA),Z2)||Ext1(H2(CA),Z2)| (5.59)

and, since H1(C∂A) = H2(CA) = {0}, the Ext terms are trivial. So, with H2(C∂A) ∼=
H3(CA) ∼= Z, we have that |H2(C∂A,Z2)| = |H3(CA,Z2)| = 2. Hence, the topological

entanglement entropy of this model is given by

STopo = −2log(2). (5.60)

We see that, although we defined the model over a manifold with trivial topology and

the ground state degeneracy of this model does not exhibit a topological dependency, the

topological entanglement entropy is different from zero, indicating the presence of long-

range entanglement.
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6 Conclusions

The paper carried out the calculation of the entanglement entropy for all Abelian higher

gauge theories in a comprehensive way. Furthermore we could separate the entropy into the

topological information and the geometrical one. We started by making a review of the kind

of models we treated. Then we described them in very general terms, as introduced in [19].

The calculation followed from the definition of the density matrix ρ as being proportional to

the ground state projector, see (4.9). To obtain the reduced density matrix we considered

a bipartition of the simplicial complex K into a subcomplex KA and its complement. The

partial trace over the unknown region was used to obtain the reduced density matrix ρA,

which included operators that were exclusively supported in KA, see (4.19). From the Von

Neumann entropy formula we derived the entanglement entropy and showed that it could

be naturally interpreted as the ground state degeneracy of the same model but restricted

to the subcomplex KA, see (4.23). In this sense, we mapped the problem of calculating the

entanglement entropy of a higher gauge theory to a problem of counting the flat edge states

of the theory restricted to region A. Then, we further divided this restricted ground state

degeneracy into two contributions, one comming from the bulk region A and the other

comming from its boundary ∂A, and we showed that this splitting allows us to write the

entanglement entropy as a sum of two terms (4.43): one being the area law, i.e., a term

depending only on the geometry of the entangling surface ∂A, and the other being the

topological entanglement entropy, a term depending on the topological properties of both

A and ∂A.

We demonstrated a formula for the topological entanglement entropy STopo in terms

of the cohomology groups with coefficients in the homology groups of the complex (4.3).

The universal coefficient theorem can be applied to give a formula for STopo in terms of

the integral homology groups of the manifold in question, which in turn can be used to

express the topological entropy in terms of the Betti numbers of the underlying space and

its boundary. However, our equations show that, even in regular 1-gauge theories (Abelian

Quantum Double models), STopo can depend on torsion properties of the manifold.

A Trace of local operators

In this appendix we show how taking the partial trace of the ground state projector, or

any product of projection operators of the theory, implies in eq. (4.16).

We begin by writing the density matrix, ρ, using the local decomposition of A0 and

B0 (see [19] for a detailed account on this). The local decomposition yields

A0 =

d∏
n=0

∏
x∈Kn

An,x, and B0 =

d∏
n=0

∏
x∈Kn

Bn,x,

such that the density matrix of eq. (4.5) can be written as

ρ =
1

GSD

(
d∏

n=0

∏
x∈Kn

Ax

)(
d∏

n=0

∏
x∈Kn

Bx

)
.
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This form is convenient for taking the partial trace as the operators are now labelled by

simplices x ∈ Kn for 0 ≤ n ≤ d. This allows the identification of the operators that act

exclusively on region A from the operators that act on both ∂A and B, in order to get the

terms that survive the partial trace. Therefore, the reduced density matrix is written as

ρA = TrB(ρ) = TrB

∏
n

∏
x∈Kn

An,x
∏
y∈Kn

Bn,y

 . (A.1)

Before proceeding with the calculation of the above partial trace, we will introduce a

property that will let us evaluate the partial trace rather straightforwardly.

Proposition A.1. Let x, y ∈ Kn, be n-simplices for 0 ≤ n ≤ d. The local operators,

An,x, Bn,y : H → H, are traceless unless they act trivially (as the identity operator 1H).

Proof. Let {|f〉} be a basis of H, with f ∈ hom(C,G)0. We start by taking the trace of

the local operator An,x:

Tr (An,x) =
∑
f

〈f |An,x |f〉 =
1

|Gn+1|
∑
f

∑
g∈Gn+1

〈f |Ae[n,x,g] |f〉 .

From (3.22), the action of An,x on a basis state consists in general on a shift of basis

elements, which yields

Tr (An,x) =
1

|Gn+1|
∑
f

∑
g∈Gn+1

〈f |f + δ−1(e[n, x, g])|f〉 .

From the last expression, by using the orthogonality of the basis, it is clear that the only

non-null term in the sum occurs only when g = e ∈ Gn+1, the identity element. Thus,

we have:

Tr (An,x) =
Tr (1)

|Gn+1|
=

dim(H)

|Gn+1|
.

Similarly, for the trace of local holonomy measurement operators, Bn,y, we have:

Tr (Bn,y) =
∑
f

〈f |Bx|f〉 =
1

|Gn−1|
∑
f

∑
r∈Ĝn−1

〈f |Bê[n,y,r] |f〉 .

Using (3.23) the above expression can be written as:

Tr (By) =
1

|Gn−1|
∑
f

∑
r∈Ĝn−1

〈r, δ0fn(y)〉 〈f |f〉 =
1

|Gn−1|
∑
f

∑
r∈Ĝn−1

〈r, δ0fn(y)〉〈ê, δ0fn(y)〉 〈f |f〉 ,

where in the last line we used the fact that 〈ê, g〉 = 1, ∀g ∈ Gn−1 and ê ∈ Ĝn−1, the trivial

representation. From the orthogonality relations of characters [39–42], we note that:∑
f

〈r, δ0fn(y)〉〈ê, δ0fn(y)〉 = δ(e, fn(y)),
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which implies that the trivial representation term is the only one that has non-zero trace,

since it acts as the identity operator.

Tr (By) =
|H|
|Gn−1|

.

This result can naturally be extended to products of such operators to show that the

only term that survives the trace is the one that acts trivially on region B. This allows us

to express the reduced density matrix, ρA of eq. (A.1) in terms of operators that act only

in region A.

In this case, proposition A.1 implies that any operator (or product of several) that is

different from 1B, the identity operator in HB, will have vanishing trace. In particular,

local gauge transformations Ax will survive the trace if and only if x ∈ Kn,Ã, where Ã is the

interior of A.1 On the other hand, local holonomy measurement operators By will survive

the trace if and only if y ∈ Kn,A which corresponds to the entire region A. Consequently,

the reduced density matrix is:

ρA = TrB(1B)
∏
n

∏
x∈Kn,Ã

Ax
∏

y∈Kn,A

By.

From which we write eq. (4.16).

B Auxiliary isomorphism

In this appendix, we prove the equality
∣∣Im(δ0)

∣∣ = |Im(δ1)| that allowed us to relate the

dimension of the Hilbert space H and the ground state degeneracy GSD through:

GSD |Im(δ−1)||Im(δ1)| = dim(H) = dim(HA) dim(HB).

In order to do so, we will show that there is a well defined bijection between ker(δ1) and

hom(C,G)1/Im(δ0) from which the result follows.

Let A,B be two finite Abelian groups and φ : A→ B a homomorphism between them.

Consider also Â = Hom(A,U(1)) and B̂ = Hom(B,U(1)) their corresponding unitary

irreducible representations, let φ̂ : B̂ → Â be the homomorphism between representations

induced by φ via

φ̂(β) := β ◦ φ,

where β ∈ B̂ is an irrep of B.

Proposition B.1. The subgroups ker φ̂ and B
Im(φ) are isomorphic.

Proof. We will split the proof in two parts, in the first half of the proof we show that there

is a well defined map between ker φ̂ and B
Im(φ) and then we show that its inverse is also

well defined, which turns the maps into a bijection.

1Local gauge transformations are labeled by simplices x ∈ Kn and they act on the gauge fields at the

co-boundary, ∂∗(x). In particular, gauge transformations located at x ∈ Kn,∂A, the boundary of A, also

act on B. Thus, they do not contribute to the trace.
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1. Note that an irreducible representation β ∈ kerφ̂ if and only if Imφ ⊂ kerβ. This

allows us to construct the following commuting diagram:

B

π
��

β
// U(1)

B
Imφ

β′

==
(B.1)

where π : B → B
Imφ is the canonical projection sending b ∈ B into its correspond-

ing equivalence class [b] ∈ B
Imφ Furthermore, β′ ∈ Hom

(
B

Imφ ,U(1)
)

is unique and

defined as:

β′([b]) := β(b)

notice that β′ is well defined within equivalence classes since Imφ ⊂ kerβ. To see

this, consider b′ 6= b ∈ [b], this means that b− b′ ∈ Imφ ⊂ kerβ, therefore:

β(b− b′) = 1, ⇒ β(b)β(b′)−1 = 1,

⇒ β(b) = β(b′) = β′([b]).

This is, we have shown that given an irrep β ∈ kerφ̂ then there is a unique morphism

β′ ∈ Hom
(

B
Imφ ,U(1)

)
.

We now need to show that the converse also holds, to this intent, consider β′ :
B

Imφ → U(1). Recall that Imφ ⊂ kerβ. Observe also that β is the only map for which

the diagram in B.1 commutes.

Thus, we have shown that given a β′ ∈ Hom
(

B
Imφ ,U(1)

)
there is a unique

β = β′ ◦ π ∈ kerφ̂.

2. Now we carry on showing that the map above is in fact a bijection and it defines an

isomorphism. Let ι be the map:

ι : kerφ̂ −→ Hom

(
B

Imφ
,U(1)

)
,

β 7→ β′,

where β′([b]) := β(b). Let now, κ, be the map:

κ : Hom

(
B

Imφ
,U(1)

)
−→ kerφ̂,

β′ 7→ β := β′ ◦ π,

where π : B → B
Imφ is the canonical projection that sends b ∈ B into its corresponding

equivalence class [b] ∈ B
Imφ . Notice that κ = ι−1, since:

(κ ◦ ι) (β)(b) = κ(β′)(b) = (β′ ◦ π)(b) = β′([b]) = β(b).
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Therefore, the map ι is a bijection. To prove that it defines an isomorphism we only

need to check for its compatibility with the group operation in kerφ̂. This is, given

β1, β2 ∈ kerφ̂, we want to show that ι(β1 · β2) = ι(β1) · ι(β2).
So, consider b ∈ B and, [b] ∈ B

Imφ :

ι(β1 · β2)([b]) = (β1 · β2)′([b]) = (β1 · β2)(b) = β1(b) · β2(b) = ι(β1) · ι(β2).

Hence, kerφ̂ ' Hom
(

B
Imφ ,U(1)

)
.

In particular, as a result of the above proposition, it is true that, for A,B finite groups:∣∣∣kerφ̂
∣∣∣ =

∣∣∣∣Hom

(
B

Imφ
,U(1)

)∣∣∣∣ =
|B|
|Imφ|

, (B.2)

where in the last step we used the fact that all groups are Abelian. We are one step away

from our goal which can be stated as the following proposition

Proposition B.2. Let φ : A → B be a homomorphism between finite Abelian groups.

Moreover, let φ̂ : B̂ → Â its dual morphism. Then,

|Imφ| =
∣∣∣Im φ̂

∣∣∣ .
Proof. From proposition B.1, we know that:

∣∣∣kerφ̂
∣∣∣ = |B|

|Imφ| . Now, applying the first

isomorphism theorem [35] on φ̂ : B̂ → Â, we know that: B̂/kerφ̂ ' Imφ̂, from which we

can write:

|B̂|
|kerφ̂|

=
∣∣∣Im φ̂

∣∣∣ ,
recall that |B̂| = |B| since we are dealing with Abelian groups. Replacing eq. (B.2) into

the above one, we get:

|Imφ| = |Im φ̂|.

C Proof of lemma 4.1

We start with a proposition:

Proposition C.1.

|ker(δ−1A )| = |ker(δ−1
Ã

)||ker(δ−1∂A)|. (C.1)
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Proof. Consider ker(δ−1A ), a subgroup of hom(CA, G)−1. From the definitions of hom(CÃ, G)−1,

δ−1
Ã

, hom(C∂A, G)−1 and δ−1∂A, it is clear that

ker(δ−1
Ã

) = {f ∈ hom(CÃ, G)−1|δ−1
Ã
f = 0}

and

ker(δ−1∂A) = {f ∈ hom(C∂A, G)−1|δ−1∂Af = 0}

are subgroups of ker(δ−1A ). We introduce the following equivalence relation on ker(δ−1A ): let

f, f ′ ∈ ker(δ−1A ),

f ∼ f ′ ⇔ f ′ − f = g ∈ ker(δ−1
Ã

). (C.2)

That is, two collections of maps f and f ′ in ker(δ−1A ) are equivalent if they differ by a

collection of maps in ker(δ−1
Ã

), i.e., maps with support in KÃ = ∪dn=0Kn,Ã that are also

sent to the trivial map by the co-boundary operator. This equivalence relation defines the

quotient group ker(δ−1A )/ker(δ−1
Ã

). Define the map φ : ker(δ−1A )/ker(δ−1
Ã

)→ ker(δ−1∂A), which

for a class [f ] ∈ ker(δ−1A )/ker(δ−1
Ã

), φ([f ]) = f |∂A ∈ ker(δ−1∂A), where f |∂A = {(f |∂A)n} is a

collection of maps in hom(C∂A, G)−1 such that

(f |∂A)n(x) =

{
fn(x), if x ∈ Kn,∂A,

0, otherwise.
(C.3)

So, φ is a map that sends any class [f ] ∈ ker(δ−1A )/ker(δ−1
Ã

) to the restriction f |∂A to ∂A

of one of its representatives. This map does not depend on the choice of representative

of a class. Indeed, let [f ] ∈ ker(δ−1A )/ker(δ−1
Ã

) and choose two representatives f ′, f ′′ ∈ [f ],

f ′ 6= f ′′. We could have that φ([f ]) = f ′|∂A and φ[f ] = f ′′|∂A. But there is g ∈ ker(δ−1
Ã

)

such that f ′− f ′′ = g, so f ′|∂A− f ′′|∂A = g|∂A = 0, because g ∈ hom(CÃ, G)−1. Therefore,

f ′|∂A = f ′′|∂A. Moreover, φ is an isomorphism. To see this, first take [f ] ∈ ker(φ). So,

φ([f ]) = 0 ⇔ f |∂A = 0, which means that f is a collection of trivial maps. Therefore,

ker(φ) = {0} and φ is injective. The map φ is also surjective, because if we take a map

g ∈ ker(δ−1∂A), it is a collection of maps which are zero everywhere except in the boundary

of A and it can be obtained by applying φ in the class [g] ∈ ker(δ−1A )/ker(δ−1
Ã

). Therefore,

φ is bijective. Now, let [f ], [g] ∈ ker(δ−1A )/ker(δ−1
Ã

). The sum [f ]+ [g] is given by [f ]+ [g] =

[f + g]. We have then φ([f ] + [g]) = φ([f + g]) = (f + g)|∂A = f |∂A+ g|∂A = φ([f ]) +φ([g]),

for any representatives f ∈ [f ] and g ∈ [g]. So, φ is also a homomorphism and therefore it

is indeed an isomorphism. Thus, we have indeed that

ker(δ−1A )/ker(δ−1
Ã

) ∼= ker(δ−1∂A) (C.4)

which implies that

|ker(δ−1A )| = |ker(δ−1
Ã

)||ker(δ−1∂A)|. (C.5)

Now, since Kn,Ã ∩Kn,∂A = ∅ and Kn,Ã ∪Kn,∂A = Kn,A for any n = 0, . . . , d, we can

write the n-chain group Cn,A as a direct sum of subgroups Cn,A = Cn,Ã⊕Cn,∂A, i.e., every
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c =
∑

x∈Kn,A c(x)x ∈ Cn,A can be written as c =
∑

x∈Kn,Ã
c(x)x +

∑
x∈Kn,∂A c(x)x. This

implies that any homomorphism fn : Cn,A → Gn+1, where Gn+1 is some arbitrary finite

Abelian group, can be written as fn : Cn,Ã ⊕ Cn,∂A → Gn+1. Thus,

Hom(Cn,A, Gn+1) = Hom(Cn,Ã ⊕ Cn,∂A, Gn+1).

There is a natural isomorphism [37, 43]

Hom(Cn,Ã ⊕ Cn,∂A, Gn+1) ∼= Hom(Cn,Ã, Gn+1)⊕Hom(Cn,∂A, Gn+1),

thus,

Hom(Cn,A, Gn+1) ∼= Hom(Cn,Ã, Gn+1)⊕Hom(Cn,∂A, Gn+1), (C.6)

this implies that

hom(CA, G)−1 ∼= hom(CÃ, G)−1 ⊕ hom(C∂A, G)−1, (C.7)

and thus

|hom(CA, G)−1| = |hom(CÃ, G)−1||hom(C∂A, G)−1|. (C.8)

Then, from the first isomorphism theorem, we have that

hom(CA, G)−1/ker(δ−1A ) ∼= Im(δ−1A ), (C.9)

hom(CÃ, G)−1/ker(δ−1
Ã

) ∼= Im(δ−1
Ã

), (C.10)

hom(C∂A, G)−1/ker(δ−1∂A) ∼= Im(δ−1∂A), (C.11)

so

|Im(δ−1A )| = |hom(CA,G)−1|
|ker(δ−1

A )| , (C.12)

|Im(δ−1
Ã

)| =
|hom(CÃ,G)−1|
|ker(δ−1

Ã
)| , (C.13)

|Im(δ−1∂A)| = |hom(C∂A,G)−1|
|ker(δ−1

∂A)|
. (C.14)

Thus, dividing (C.12) by (C.13), we have finally that

|Im(δ−1A )|
|Im(δ−1

Ã
)|

=
|hom(CA, G)−1|
|ker(δ−1A )|

|ker(δ−1
Ã

)|
|hom(CÃ, G)−1|

=
|hom(CÃ, G)−1||hom(C∂A, G)−1||ker(δ−1

Ã
)|

|ker(δ−1
Ã

)||ker(δ−1∂A)||hom(CÃ, G)−1|

=
|hom(C∂A, G)−1|
|ker(δ−1∂A)|

= |Im(δ−1∂A)|,

where we used equations (C.8), (C.5) and (C.14).
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